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Abstract

We consider a mathematical model for a thin superconducting film which is mag-
netically shielded by permanent magnets in order to improve the current carrying
capability of the film. In a first part we study the behaviour of the magnetic field
of the combined system, which is characterized via a boundary value problem for
Laplace’s equation for the quasi-scalar magnetic potential. In a second part we
formulate and analyze a related geometric optimization problem that can be in-
terpreted as a homogenization of the current distribution in the superconducting
film by means of shape optimization for the magnet boundaries.
We present a uniqueness and existence analysis for the boundary value problem
based on boundary integral equations. The theoretical studies are complemented
by a numerical approximation scheme for the potential, for which we prove ex-
ponential convergence rates under appropriate smoothness assumptions on the
geometry. As central result for the geometric optimization problem we prove
the differentiable dependence of the current distribution on the geometry, which
also leads to an abstract existence result. Based on the differentiability result
we derive two numerical schemes to realize the geometric optimization problem
iteratively. The first approach relies on explicit parametrizations for the bound-
aries leading to a steepest descent scheme. The second approach uses level set
methods which are based on an implicit boundary representation. The feasibility
of both approaches is shown in a variety of examples.
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Zusammenfassung

Wir betrachten ein mathematisches Modell eines dünnen, supraleitenden Films,
der durch Permanentmagneten magnetisch abgeschirmt ist, um die Stromtragfä-
higkeit des Films zu erhöhen. In einem ersten Teil studieren wir das Verhalten des
magnetischen Felds in dem kombinierten System, welches durch ein Randwert-
problem zur Laplacegleichung für das quasi-skalare magnetische Potential charak-
terisiert wird. In einem zweiten Teil formulieren und analysieren wir ein ver-
wandtes geometrisches Optimierungsproblem. Dieses kann als Homogenisierung
der Stromverteilung des supraleitenden Films durch Formoptimierung der Ränder
der Magneten interpretiert werden.
Im ersten Teil stellen wir eine auf Randintegralgleichungen basierende Lösungs-
theorie für das Randwertproblem vor. Die theoretischen Untersuchungen werden
durch ein numerisches Verfahren ergänzt, für welches wir unter entsprechenden
Glattheitsannahmen an die Geometrie exponentielle Konvergenzraten beweisen.
Der Nachweis der differenzierbaren Abhängigkeit der Stromverteilung von der Ge-
ometrie bildet das zentrale Resultat des zweiten Teils, welches auch als Grundlage
für ein abstraktes Existenzresultat für das Optimierungsproblem dient. Zudem
bildet die Differenzierbarkeit den Ausgangspunkt für zwei numerische Verfahren
zur Umsetzung des geometrischen Optimierungsproblems. Das erste Verfahren
beruht auf der Kenntnis von expliziten Randparametrisierungen und führt zu
einem Verfahren des Steilsten Abstiegs. Der zweite Ansatz benutzt Level Set
Methoden, welche auf einer impliziten Randdarstellung basieren. Beide Verfahren
werden an einer Reihe von Beispielen illustriert.
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Chapter 0

Introduction

Laplace’s equation is one of the most fascinating partial differential equations of
mathematical physics. Its widespread occurrence in electrostatics, magnetostat-
ics, steady state heat conduction, incompressible fluid flow, gravitation and elas-
ticity gives evidence for its importance and versatility. Its simple nature makes
it the ideal candidate to serve as a model for involved elliptic PDEs. Named
after its discoverer Pierre-Simon Laplace (1749 - 1827) it has been an object of
constant interest for many mathematicians such as Courant and Hilbert [19].
In its long standing history, a vast amount of methods have been developed to
solve a variety of boundary value problems that can be associated with Laplace’s
equation, such as Dirichlet’s problems or transmission problems. In a Dirichlet
problem one seeks a real-valued function u satisfying

∆u
∣∣
D

= 0, u
∣∣
∂D

= g

for some function g defined on the boundary ∂D of a bounded domain. In the
latter case of a transmission problem one tries to find a function u that satisfies

∆u
∣∣
R2\∂D

= 0, u+ − u− = 0,
∂u+

∂ν
− a

∂u−

∂ν
= 0

for some positive constant a 6= 1. In the first part of the work at hand we
will focus on a boundary value problem which combines the two cases described
above in the sense that on some parts of the boundary we impose Dirichlet’s
condition whereas on others we require a possible solution to satisfy transmission
conditions. For the sake of completeness we mention here that in the literature
one can find also several other boundary conditions for Laplace’s equation such as
Neumann conditions, or impedance conditions. We refer to [48] and the references
therein for a more comprehensive study on boundary value problems to Laplace’s
equation.
In the scientific history of boundary value problems to Laplace’s equation not
only the boundary conditions have played a major role, but also the boundary
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14 CHAPTER 0. INTRODUCTION

itself has been an object of interest. So, extremely specialized methods and so-
lution formulae have been developed for circular, spherical or cylindrical objects.
On the other hand the analysis has been relaxed to domains with corners or Lip-
schitz domains. Also unbounded surfaces, either flat or rough, have been studied
extensively. Detailed descriptions of these fields can be found in [25, 74].
However, Laplace’s equation does not only appear in the context of mathematical
physics, it also emerges naturally in complex analysis. So, the real and imaginary
part of a holomorphic function are solutions to Laplace’s equation due to the
Cauchy-Riemann equations. Furthermore, Cauchy’s integral formula renders a
beautiful way to represent holomorphic functions by an integral expression over
a closed curve. Starting out from this result, it is easy to see that, in cases where
the curve along which the integration is performed is not closed but an open
curve, the integral expression also defines a solution to Laplace’s equation in the
exterior of the arc. In this way a natural construction arises that allows to study
phenomena from mathematical physics that are defined in the exterior of an open
curve and which can be described appropriately using Laplace’s equation.
The boundary value problem, which we will consider in the second chapter will
incorporate two of the described boundary structures, namely closed domains
with C2-smooth boundaries and open curves.
As manifold as the areas, boundary conditions and geometric assumptions are,
that have been subject to mathematical research, as broad have been the ap-
proaches to do the analysis for these problems. Driven by the desired applicability
and the mathematical fashion of the time, layer representations, series expansions
or finite element methods have been developed among others (see [24, 47]). In
our description we will follow the classical approach and seek solutions via layer
representations and integral equation methods.
In our case the work on Laplace’s equation has been motivated from a problem in
magnetostatics from theoretical physics. In [30], Genenko et al. have considered
a macroscopic model for the Meissner state of a thin superconducting film in a
magnetic environment, which we have picked up for our considerations. In the
following we will describe the modelling process that finally leads to the boundary
value problem for which we will do the analysis in the first part of this work.
A priori, the model of a thin superconducting film in a magnetic environment is
three-dimensional. It consists of a thin volume sample with thickness d << W ,
where W is the width, and an arbitrary finite number of permanent magnets.
Both the superconducting film and the magnets are extended infinitely long
in x3-direction and are assumed to have a constant cross-section in the x1x2-plane.
All physical constants are assumed to be independent of the x3-coordinate, and
the (unknown) magnetic field B is homogeneous in that direction. Furthermore,
the superconducting film carries a transport current of total strength I which is
distributed over the film according to some unknown current density distribu-
tion j : R

3 → R
3. Figure 1 illustrates the three-dimensional situation decribed

above for a geometric setup as it appears in experimental physics (see [41, 43]).
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Figure 1: Geometric setup in three dimensions

In this framework we are interested in deducing the magnetic field B and the
current distribution j. The model is reduced to a two-dimensional problem by
considering the cross-section in the x1x2-plane and the corresponding quasi-scalar
magnetic vector-potential

A(x, x3) :=
(
0, 0, u(x)

)
, x ∈ R

2,

for some twice continuously differentiable function u. Defining

B := curl A

we obtain that B satisfies the fundamental equations

div B = 0,

curl B =
(
0, 0, −∆u

)
= −µ0j

of magnetostatics for a non-zero constant µ0 and the unknown current density
distribution j : R

3 → R
3, i.e. we can think of B as a magnetic field. The

current density j is thought of as the magnetic analogon to the charge density,
and it is only non-zero where the medium is penetrated by an electric current.
Consequently, it has to vanish inside the magnets and in the exterior domain and
may support electric sources only inside the superconducting film or on the surface
of the magnets. We see from the above that the scalar magnetic potential u is a
solution to Laplace’s equation in the interior and exterior of the magnets apart
from the superconducting film. The surface of the magnets may be regarded
as an interface between two materials with different magnetic permeabilities µ1

and µ2. At such interfaces S between two media V1 and V2 the corresponding
magnetic fields B1 and B2 are known to behave like

B1 · nS = B2 · nS,

1

µ1

B1 × nS =
1

µ2

B2 × nS,

where nS denotes the surface normal to S. From the identity

B =

(
∂u

∂x2

, − ∂u

∂x1

, 0

)T

(1)
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and the fact that the surface normal to S is of the form nS =
(
n1, n2, 0

)T
due to

the constant cross-section with respect to the x3-direction, we can derive corre-
sponding conditions that have to be imposed on u. These are, in particular,

u+ = u−,

1

µ+

∂u+

∂ν
=

1

µ−

∂u−

∂ν
,

where ν =
(
n1, n2

)
is the projection of nS onto the x1x2-plane which we identify

with R
2, and where the ’+’- and ’−’-signs signify whether the surface of the

magnet is approached from direction +ν or −ν.
In terms of theoretical physics the Meissner state of a superconducting medium V

is characterized by
B = 0 in V,

which particularly implies

B · n∂V = 0 on ∂V, (2)

where ∂V is the surface of the superconducting medium V and n∂V is the surface
normal. Using the relation (1) between B and u and the form of the surface
normal we can translate (2) into the condition

u = const on ∂V,

that has to be imposed on u. As the potential corresponding to a certain magnetic
field B is determined only up to a constant, we may even assume that

u = 0 on ∂V.

Interestingly, the above model enforces some constraints on the macroscopic be-
haviour of the magnetic field B. Although we think of B as a continuously varying
vector field, there exists a characteristic quantity λ called penetration depth, ac-
cording to which the magnetic field B is homogeneous on scales smaller than λ.
The thin superconducting films that have been considered both in experiments
(see [43]) and in the physical model (see [30]) satisfy the assumption d ≤ λ for
the thickness of the film. Consequently, we may assume that the magnetic field B

does not vary over the thickness of the film. This then justifies the modelling
of the formally two-dimensional cross-section of the superconducting film as a
one-dimensional open curve Γ. The conditions imposed on u in the above are
unaffected by this modelling assumption as they were formulated either for the
exterior of the superconducting film or in terms of the surface ∂V , which now
coincides with the open curve Γ.
The carrying of a non-zero transport current may be interpreted from the point
of view of Biot-Savart’s law

B(x) =
µ

4π

∫∫∫

V

j(y) × (x− y)

|x− y|3 dy. (3)
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Using the assumed homogeneity with respect to the x3-direction, we may obtain
an area integral over the cross-section from the three-dimensional volume integral
given in (3) with an asymptotic behaviour of |x|−1 for |x| → ∞. This implies
that the potential u corresponding to the magnetic field B which is generated
by the current density j is allowed to grow at a logarithmic rate, and thereby
motivates the choice of the condition

u(x) − I

2π|Γ|

∫

Γ

ln
1

|x− y| ds(y) = O(1), |x| → ∞, (4)

to be imposed on u. It will be the issue of Section 2.4 to verify that (4) indeed
yields a total transport current I in the sense of Ampère’s law.

From an applicational viewpoint it is often not satisfactory to stop once an un-
derstanding of a certain model has been achieved. The aim is rather to influence
or control certain aspects or quantities of the model in order to achieve a better
behaviour of the model with respect to some goal. These ideas have also been
present in the field of applied mathematics for a long time. Research in these ar-
eas is known generally under the name of optimization or control theory, which in
its classical form mainly deals with optimizing the value of an objective functional
that depends on one or several scalar parameters, which are furthermore subject
to some linear or non-linear constraints (see, for example, [75] for an introduc-
tion). In the last thirty years a special branch called shape optimization has
developed within the field of optimization, which concerns itself with problems
where the parameter is a geometric quantity such as a domain in n-space or some
characteristic of such a domain. In problems of this type the connection between
the parameter and the objective cannot always be described through a ’simple’
functional dependence, but only via the solution of a partial differential equation
which then is regarded as dependent on the domain as parameter. Let us mention
in this context the books by Pironneau [57], and Sokolowski and Zolesio [70], as
well as the more recent monographs by Delfour and Zolesio [22] or Haslinger and
Mäkinen [33] for further reference on shape optimization.
Again, various strategies have been developed to treat this type of problems
which are in almost every case motivated by the nature of the parameter and the
objective. Focussing on optimization with respect to domains and their boundary
shape we may coarsely distinguish between two groups of approaches, which differ
in their perspective of the domain boundary. On the one side we find the group
of methods relying on explicit boundary representation. The methods of this
group assume that the boundary of the domain is given explicitly in terms of
parametrizations or in the case of polygons in terms of its corners. On the other
side there are the methods relying on implicit boundary representation, such as
so-called level set methods, that have become extremely popular within the last
decade. In this approach the boundary is given as the 0-level set of a globally-
defined, real-valued function φ using the convention that a point x is inside the
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0
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2
 

Figure 2: One-dimensional example of a level set function

domain D if φ(x) < 0, and it is outside the domain D if φ(x) > 0. Figure 2 gives
a one-dimensional illustration for such a level set function φ, where the domain D
consists of two connected components D1 and D2.
Common to both of these groups are the tools from general optimization theory
with which the related problem is attacked. Starting from an initial guess the
objective yields a ’direction’ or an ’update’ which improves the behaviour of the
problem with respect to that same objective. In the first group this is interpreted
as a simple iterative update process

zn+1 := zn + hn, n ∈ N ∪ {0},

where zn is the explicit boundary representation of the iterate ∂Dn, and hn is the
update. In the latter group the interpretation is given by an evolution equation
of the form

∂φ(x, t)

∂t
+
〈
V (x, t) , grad φ(x, t)

〉
= 0

in artificial time, where V is a driving vector field obtained from the objective in
some appropriate way, advecting φ towards the optimum.

We will realize and compare both kinds of approaches in this work by applying
them to a Geometric Optimization Problem that is derived from the macroscopic
model for the Meissner state of a thin superconducting film in a magnetic envi-
ronment introduced above in the following way.

The Meissner state of superconducting medium is very fragile with respect to
mainly two quantities. On the one hand it is limited to comparatively low tem-
peratures (either < −270◦C for pure copper or < −150◦C for so-called high-
temperature YBCO-superconductors), on the other hand it can be maintained
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only for small magnetic fields B. In the model for the thin film described above
it was assumed that an electric current penetrates the superconducting film. This
current generates a magnetic field in the exterior of the film, which will eventu-
ally cause the breakdown of the Meissner state if the total current I is too large.
From the perspective of Ampère’s law, the current I is distributed over the film
according to

I =

∫∫
j dx (5)

where j is the current density which may not be homogeneous. Furthermore,
there are two characteristic quantities, the Ginzburgh-Landau depairing current j0
and the critical value of first flux entry H∗, that govern a possible breakdown.
While j0 is a local and microscopic quantity that gives an upper bound for the
current density above which the film immediately becomes normally conducting,
the fluxH∗ is a macroscopic quantity that gives an upper bound on the strength of
the magnetic field, above which the nature of the superconducting state changes,
in the sense that the superconducting medium is then penetrated by a stationary
magnetic field (Shubnikov phase). It has been observed that this penetration
of the superconducting medium always starts at the boundary. Hence, it is the
objective to develop a magnetic environment for a thin superconducting film such
that the Meissner state is stabilized for transport currents as high as possible.
Ideally this would mean to have a homogeneous current density of strength j0−ε.
As the magnetic field of the thin superconducting film is affected by the magnetic
self-field of the permanent magnets that build the magnetic environment, their
shape may be used to control the distribution of the current density j inside
the film. In other words, given a superconducting film Γ and a total transport
current I, it is the objective to

Find a shape for the magnetic environment such that j ≈ const.

It will be the main subject of the second part of this work to analyze the Geomet-
ric Optimization Problem stated above in mathematically rigorous terms, and to
provide according numerical approximation schemes with appropriate examples.
In the discussion of a proposed approximation scheme using explicit boundary
representation, we will identify certain drawbacks such as topological stiffness or
separation problems. This mainly motivates the chances for a second approach,
where then the geometric optimization problem is realized in the methodology of
implicit boundary representation

The work at hand is organized as follows.

In Chapter 1 we shortly review basic concepts from classical potential theory,
and state and prove a version of Green’s Theorem for bounded domains of class C1

that contain an open arc in their interior. We present layer potentials over closed
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curves as an important class of harmonic functions and concern ourselves with
the single-layer potential for an open arc Γ, which is also known in the literature,
but lacks a comprehensive description up to now. To this end we introduce the
function space C∗(Γ) in Definition 1.13 as the appropriate space for the densities
of the single-layer potential. In this setting we state and prove basic properties
of C∗(Γ) and the single-layer potential for the open arc. The chapter is closed
with the examination of a specific integral operator L which will be a central
ingredient for the existence analysis of Chapter 2.

In Chapter 2 we consider the Boundary Value Problem for the Laplace equation
that arises from the modelling process described in the introduction. We formu-
late the problem rigorously in Problem 2.1 and prove uniqueness with the proof
being based on the version of Green’s Theorem from Chapter 1. The existence
of a solution is established following the classical approach via boundary integral
equations. Using the cosine substitution as the key tool, we derive an operator
equation of the second kind which is well-posed due to the invertibility of L (see

Theorem 2.10). The chapter is concluded by identifying the jump
[

∂u
∂νΓ

]
of the

normal derivative of the solution across Γ as a current distribution for Γ. Follow-
ing an idea of Hayashi [34] from 1973, we show in Theorem 2.15 that

[
∂u
∂νΓ

]
is

the solution to a Cauchy type integral equation, for which a characterization in
terms of the behaviour at the endpoints of Γ can be obtained.

Chapter 3 deals with the analysis of the Geometric Optimization Problem that
has been formulated above in loose terms. We state the Geometric Optimization
Problem in mathematical terms in Problem 3.3, deriving the L2-type objective
functional

F (∂Dθ) :=
1

2

∫

Γ

w(x)

[
F̃ (∂Dθ) −

I

|Γ|

]2

ds, (6)

where F̃ the current mapping that relates an admissible domain Dθ with shape
parameter θ to the current distribution for the associated Boundary Value Prob-
lem. The choice of F is subsequently justified from an applicational point of
view.

In Section 3.2 and Section 3.3 we prepare the sensitivity analysis by deriving
the factorization (3.13) for F , and by compiling classical and establishing spezial-
ized results on Fréchet differentiability for parameter dependent operators.

Based on these abstract results we concern ourselves in Section 3.4 with the
sensitivity analysis for the solution to the Boundary Value Problem. The key
result is the differentiability of the double-layer potential with respect to per-
turbations of the domain (Theorem 3.28) similar to the work of Potthast [58].
The sensitivity result Theorem 3.33 then constitutes the first of three central
results of this thesis, stating the differentiable dependence of the solution to the
Boundary Value Problem on the shape parameter.
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In Theorem 3.36 a sensitivity result for the functional F is derived, which
forms the second central result. It is based on the results of Section 3.4 and the
factorization (3.13). The chapter is concluded by Theorem 3.37 which is the
third central result of this thesis. It states the existence of a minimizer for the
Geometric Optimization Problem 3.3 under suitable assumptions on the shape
parameter.

Chapter 4 is concerned with three approximation schemes. As a necessary basis,
we present in Section 4.1 a combined collocation and quadrature method as an
approximation scheme for the solution to the Boundary Value Problem. For this
standard approach we also adopt the convergence analysis from [35].
The Steepest Descent Algorithm in Section 4.2 is a first numerical approach
to the Geometric Optimization Problem relying on explicit boundary representa-
tion. We assume the boundary to be given by a parametrization in polar coordi-
nates with the radial function being either a trigonometric polynomial or a linear
combination of specially designed radial basis functions (4.19). Approaches of
this kind are well-known from the literature.
In Section 4.3 we present a Level Set Algorithm as an alternative approach
that is based on implicit boundary representation. To combine the differentiabil-
ity results from Chapter 3 with the level set idea that has been described in the
introduction, we derive two specially designed algorithms. The first one resolves
the boundary in the context of a level set method, the second one extends the
’boundary’ velocity to the level set grid. Furthermore, Section 4.3 gives an intro-
duction to the level set idea in general and provides the reader with a description
of the other algorithms from the literature that are used in the context of our
algorithm.

The feasibility of the presented numerical algorithms for solving the Boundary
Value Problem 2.1 and the Geometric Optimization Problem 3.3 is verified in
Chapter 5, where we give the according numerical examples. Furthermore,
we discuss the results from a physical point of view presenting an example for
the behaviour of the magnetic field and the current distribution for a simple
geometry. The observations are then compared with the corresponding behaviour
of the solutions to the Geometric Optimization Problem that we obtain from the
different methods described in Chapter 4.

The work is concluded with a comparison of the advantages and drawbacks of
explicit and implicit boundary representation and an outlook in Chapter 6.
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Chapter 1

Potential theory

In this chapter we present a compilation of some of the central results from
potential theory that contribute directly to this work. We follow [47] and [31] in
our description. We will moreover adapt and extend the results that have been
present in the literature for the case of domains to the situation of cracks and
domains with cracks.

1.1 Harmonic functions

We start our presentation by introducing the notion of harmonic functions.

Definition 1.1. A twice continuously differentiable, real-valued function u on a
domain Ω ⊂ R

2 is called harmonic, if it satisfies Laplace’s equation

∆u = 0 in Ω,

where

∆u :=
∂2u

∂x2
1

+
∂2u

∂x2
2

.

Many properties of harmonic functions rely on Green’s Theorem. We state it here
together with two corollaries as it will be the key ingredient for the uniqueness
theorem of Section 2.2.

Theorem 1.2 (Green’s Theorem). Let Ω ⊂ R
2 be a bounded domain of class C1

and let ν be the unit normal to the boundary ∂Ω directed into the exterior of Ω.
Furthermore, let u ∈ C2(Ω) and v ∈ C1(Ω). Then u and v satisfy Green’s first
theorem ∫

Ω

{
〈grad v , grad u〉 + v∆u

}
dx =

∫

∂Ω

v
∂u

∂ν
ds. (1.1)

23
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Proof. see [47], p. 69. �

We observe that Green’s theorem also holds under weaker conditions on the
boundary regularity of Ω. In particular, Ω is allowed to have finitely many corners.
For a more detailed study we refer to [49] or [50].

From Green’s Theorem we can immediately infer an additional property of har-
monic functions in the interior of Ω, which will be stated in the following corollary.

Corollary 1.3. Let Ω ⊂ R
2 be a bounded domain of class C1, let ν denote the

unit normal to the boundary ∂Ω directed into the exterior of Ω, and let u ∈ C2(Ω)
be harmonic. Then ∫

∂Ω

∂u

∂ν
ds = 0. (1.2)

Proof. Apply Theorem 1.2 to u and v ≡ 1. �

Corollary 1.3 can be formulated analogously for the exterior with the additional
requirement that u is bounded in the unbounded exterior.

Corollary 1.4. Let Ω ⊂ R
2 be a bounded, simply connected domain of class C1

and let ν be the unit normal to the boundary ∂Ω directed into the exterior of Ω.
Furthermore, let u ∈ C2(R2 \ Ω) be harmonic and bounded in R

2 \ Ω. Then
∫

∂Ω

∂u

∂ν
ds = 0. (1.3)

Proof. see [47], pp. 69. �

In the modelling process from the introduction we have come across harmonic
functions that are defined in the exterior of an open arc. To analyze the behaviour
of these functions adequately, we will formulate and prove a version of Green’s
Theorem for domains that contain an open arc in the interior. To this end, let
us first define rigorously what we mean by an open arc.

Definition 1.5. Let γ : [a, b] → R
2 be injective, regular (i.e. γ ′ 6= 0), and k-times

differentiable. Then
Γ := γ([a, b]) ⊂ R

2

is called an open arc of class Ck. The endpoints of Γ will be denoted by za := γ(a)
and zb := γ(b), the unit normal νΓ to Γ will be given by

νΓ(x) :=

(
0 −1
1 0

)
γ′(t)

‖γ′(t)‖ , x = γ(t), t ∈ [a, b]. (1.4)



1.1. HARMONIC FUNCTIONS 25

For the case of Γ being parametrized by arclength, i.e. ‖γ ′‖ = 1, we will also use
the abbreviation

[γ′]
⊥

=

(
0 −1
1 0

)
γ′(t), t ∈ [a, b],

for the normal νΓ.

Theorem 1.6. Let Ω ⊂ R
2 be a bounded domain of class C1 containing an open

arc Γ of class C3 in its interior, and let νΩ be the unit normal directed into the
exterior of Ω. Let u ∈ C2(Ω \ Γ) ∩ C(Ω) be harmonic in Ω \ Γ and satisfy u = 0
on Γ. Then

grad u ∈ L2(Ω)

and the following version of Green’s Theorem holds:

∫

Ω

∣∣grad u
∣∣2 dx =

∫

∂Ω

u
∂u

∂ν
ds. (1.5)

Proof. For the first statement we follow [18, 46, 51]. We choose a monotonically
increasing, odd function ψ ∈ C1(R) that satisfies ψ(t) = 0 in [−1, 1] and ψ(t) = t

for |t| ≥ 2. Then we define functions

un :=
ψ(nu)

n
,

noting that all un belong to C1(Ω), vanish in a neighbourhood Un of Γ and
converge uniformly to u on Ω.
Picking a smooth, simply connected subset Sn of Un that contains Γ, we can
apply Green’s theorem to u and un in Ω \ Sn to find

∫

Ω\Sn

〈grad un , grad u〉 dx−
∫

Ω\Sn

un∆u dx

=

∫

∂Ω

un
∂u

∂νΩ

ds−
∫

∂Sn

un
∂u

∂νSn

ds,
(1.6)

where νSn denotes the exterior unit normal to Sn. Now the second term on the
right hand side of (1.6) vanishes since un ≡ 0 on ∂Sn ⊂ Un. Similarly the second
term on the left hand side vanishes due to ∆u = 0 on (Ω \ Sn) ⊂ (Ω \ Γ).

Moreover, grad un vanishes identically on Sn, where it is defined on the comple-
ment of Γ which is of measure zero. Consequently, for each n ∈ N equation (1.6)
reduces to ∫

Ω

〈grad un , grad u〉 dx =

∫

∂Ω

un
∂u

∂νΩ

ds, (1.7)
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where the integrals are understood in the Lebesgue sense. Turning to the inte-
grand on the left hand side of (1.7) we calculate

grad un = ψ′(nu) grad u. (1.8)

This yields pointwise convergence for

〈
grad un , grad u

〉
→
∣∣∣grad u

∣∣∣
2

, x ∈ Ω \M, (1.9)

where M := Γ ∪ {x ∈ Ω \ Γ : u(x) = 0, grad u(x) 6= 0} is of measure zero. From
the properties of ψ and (1.8) we see that 〈grad un , grad u〉 is non-negative on
the set Ω \ Γ, so that with the help of Fatou’s lemma we find

∫

Ω

∣∣∣grad u
∣∣∣
2

dx =

∫

Ω

lim
n→∞

〈
grad un , grad u

〉
dx

≤ lim
n→∞

∫

Ω

〈
grad un , grad u

〉
dx

= lim
n→∞

∫

∂Ω

un
∂u

∂νΩ

ds.

Due to the positivity of the left hand side we can estimate the right hand side
further using the triangle inequality and the fact that the un converge uniformly.
We obtain

lim
n→∞

∫

∂Ω

un
∂u

∂νΩ

ds ≤ lim
n→∞

‖un − u‖∞,∂Ω

∫

∂Ω

∣∣∣∣
∂u

∂νΩ

∣∣∣∣ ds+

∣∣∣∣
∫

∂Ω

u
∂u

∂νΩ

ds

∣∣∣∣ <∞.

This then completes the proof of the first statement.

For the second statement we observe that (1.8) yields the estimate

∣∣〈grad un , grad u〉
∣∣ ≤ ‖ψ′‖∞

∣∣grad u
∣∣2

on Ω \ M , where the right hand side is integrable due to the first statement.
Now the pointwise convergence (1.9) allows us to employ Lebesgue’s dominated
convergence theorem to obtain

∫

Ω

∣∣∣grad u
∣∣∣
2

dx = lim
n→∞

∫

Ω

〈
grad un , grad u

〉
dx

= lim
n→∞

∫

∂Ω

un
∂u

∂νΩ

ds.

Then (1.5) follows by interchanging the integration and taking the limit in the
right hand side of the above, which can be done due to the uniform convergence
of un to u on Ω. �
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The statement of Green’s Theorem both in the classical case of Theorem 1.2 as
well as in the case of domains with cracks (Theorem 1.6) requires differentiability
of the solution up to the boundary. For the Boundary Value Problem we are going
to consider in Chapter 2 we would like to relax these requirements. In order to
achieve this, we need the concept of parallel curves from differential geometry.
We state the central properties of parallel curves in the following lemma.

Lemma 1.7. Let Γ be a regular, injective, open arc of class Ck, k ≥ 2, with unit
normal νΓ. Then for h > 0 sufficiently small the parallel arcs

Γ±,h :=
{
x± hνΓ(x) ∈ R

2 : x ∈ Γ
}

(1.10)

are also regular, injective and open. They are of class Ck−1 with the unit normal
νΓ,h(y) = νΓ(x) for y = x± hνΓ(x). Furthermore the line element on Γ±,h can be
expressed in terms of Γ by

ds(y) = |1 ∓ hκ(x)| ds(x), (1.11)

where κ denotes the oriented curvature on Γ.

Proof. Consider arclength parametrization γ : [0, LΓ] → R
2 for Γ, and observe

that Γ+,h can be also parametrized depending linearly on γ through

γ̃ = γ + h[γ ′]⊥. (1.12)

Furthermore, we have by differentiating the equation ‖γ ′‖ = 1 that 〈γ ′′, γ′〉 = 0
which implies

γ′′ = 〈γ′′, [γ′]⊥〉[γ′]⊥. (1.13)

By differentiating (1.12) and inserting (1.13) it follows that

γ̃′ = γ′ + h[γ′′]⊥

= γ′ + h〈γ′′, [γ′]⊥〉[[γ′]⊥]⊥

= γ′ − h〈γ′′, [γ′]⊥〉γ′
= (1 − hκ)γ ′

(1.14)

as κ = sign(〈γ ′′, [γ′]⊥〉) ‖γ′′‖ = sign(〈γ ′′, [γ′]⊥〉)
√
〈γ′′, [γ′]⊥〉2. So, (1.12) implies

that Γ+,h is of class Ck−1, and (1.14) tells that for any τ ∈ [0, LΓ] the tangential
directions of Γ and Γ+,h coincide. Hence, the unit normal to Γh in

y = γ̃(τ) = γ(τ) + h[γ ′(τ)]⊥ = x+ hνΓ(x)

is given by the unit normal to Γ in x = γ(τ). Similarly, the line elements relate
via (1.14) as

ds(y) = ‖γ̃ ′(τ)‖dτ = |1 − hκ(γ(τ))| ‖γ ′(τ)‖dτ = |1 − hκ(x)| ds(x).
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Since κ remains bounded, we observe from (1.14) that γ̃ is regular for sufficiently
small h > 0. Injectivity and openness are also satisfied for h sufficiently small.
The case of Γ−,h is proved analogously. �

Note that the result of Lemma 1.7 also applies to the case of closed curves Σ, in
which case we think of Σ as being parametrized from [0, LΣ) with a counterclock-
wise orientation. The parallel curves Σ+,h and Σ−,h are then also closed due to
the periodicity of the parametrization.

1.2 Layer potentials

The existence analysis for the Boundary Value Problem of Section 2.1 will be
based on using layer potentials as ansatz functions. The properties of these layer
potentials are well-known (see, for example, [47] for a detailed description). We
will therefore present just the needed properties without giving detailed proofs.
Moreover, we will employ single layer potentials over an open arc. To our knowl-
edge, there is no comprehensive description of the properties for this particular
case available. We will therefore give sketches for some of the proofs.

Theorem 1.8. For x, y ∈ R
2, x 6= y, the function

Φ(x, y) :=
1

2π
ln

1

|x− y| (1.15)

is called the fundamental solution to the Laplace equation in R
2. For fixed y ∈ R

2

it is harmonic in R
2 \ {y}.

Proof. The result follows from a direct computation. �

In the context of electrostatics the fundamental solution is interpreted as an
electric or magnetic monopole located at a fixed y ∈ R

2, giving rise to an electric
or magnetic potential in R

2 \ {y}.

Definition 1.9. Let D ⊂ R
2 be a bounded, simply connected domain of class C2.

For a function ϕ ∈ C(∂D) the operator

(
SDϕ

)
(x) :=

∫

∂D

Φ(x, y)ϕ(y) ds(y), x ∈ R
2 \ ∂D, (1.16)

is called (logarithmic) single-layer potential operator with density ϕ.
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The single-layer potential for the electric case may be viewed as a distributed
monopole, where the charge is distributed over the contour ∂D according to the
density ϕ.

Theorem 1.10. Let D ⊂ R
2 be a bounded, simply connected domain of class C2.

Then the single-layer potential operator with density ϕ ∈ C(∂D) given by (1.16)
has the following properties:

1. SDϕ is continuous in all of R
2, and on the boundary ∂D we have

(
SDϕ

)
(x) =

∫

∂D

Φ(x, y)ϕ(y) ds(y), x ∈ ∂D, (1.17)

where the integral exists as an improper integral.

2. SDϕ is harmonic in R
2 \ ∂D.

3. For the normal derivative on the boundary ∂D we have

∂
(
SDϕ

)
±

∂ν
(x) =

∫

∂D

∂Φ(x, y)

∂ν(x)
ϕ(y) ds(y) ∓ 1

2
ϕ(x), x ∈ ∂D, (1.18)

where
∂
(
SDϕ

)
±

∂ν
(x) := lim

h↘0

〈
ν(x) , grad

(
SDϕ

)
(x± hν(x))

〉

is understood in the sense of uniform convergence on ∂D, and where the
integral exists as an improper integral.

4. SDϕ is bounded if and only if the density satisfies

∫

∂D

ϕ ds = 0. (1.19)

Proof. See [47], pp. 78, for the first three properties. For the necessity of the
fourth property we apply Corollaries 1.3 and 1.4 to interior and exterior parallel
surfaces of ∂D and then use the jump relation of the third property to derive
the condition on the density. The sufficiency of (1.19) can be seen from the
asymptotic behaviour

Φ(x, y) =
1

2π
ln

1

|x| + O
(

1

|x|

)
(1.20)

of the fundamental solution, which holds uniformly for all y ∈ ∂D. �
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Definition 1.11. Let D ⊂ R
2 be a bounded, simply connected domain of class

C2 with unit normal νD to the boundary ∂D pointing into the exterior of D. For
a function ϕ ∈ C(∂D) the operator

(
T Dϕ

)
(x) :=

∫

∂D

∂Φ(x, y)

∂νD(y)
ϕ(y) ds(y), x ∈ R

2 \ ∂D, (1.21)

is called (logarithmic) double-layer potential operator with density ϕ.

Analogously to the single-layer potential the double-layer potential can be in-
terpreted as distributed electric or magnetic dipoles, where the direction of the
dipole is given by the unit normal νD.

Theorem 1.12. Let D ⊂ R
2 be a bounded, simply connected domain of class C2.

Then the double-layer potential operator with density ϕ ∈ C(∂D) given by (1.21)
has the following properties:

1. T Dϕ is harmonic in R
2 \ ∂D.

2. T Dϕ can be continuously extended from D to D and from R
2 \D to R

2 \D
with limiting values

(
T Dϕ

)
±
(x) =

∫

∂D

∂Φ(x, y)

∂νD(y)
ϕ(y) ds(y) ± 1

2
ϕ(x), x ∈ ∂D, (1.22)

where (
T Dϕ

)
±
(x) := lim

h↘0

(
T Dϕ

)
(x± hνD(x)),

and where the integral exists as an improper integral.

3. For x ∈ ∂D let x±h := x± hνD(x). Then T Dϕ satisfies

lim
h↘0

〈
νD(x) , grad

(
T Dϕ

)
(x+h) − grad

(
T Dϕ

)
(x−h)

〉
= 0 (1.23)

uniformly for all x ∈ ∂D.

4. T Dϕ is bounded on R
2.

Proof. See [47], pp. 78, for the first three properties. The fourth property follows
again from the asymptotic behaviour

grad Φ(x, y) = O
(

1

|x|

)

of the fundamental solution, which holds again uniformly for y ∈ ∂D. �
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In order to study the boundary value problem that arises from the physical prob-
lem described in the introduction we also need to consider potentials that are
distributed over an open arc. We introduce the single-layer potential in the fol-
lowing. It will turn out necessary and convenient to consider densities of a specific
shape when considering layer potentials over open arcs (see, for example, [46]).
Therefore we introduce the following function space.

Definition 1.13. Let Γ ⊂ R
2 be an open arc of class C3 with endpoints z−1, z+1

as in Definition 1.5. Choosing a regular parametrization γ : [−1, 1] → R
2 for Γ,

we define C∗(Γ) as the set of all functions ϕ ∈ C(Γ \ {z−1, z+1}) satisfying

ϕ(x) =
ϕ̃(arccos t)

|γ′(t)|
√

1 − t2
, x = γ(t), t ∈ (−1, 1), ϕ̃ ∈ C

0,α
2π,e,

where C0,α
2π,e is the space of 2π-periodic and even functions on R that are bounded

and uniformly Hölder continuous with Hölder exponent α ∈ (0, 1].

The space C∗(Γ) is introduced using a particular parametrization γ. The follow-
ing lemma will show that C∗(Γ) is nevertheless well-defined.

Lemma 1.14. The space C∗(Γ) is independent of the choice of the parametriza-
tion γ.

Proof. Let us first note that without loss of generality we can assume that Γ is
parametrized from [−1, 1], as any smooth, regular parametrization z : [a, b] → R

2

of Γ can be equivalently transformed to a regular parametrization from [−1, 1] of
the same smoothness due to the linear diffeomorphism G : [−1, 1] → [a, b] given
by G(t) := a+ b−a

2
(t+ 1).

Consequently, let z : [−1, 1] → R
2 be a regular parametrization of Γ and assume

that ϕ ∈ C(Γ \ {z−1, z+1}) satisfies

ϕ(x) =
ϕ̃(arccos t)

|z′(t)|
√

1 − t2
, x = z(t), t ∈ (−1, 1), ϕ̃ ∈ C

0,α
2π,e. (1.24)

Then there exists a function h : [−1, 1] → [−1, 1], which is three-times continu-
ously differentiable, surjective and strictly increasing such that z(h(t)) = γ(t) for
all t ∈ [−1, 1].

Let us first consider the auxiliary function

f(t) :=
1 − cos2 t

1 − (h(cos t))2
, t ∈ (0, π), (1.25)



32 CHAPTER 1. POTENTIAL THEORY

and prove that is has an extension in C1(R). We observe that f is well-defined and
as smooth as h on (0, π). Using Taylor expansions around t = 0 and t = π for the
numerator and denominator of f , we see that f can be continuously extended in
t = 0 by (h′(1))−1 and in t = π by (h′(−1))−1, which are both different from zero
due to h being strictly increasing. Similarly, we obtain that the first derivative
of f can be continuously extended in t = 0 and t = π by zero. Hence, f can be
extended to a once continuously differentiable, even function on R.

In the next step, we will formally represent ϕ satisfying (1.24) in the form of

Definition 1.13 with a function ˜̃ϕ ∈ C
0,α
2π,e. Using γ ′(t) = z′(h(t))h′(t) we calculate

for x = z(h(t)) that

ϕ(x) =
ϕ̃(arccosh(t))

|z′(h(t))|
√

1 − (h(t))2

=
ϕ̃(arccosh(t))

|γ′(t)|
√

1 − t2
h′(t)

√
1 − t2

1 − (h(t))2

=
˜̃ϕ(arccos t)

|γ′(t)|
√

1 − t2
,

where we have set

˜̃ϕ(t) := ϕ̃(arccosh(cos t))h′(cos t)

√
1 − cos2 t

1 − (h(cos t))2
. (1.26)

Now the statement follows if we can show that ˜̃ϕ is indeed an element of C0,α
2π,e.

For the factor

h′(cos t)

√
1 − cos2 t

1 − (h(cos t))2
= h′(cos t)

√
f(t)

we notice immediately that it is 2π-periodic and even with the derivative

1

2
h′(cos t)

f ′(t)√
f(t)

− h′′(cos t) sin t
√
f(t)

being well-defined and continuous for all t ∈ R. Hence, it is an element of C0,α
2π,e

by compact embedding. For the first factor we calculate for t ∈ (0, π)

(
arccosh(cos t)

)′
=

h′(cos t) sin t√
1 − (h(cos t))2

= h′(cos t)
√
f(t)

noting that the derivative remains bounded since the right-hand side can be
continuously extended to R, although the extension of the left hand side to R

is discontinuous at the points kπ for k ∈ Z since we consider arccosh(cos t) to
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be extended as an even function to R. This implies that arccosh(cos t) ∈ C
0,1
2π,e.

Now the statement for ˜̃ϕ follows using the chain and product rule for Hölder
continuous functions. �

The existence analysis of Section 2.3 will show that the characterization for C∗(Γ)
appears generically. Nevertheless, the behaviour of the elements of C∗(Γ) is not
too obvious, when they are interpreted simply as functions on Γ, independently
of the underlying parametrization γ. The following lemma will therefore discuss
the integrability of elements of C∗(Γ).

Lemma 1.15. For each function ϕ ∈ C∗(Γ) the expression
∣∣ϕ(x)

∣∣√|x− z−1| |x− z+1|, x ∈ Γ, (1.27)

is uniformly bounded. Furthermore, the integral
∫

Γ

∣∣ϕ
∣∣ ds

exists, whereas the integral ∫

Γ

∣∣ϕ
∣∣2 ds

exists if and only if the related function ϕ̃ ∈ C
0,α
2π,e vanishes at the endpoints z−1

and z+1.

Proof. To see the condition (1.27) we parametrize Γ by γ : [−1, 1] → R
2 according

to Definition 1.13, and obtain

∣∣ϕ(x)
∣∣√|x− z−1| |x− z+1| ≤

|ϕ̃(arccos t)|
|γ′(t)|

√
|γ(t) − γ(−1)| |γ(t) − γ(1)|

1 − t2
.

As 0 < m ≤ |γ ′(t)| for all t ∈ [−1, 1] due to γ being regular, the first factor on the
right-hand side can be uniformly bounded by C := m−1‖ϕ̃‖∞. The boundedness
of the second factor on the right-hand side is derived from the Taylor expansions

γ(t) − γ(−1) = (1 + t)

∫ 1

0

γ′(−1 + λ(t+ 1)) dλ

as well as

γ(1) − γ(t) = (1 − t)

∫ 1

0

γ′(t+ λ(1 − t)) dλ

by substitution into the numerator. The second factor then reads

(∣∣∣∣
∫ 1

0

γ′(−1 + λ(t+ 1)) dλ

∣∣∣∣
∣∣∣∣
∫ 1

0

γ′(t+ λ(1 − t)) dλ

∣∣∣∣
) 1

2

,
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and is obviously bounded as each component of γ ′ is bounded and continuous.

The L1 property of ϕ can be established directly from Definition 1.13 by parame-
trizing Γ by γ : [−1, 1] → R

2. Substituting t = cos s it follows that

∫

Γ

∣∣ϕ
∣∣ ds =

∫ 1

−1

|ϕ̃(arccos t)|
|γ′(t)|

√
1 − t2

|γ′(t)| dt =

∫ π

0

|ϕ̃(s)|√
1 − cos2 s

sin s ds ≤ π‖ϕ̃‖∞.

For the square integrability we transform the integral as before using the parame-
trization γ and substituting t = cos s to obtain

∫

Γ

∣∣ϕ
∣∣2 ds =

∫ π

0

|ϕ̃(s)|2
|γ′(cos s)| | sin s| ds, (1.28)

where ϕ̃ ∈ C
0,α
2π,e is the function associated to ϕ ∈ C∗(Γ) as in Definition 1.13.

Let us first consider sufficiency, and let ϕ̃ satisfy ϕ̃(0) = 0. Then we can estimate

∣∣ϕ̃(t)
∣∣ =

∣∣ϕ̃(t) − ϕ̃(0)
∣∣ ≤Meϕ

∣∣t
∣∣α

for some constant Meϕ > 0 and α ∈ (0, 1]. Using the series expansion of the sine
we can estimate the integrand on the right-hand side of (1.28) for s > 0 by

|ϕ̃(s)|2
|γ′(cos s)| | sin s| ≤

M2
eϕ

m
s2α−1f0(s), (1.29)

where f0 is continuous and bounded in a neighbourhood of s = 0. As α is positive
the right-hand side of (1.29) is improperly integrable with respect to zero. With a
similar argument using ϕ̃(π) = 0 we see that the integrand on the right hand side
of (1.28) also in a neighbourhood of π has an improperly integrable majorante.
Combining both arguments we obtain that the integral

∫
Γ
|ϕ|2 ds is finite.

For necessity we assume that ϕ̃(0) 6= 0. Then there exists δ > 0 such that
|ϕ̃(s)|2 ≥ 1

2
|ϕ̃(0)|2 > 0 for all s ∈ [0, δ]. Furthermore, |γ ′(cos s)| ≤ M for some

constant M since γ is continuously differentiable. Hence, we can estimate the
integrand in the right-hand side of (1.28) on [0, δ] from below by

|ϕ̃(s)|2
|γ′(cos s)| | sin s| ≥

|ϕ̃(0)|2
2M

sin−1 s. (1.30)

Noting that the antiderivative ln tan s
2

of sin−1 s is unbounded near s = 0 we have
found a minorante for (1.28) in a neighbourhood of zero which is non-integrable.
The statement then follows by combining the above with a similar argument for
the case of ϕ̃(π) 6= 0. �
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The property (1.27) of the elements of C∗(Γ) is now sufficient to guarantee a nice

behaviour of the single-layer potential. Thus, we will denote by C− 1
2 (Γ) the space

of all functions ψ ∈ C(Γ \ {z−1, z+1}) for which (1.27) holds. Note in particular

that for this reason the elements of C− 1
2 (Γ) are allowed to develop singularities

of order −1
2

in the endpoints of the arc. This means that ψ ∈ C− 1
2 (Γ) may be

written in the form

ψ(x) =
ψ̂(x)√

|x− z−1| |x− z+1|
, x ∈ Γ \ {z−1, z+1},

for some bounded, continuous function ψ̂ on Γ. We now define the single-layer
potential over the open arc for densities ψ ∈ C− 1

2 (Γ).

Definition 1.16. Let Γ ⊂ R
2 be an open arc of class C3 with endpoints z−1, z+1.

For a function ϕ ∈ C− 1
2 (Γ) the operator

(
SΓϕ

)
(x) :=

∫

Γ

Φ(x, y)ϕ(y) ds(y), x ∈ R
2 \ Γ, (1.31)

is called (logarithmic) single-layer potential operator with density ϕ.

The physical interpretation of SΓϕ is analogous to the case of a closed boundary
contour. Formally, the difference between the case of a closed contour and the
case of an open arc is that the integral (1.31) exists only as an improper integral
with respect to the endpoints of Γ. This is due to the possibly singular behaviour
of the density at the endpoints z±1 stated above.

Theorem 1.17. Let Γ ⊂ R
2 be an open arc of class C3 with endpoints z−1, z+1.

Then the single-layer potential operator with density ϕ ∈ C− 1
2 (Γ) given by (1.31)

has the following properties:

1. SΓϕ is continuous in all of R
2, and on Γ we have

(
SΓϕ

)
(x) =

∫

Γ

Φ(x, y)ϕ(y) ds(y), x ∈ Γ, (1.32)

where the integral exists as an improper integral.

2. SΓϕ is harmonic in R
2 \ Γ.

3. For the normal derivative on Γ we have

∂
(
SΓϕ

)
±

∂ν
(x) =

∫

Γ

∂Φ(x, y)

∂ν(x)
ϕ(y) ds(y) ∓ 1

2
ϕ(x) (1.33)
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for all x ∈ Γ \ {z−1, z+1}, where

∂
(
SΓϕ

)
±

∂ν
(x) := lim

h↘0

〈
ν(x) , grad

(
SΓϕ

)
(x± hν(x))

〉

is understood in the sense of locally uniform convergence on Γ, and where
the integral exists as an improper integral.

4. SΓϕ is bounded if the density satisfies

∫

Γ

ϕ ds = 0. (1.34)

Proof. The second property is proved in the same way as in Theorem 1.10, noting
that the density ϕ ∈ C− 1

2 (Γ) is integrable.

Introducing the cut-off function

h(t) :=





0, t ∈ [0, 1
2
],

2t− 1, t ∈ [1
2
, 1],

1, t ∈ [1,∞)
(1.35)

and extending Γ to a simple, closed curve Γ̃ of class C2 we define functions
un := SeΓϕn through

ϕn(x) :=

{
ϕ(x)h(n|x− z−1|)h(n|x− z+1|), x ∈ Γ,

0, x ∈ Γ̃ \ Γ.

Then by the first property of Theorem 1.10 the functions un are continuous on R
2

and their values on Γ are given by (1.32) with density ϕn. Now the first property

follows since for ϕ ∈ C− 1
2 (Γ) we have uniform convergence of un to

(
SΓϕ

)
on

compact subsets of R
2 (see, for example, [36, 47] for more elaborate proofs).

The proof of the jump relation (1.33) again uses the cut-off function h and the

densities ϕn on the closed curve Γ̃. For any compact subset of Γ∗ ⊂ Γ\{z−1, z+1}
we can find N ∈ N sufficiently large, such that the neighbourhoods of the end-
points z±1 given by

ΓN,± := {x ∈ Γ : N |x− z±1| ≤ 1}

are connected and satisfy Γ∗ ∩ (ΓN,− ∪ ΓN,+) = ∅. Then for any x ∈ Γ∗ and
z := x ± hνΓ(x) with h > 0 sufficiently small we split the derivative of SΓϕ in
direction νΓ(x) for the point z 6∈ Γ using ϕN into
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〈
νΓ(x) , grad

(
SΓϕ

)
(z)
〉

=
〈
νΓ(x) , grad

(
SΓϕN

)
(z)
〉

+
〈
νΓ(x) , grad

(
SΓ(ϕ− ϕN)

)
(z)
〉
.

(1.36)

Considering the first term on the right hand side of (1.36), we see that it coincides

with the analogous expression with SΓϕN exchanged against S
eΓϕN as ϕN can be

interpreted as a continuous density on the closed curve Γ̃. Hence, we can apply
Theorem 1.10 to the first term on the right-hand side of (1.36), and we obtain
for x ∈ Γ∗

∂
(
SΓϕN

)
±

∂ν
(x) = lim

h↘0

〈
νΓ(x) , grad

(
S

eΓϕN

)
(x± hνΓ(x))

〉

=

∫

Γ

∂Φ(x, y)

∂ν(x)
ϕN(y) ds(y) ∓ 1

2
ϕ(x)

in the sense of uniform convergence on Γ∗ , where we have used again that the
integration reduces from Γ̃ to Γ as ϕN vanishes on Γ̃ \ Γ. Moreover, we have
used that ϕN and ϕ coincide on the complement of the neighbourhoods ΓN,± of
the endpoints z±1. Hence, we have replaced ϕN by ϕ in the second term on the
right-hand side as Γ∗ ∩ (ΓN,− ∪ ΓN,+) = ∅.
Next, we consider the second term on the right-hand side of (1.36). We note
again from the properties of ϕN that the domain of integration for the single-
layer potential SΓ(ϕ−ϕN) does not intersect with Γ∗. Consequently, the gradient
of SΓ(ϕ − ϕN) is well-defined and continuous on Γ∗, and it can be obtained by
interchanging differentiation and integration. Thus, we obtain for x ∈ Γ∗

∂
(
SΓ(ϕ− ϕN)

)
±

∂ν
(x) = lim

h↘0

〈
νΓ(x) , grad

(
SΓ(ϕ− ϕN)

)
(x± hνΓ(x))

〉

=

∫

Γ

∂Φ(x, y)

∂ν(x)
(ϕ(y) − ϕN(y)) ds(y)

in the sense of uniform convergence on Γ∗. Combining the results for the two
terms on the right-hand side of (1.36) we see that also the limit h ↘ 0 for the
left-hand side of (1.36) exists in the sense of uniform convergence on Γ∗, and that
it is given by the sum of the corresponding terms on the right-hand side. This
then implies (1.33) and proves the third property.

For the boundedness of
(
SΓϕ

)
we appeal again to the asymptotic behaviour (1.20)

of the fundamental solution as in the proof to Theorem 1.10. �

The fourth property of Theorem 1.17 gives a sufficient condition for the bounded-
ness of the single-layer potential over the open arc Γ. For any density ϕ ∈ C− 1

2 (Γ)
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we can modify this density by introducing the operator M defined by

(
Mϕ

)
(x) := ϕ(x) − 1

|Γ|

∫

Γ

ϕ ds, x ∈ Γ \ {z−1, z+1}, (1.37)

such that the modified density Mϕ satisfies (1.34). Accordingly, we will call
single-layer potentials with densities of the shape of (1.37) modified single-layer
potentials.

1.3 An invertible integral operator

Layer potentials over closed contours may also be considered in spaces with higher
regularity. In this section we will set off from the modified single-layer potential,
for which it can be proven that it is invertible in the space of Hölder continuous
functions. Based on this invertible operator we will deduce the invertibility of an
integral operator defined on [0, π] for functions in C0,α

2π,e.

Theorem 1.18. Let C ⊂ R
2 be a closed, simple curve of class C2. Then the

modified single-layer potential S0 : C0,α(C) → C1,α(C) given by

(
S0ϕ

)
(z) :=

1

2π

∫

C

ln
1

|ζ − z|

(
ϕ(ζ) − 1

|C|

∫

C

ϕ ds

)
ds(ζ) +

1

|C|

∫

C

ϕ ds (1.38)

with a real-valued, Hölder continuous density ϕ ∈ C0,α(C) is bijective with a
bounded inverse S−1

0 : C1,α(C) → C0,α(C).

Proof. see [47], pp. 118. �

In the following lemma we will apply the result of Theorem 1.18 to the unit circle
in R

2 and relate the operator S0 to an operator with a weakly singular kernel
that maps functions in C0,α([0, 2π]) to functions in C1,α([0, 2π]).

Lemma 1.19. Let C = {(cos t, sin t) : t ∈ [0, 2π]} be the unit circle in R
2. Then

the modified single-layer potential (1.38) coincides with the integral

1

4π

∫ 2π

0

[
− ln

(
4 sin2 τ − t

2

)
+ 2

]
ϕ̃(τ) dτ, t ∈ [0, 2π], (1.39)

where ϕ̃(τ) := ϕ(cos τ, sin τ).
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Proof. We re-arrange (1.38) such that ϕ occurs only in the outer integration and
parametrize C by x(t) := (cos t, sin t) to obtain

(
S0ϕ̃

)
(t) =

1

4π

∫ 2π

0

k0(t, τ)ϕ̃(τ) dτ,

where the kernel k0 is given by

k0(t, τ) = 2|x′(τ)|
[
ln

1

|x(τ) − x(t)| −
1

2π

∫ 2π

0

ln

(
1

|x(σ) − x(t)|

)
|x′(σ)| dσ + 1

]
.

Using addition theorems for the sine and cosine we find that

|x(τ) − x(t)|2 = (cos τ − cos t)2 + (sin τ − sin t)2

= 4 sin2 τ − t

2
cos2 τ + t

2
+ 4 sin2 τ − t

2
sin2 τ + t

2

= 4 sin2 τ − t

2
.

As |x′(τ)|2 = (− sin τ)2 + (cos τ)2 = 1 we can simplify the expression for k0 to

k0(t, τ) = 2

[
−1

2
ln

(
4 sin2 τ − t

2

)
+

1

4π

∫ 2π

0

ln

(
4 sin2 σ − t

2

)
dσ + 1

]
.

We observe by substituting s = σ − t into the integral expression and using the
periodicity of the sine that the integral term vanishes (see [47], Theorem 8.21).
Hence, the kernel k0 coincides with the kernel of (1.39). �

With the simple representation (1.40) for S0 in the special case of the unit circle
at hand, we are now ready to introduce the integral operator mapping functions
in C0,α

2π,e to functions in C1,α
2π,e and prove that it is invertible.

Corollary 1.20. The integral operator L : C0,α
2π,e → C

1,α
2π,e given by

(
Lψ
)
(t) :=

1

4π

∫ 2π

0

[
− ln

(
4 sin2 τ − t

2

)
+ 2

]
ψ(τ) dτ (1.40)

is bijective with a bounded inverse L−1 : C1,α
2π,e → C

0,α
2π,e. On [0, π] it has the

representation

(
Lψ
)
(t) =

1

4π

∫ π

0

{
− ln

[
4(cos t− cos τ)2

]
+ 4
}
ψ(τ) dτ. (1.41)



40 CHAPTER 1. POTENTIAL THEORY

Proof. By virtue of Theorem 1.18 and Lemma 1.19 the operator L is clearly
invertible as an operator from C

0,α
2π to C1,α

2π by periodic extension. To establish
surjectivity from C

0,α
2π,e to C1,α

2π,e we consider f ∈ C
1,α
2π,e ⊆ C

1,α
2π . For such f there

exists ψ ∈ C
0,α
2π , satisfying Lψ = f . Using the periodicity we find

f(−t) =
1

4π

∫ 2π

0

[
− ln

(
4 sin2 τ − t

2

)
+ 2

]
ψ(−τ) dτ (1.42)

for all t ∈ R. Now we conclude from the fact that f is even, that

0 = f(t) − f(−t) =
1

4π

∫ 2π

0

[
− ln

(
4 sin2 τ − t

2

)
+ 2

] (
ψ(τ) − ψ(−τ)

)
dτ

again for all t ∈ R. Since L is injective it follows that

ψ(τ) − ψ(−τ) = 0

for all τ ∈ R, and thus we have ψ ∈ C
0,α
2π,e. A comparison of (1.42) and (1.40)

for functions ψ ∈ C
0,α
2π,e shows that L maps even functions to even functions,

whence we can conclude that L is bijective as an operator from C
0,α
2π,e to C

1,α
2π,e.

The boundedness of the inverse then finally follows from Banach’s Theorem.

For the representation (1.41) we split the integral (1.40) at π, use periodicity,
evenness of ψ and properties of the integral to obtain

(
Lψ
)
(t) =

1

4π

∫ π

0

[
− ln

(
4 sin2 τ − t

2

)
+ 2

]
ψ(τ) dτ

+
1

4π

∫ π

0

[
− ln

(
4 sin2 τ + t

2

)
+ 2

]
ψ(τ) dτ.

Now adding the two parts and employing the identity

ln
[
4(cos t− cos τ)2

]
= ln

(
4 sin2 t− τ

2

)
+ ln

(
4 sin2 t+ τ

2

)

for t, τ ∈ R with t 6= τ yields (1.41). �



Chapter 2

A Boundary Value Problem

In this chapter we will analyze the Boundary Value Problem to Laplace’s equation
that arises from the mathematical modelling of a thin superconducting film in a
magnetic environment as presented in the introduction.
After stating the problem mathematically rigorously, we will establish unique
solvability for the problem. The formulation of the problem in Section 2.1 and
the results of Section 2.3 are adaptations from [35], where the problem has been
examined for a special case. The line of arguments in Section 2.2 differs from [35],
where the uniqueness proof was based on the maximum principle for harmonic
functions. In Section 2.2 we argue via Green’s Theorem for domains with cracks
(see Theorem 1.6) instead. The chapter will be closed by introducing the so-called
current distribution. We will furthermore identify the current distribution as an
inherent property of the solution and give a characterization for this property.

2.1 Statement of the Problem

Problem 2.1. Let D =
⋃n

i=1Di ⊂ R
2 be the union of finitely many open,

bounded, simply connected C2-domains, whose closures are pairwise disjoint. De-
fine De := R

2 \ D and let νD be the unit normal to ∂D directed into De. Fur-
thermore, let Γ ⊂ De be an open arc of class C3 as defined in Definition 1.5 and
let

µ(x) := µeχe(x) +
n∑

i=1

µiχi(x), x ∈ R
2 \ ∂D, (2.1)

where χe and χi are the characteristic functions of De and Di, and where µe > 0
and µi > 0 denote the magnetic permeabilities in the respective domains. The
geometric setup is depicted in Figure 2.1 for the special case of D = D1 ∪D2.

41
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SSw

D1

∂D1

µ1 > 0

νD

�
�


z−1
z+1

Γ

De

µe > 0

νΓ

6

D2

∂D2

µ2 > 0

νD

Figure 2.1: Geometric setup for Problem 2.1 for the case D = D1 ∪D2.

Determine a function u ∈ C2(R2 \ (∂D ∪Γ))∩C(R2 \ ∂D) satisfying the Laplace
equation

∆u = 0 in R
2 \ (∂D ∪ Γ) (2.2)

as well as the boundary conditions

u = 0 on Γ, (2.3)

u+ − u− = 0 on ∂D, (2.4)

1

µ+

∂u+

∂νD

− 1

µ−

∂u−

∂νD

= 0 on ∂D (2.5)

in the sense of uniform convergence on ∂D. Furthermore, for |x| → ∞ it is
required that

u(x) −
(
SΓ
(

I
|Γ|

))
(x) = O(1) (2.6)

holds uniformly for all directions. Here I ∈ R is a given constant, |Γ| denotes
the length of Γ, and SΓ is the single-layer potential as defined in Definition 1.16.

Note that SΓ
(

I
|Γ|

)
is well-defined since I

|Γ|
∈ C− 1

2 (Γ).

2.2 Uniqueness

The uniqueness proof will be divided in two stages, first showing that the zero
function is the only solution if the parameter I is equal to zero, and secondly
showing that the difference of two solutions for the same parameter I yields a
solution for the parameter I = 0.
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Theorem 2.2. Let the parameter I in Problem 2.1 be equal to zero. Then each
solution to Problem 2.1 vanishes identically.

Proof. Let w be a solution to Problem 2.1 with parameter I = 0, and assume
that w is not constant. Then there exists a disc B ⊂ D ∪ (De \ Γ) such that

∫

B

∣∣grad w
∣∣2 dx > 0. (2.7)

We introduce parallel curves ∂Di,±h := {x ± hνD(x) : x ∈ ∂Di} which for
sufficiently small h > 0 are simple and of class C1 according to Lemma 1.7. These
curves form the boundaries to the corresponding domains Di,−h ⊂ Di ⊂ Di,+h,
and we can apply Green’s first theorem (1.1) to u = v = w in Di,−h to find

∫

Di,−h

∣∣grad w
∣∣2 dx =

∫

∂Di,−h

w
∂w

∂νD

ds. (2.8)

We have that Γ and all Di,+h are contained in a sufficiently large sphere ΩR, so

that we can apply Theorem 1.6 to u in the domain Ω̃ := ΩR \ (
⋃n

=1Di,+h) to
obtain ∫

eΩ

∣∣grad w
∣∣2 dx =

∫

∂ΩR

w
∂w

∂νΩ

ds−
n∑

i=1

∫

∂Di,+h

w
∂w

∂νD

ds. (2.9)

As the parameter I equals zero, condition (2.6) reduces to

w(x) = O(1)

uniformly for all directions as |x| → ∞, telling that w is bounded. Now the
asymptotics for |x| → ∞ for bounded harmonic functions (see [47], p. 74) tell
that ∫

∂ΩR

w
∂w

∂νΩ

ds→ 0, R → ∞.

As w and ∂w
∂νD

exist in the sense of uniform convergence on ∂Di, we interchange
the integration and the limit h ↘ 0 in (2.8) and (2.9), and use the boundary
conditions (2.4) and (2.5) to obtain

∫

De

∣∣grad w
∣∣2 dx = −

n∑

i=1

µe

µi

∫

Di

∣∣grad w
∣∣2 dx.

Since all quotients µe

µi
are positive, this yields a contradiction to (2.7). Thus, w

is constant, and the boundary condition (2.3) implies w ≡ 0. �

Theorem 2.3. Problem 2.1 admits at most one solution for any parameter I ∈ R.
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Proof. Let u1 and u2 be two solutions to Problem 2.1 with parameter I. Then
their difference u1 −u2 is also an element of C2(R2 \ (∂D∪Γ))∩C(R2 \∂D) that
is harmonic in R

2 \ (∂D ∪ Γ) and satisfies the boundary conditions (2.3), (2.4)
and (2.5) as they are homogeneous and linear in the solution. For the behaviour
at infinity we calculate

(
u1 − u2

)
− SΓ( 0

|Γ|
) =

(
u1 − SΓ( I

|Γ|
)
)
−
(
u2 − SΓ( I

|Γ|
)
)

= O(1)

due to the linearity of the single-layer potential operator SΓ and condition (2.6)
being satisfied for the solutions u1 and u2. This implies that u1 −u2 is a solution
to Problem 2.1 with parameter I = 0, and thus vanishes identically by virtue of
Theorem 2.2, i.e. the solutions u1 and u2 coincide. �

2.3 Existence

We now turn to constructing a solution for Problem 2.1 and thereby resolving
the question of unique solvability. We seek a solution of Problem 2.1 by ansatz
functions in the form of combined single- and double-layer potentials

u(x) := µ(x)
[(
SΓ,Iϕ

)
(x) +

n∑

k=1

(
T Dkψk

)
(x)
]
, x ∈ R

2 \ ∂D, (2.10)

where µ is given by (2.1). The operators T Dk , k = 1, . . . , n, denote double-layer
potentials as defined in Theorem 1.11 with densities ψk ∈ C(∂Dk), whereas SΓ,I

is a modified single-layer potential given by

(
SΓ,Iϕ

)
(x) := SΓ

(
(Mϕ) +

I

|Γ|
)
(x) +

1

|Γ|

∫

Γ

ϕ ds (2.11)

with a density ϕ ∈ C∗(Γ) and the operator M as defined in (1.37). We are
immediately able to state two theorems that are crucial to the question of unique
solvability.

Theorem 2.4. Let

qk :=
µe − µk

µe + µk

, k = 1, . . . , n, (2.12)

where the constants µ1, . . . , µn and µe are given as in Problem 2.1. Then the
function u defined by (2.10) is a solution to Problem 2.1 provided the densities
(ϕ, ψ1, . . . , ψn) satisfy the following system of integral equations
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S̃Γϕ+
n∑

j=1

K
D,Γ
j ψj = −SΓ

(
I
|Γ|

)
,

2qkS̃
Γ,D
k ϕ+ ψk + 2qk

n∑

j=1

KD
j,kψj = −2qkS

Γ,D
k

(
I
|Γ|

)
, k = 1, . . . , n.

(2.13)

Here, the occuring integral operators are defined by

(
KD

j,kψj

)
(x) :=

∫

∂Dj

∂Φ(x, y)

∂ν(y)
ψj(y) ds(y), x ∈ ∂Dk, (2.14)

(
K

D,Γ
j ψj

)
(x) :=

∫

∂Dj

∂Φ(x, y)

∂ν(y)
ψj(y) ds(y), x ∈ Γ, (2.15)

(
SΓϕ

)
(x) :=

∫

Γ

Φ(x, y)ϕ(y) ds(y), x ∈ Γ, (2.16)

(
S

Γ,D
k ϕ

)
(x) :=

∫

Γ

Φ(x, y)ϕ(y) ds(y), x ∈ ∂Dk, (2.17)

(
S̃Γϕ

)
(x) :=

(
SΓ
(
Mϕ

))
(x) +

1

|Γ|

∫

Γ

ϕ ds, x ∈ Γ, (2.18)

(
S̃

Γ,D
k ϕ

)
(x) :=

(
S

Γ,D
k

(
Mϕ

))
(x) +

1

|Γ|

∫

Γ

ϕ ds, x ∈ ∂Dk. (2.19)

Proof. Let (ϕ, ψ1, . . . , ψn) be a solution to (2.13) and define u according to (2.10)
with the parameter I being taken from the right hand side of (2.13). Now the
properties of the layer potentials (see Theorems 1.12 and 1.17) show that u is
twice continuously differentiable and harmonic in R

2 \ (Γ ∪ ∂D) and continuous
on R

2 \ ∂D.

Considering the first equation of (2.13) we note that by adding SΓ( I
|Γ|

), the left
hand side is well-defined and coincides with the restriction of u to Γ. Since the
right hand side vanishes, it follows that u also satisfies (2.3).

Adding 2qkS
Γ( I

|Γ|
) to the second equation of (2.13) and multiplying by µe+µk

2

leads to

µe

[
S̃

Γ,D
k ϕ+ S

Γ,D
k

(
I

|Γ|

)
+
ψk

2
+

n∑

j=1

KD
j,kψj

]

= µk

[
S̃

Γ,D
k ϕ+ S

Γ,D
k

(
I

|Γ|

)
− ψk

2
+

n∑

j=1

KD
j,kψj

]
on ∂Dk.

(2.20)
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Since the single-layer potential as well as the double-layer potentials over the
boundaries ∂Dj for j 6= k are continuous across ∂Dk, it follows from the jump
relations (1.22) for T Dk that the left-hand side of (2.20) coincides with u when
the boundary ∂Dk is approached from the exterior of Dk, while the right-hand
side coincides with u when the boundary ∂Dk is approached from the interior.
Consequently, (2.20) implies u+ = u− on ∂Dk, i.e. u satisfies (2.4).

Furthermore, the single-layer potential and the double-layer potentials over the
boundary contours ∂Dj for j 6= k are continuously differentiable across ∂Dk.
This, together with the jump relation (1.23) for the normal derivative of the
double-layer potential over ∂Dk, implies

1

µe

∂u+

∂νDk

=
1

µk

∂u−

∂νDk

on ∂Dk.

Hence, u satisfies (2.5).

Using the identity

SΓ,Iϕ = SΓ
(

I
|Γ|

)
+ SΓ(Mϕ) +

1

|Γ|

∫

Γ

ϕ ds

we note that the condition (2.6) at infinity reduces to

SΓ(Mϕ) +
n∑

k=1

T Dkψk = O(1),

which is true due to the fourth property of Theorems 1.12 and 1.17 and the fact
that

∫
Γ
Mϕ ds = 0. Thus, u is a solution to Problem 2.1. �

Theorem 2.5. The system of integral equations given by (2.13) admits at most
one solution for any I ∈ R.

Proof. As the system (2.13) is linear in (ϕ, ψ1, . . . , ψn), it is sufficient to prove
that the homogeneous system only has the trivial solution. So let (ϕ, ψ1, . . . , ψn)
be a solution to (2.13) with a homogeneous right-hand side. We then note that
the homogeneous right-hand side can be interpreted as the parameter I being
equal to zero. Now using (ϕ, ψ1, . . . , ψn) and I = 0, we define u as in (2.10).
Then Theorem 2.4 tells that u is a solution to Problem 2.1 for I = 0. From
Theorem 2.2 it follows that u vanishes identically. So we have

[(
SΓ,Iϕ

)
(x) +

n∑

k=1

(
T Dkψk

)
(x)
]
≡ 0, x ∈ R

2 \ (Γ ∪ ∂D),
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as µ is positive. Thus, the interior and exterior limits on ∂Dk vanish as well, and
the jump relations (1.22) for the double-layer potential T Dk lead to

ψk =
[
T Dkψk

]
+
−
[
T Dkψk

]
−

=
[
SΓ,Iϕ+

n∑

j=1

T Djψj

]
+
−
[
SΓ,Iϕ+

n∑

j=1

T Djψj

]
−

= 0

on ∂Dk for k = 1, . . . , n, since the single-layer potential over Γ and the double-
layer potentials over ∂Dj for j 6= k are continuous across ∂Dk.

Turning to the single-layer potential we see that u ≡ 0 in R
2 \ (Γ∪∂D) especially

implies
∂u±

∂νΓ

= 0 on Γ \ {z−1, z+1}.

From this, using the jump relations (1.33) for the single-layer potential together
with the continuous differentiability of the double-layer potentials across Γ, we
conclude that

(
Mϕ

)
=

∂

∂νΓ

[
SΓ(Mϕ)

]
−
− ∂

∂νΓ

[
SΓ(Mϕ)

]
+

=
∂

∂ν

[
SΓ,Iϕ+

n∑

j=1

T Djψj

]
−
− ∂

∂ν

[
SΓ,Iϕ+

n∑

j=1

T Djψj

]
+

= 0

on Γ \ {z−1, z+1}, as

SΓ,Iϕ = SΓ(Mϕ) +
1

|Γ|

∫

Γ

ϕ ds

for I = 0. Having ψk = 0, k = 1, . . . , n, and Mϕ = 0, we now note from (2.11)
and u ≡ 0 in R

2 \ (Γ ∪ ∂D) that

1

|Γ|

∫

Γ

ϕ ds = 0,

which implies ϕ = 0 using Mϕ = 0 and (1.37). Hence the only solution to the
homogeneous form of (2.13) is the trivial one. �

The form of the second equation of (2.13) suggests an approach via Riesz’s theory
for compact operators. But unfortunately, Riesz’s theory is not directly applicable
to (2.13) in its present form as the first equation appears to be an operator

equation of the first kind. Instead, we will proceed by splitting the operator S̃Γ

into an invertible and a compact part through parametrizing Γ and, subsequently,
introducing a cosine substitution as suggested by Multhopp [52] in the form
applied by Kress [46] to the Dirichlet scattering problem for the open arc.
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Executing the parametrization over Γ and substituting the cosine in both the
image space and pre-image space of the first equation of (2.13) yields the identity

(
S̃Γϕ

)
(γ(cos t)) =

(
Lϕ̃
)
(t) +

(
L0ϕ̃

)
(t), (2.21)

where the operator L for t ∈ [0, π] is defined by

(
Lϕ̃
)
(t) :=

1

4π

∫ π

0

{
− ln

[
4(cos t− cos τ)2

]
+ 4
}
ϕ̃(τ) dτ, (2.22)

and the operator L0 is given through

(
L0ϕ̃

)
(t) :=

1

4π

∫ π

0

{
k0(t, τ) − 4

}
ϕ̃(τ) dτ, t ∈ [0, π]. (2.23)

Here, the integral kernel k0 is given by

k0(t, τ) := ln
4(cos t− cos τ)2

|γ(cos t) − γ(cos τ)|2 +
4π

|Γ|

− 1

|Γ|

∫ π

0

ln

(
1

|γ(cos t) − γ(cos σ)|2
)
|γ′(cosσ)| sin σ dσ

for t, τ ∈ R with t 6= τ , and we have set

ϕ̃(τ) := ϕ(γ(cos τ))|γ ′(cos τ)| sin τ (2.24)

for the density.

Similarly, by introducing the parametrization for Γ and the cosine substitution
in the second equation of (2.13) we obtain

(
S̃

Γ,D
i ϕ

)
(x) =

(
K̃

Γ,D
i ϕ̃

)
(x) (2.25)

for i = 1, . . . , n, where the operators K̃Γ,D
i are defined as

(
K̃

Γ,D
i ϕ̃

)
(x) :=

1

2π

∫ π

0

k̃
Γ,D
i (x, τ)ϕ̃(τ) dτ, x ∈ ∂Di, (2.26)

with integral kernel k̃Γ,D
i given by

k̃
Γ,D
i (x, τ) := ln

1

|x− γ(cos τ)| +
2π

|Γ|

− 1

|Γ|

∫ π

0

ln

(
1

|x− γ(cosσ)|

)
|x′(cosσ)| sin σ dσ

(2.27)

for x ∈ ∂Di and τ ∈ R and the density given as in (2.24).
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Notice that in both cases checking the equalities (2.21) and (2.25) is done by
re-arranging (2.18) and (2.19) such that the density ϕ only occurs in the outer
integration. In the case of (2.21) we additionally have added and substracted the
kernel of L and split the resulting expression suitably.
Parametrizing and substituting likewise in the other expressions of the first equa-
tion of (2.13) we obtain the system

(
L+ L0

)
ϕ̃+

n∑

j=1

K̃
D,Γ
j ψj = −ŜΓ

(
I
|Γ|

)
,

2qkK̃
Γ,D
k ϕ̃+ ψk + 2qk

n∑

j=1

KD
j,kψj = −2qkS

Γ,D
k

(
I
|Γ|

)
,

(2.28)

where for t ∈ [0, π] and j = 1, . . . , n, the operators K̃D,Γ
j and ŜΓ are defined as

(
K̃

D,Γ
j ψj

)
(t) :=

∫

∂Dj

∂Φ(γ(cos t), y)

∂ν(y)
ψj(y) ds(y), (2.29)

and, respectively,
(
ŜΓ
(

I
|Γ|

))
(t) :=

(
SΓ
(

I
|Γ|

))
(γ(cos t)). (2.30)

To simplify the notation we can re-write (2.28) in matrix notation introducing

S :=




L 0 · · · 0

0 Id · · · 0
...

...
. . .

...

0 0 · · · Id



, (2.31)

A :=




L0 K̃
D,Γ
1 · · · K̃D,Γ

n

2q1K̃
Γ,D
1 2q1K

D
1,1 · · · 2q1K

D
n,1

...
...

. . .
...

2qnK̃
Γ,D
n 2qnK

D
1,n · · · 2qnK

D
n,n



, (2.32)

for the operators of the left-hand side, and

f :=
(

−ŜΓ
(

I
|Γ|

)
−2q1S

Γ,D
1

(
I
|Γ|

)
· · · −2qnS

Γ,D
n

(
I
|Γ|

) )T

(2.33)

for the right-hand side. Accordingly, we introduce the product spaces

W0 := C
0,α
2π,e × C(∂D1) × . . .× C(∂Dn) (2.34)
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and
W1 := C

1,α
2π,e × C(∂D1) × . . .× C(∂Dn), (2.35)

finding that (2.28) now reads

(
S + A

)
Ψ = f, (2.36)

where we have set Ψ := (ϕ̃, ψ1, . . . , ψn) ∈ W0.

Lemma 2.6. For each solution (ϕ̃, ψ1, . . . , ψn) ∈ W0 of (2.36) the corresponding
tupel (ϕ, ψ1, . . . , ψn) with ϕ ∈ C∗(Γ) given through

ϕ(x) :=
ϕ̃(arccos t)

|γ′(t)|
√

1 − t2
, x = γ(t), t ∈ (−1, 1), (2.37)

is a solution to (2.13). Furthermore, if a solution to (2.36) exists, it is uniquely
determined.

Proof. Let (ϕ̃, ψ1, . . . , ψn) be a solution to (2.36). Then ϕ defined by (2.37) is an
element of C∗(Γ) since the elements of C∗(Γ) are characterized exactly by (2.37)
indepedently of the parametrization γ. Performing the parametrization of Γ and
the cosine substitution as above, we note that we are left to prove that indeed

ϕ̃(τ) = ϕ(γ(cos τ))|γ ′(cos τ)| sin τ,

which is immediately true by inserting the definition (2.37) for ϕ into (2.24) as
the square root term cancels against the sine term and the norms also cancel.
The uniqueness claim now is a consequence of the definition of ϕ in combination
with Theorem 2.5. �

Lemma 2.6 relates a solution of (2.36) to the densities of the ansatz function
given in (2.10). With this relation in hand we can now analyze (2.36) in the
scope of Riesz’s theory for compact operators. We prepare the central result
of this chapter by examining the mapping properties of the operators S and A.
Furthermore, we will show that the right-hand side f belongs to W1.

Lemma 2.7. The operator S given by (2.31) is invertible from W0 to W1.

Proof. We observe that S is a diagonal operator with the entries being either the
operator L, which is invertible from C

0,α
2π,e to C1,α

2π,e due to Corollary 1.20, or the
identity on C(∂Dk) for k = 1, . . . , n. Hence, S is invertible from W0 to W1. �
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Lemma 2.8. The operator A given by (2.32) is a compact operator mapping from
W0 to W1.

Proof. For detailed proofs of the mapping properties of the diagonal operators
we refer to [36]. There it has been shown that the operators KD

i,i have continuous
kernels, and are hence compact operators from C(∂Di) to C(∂Di). It has been
shown furthermore that the kernel of the operator L0 can be extended to an even,
2π-periodic, twice continuously differentiable function on R

2. Consequently L0 is
a bounded operator from C

0,α
2π,e to C2

2π,e, and thus compact as an operator mapping

to C1,α
2π,e by compact embedding.

For the off-diagonal operators KD
i,j , i 6= j, we observe that they are restrictions of

the double-layer potential operators T D
i to the C2-smooth boundaries ∂Dj that

do not intersect with their respective domain of integration. So it can be seen
from (2.14) that the corresponding kernels are continuous. Consequently, the
operators KD

i,j are compact mappings from C(∂Di) to C(∂Dj).

Similarly, the operators KD,Γ
i are restrictions of the double-layer potential op-

erators T D
i to Γ. Hence, the kernels of these operators are non-singular. In

particular they are twice continuously differentiable on Γ. As the operators K̃D,Γ
i

are obtained from the operators KD,Γ
i by substituting the twice-differentiable,

2π-periodic and even function γ(cos t) in the image domain Γ, they are bounded

operators from C(∂Di) to C2
2π,e. The compactness of the operators K̃D,Γ

i as op-

erators from C(∂Di) to C1,α
2π,e now follows by compact embedding.

Finally, for the operators K̃Γ,D
i it can be seen from (2.27) that the kernels are con-

tinuous on ∂Di ×R as Γ and ∂Di are disjoint for any i = 1, . . . , n. Consequently,
the operators K̃Γ,D

i are compact from C
1,α
2π,e to C(∂Di).

Now A itself is a compact operator from W0 to W1 as it is the sum of compact
operators in each of its components. �

Lemma 2.9. The function f given by (2.33) is an element of W1.

Proof. Let us consider the first component of f . It can be seen from (2.30) that

the operator Ŝ is mapping to 2π-periodic and even functions. Furthermore, we
know from [47], Theorem 7.28, that the single-layer potential is uniformly Hölder
continuously differentiable on its domain of integration provided the density is
itself uniformly Hölder continuous. As this holds true for the constant I

|Γ|
, it

follows that −ŜΓ
(

I
|Γ|

)
∈ C

1,α
2π,e. For the other components of f we observe that

the operators SΓ,D
i are the restricions of the single-layer potential operator SΓ

to the C2-smooth boundary contours ∂Di. Hence, −2qiS
Γ,D
i

(
I
|Γ|

)
is a continuous

function due to Theorem 1.17, and thus f is an element of W1. �
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With these properties for the operators and the right-hand side of (2.36) in hand,
we can now formulate and prove the main result of the chapter - the unique
solvability of the Boundary Value Problem 2.1.

Theorem 2.10. Problem 2.1 is uniquely solvable for any parameter I ∈ R.

Proof. Riesz’s theory for compact operators establishes bijectivity for operator
equations of the form of (2.36), provided S is boundedly invertible, A is compact,
and the operator is injective.

Now the results of Lemma 2.7, Lemma 2.8 and Lemma 2.9 state that (2.36) holds
in W1, that S is indeed invertible, and A is indeed compact. Furthermore, the
operator S + A has a trivial nullspace due to Lemma 2.6, and thus we obtain
from Riesz’s theory that S + A is also surjective, which means that (2.36) has
a solution for each right hand side f ∈ W1. Now by virtue of Lemma 2.6 and
Theorem 2.4, the corresponding potential u defined by (2.10) is a solution to
Problem 2.1 with parameter I. The uniqueness is due to Theorem 2.3. �

2.4 Properties of the solution to the Boundary

Value Problem

In the final section of this chapter we will examine certain properties of the
solution to Problem 2.1 that are motivated from the physical situation described
in the introduction. The main objective here is to identify and characterize the
jump [

∂u

∂νΓ

]
:=

∂u−

∂νΓ

− ∂u+

∂νΓ

(2.38)

of the normal derivative of the solution u to Problem 2.1 across Γ as a distributed
electric current that is penetrating Γ in positive x3-direction, if we think of Prob-
lem 2.1 embedded into R

3.

Definition 2.11. Let Γ ⊂ R
2 be an open arc of class C3. A continuous function

j : Γ \ {z−1, z+1} → R is called current distribution for Γ, if it satisfies

∫

Γ

j ds = I,

where I ∈ R is the total current.
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From an Ampèrian viewpoint a current is not penetrating the entire of a volume
sample as a scalar quantity, but it is regarded as a vectorial quantity that depends
on the position within the sample. Consequently, the current IΣ penetrating a
particular cross-section Σ is given by

IΣ :=

∫

Σ

〈νΣ , j(x)
〉
dx,

where νΣ is the surface normal to Σ and j is the vector-valued current distri-
bution. The modelling assumptions from the introduction tell that in the case
discussed, j is assumed to be given as j0νΣ for some scalar distribution j0 : Σ → R.
Furthermore, the surface Σ is assumed to have height δ << W , where W is the
width, and j0 is assumed to be constant along the height of Σ. So introducing
local coordinates x = (u, v) such that x ∈ Σ implies |v| ≤ δ and defining

j(u) := 2δj0(u, 0) =

∫ δ

−δ

j0(u, v) ds(v),

we find ∫
j(u) ds(u) =

∫

Σ

j0(x) dx =

∫

Σ

〈
νΣ , j(x)

〉
dx,

which renders Definition 2.11 sensible.

We will see in the next lemma that the jump (2.38) is indeed a current distribution
in the sense of Definition 2.11.

Lemma 2.12. Let Γ ⊂ R
2 be an open arc of class C3 with endpoints z±1. Then

the solution u to Problem 2.1 with parameter I satisfies
∫

Γ

[
∂u

∂ν

]
ds = I, (2.39)

i.e.
[

∂u
∂ν

]
is a current distribution in the sense of Definition 2.11. Furthermore,

we have that
[

∂u
∂ν

]
∈ C∗(Γ).

Proof. Let u be the solution to Problem 2.1 with parameter I. Then we know
from Section 2.3 that u can be represented in the form of (2.10). Hence, the
normal derivatives on Γ are given by

∂u±

∂νΓ

=
∂

∂νΓ

(
SΓ
(
Mϕ+

I

|Γ|
))

±

+
n∑

k=1

∂

∂νΓ

(
T Dkψk

)
.

As the double-layer potentials are continuously differentiable across Γ we obtain
for the jump
[
∂u

∂νΓ

]
(x) =

∂

∂νΓ

(
SΓ
(
Mϕ+

I

|Γ|
))

−

(x) − ∂

∂νΓ

(
SΓ
(
Mϕ+

I

|Γ|
))

+

(x)

=
(
Mϕ

)
(x) +

I

|Γ|
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for x ∈ Γ \ {z−1, z+1} using the jump relation (1.33) with the density ϕ ∈ C∗(Γ).

This implies that
[

∂u
∂νΓ

]
is given as the sum of ϕ ∈ C∗(Γ) and a constant. Now

the constants are contained in C∗(Γ) as

|γ′(cos t) sin t|, t ∈ [0, π],

has an extension in C
0,α
2π,e according to Lemma 3.8, and thus

[
∂u
∂νΓ

]
∈ C∗(Γ).

Finally, with the aid of Lemma 1.15 we see that
∫

Γ

[
∂u

∂νΓ

]
ds =

∫

Γ

(
Mϕ

)
+

I

|Γ| ds

=

∫

Γ

ϕ ds− 1

|Γ|

∫

Γ

ϕ ds

∫

Γ

1 ds+
I

|Γ|

∫

Γ

1 ds = I.

�

In combination with Definition 2.11, Lemma 2.12 has given a physical meaning
to the jump (2.38) of the solution to Problem 2.1, but it has by no means charac-
terized the jump. A cursory glance on the form of (2.38), that has been deduced
as [

∂u

∂νΓ

]
= ϕ− 1

|Γ|

∫

Γ

ϕ ds+
I

|Γ| (2.40)

in the proof of Lemma 2.12, might give rise to the claim that the current distri-
bution develops singularities of square root type at the endpoints of Γ since the
characterization of ϕ ∈ C∗(Γ) contains the factor (1− t2)−

1
2 . This disregards the

influence of the associated function ϕ̃ ∈ C
0,α
2π,e in a dangerous fashion. According

to Lemma 1.15 the behaviour of ϕ̃ near t = 0 and t = π does not only deter-
mine whether ϕ is square-integrable or not, but ϕ̃ also determines whether ϕ is
bounded or not. In particular, if the zero of ϕ̃ at t = 0 or t = π is stronger than
order 1

2
(it is of order α anyway, since ϕ̃ ∈ C

0,α
2π,e), it is stronger than the singu-

larity. Thus, it yields a function ϕ ∈ C∗(Γ) that is bounded in a neighbourhood
of that particular endpoint.

In the remainder of this section we will therefore investigate into the behaviour
of the current distribution (2.38) near the endpoints z±1 of Γ. Our discussion
is mainly based on the book by Muskelishvili [53]. The ideas presented there
have been used in the context of boundary integral equations over open arcs by
Hayashi in [34], where a full theory for the direct scattering problem for open
arcs has been developed.

We will first derive a characterization of the behaviour of a solution to a Cauchy
type integral equation over a union of open arcs near their endpoints. Secondly,
we will apply this result to the solution of Problem 2.1 by identifying the current
distribution (2.38) as the solution to a Cauchy type integral equation over Γ.
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Theorem 2.13. Let L =
⋃n

i=1 Li be the union of non-intersecting, disjoint, reg-
ular, smooth, open arcs with endpoints (z±i), i = 1, . . . , n. Let f ∈ C0,α(L), and
suppose that there exists a solution ϕ to

∫

L

ϕ(ζ)

ζ − z
dζ = f(z), z ∈ L. (2.41)

Then ϕ is given by

ϕ(z) =
1

iπ

√
R1(z)√
R2(z)

∫

L

f(ζ)

ζ − z

√
R2(ζ)√
R1(ζ)

dζ +
Pn−1(z)√
R1(z)R2(z)

, z ∈ L, (2.42)

where Pn−1 is a polynomial of degree n− 1 and

R1/2(z) =
∏

j∈I1/2

(z − zj), z ∈ L.

Here, I1 is the set of all endpoints where ϕ is bounded, whereas I2 is the set of
all endpoints where ϕ is unbounded.

Proof. see [53], p. 251. �

We remark here that the formulation of Theorem 2.13 supposes the existence of
a solution to (2.41). This implies in particular that the right-hand side f satisfies
certain solvability conditions in the case where |I1| ≥ n. From this explicit
inversion formula we can now deduce the behaviour of the solution ϕ to (2.41)
near the endpoints z±i of L.

Corollary 2.14. Under the assumptions of Theorem 2.13 let ϕ be a solution to
equation (2.41). Then the following holds:

1. Let zj be an endpoint, where ϕ is bounded. Then

ϕ(zj) = 0.

2. Let zj be an endpoint, where ϕ is unbounded. Then for a neighbourhood U
of zj

ϕ(z) = (z − zj)
− 1

2ϕ0(z), z ∈ U ∩ L,
where ϕ0 is bounded in U ∩ L.
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Proof. We begin with the first statement. So let zj be an endpoint, where ϕ is
bounded. It follows from [53], §29, that near zj we have

∫

L

f(ζ)

ζ − z

√
R2(ζ)√
R1(ζ)

dζ = f0(z)(z − zj)
−α0 ,

where α0 <
1
2

and f0 is bounded in a neighbourhood of zj, yielding

1

iπ

√
R1(z)√
R2(z)

∫

L

f(ζ)

ζ − z

√
R2(ζ)√
R1(ζ)

dζ = (z − zj)
1
2
−α0

f0(z)

√
R̃1(z)

iπ
√
R2(z)

, (2.43)

where R1 and R̃1 are related by R1(z) = R̃1(z)(z − zj). Thus, we observe by
re-arranging (2.42) and plugging in the above that

Pn−1(z)√
R1(z)R2(z)

= ϕ(z) − (z − zj)
1
2
−α0

f0(z)

√
R̃1(z)

iπ
√
R2(z)

is also bounded in a neighbourhood of zj, which implies that P vanishes at zj.
Since P is a polynomial, it has to contain the factor (z−zj), and zj being arbitrary
yields

ϕ(z) =
1

iπ

√
R1(z)√
R2(z)

∫

L

f(ζ)

ζ − z

√
R2(ζ)√
R1(ζ)

dζ+

√
R1(z)√
R2(z)

Qn−p−1(z), z ∈ L, (2.44)

where p = |I1| and Qn−p−1 satisfies Pn−1 = Qn−p−1R1. In the case, where p ≥ n,
we have Qn−p−1 ≡ 0. Now we notice from (2.43) and (2.44) that

ϕ(zj) = 0, for all j ∈ I1.

For the second statement, let zj be an endpoint, where ϕ is unbounded. Re-
ordering the right-hand side of (2.44) leads to

ϕ(z) =
1√
R2(z)

(√
R1(z)

iπ

∫

L

f(ζ)

ζ − z

√
R2(ζ)√
R1(ζ)

dζ +
√
R1(z)Qn−p−1(z)

)

near zj. Again, from [53], §29, it follows that

∫

L

f(ζ)

ζ − z

√
R2(ζ)√
R1(ζ)

dζ

is bounded, from which we conclude that

ϕ0(z) :=

√
R1(z)

iπ

∫

L

f(ζ)

ζ − z

√
R2(ζ)√
R1(ζ)

dζ +
√
R1(z)Qn−p−1(z), z ∈ L, (2.45)

is also bounded near zj for all zj ∈ I2. �
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Now it remains to identify the jump (2.38) as the solution to an equation of the
form of (2.41), which will be done in the following Theorem.

Theorem 2.15. Let I ∈ R \ {0}, and consider a solution u to Problem 2.1 for

the parameter I. Then the behaviour of the jump
[

∂u
∂νΓ

]
of the normal derivative

of u across Γ near an endpoint zi ∈ {z−1, z+1} of Γ is characterized as follows:

i) Either
[

∂u
∂νΓ

]
is bounded in a neighbourhood of zi. Then we have that

[
∂u

∂νΓ

]
(zi) = 0.

ii) Or
[

∂u
∂νΓ

]
is unbounded in a neighbourhood of zi. Then the singularity is of

the form [
∂u

∂νΓ

]
(x) =

(
|x− zi|

)− 1
2f ∗

i (x), Γ 3 x→ zi, (2.46)

where the functions f ∗
i ∈ C(Γ), i = ±1, are bounded in a neighbourhood

of zi.

Proof. The proof is organized as follows. Firstly, we identify
[

∂u
∂νΓ

]
as the solution

to a first kind integral equation. Secondly, we show that this integral equation can
be transformed to a complex integral equation of Cauchy type. Thirdly, we will
verify that the obtained Cauchy type integral equation has a Hölder continuous
right-hand side. Finally, we will derive the statement from Theorem 2.13 and
Corollary 2.14.

Step 1: Let u be the solution to Problem 2.1 for the parameter I. Then we
know that u can be represented by (2.10) and satisfies the homogeneous Dirichlet
condition (2.3) on Γ. Using the representation (2.40), a comparison with (2.10)
reveals that the jump is a solution to

∫

Γ

Φ(x, y)

[
∂u

∂νΓ

]
(y) ds(y) = − 1

|Γ|

∫

Γ

ϕ ds−
∫

∂D

∂Φ(x, y)

∂νD(y)
ψ(y) ds(y), (2.47)

which holds for x ∈ Γ. Note that in order to keep the notation as simple as
possible, we have written the double-layer potential over the boundary ∂D, which
may consist of several connected components. The density ψ also has to be
understood in this sense.

The right-hand side of (2.47) is three times continuously differentiable along Γ,
since Γ is of class C3 and the functions are analytic in a neighbourhood of Γ.
Consequently, the left-hand side of (2.47) is also differentiable and due to (2.40)
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and ϕ being an element of C∗(Γ), we can carry out the differentiation under the
integral (see [47], Theorem 7.28). Now differentiation of (2.47) yields

∫

Γ

∂Φ(x, y)

∂tΓ(x)

[
∂u

∂νΓ

]
(y) ds(y) = − ∂

∂tΓ(x)

∫

∂D

∂Φ(x, y)

∂νD(y)
ψ(y) ds(y) (2.48)

for x ∈ Γ, which completes the first step.

Step 2: Now let Γ̃ := Γ∪Γc be a closed, simple, piecewise smooth curve of length
2L > |Γ| which we parametrize by arclength, i.e. there exists γ : [0, 2L] → R

2

such that

Γ =
{
γ(t) : t ∈ [0, |Γ|]

}
,

Γc =
{
γ(t) : t ∈ [|Γ|, 2L]

}
,

‖γ′(t)‖ = 1, t ∈ [0, 2L].

Introducing complex variables z and ζ, we define

Σ :=
{
z = e

iπs
L : s ∈ [0, |Γ|]

}

as well as

ϕ̃(ζ) = ϕ̃(e
iπτ
L ) :=

[
∂u

∂νΓ

]
(γ(τ)), τ ∈ (0, |Γ|),

h(z) = h(e
iπs
L ) :=

∂

∂tΓ(γ(s))

∫

∂D

∂Φ(γ(s), y)

∂νD(y)
ψ(y) ds(y), s ∈ [0, |Γ|],

k(z, ζ) = k(e
iπs
L , e

iπτ
L ) :=

L

iπ

∂Φ(γ(s), γ(τ))

∂tΓ(γ(s))
e−

iπτ
L +

1

2π

1

e
iπτ
L − e

iπs
L

for s, τ ∈ [0, |Γ|], s 6= τ . Then, by parametrizing (2.48) and adding

i

2L

∫ |Γ|

0

e
iπτ
L

e
iπτ
L − e

iπs
L

[
∂u

∂νΓ

]
(γ(τ)) dτ

to both sides, we obtain

1

2π

∫ |Γ|

0

[ ∂u
∂νΓ

](γ(τ))

e
iπτ
L − e

iπs
L

iπ

L
e

iπτ
L dτ − ∂

∂tΓ(γ(s))

∫

∂D

∂Φ(γ(s), y)

∂νD(y)
ψ(y) ds(y)

=

∫ |Γ|

0

(
L

iπ

∂Φ(γ(s), γ(τ))

∂tΓ(γ(s))
e−

iπτ
L +

1

2π

1

e
iπτ
L − e

iπs
L

)[
∂u

∂νΓ

]
(γ(τ))

iπ

L
e

iπτ
L dτ.

Employing the complex variables z and ζ, bringing h(γ(s)) to the other side and
multiplying by −2i leads to

1

iπ

∫

Σ

ϕ̃(ζ)

ζ − z
dζ = −2ih(z) − 2i

∫

Σ

k(z, ζ) ϕ̃(ζ) dζ, z ∈ Σ, (2.49)
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which implies that we have transformed (2.48) into an integral equation of Cauchy
type on an arc Σ in the complex plane.

Step 3: We now investigate the right-hand side of (2.49). We therefore turn
back to the parametrized version of (2.49) finding that h(γ(s)) ∈ C0,α due to the
sufficient regularity of Γ and the double-layer potential.

For the other summand of the right hand-side we will consider the parametrized
kernel

k(e
iπt
L , e

iπτ
L )

iπ

L
e

iπτ
L =

1

2π

(
〈tΓ(γ(t)) , γ(t) − γ(τ)〉

|γ(t) − γ(τ)|2 +
iπ

L

e
iπτ
L

e
iπτ
L − e

iπt
L

)
, (2.50)

and show that it can be continuously extended for t = τ together with its first
order derivative with respect to t. We first note from (2.50) that for t 6= τ the
kernel is obviously continous and continously differentiable with respect to t. For
the continuous extension for t = τ we calculate

2πk(e
iπt
L , e

iπτ
L )

iπ

L
e

iπτ
L

=
〈tΓ(γ(t)) , γ(t) − γ(τ)〉

|γ(t) − γ(τ)|2 +
iπ

L

e
iπτ
L

e
iπτ
L − e

iπs
L

=
〈tΓ(γ(t)) , γ(t) − γ(τ)〉

|γ(t) − γ(τ)|2 +
π

2L
cot
( π

2L
(τ − t)

)
+
iπ

2L

=
〈tΓ(γ(t)) , γ(t) − γ(τ)〉(τ − t) + |γ(t) − γ(τ)|2

|γ(t) − γ(τ)|2(τ − t)
+
iπ

2L

+
π

2L
cot
( π

2L
(τ − t)

)
− 1

τ − t
.

The identity for the cotangens used above is a clever but straightforward compu-
tation which can be found for example in [47, 49]. From the series expansion of
the cotangens around τ − t = 0 we observe that in the series expansion of

π

2L
cot
( π

2L
(τ − t)

)
− 1

τ − t
(2.51)

around τ − t = 0 the smallest term is of order (τ − t)1. Hence (2.51) can be
continuously extended for t = τ together with its first order derivative with
respect to t. Using the Taylor expansions

γ(t) − γ(τ) = (t− τ)

∫ 1

0

γ′(τ + λ(t− τ)) dλ, (2.52)

γ(τ) − γ(t) = γ ′(t)(τ − t) + (τ − t)2

∫ 1

0

(1 − λ)γ ′′(t+ λ(τ − t)) dλ, (2.53)
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we find that the other term in the representation of the kernel can be written as

〈tΓ(γ(t)) , γ(t) − γ(τ)〉(τ − t) + |γ(t) − γ(τ)|2
|γ(t) − γ(τ)|2(τ − t)

= − 〈γ(τ) − γ(t) − γ ′(t)(τ − t) , γ(t) − γ(τ)〉
|γ(t) − γ(τ)|2(τ − t)

=
〈
∫ 1

0
(1 − λ)γ ′′(t+ λ(τ − t)) dλ ,

∫ 1

0
γ′(τ + λ(t− τ)) dλ〉

|
∫ 1

0
γ′(τ + λ(t− τ)) dλ|2

.

Since the denominator remains finite for (t − τ) → 0 this establishes that k
can be continuously extended. Using the quotient rule to differentiate the above
expression with respect to t, we see that the denominator just gets squared.
Hence, also the first order derivative of k with respect to t can be continuously
extended for t = τ .

Now we can conclude that the second term of the right-hand side of (2.49) given
by

−2i

∫ |Γ|

0

k(e
iπt
L , e

iπτ
L )

iπ

L
e

iπτ
L ϕ̃(e

iπτ
L ) dτ

is continuously differentiable on [0, |Γ|], since the integrand is continuously dif-
ferentiable with respect to t on [0, |Γ|], and since the integrand and its derivative
with respect to t are integrable with respect to τ with an integrable majorant
given by

M1/2

∣∣∣∣
[
∂u

∂νΓ

]
(γ(τ))

∣∣∣∣ ,

where

M1 := sup
(t,τ)∈[0,|Γ|]2

∣∣∣k(e iπt
L , e

iπτ
L )

iπ

L
e

iπτ
L

∣∣∣, M2 := sup
(t,τ)∈[0,|Γ|]2

∣∣∣k̃t(t, τ)
∣∣∣.

The Hölder continuity is then obtained by embedding.

Step 4: Summarizing, we have shown in the first three steps that
[

∂u
∂νΓ

]
is a

solution to the integral equation (2.48), which can be regarded as a Cauchy
type integral equation over a section of the complex unit circle with a Hölder
continuous right-hand side. Thus, we can apply Theorem 2.13 and Corollary 2.14,
and it follows that the solution

ϕ̃(ζ) =

[
∂u

∂νΓ

]
(γ(arg ζ))

to the Cauchy integral equation (2.49) vanishes at all endpoints of Σ, where it
is bounded and develops singularities of order − 1

2
at all endpoints, where it is

unbounded. �
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The result of Theorem 2.15 falls short against the result achieved in [34] by
Hayashi. There, the argument is considered from the opposite end. It is proven
that a solution to an equation similar to (2.49) satisfies the analogue of the
characterization given in Theorem 2.15. In a second step it is then proven that
the solution, which is unbounded at both endpoints, exists for all right-hand
sides. In a third step this solution is finally identified as the unique solution to
the Direct Scattering Problem for the open arc.
We have just mimicked the first of these steps. Since the results of other steps
have already been derived in the methodology of Section 2.3, we were not able
to follow the path of [34] beyond the above characterization. Following Hayashi
further would have meant to provide an alternative existence theory.

In view of the result of Theorem 2.15 we notice that Lemma 1.15 tells that the
density ϕ̃ associated to ϕ either vanishes at t = 0 or t = π with a zero of order
α0 >

1
2
, or it does not vanish at all. If it does not vanish, the singularity is of

square root type as we have already seen in Lemma 1.15.

With this - still rather vague - characterization of the current distribution (2.38)
we finish the investigations into the Boundary Value Problem and the properties
of its solution and turn to the related Geometric Optimization Problem. We will
return to the Boundary Value Problem in Sections 4.1 and 5.1, where we present
an approximation scheme for the solution u and related numerical examples.
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Chapter 3

A Geometric Optimization

Problem

This chapter is devoted to the Geometric Optimization Problem that occurs in the
modelling process for the Meissner state of a thin suprerconducting film from the
introduction. We will present the problem in mathematical terms, relate it again
to the physical model justifying the mathematical formulations with observations
from experimental and theoretical physics.
After studying the range and injectivity of the so-called current mapping that
relates the geometry to the corresponding current distribution on Γ, we derive a
factorization for the objective functional of the Geometric Optimization Problem
that will be at the heart of the further analysis. We then recall and develop
a series of important tools from the theory of differentiation in Banach spaces.
Based on these results, we study the differentiable dependence of the objective
functional of the Geometric Optimization Problem on perturbations of the do-
main by presenting a sensitivity analysis for the solution to the Boundary Value
Problem 2.1 as well as for the objective functional. The chapter will be closed
by an existence result for the minimizer of the Geometric Optimization Problem
under suitable assumptions on the geometry.

3.1 Statement of the Problem

In this section we will present and motivate the Geometric Optimization Prob-
lem which forms the core of the second part of this work. In the introduction
we have already mentioned that the field of shape optimization, to which the
problem at hand belongs, is concerned with optimization problems, that contain
the geometry as a parameter or variable. Hence, we will lay the foundations for
the understanding of the Geometric Optimization Problem by defining what we
would like to understand as an admissible domain.

63
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Definition 3.1 (Admissible domain). Let Γ ⊂ R
2 be an open arc of class C3

in the sense of Definition 1.5. Then a domain D =
⋃n

i=1Di ⊂ R
2 will be called

admissible, if it satisfies

• D is bounded, and D is contained in R
2 \ Γ.

• the boundary ∂D is of class C2.

• each component Di is simply connected.

• Di ∩Dj = ∅ for all i 6= j.

The family of admissible domains will be parametrized by the parameter θ. The
family of admissible boundaries will be denoted by

Uad :=
{
∂Dθ : Dθ is admissible

}
. (3.1)

If we compare the definition of an admissible domain with the geometric assump-
tions of the Boundary Value Problem 2.1, we notice that Problem 2.1 can be
formulated for each geometric setup (Γ, Dθ) with an admissible domain Dθ. As
we have proven unique solvability of Problem 2.1 (see Theorem 2.10), we can
associate to each geometric setup (Γ, Dθ) a corresponding solution u = uθ if we
assume that the other occuring parameters are fixed and given. Furthermore, in
Section 2.4 we have identified the current distribution on Γ as a characteristic
quantity of the solution uθ to the Boundary Value Problem for the geometric
setup (Γ, Dθ) (see Lemma 2.12). This motivates the following definition.

Definition 3.2 (Current mapping). Let Γ ⊂ R
2 be an open arc of class C3 in

the sense of Definition 1.5, and let I 6= 0, µe > 0 and µi > 0, i = 1, . . . , n, be
given. Then the mapping

F̃ : Uad → C∗(Γ),

∂Dθ 7→
[
∂uθ

∂νΓ

]
,

(3.2)

where
[

∂uθ

∂νΓ

]
is given by (2.38), is called current mapping. It is well-defined by

virtue of Theorem 2.10.

The current mapping associates the shape of the boundary of D to the jump of
the normal derivative across the open arc, or, speaking in terms of the applica-
tion which is behind the Boundary Value Problem, it is linking the form of the
magnetic environment to the current distribution in the superconducting film.
Based on this correspondence we can now formulate the Geometric Optimization
Problem using the language of shape optimization.
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Problem 3.3 (Geometric Optimization Problem). Let Γ ⊂ R
2 be an open arc

of class C3 in the sense of Definition 1.5, and let the parameters I 6= 0, µe > 0
and µi > 0, i = 1, . . . , n, be given. Consider

min
∂Dθ ∈Uad

F (∂Dθ), (3.3)

where

F (∂Dθ) :=
1

2

∫

Γ

w(x)

[
F̃ (∂Dθ) −

I

|Γ|

]2

ds (3.4)

for the weight function w : Γ → R
+
0 given by

w(γ(cos t)) := |γ ′(cos t) sin t|, t ∈ [0, π]. (3.5)

Before analyzing Problem 3.3 in the subsequent sections of this chapter, let us
pick up the discussion from the introduction in order to justify the choice of the
functional (3.4) and the weight function defined in (3.5). For the moment, let
us remark that the weight function w, as it is defined in (3.5), depends on the
parametrization γ of Γ, although this is not a necessary feature. We will discuss
the advantages and drawbacks of the choice (3.5) for w in more detail at the end
of this section.

Experiments with superconducting materials (see, for example [41, 43]) as well
as the basic theory on superconductivity (see [11, 40]) indicate that the Meissner
state of a superconducting medium does not only depend on the temperature, but
also (and mainly) on the magnetic field exterior to the medium. In particular,
a breakdown of the Meissner state of a superconducting medium may be caused
by two different phenomena.
In a first scenario, the magnetic field B starts to penetrate the superconducting
medium at some critical value of first flux entry H∗. This marks a breakdown of
the Meissner state, which is defined through B = 0 inside the superconducting
medium. Nevertheless, the medium still remains in a superconducting state, the
so-called Shubnikov phase, even for field values larger than H∗. In the Shubnikov
phase, the magnetic field already B penetrates the superconducting medium, but
due to geometric pinning forces it is detained from moving, keeping it thus in a
superconducting state up to some other critical value Hc2 , above which also the
Shubnikov phase breaks down, and the medium becomes normally conducting. It
has been shown experimentally (see [10, 41]) that the penetration of the magnetic
field into the superconducting medium mainly occurs at defects in the material
structure of the medium. Since the edges of a superconducting film naturally
form defects in the material structure, this is where the penetration of the film
usually starts.
In a second scenario, the magnetic field B is retained from penetrating the su-
perconducting medium even for field values higher that H∗ due to some magnetic



66 CHAPTER 3. A GEOMETRIC OPTIMIZATION PROBLEM

or geometric forces. Even in this case the Meissner state cannot be maintained
for arbitrary large field values. The reason for this is a microscopic quantity, the
so-called Ginzburgh-Landau depairing current j0 (see [8]), which depends on local
material properties. The magnetic field B generates so-called shielding currents
in the superconducting medium, which cause a breakdown of the Meissner state
to the normally conducting state if the current density distribution exceeds j0
locally. In [8] it has also been shown that the shielding currents generated in the
Shubnikov phase by field values of Hc2 are still one order of magnitude smaller
than j0.

From these two scenarios we can now formulate the objective in terms of the
mathematical model. An optimized magnetic environment for the Meissner state
of a superconducting film should meet two main issues:

• Firstly, it should aim at reducing the values of the magnetic field locally
near the endpoints of the film in order to prevent the Meissner state from
collapsing into the Shubnikov phase.

• Secondly it should aim at increasing the total current carrying capability of
the film being completely in Meissner state. In view of Ampère’s law (5),
this corresponds to increasing the local values of the current distribution in
the film which are uniformly bounded by the depairing current j0.

Interestingly, the mathematical model which we have used for the Boundary
Value Problem 2.1 is linear with respect to the transport current I. This can be
seen immediately from the right-hand side of the linear system (2.13). This is an
unphysical behaviour which renders it impossible to directly maximize the total
transport current. Even maximization with respect to I under the constraint

[
∂uθ

∂νΓ

]
< j0 (3.6)

is not sensible due to the possibly singular behaviour of the current distribution
at the endpoints of Γ (see Theorem 2.15). Consequently we will, for a fixed total
current, optimize the shape of the magnetic environment with the aim of homog-
enizing the current distribution over the cross-section of the film. In a second
step one can then determine the maximal total current under the side constraint
that (3.6) holds on Γ apart from small neighbourhoods of the endpoints. This is
done by exploiting the linear relation between the total current I and the current

distribution
[

∂uθ

∂νΓ

]
that is apparent from (2.40) and (2.13). The exclusion of small

neighbourhoods of the endpoints for the side constraint is also justified from the
physical perspective. It is well accepted that at the edges of a superconducting
medium additional phenomena influence the behaviour of the medium. These
phenomena, which are called barrier effects, have not been incorporated into the
model making it reliable only away from the edges of the medium. Focussing
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again on the objective of the Geometric Optimization Problem, the discussion
has shown that it is the primary goal to homogenize the current distribution.
This then leads naturally to the choice of a differentiable L2-type functional for
the current distribution with the target value I

|Γ|
being a perfectly homogeneous

current distribution for the total current I.

The characterization of the current distribution in Theorem 2.15 has stated two
possibilities for the behaviour of

[
∂uθ

∂νΓ

]
at the endpoints, namely either an un-

bounded behaviour, or the vanishing of the current distribution at the endpoints.
These possibilities in view, the question arises why one does not try to optimize
in such a way that the second possibility holds, since this would be the best way
of dealing with the first of the two main issues stated above.
As an answer we adduce two arguments. Firstly, the overall objective is to
maximize the current carrying capability under the restriction (3.6). In view
of this, an almost homogeneous current is the best one can do regardless of the
behaviour in small neighbourhoods of the endpoints, which are negligible anyway
due to the argument given above. Secondly, Theorem 2.15 only gives necessary
conditions for the behaviour of the current distribution at the endpoints. In our
numerical experience the case of a current distribution vanishing at the endpoints
has never occured, and we have not been able to give sufficient conditions for this
case to occur either. The choice (3.4) for the objective functional is not prejudiced
with respect to the behaviour at the endpoint anyway. It will simply favour the
behaviour that allows the largest current transport.

Let us close this section with a short remark on the weight function w occuring
in (3.4). The current mapping F̃ maps into the space C∗(Γ), which can be seen
from (2.40). For the elements of C∗(Γ) we have shown in Lemma 1.15 that they
are square integrable if and only if the related functions ϕ̃ ∈ C

0,α
2π,e vanish at the

endpoints of Γ. In view of the result of Theorem 2.15 we immediately see that
the current distribution is not square integrable if the function f ∗

±1 in (2.46) does
not vanish at z±1. During our numerical studies of the Geometric Optimization
Problem we have experienced no situation where either f ∗

±1 or the related function
ϕ̃ vanished at the endpoints. Hence, a classical L2-functional is inacceptible. A
closer study of the proof of Lemma 1.15 reveals that the introduction of a weight
function w, vanishing at the endpoints with a whatsoever small degree, restores
the square integrability for elements of C∗(Γ). The particular choice (3.5) for w
then has the critical advantage that it inverts the process of how ϕ ∈ C∗(Γ) is
obtained from the well-behaved, square-integrable function ϕ̃ ∈ C

0,α
2π,e as can be

seen from the definition of C∗(Γ). We will see in the next section that this choice
for w yields a particularly simple and appealing structure for the functional F due
to the above advantage. This most desirable effect outweighs by far the drawback
that (3.5) depends on the parametrization γ. Generally speaking, the reasoning
above has shown that the only requirement for a weight function w is that it
vanishes at the endpoints z±1 of Γ. This leaves a considerable amount of freedom
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for a possible choice of w and includes also weight functions that do not depend
on the parametrization of Γ. The choice of an appropriate weight function is a
crucial issue of of the design of Problem 3.3 as different weight functions may
influence the result of the minimization heavily. Our particular choice for w is
less influenced from the point of view of appropriate design, but rather from the
appealing structure of F that can be obtained in that way.

3.2 Global properties of the current mapping

and the objective functional

In this section we analyze the Geometric Optimization Problem 3.3 globally, com-
piling various properties of the current mapping F̃ from Definition 3.2 and the
functional F defined in (3.4). From the rather vague nature of these properties
we draw the conclusion that one should rather exploit local properties of F in
order to solve Problem 3.3 numerically.

Considering F in detail, we see that it is built as a weighted L2-functional for
which one expects nice properties such as convexity. On the other hand it is
not obvious how to exploit this desirable behaviour, as the range of the current
mapping F̃ determines the domain on which this L2-type functional acts. Since
the properties of F̃ have not yet been studied, we turn to this issue with an
immediate observation.

Corollary 3.4. Let Γ ⊂ R
2 be an open arc of class C3 in the sense of Defini-

tion 1.5, and let I 6= 0, µe > 0 and µi > 0, i = 1, . . . , n, be given. Then a
function ϕ that is in the range of the current mapping F̃ can be characterized by

i) ϕ ∈ C∗(Γ).

ii) In a neighbourhood U(z−1) of z−1 the function ϕ is either bounded and
satisfies ϕ(z−1) = 0, or it is unbounded and satisfies

ϕ(x) = (|x− z−1|)−
1
2f−1(x), x ∈ Γ ∩ U(z−1), (3.7)

for some bounded function f−1 ∈ C(Γ).

iii) The analogue holds for a neighbourhood U(z+1) of z+1. Either the function
ϕ is bounded there and satisfies ϕ(z+1) = 0, or it is unbounded in U(z+1)
and satisfies the analogue of (3.7) for some bounded function f+1 ∈ C(Γ).

In particular, the range of F̃ does not comprise the constants, i.e.

F̃ (∂Dθ) 6= const for all ∂Dθ ∈ Uad.
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Proof. The first property is a consequence of Lemma 2.12, the second and third
property are immediate from Theorem 2.15. The final statement can be seen
as follows. Suppose there is a constant in the range of F̃ . Due to Lemma 2.12
this constant has to be given by I

|Γ|
as it needs to be current distribution for the

parameter I. Now I
|Γ|

is bounded at both endpoints z±1. According to the second

and third property, it has to satisfy I
|Γ|

= 0, which implies that I = 0. This is a
contradiction to the assumption. �

From Corollary 3.4 we see that we cannot decide immediately whether the Geo-
metric Optimization Problem 3.3 is uniquely solvable or not. This is meant in the
sense that it is not clear whether there exists a uniquely determined admissible
domain Dθ such that the functional F from (3.4) satisfies F (∂Dθ) = 0, as the

constants are not in the range of F̃ .
As it seems rather hard to find a stronger characterization for the range of F̃ , we
will not pursue this issue any further and turn towards studying the injectivity
of F̃ .

Lemma 3.5. Let ∂Dθi
∈ Uad, i = 1, 2, such that

F̃ (∂Dθ1) = F̃ (∂Dθ2).

Then the first components ϕ̃θi
of the solutions Ψi to (2.36), corresponding to the

solutions uθi
to Problem 2.1 for the geometry (Γ, Dθi

), differ at most by a multiple
of w as given by (3.5).

Proof. Let uθ1 be the solution to Problem 2.1 for the geometry (Γ, Dθ1). Then
the current distribution for uθ1 on Γ is given by

F̃ (∂Dθ1) = ϕθ1 −
1

|Γ|

∫

Γ

ϕθ1 ds+
I

|Γ|

according to (2.40). As a similar expression holds for uθ2 , we obtain

ϕθ1 − ϕθ2 =
1

|Γ|

∫

Γ

ϕθ2 ds−
1

|Γ|

∫

Γ

ϕθ1 ds.

The right-hand side being constant implies that ϕθ1 − ϕθ2 is constant. Now the
statement follows, because ϕθi

and the first component ϕ̃θi
of the solution Ψi to

the corresponding system of integral equations (2.36) are related via

ϕ̃θi
(t) = ϕθi

(γ(cos t))|γ ′(cos t) sin t|

for i = 1, 2. �
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Lemma 3.6. Let the open arc Γ be given by {x ∈ R
2 : x1 ∈ [−1, 1], x2 = 0},

i.e. Γ is a segment of the x1-axis. Furthermore, let Dθ ⊂ R
2 be an admissible

domain that is simply connected and contained in the upper half-plane, i.e. we
have ∂Dθ ∈ Uad and ∂Dθ ⊂ {x ∈ R

2 : x2 > 0}. Then the domain Dθ given by

Dθ :=
{
x = (x1,−x2) ∈ R

2 : x = (x1, x2) ∈ Dθ

}
(3.8)

is also admissible and different from Dθ, and both satisfy

F̃ (∂Dθ) = F̃ (∂Dθ).

Proof. The admissibility of Dθ is easily checked from Definition 3.1, it being
different from Dθ is immediate as it is contained in the lower half-plane by its
definition. From Chapter 2 we know that Problem 2.1 is uniquely solvable for the
geometry (Γ, Dθ), and that the solution can be represented in the form of (2.10),
where the densities (ϕθ, ψθ) solve (2.13) for the according geometry.

Now, let z be a parametrization of ∂Dθ with positive orientation. Then a
parametrization of ∂Dθ is given by z := (z1,−z2) having negative orientation.
This has the effect that the exterior normal ν(y) to ∂Dθ at a point y ∈ ∂Dθ

satisfies

ν(y) = −ν(y),
where ν(y) is the right-hand normal with respect to the parametrization as defined
in Definition 1.5. Consequently, the following relations hold for x, y ∈ ∂Dθ:

|x− y| = |x− y|,
〈ν(y) , x− y〉 = 〈ν(y) , x− y〉 = −〈ν(y) , x− y〉,

where x, y ∈ ∂Dθ are the points corresponding to x, y on the mirrored boundary.
Similarly, we obtain for x ∈ Γ and y ∈ ∂Dθ

|x− y| = |x− y|,
〈ν(y) , x− y〉 = 〈ν(y) , x− y〉 = −〈ν(y) , x− y〉

as x = x for x ∈ Γ.

If we now define ψ ∈ C(∂Dθ) via ψ(y) := −ψ(y), we can conlcude from the
form of the operators (2.14) - (2.19) and the above that (ϕ, ψ) solve the system
of integral equations (2.13) for the geometry (Γ, Dθ) if and only if (ϕ, ψ) solve
the corresponding system for the geometry (Γ, Dθ). It follows in particular the
operators (2.14) and (2.15) satisfy

(
KDθ ψ

)
(x) =

(
KDθ ψ

)
(x),

(
KDθ,Γ ψ

)
(z) =

(
KDθ,Γ ψ

)
(z)
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for all x ∈ ∂Dθ and for all z ∈ Γ, as the ’−’-sign in the definition of ψ is cancelled
by the additional ’−’-sign coming from the unit normal in the kernel for the
mirrored boundary ∂Dθ. The operators (2.17) and (2.19) also satisfy

(
SΓ,Dθ ϕ

)
(x) =

(
SΓ,Dθ ϕ

)
(x),

(
S̃Γ,Dθ ϕ

)
(x) =

(
S̃Γ,Dθ ϕ

)
(x)

as the kernels for x ∈ ∂Dθ and x ∈ ∂Dθ coincide. Finally, the operators (2.16)
and (2.18) remain unaffected as they do not depend on Dθ. Hence, (ϕθ, ψθ) is
a solution to (2.13) for the geometry (Γ, Dθ). Now the result follows from the

representation (2.40) for the image of the current mapping F̃ . �

Lemma 3.5 and Lemma 3.6 have indicated two additional difficulties, when we
want to characterize the current mapping F̃ . Firstly, the densities characterizing
a solution u of the Boundary Value Problem 2.1 are not mapped injectively to
the corresponding current distribution, but they may differ by some multiple of
the weight function w from (3.5) and still lead to the same current distribution.
Secondly, we have found an example where two different admissible domains Dθ

and Dθ lead to the same density on Γ when solving the system (2.36). Hence,
these two domains also incur the same current distribution.

In view of these difficulties in characterizing both the range and the ’nullspace’
of the current mapping we conclude that studying the current mapping itself
is probably not the best way of dealing with the Geometric Optimization Prob-
lem 3.3. We will therefore turn away from the considerations about a global
characterization of the current mapping. Instead we will derive a factorization
for the functional F which on the one hand clearly separates the various phe-
nomena that have occured in the above, and which on the other hand turns out
to be extremely apt for analyzing a possible differentiable dependence of F̃ and
F on perturbations of the admissible domain Dθ.

We begin by deriving a parametrized representation for F . We use (2.40) to

express the image of the current mapping F̃ in terms of the density ϕθ ∈ C∗(Γ)
corresponding to the solution uθ for the geometry (Γ, Dθ). Then we can insert
the parametrization γ for the arc Γ and perform the cosine substitution as in
Chapter 2. Finally, the definition of C∗(Γ) together with the specific form of the
weight function w from (3.5) yields

F (∂Dθ) =
1

2

∫

Γ

w(x)

[
ϕθ(x) −

1

|Γ|

∫

Γ

ϕθ ds

]2

ds(x)

=
1

2

∫ π

0

[
ϕθ(γ(cos t)) −

1

|Γ|

∫ π

0

ϕ̃θ ds

]2

|γ′(cos t) sin t|w(γ(cos t)) dt

=
1

2

∫ π

0

[
ϕ̃θ(t) −

(
1

|Γ|

∫ π

0

ϕ̃θ ds

)
|γ′(cos t) sin t|

]2

dt,
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where ϕ̃θ is the first component of the solution Ψθ to the system of integral
equations (2.36) for the geometry (Γ, Dθ).
With this representation for F in hand we can now factorize F in a way such
that each factor either incorporates a desirable property or clearly characterizes
one of the various phenomena that have occured in the discussion above. We
introduce the operator

T : Uad → W0 = W0(∂Dθ)

∂Dθ 7→ Ψθ,
(3.9)

where Ψθ ∈ W0(∂Dθ) is the solution to (2.36) for the geometry (Γ, Dθ). Next we
introduce the projection

PΓ : W0(∂Dθ) → C
0,α
2π,e

Ψθ =
(
ϕ̃θ, ψ1,θ, . . . , ψn,θ

)
7→ ϕ̃θ

(3.10)

as well as the operator Mγ : C0,α
2π,e → C

0,α
2π,e that is defined via

(Mγϕ̃) (t) := ϕ̃(t) −
(

1

|Γ|

∫ π

0

ϕ̃ ds

)
|γ′(cos t) sin t| (3.11)

and the functional G : C0,α
2π,e → R given by

Gϕ̃ :=
1

2

∫ π

0

(
ϕ̃(t)

)2
dt. (3.12)

Using the parametrized representation for F we see that (3.9) - (3.12) yield the
factorization

F (∂Dθ) =
(
G ◦Mγ ◦ PΓ ◦ T

)
(∂Dθ), (3.13)

which is more appropriate for the necessary analysis. We state the properties of
the functional G and the operator Mγ in the following two lemmas.

Lemma 3.7. Let G : C0,α
2π,e → R be given by (3.12). Then G is a non-negative,

convex functional, i.e. it has the property that ϕ ≡ 0 is the only local minimizer.
Hence ϕ ≡ 0 is a global minimizer and satisfies G(ϕ) = 0.

Proof. First we note that G(ϕ) is obtained by integrating a non-negative inte-
grand, hence G is non-negative. Furthermore, we know from the properties of
the integral that G(ϕ) = 0 if and only if ϕ ≡ 0. Hence ϕ ≡ 0 is a uniquely
determined global minimizer for G.
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Hence it remains to show that there exist no other local minimizers for G. So let
us assume that ψ ∈ C

0,α
2π,e is a local minimizer of G. For arbitrary ϕ ∈ C

0,α
2π,e and

for t ∈ R with |t| sufficiently small we calculate

G(ψ + tϕ) = G(ψ) + t

∫ π

0

ψ ϕ ds+ t2G(ϕ),

which yields

t

(
t ·G(ϕ) +

∫ π

0

ψ ϕ ds

)
≥ 0. (3.14)

The left hand side of (3.14) is either linear in t or a parabola with a zero at t = 0.
In both cases (3.14) can only be satisfied for t in a neighbourhood of zero if we
have ∫ π

0

ψ ϕ ds = 0 (3.15)

for all ϕ ∈ C
0,α
2π,e. Inserting ϕ = ψ into (3.15) we conclude that ψ ≡ 0. �

Lemma 3.8. The operator Mγ given by (3.11) is linear and bounded from C
0,α
2π,e

to C0,α
2π,e. It has a non-trivial nullspace which is spanned by ψ0 ∈ C

0,α
2π,e, which is

the 2π-periodic and even extension of |γ ′(cos t) sin t|.

Proof. To ensure the mapping properties we have to show that
∣∣γ′(cos t) sin t

∣∣ ∈ C
0,α
2π,e.

2π-periodicity and evenness are satisfied by appropriate extension from [0, π]
to [−π, π]. For the Hölder regularity with Hölder exponent α we re-write the
extension of the above as

∣∣ sin t
∣∣√(γ′1(cos t))

2 + (γ′2(cos t))
2, t ∈ R. (3.16)

Now
∣∣ sin t

∣∣ is an element of C0,1 since the sine is differentiable and the absolute
value satisfies the second triangle inequality which is nothing else than the Hölder
condition with Hölder exponent 1 and constant C = 1.

For the second factor in (3.16) we note that the radicand is differentiable and
different from zero for all t ∈ R since γ is a regular parametrization of Γ. Hence
the second factor is continuously differentiable, and consequently (3.16) is in C0,1

2π,e

and by embedding also in C0,α
2π,e.

For the nullspace we observe immediately from the definition (3.11) that if ψ
in the nullspace of Mγ and satisfies furthermore

∫
Γ
ψ ds = 0 then ψ ≡ 0. If ψ

additionally satisfies
∫
Γ
ψ ds 6= 0 this yields

(
1

|Γ|

∫

Γ

ψ ds

)−1

ψ =
∣∣γ′(cos t) sin t

∣∣.
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Hence, ψ = c
∣∣γ′(cos t) sin t

∣∣ for some constant c ∈ R, indicating that the nullspace
is at most one-dimensional. For the other inclusion we note that

1

|Γ|

∫ π

0

∣∣γ′(cos t) sin t
∣∣ dt =

1

|Γ|

∫

Γ

1 ds = 1.

Thus ψ0, being the 2π-periodic and even extension of |γ ′(cos t) sin t| 6≡ 0, is in
the nullspace of Mγ, which completes the proof. �

The results of Lemma 3.7 and Lemma 3.8 are very promising. On the one hand we
see that G is most appropriate in order to obtain a globally convergent minimiza-
tion problem as it has the zero-element as the only local and global minimizer.
On the other hand we have identified the source for non-injectivity of the current
mapping in the sense of Lemma 3.5, and characterized it as the one-dimensional
nullspace of the bounded linear operator Mγ .

It remains to take a closer look at the operators PΓ and T . From the definition
of PΓ in (3.10) we immediately see that it is a bounded mapping. But we also
recognize that we cannot really speak of linearity of P as the arguments Ψθ are
defined on different spaces. This is because W0 depends on the corresponding
boundary ∂Dθ. Nevertheless, a closer look at the proof of Lemma 3.6 reveals
that in this particular case P is responsible for the non-injectivity of F̃ in the
sense of Lemma 3.6 as we have PΓ(Ψθ) = PΓ(Ψθ) although Ψθ 6= Ψθ. Finally, the
operator T displays most clearly why the global analysis of the current mapping
has proved so difficult and little successful. We observe from (2.36) and (2.28)
that T depends nonlinearly on the boundary ∂Dθ. Moreover, the boundary ∂Dθ

influences (2.36) in all occuring quantities. It is not only the operator (S +A)−1

which depends on ∂Dθ, but also the right-hand side f and the solution Ψ are
defined in terms of ∂Dθ.

Having the Geometric Optimization Problem 3.3 identified as a nonlinear opti-
mization problem from the field of shape optimization the central difficulties for
analyzing Problem 3.3 become evident. Even in classical optimization theory
nonlinear optimization problems are hard to analyze. They mostly extend to
characterizing optimal solutions in the spirit of the Karush-Kuhn-Tucker Theo-
rem in combination with an examination of the convexity of both the functional
and the admissible set. Unfortunately, all these tools are not available in the
present case. First of all, it is difficult to speak of convexity of the set of admissi-
ble domains as there is not a naturally underlying linear structure (nevertheless,
we will present an approach how to equip Uad locally with an affine structure in
Section 3.4). Due to the lack of the notion of global convexity for Uad, it does
not make sense to examine the convexity of the functional F either. Finally,
the characterization of optimal solutions in the spirit of the KKT-Theorem turns
out to be of rather little use as on the one hand the gradient from the classi-
cal KKT-Theorem is replaced by the Fréchet derivative, and on the other hand
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the side constraints that characterize an admissible domain cannot be framed as
functional equalities or inequalities.

We will therefore turn away from the attempt of analyzing Problem 3.3 globally.
Instead we will examine the local properties of F , trying to establish a differen-
tiable dependence of F on perturbations of the boundary ∂Dθ ∈ Uad. We will give
basic results on Fréchet differentiability in a broader setting in the next section,
before subsequently doing a sensitivity analysis for Problem 2.1 and Problem 3.3
in particular.

3.3 Fréchet differentiability

In this section we compile basic general results on differentiation in Banach spaces
as they can be found in [7, 42] together with several specialized results that stem
from the problem at hand. The main result of this section which establishes
Fréchet differentiability for integral operators is an extension of a result that is
due to Potthast [58]. We will employ the general results obtained in this section
for the sensitivity analysis of the solution to the Boundary Value Problem 2.1
and the functional of the Geometric Optimization Problem 3.3 in the subsequent
sections.

We begin with the notion of differentiation in Banach spaces.

Definition 3.9 (Fréchet differentiability). Let X,Y be Banach spaces and U ⊂ X

open. A mapping F : U → Y is called Fréchet differentiable in x0 ∈ U if there
exists a bounded linear mapping M = Mx0 ∈ L(X,Y ) such that

‖F (x0 + h) − F (x0) −Mx0h‖Y = o
(
‖h‖X

)
. (3.17)

We denote by
F ′[x0;h] := Mx0h (3.18)

the Fréchet derivative of F at x0 in direction h.

If F is Fréchet differentiable for every point x0 ∈ U , we call the mapping

F ′ : U → L(X,Y )

x 7→ F ′[x; ·]

the Fréchet derivative of F . We say that F is continuously Fréchet differentiable
if the mapping F ′ is continuous.

We will now review some of the basic properties and tools of Fréchet differentia-
tion that have in most cases a well-known counterpart in classical real analysis.
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Lemma 3.10. Let X,Y be Banach spaces, U ⊂ X be open and F : U → Y be
Fréchet differentiable at x0 ∈ U . Then F ′[x0; ·] is uniquely determined.

Proof. see [42], p. 103. �

Lemma 3.11. Let X,Y be Banach spaces and A : X → Y be a bounded linear
operator. Then A is Fréchet differentiable for all x ∈ X and the Fréchet derivative
of A at the point x is given by

A′[x; ·] = A. (3.19)

Proof. see [42], p. 104. �

Lemma 3.12. Fréchet differentiable mappings are compatible with linear struc-
tures and composition:

1. Let λ ∈ R, X,Y be Banach spaces, U ⊂ X be open and F,G : U → Y

be Fréchet differentiable at x0 ∈ U . Then also F + G and λF are Fréchet
differentiable at x0.

2. Let X,Y, Z be Banach spaces, U ⊂ X be open and F : U → Y be Fréchet
differentiable at x0 ∈ U . Let V ⊂ Y be open satisfying y0 := F (x0) ∈ V

and let G : V → Z be Fréchet differentiable at y0. Then G ◦F is defined in
a neighbourhood of x0, it is Fréchet differentiable at x0 and the derivative
is given by (

G ◦ F
)′

[x0; ·] = G′[y0;F
′[x0; ·]].

Proof. see [42], p. 105. �

In order to formulate Taylor’s Theorem for real-valued mappings from a Banach
space we also need to introduce the notion of higher order derivatives.

Definition 3.13 (Higher order derivatives). Let X,Y be Banach spaces, U ⊂ X

open and F : U → Y Fréchet differentiable on U with Fréchet derivative F ′.
If F ′ is now again Fréchet differentiable in x0 ∈ U we call the bounded bi-linear
mapping

F ′′[x0; ·, ·] : X ×X → Y

(h1, h2) 7→ F ′′[x0;h1, h2]
(3.20)

the second derivative of F at x0, and we write F ′′[x0;h] := F ′′[x0;h, h].
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We mention here that Definition 3.13 already contains an identification for the
second derivative. Formally, F is a mapping from U ⊂ X into Y , and the Fréchet
derivative F ′[x; · ] has been introduced as a linear approximation to F in x, i.e. we
have F ′[x; · ] ∈ L(X,Y ). The second Fréchet derivative then is a linear approxi-
mation to F ′[x; · ] in x, and thus technically belongs to the space L(X,L(X,Y )),
which can be identified with L(X × X,Y ). Higher order derivatives are then
defined recursively by the above procedure.

Theorem 3.14 (Taylor’s Theorem). Let X be a Banach space, U ⊂ X open, let
x0 ∈ U , h ∈ X and suppose that {x0 + th : t ∈ [0, 1]} ⊂ U . Furthermore let
F : U → R be (k+1)-times continuously Fréchet differentiable on U . Then there
exists τ ∈ [0, 1] such that

F (x0 + h) = F (x0) +
k∑

j=1

1

j!
F (j)[x0;h] +

1

(k + 1)!
F (k+1)[x0 + τh;h]. (3.21)

Proof. see [42], p. 112. �

Remark 3.15. We would like to especially draw the attention to the fact that we
only have Taylor’s theorem available for real-valued mappings instead of Banach
space valued mappings. This is due to the fact that for Banach space valued
mappings we only have mean value theorems either as norm estimates or in some
weak sense in the case of reflexive Banach spaces. Interestingly, we find that
the crucial point for the validity of the mean value theorem for the case of one-
dimensional real analysis is the ordering of the real numbers or the so-called
sup-property.

Lemma 3.16. Let X be a Banach space, U ⊂ X open and Y := Y1 × . . .× Yn be
a product of Banach spaces. Setting

‖y‖ := max
i=1,...,n

‖yi‖Yi
, y = (y1, . . . , yn) ∈ Y,

the space Y itself becomes a Banach space. Correspondingly, the space L(X,Y )
is a Banach space with norm

‖A‖ = max
i=1,...,n

‖Ai‖, A = (A1, . . . , An) ∈ L(X,Y ).

Then the mapping F = (F1, . . . , Fn) : U → Y is differentiable at x0 ∈ U if and
only if for each i = 1, . . . , n the mapping Fi is differentiable at x0. We then have

F ′[x0; ·] = (F ′
1[x0; ·], . . . , F ′

n[x0; ·])T .
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Proof. see [42], pp. 104. �

Lemma 3.17. Let X := X1 × . . . × Xn be the product of Banach spaces, let
Ui ⊂ Xi, i = 1, . . . , n, be open subsets and define U := U1 × . . . × Un. Let
furthermore Y be another Banach space. Then the mapping

F : U → Y

is Fréchet differentiable on U if and only if it is continuously partially Fréchet
differentiable with respect to all its variables, i.e. all partial Fréchet derivatives

∂F

∂zi

[z1, . . . , zn; ·] : Xi → Y

exist in U and depend continuously on (z1, . . . , zn). In this case the Fréchet
derivative of F at z = (z1, . . . , zn) ∈ X in direction h = (h1, . . . , hn) ∈ U is given
by

F ′[z1, . . . , zn;h1, . . . , hn] =
n∑

i=1

∂F

∂zi

[z1, . . . , zn;hi]. (3.22)

Proof. see [42], pp. 108. �

Based on these two classical results we want to establish differentiability for
parameter dependent linear operators on product spaces, i.e. for matrix valued
functions, from the knowledge of differentiability for all components. We therefore
give the following two preparatory Lemmas.

Lemma 3.18. Let X1, X2, Y be Banach spaces and A : X1 → Y be a bounded
linear operator. Moreover, let the operator P1 : X1 × X2 → X1 be given by
P1(ϕ1, ϕ2) = ϕ1. Then the operator Ã : X1 ×X2 → Y defined by Ã := A ◦ P1 is

also linear and bounded, and we additionally have ‖Ã‖ = ‖A‖.

Proof. Linearity of Ã is obvious from its definition and the linearity of A and P1.

For the boundedness we consider a norm on X1 ×X2 as in Lemma 3.16 via the
maximum norm. Then we see on the one hand that

‖Ã(ϕ1, ϕ2)‖Y = ‖A(P1(ϕ1, ϕ2))‖Y ≤ ‖A‖ · ‖ϕ1‖X1 ≤ ‖A‖ · ‖(ϕ1, ϕ2)‖X1×X2
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from the boundedness of A and the definition of P1 and the maximum norm.
Thus Ã is bounded with norm ‖Ã‖ ≤ ‖A‖. Since

{
(ϕ1, ϕ2) ∈ X1 ×X2 : ‖(ϕ1, ϕ2)‖X1×X2 = 1

}

⊃
{

(ϕ1, 0) ∈ X1 ×X2 : ‖(ϕ1, 0)‖X1×X2 = 1
}

∼=
{
ϕ1 ∈ X1 : ‖ϕ1‖X1 = 1

}
,

we calculate on the other hand

‖Ã‖ = sup
‖(ϕ1,ϕ2)‖X1×X2

=1

‖(A ◦ P1)(ϕ1, ϕ2)‖Y

≥ sup
‖(ϕ1,0)‖X1×X2

=1

‖Aϕ1‖Y = sup
‖ϕ1‖X1

=1

‖Aϕ1‖Y = ‖A‖,

which yields the equality of the norms. �

Lemma 3.19. Let X,Y1, . . . , Yn be Banach spaces, define Y := Y1 × . . .×Yn and
let Fij : X → L(Yj, Yi) be a Fréchet differentiable mapping. Then the mapping

F̃ij : X → L(Y, Yi)

x 7→ F̃ij(x) := Fij(x) ◦ Pj,

where Pj : Y → Yj is defined by Pj(ϕ1, . . . , ϕn) := ϕj, is Fréchet differentiable
with Frechet derivative

F̃ ′
ij[x; ·] = F ′

ij[x; ·] ◦ Pj.

Proof. First we note that

F̃ij(x+ h) − F̃ij(x) − F ′
ij[x;h] ◦ Pj =

(
Fij(x+ h) − Fij(x) − F ′

ij[x;h]
)
◦ Pj.

Hence, by Lemma 3.18 and differentiability of Fij we have

‖F̃ij(x+ h) − F̃ij(x) − F ′
ij[x;h] ◦ Pj‖L(Y,Y1)

= ‖Fij(x+ h) − Fij(x) − F ′
ij[x;h]‖L(Yj ,Yi) = o

(
‖h‖
)
,

which proves differentiability of F̃ij together with the form of the Fréchet deriva-
tive. �

Now the desired differentiability result for matrix valued functions can be stated
as a simple Corollary.
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Corollary 3.20. Let X,Y1, . . . , Yn be Banach spaces, define Y := Y1 × . . . × Yn

and for i, j = 1, . . . , n consider the following mappings:

Aii : X → L(Yi)

x 7→ Aii(x) : Yi → Yi

ψ 7→ Aii(x)ψ,

Aij : X → L(Yj, Yi)

x 7→ Aij(x) : Yj → Yi

ψ 7→ Aij(x)ψ.

Let Pj : Y → Yj be defined as in Lemma 3.19. Then the mapping

A : X → L(Y )

x 7→ A(x) :=

(
n∑

j=1

(Aij(x) ◦ Pj)

)

i=1,...,n

(3.23)

is Fréchet differentiable if all its components Aij for i, j = 1, . . . , n are Fréchet
differentiable. The Fréchet derivative of A is then given by

(
n∑

j=1

A′
ij[x; ·] ◦ Pj

)

i=1,...,n

(3.24)

Proof. The statement follows from using Lemma 3.19 on each Aij, building sums
for all fixed i ∈ {1, . . . , n} and using Lemma 3.16 on the sums. �

The problem at hand requires also differentiation of operator expressions where
the operator itself as well as the argument depend on the variable with respect to
which the differentiation is performed. At the first glance one might think of this
situation as a simple consequence of the chain rule or product rule, but a closer
look reveals that it is neither of the two. We settle this issue in the following
Lemma.

Lemma 3.21. Let X,Y be Banach spaces and U ⊂ X an open subset. Let
F : U → L(Y ) and f : U → Y be Fréchet differentiable mappings. Then also
the mapping x 7→ F (x)f(x) ∈ Y is Fréchet differentiable for all x ∈ U and its
Fréchet derivative at x0 ∈ U in direction h is given by

F ′[x;h]f(x) + F (x)f ′[x;h]. (3.25)
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Proof. For x0 ∈ U and small h ∈ X we expand the expression

F (x0 + h)f(x0 + h) − F (x0)f(x0) − F ′[x0;h]f(x0) − F (x0)f
′[x0;h]

= F (x0 + h)f(x0 + h) − F (x0 + h)f(x0) − F (x0 + h)f ′[x0;h]

+F (x0 + h)f(x0) − F (x0)f(x0) − F ′[x0;h]f(x0)

+F (x0 + h)f ′[x0;h] − F (x0)f
′[x0;h].

Now estimating the first line on the right-hand side we find that it is o(‖h‖) due
to the Fréchet differentiability of f and since

‖F (x0 + h)‖ ≤ ‖F (x0 + h) − F (x0)‖ + ‖F (x0)‖ ≤ C1

holds uniformly for all sufficiently small h ∈ X as a consequence of the continuity
of F . Similarly we find the second line to be o(‖h‖) due to the Fréchet differen-
tiability of F . Continuity of F also yields o(‖h‖) for the third line since it can
be estimated by

‖F (x0 + h) − F (x0)‖ · ‖f ′[x0; · ]‖ · ‖h‖.

Putting the results for all summands together using the triangle inequality the
statement of the lemma follows. �

Furthermore, the operator which needs to be differentiated may be expressed as
the inverse of another operator that is more easily accessible. Hence we include
the following result (which also appears in [58, 18]) that expresses the differen-
tiability of the inverse of an invertible operator with respect to some parameter
together with the form of its derivative in terms of the differentiability and the
form of the derivative of the operator itself.

Theorem 3.22. Let X be a Banach space and Y be a Banach algebra. Assume
that F : U ⊂ X → Y is Fréchet differentiable in x0 ∈ U and that there exists
a neighbourhood W of x0 such that F (x) is invertible for all x ∈ W and the
mapping F−1 : x 7→ (F (x))−1 is continuous at x0. Then F−1 is Fréchet differen-
tiable at x0 with Fréchet derivative

(F−1)′[x0;h] = −F−1(x0)F
′[x0;h]F

−1(x0). (3.26)
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Proof. We rewrite the expression

F−1(x0 + h) − F−1(x0) + F−1(x0)F
′[x0;h]F

−1(x0) (3.27)

= F−1(x0)F (x0)F
−1(x0 + h)

−F−1(x0)F (x0 + h)F−1(x0 + h)

+F−1(x0)F
′[x0;h]

(
F−1(x0) − F−1(x0 + h) + F−1(x0 + h)

)

= F−1(x0) (−F (x0 + h) + F (x0) + F ′[x0;h])F
−1(x0 + h)

+F−1(x0)F
′[x0;h]

(
F−1(x0) − F−1(x0 + h)

)
.

Continuity of F−1 now yields

‖F−1(x0 + h)‖ ≤ ‖F−1(x0 + h) − F−1(x0)‖ + ‖F−1(x0)‖ ≤M1

uniformly for sufficiently small h. Hence the first term can be estimated by

M1 · ‖F−1(x0)‖ ·
∥∥∥− F (x0 + h) + F (x0) + F ′[x0;h]

∥∥∥ = o
(
‖h‖
)

(3.28)

due to the differentiability of F . Similarly the second term can be estimated by

‖F−1(x0) − F−1(x0 + h)‖ · ‖F ′[x0; · ]‖ · ‖h‖ = o
(
‖h‖
)

(3.29)

uniformly for h→ 0. Now combining (3.27), (3.28) and (3.29) using the triangle
inequality, we get

∥∥∥F−1(x0 + h) − F−1(x0) + F−1(x0)F
′[x0;h]F

−1(x0)
∥∥∥ = o

(
‖h‖
)

uniformly for h → 0, which proves differentiability for F−1 together with the
claimed form for the derivative. �

Remark 3.23. From the case of matrices on R
n (see [23]) we know a more intuitive

approach to establish the result of Theorem 3.22 by formally differentiating the
equation

F (x0)F
−1(x0) = Id

using the product rule. This approach requires knowledge of the differentiability
of F−1 which in the case of matrices with real-valued entries can be established
independently using Cramer’s Rule. We stress the point that this approach is
not applicable in the case at hand since we do not assume differentiability of the
inverse in the theorem above.
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We close this section on Fréchet differentiability with an adaption of the main
result of Potthast [58] to the two-dimensional case. This result establishes Fréchet
differentiability for boundary integral operators under suitable assumptions on
the kernel.

Theorem 3.24. Let G1, G2 ⊂ R
2, define G∆ := {(x, y) ∈ G1 ×G2 : x 6= y} and

let µ be a measure on G2. Furthermore, let X be a Banach space, U ⊂ X open
and convex, and let f : G∆ × U → R be a continuous function with the following
properties:

i) For all (x, y) ∈ G∆ the function f(x, y, ·) : U → R is twice continuously
Fréchet differentiable on U .

ii) For all x ∈ G1, r ∈ U and h ∈ X the function f(x, ·, r) : G2 → R and the
function f ′[x, ·, r;h] : G2 → R are (improperly) integrable.

iii) For all r ∈ U and for all h ∈ X the mapping A(r) defined by

(
A(r)ψ

)
(x) :=

∫

G2

f(x, y, r)ψ(y) dµ(y), x ∈ G1, ψ ∈ C(G2), (3.30)

and the mapping Ã(r, h) defined by

(
Ã(r, h)ψ

)
(x) :=

∫

G2

f ′[x, y, r;h]ψ(y) dµ(y) (3.31)

for x ∈ G1 and ψ ∈ C(G2) are elements of L(C(G2), C(G1)).

iv) There exists an integrable function g : G∆ → R such that the integrals
∫

G2

g(x, y) dµ(y), x ∈ G1,

are uniformly bounded and such that for all (x, y) ∈ G∆ the estimate
∣∣∣f ′′[x, y, r;h1, h2]

∣∣∣ ≤ g(x, y) (3.32)

holds uniformly for all r ∈ U and for all h1, h2 ∈ X with ‖hi‖ ≤ 1, i = 1, 2.

Then the mapping r 7→ A(r) as a mapping from U into L(C(G2), C(G1)) is
Fréchet differentiable on U and the Fréchet derivative A′[r; ·] is given by (3.31).
Furthermore, the Fréchet derivative A′[r; ·] is continuous with respect to r ∈ U .

The formulation above deviates from the original result of Potthast in two re-
spects. On the one hand we work on subsets of R

2 instead of R
3, which turns out

to be just a minor change from the original as it does not affect the argumenta-
tion within the proof. On the other hand the formulation extends the result of
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Potthast as it also establishes the continuous dependence of the Fréchet deriva-
tive A′[r; ·] with respect to r ∈ U . As expected, the required assumptions (3.32)
are stronger than in [58], where the boundedness of the second derivative of f
just needed to be assumed for h1 = h2. The additional continuity property of the
Fréchet derivative will form the key to make Corollary 3.20 work in combination
with Theorem 3.24.

Proof of Theorem 3.24. Fix (x, y) ∈ G∆ and let r0 ∈ U . From openness and
convexity of U it follows that r0 + th ∈ U for all t ∈ [0, 1] and any h ∈ X with
sufficiently small norm. Since f is real-valued we can apply Taylor’s theorem
(Theorem 3.14) to find

f(x, y, r0 + h) = f(x, y, r0) + f ′[x, y, r0;h] + f ′′[x, y, r0 + τh;h, h]

for some τ ∈ [0, 1]. From the fact that the estimate (3.32) holds uniformly with
respect to r and hi for ‖hi‖ ≤ 1, (i = 1, 2) we derive the estimate

∥∥∥f ′′[x, y, r; ·, ·]
∥∥∥ = sup

‖h1‖≤1
‖h2‖≤1

∣∣∣f ′′[x, y, r;h1, h2]
∣∣∣ ≤ g(x, y)

uniformly with respect to r. Consequently the point-wise estimate
∣∣∣f ′′[x, y, r0 + τh1;h2, h1]

∣∣∣ ≤
∥∥∥f ′′[x, y, r0 + τh1; ·, ·]

∥∥∥ ‖h1‖ ‖h2‖

≤ sup
r∈U

∥∥∥f ′′[x, y, r; ·, ·]
∥∥∥ ‖h1‖ ‖h2‖ (3.33)

≤ g(x, y) ‖h1‖ ‖h2‖
holds. In particular, for h = h1 = h2 the estimate reads

∣∣∣f ′′[x, y, r0 + τh;h, h]
∣∣∣ ≤ g(x, y) ‖h‖2. (3.34)

Now using (3.34) we calculate
∣∣∣
(
A(r0 + h)ψ

)
(x) −

(
A(r0)ψ

)
(x) −

(
Ã(r0, h)ψ

)
(x)
∣∣∣

=

∣∣∣∣
∫

G2

f(x, y, r0 + h)ψ(y) dµ(y) −
∫

G2

f(x, y, r0)ψ(y) dµ(y)

−
∫

G2

f ′[x, y, r0;h]ψ(y) dµ(y)

∣∣∣∣

=

∣∣∣∣
∫

G2

f ′′[x, y, r0 + τh;h, h]ψ(y) dµ(y)

∣∣∣∣

≤ ‖ψ‖∞
∫

G2

∣∣f ′′[x, y, r0 + τh;h, h]
∣∣dµ(y)

≤ ‖ψ‖∞ ‖h‖2

∫

G2

g(x, y)dµ(y).
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Since the operators on the left-hand side are all elements of L(C(G2), C(G1)) and
the integrals on the right-hand side are uniformly bounded with respect to x ∈ G1

we can estimate the above in the operator norm on L(C(G2), C(G1)) by taking
the supremum both with respect to x ∈ G1 and ψ ∈ C(G2), where ‖ψ‖∞ = 1 to
find ∥∥A(r0 + h) − A(r0) − Ã(r0, h)

∥∥ ≤ C‖h‖2.

This establishes Fréchet differentiability for the mapping r 7→ A(r) as a mapping
from U to L(C(G2), C(G1)), and we have furthermore identified (3.31) as the
Fréchet derivative.

For the continuity of A′[r, ·] we consider r ∈ U and
(
rn

)
n∈N

⊂ U such that
‖rn − r‖X → 0 as n → ∞. Setting hn := rn − r, n ∈ N, we can apply Taylor’s
Theorem (Theorem 3.14) for arbitrary h0 ∈ X with ‖h0‖ ≤ 1 to find

f ′[x, y, rn;h0] = f ′[x, y, r;h0] + f ′′[x, y, r + τhn;h0, hn]

for some τ ∈ [0, 1]. Using (3.33), we can estimate for arbitrary ϕ ∈ C(G2) and
arbitrary x ∈ G1∣∣∣

(
A′[rn, h0]ϕ

)
(x) −

(
A′[r, h0]ϕ

)
(x)
∣∣∣

≤ ‖ϕ‖∞
∫

G2

∣∣∣f ′[x, y, rn;h0] − f ′[x, y, r;h0]
∣∣∣ ds

= ‖ϕ‖∞
∫

G2

∣∣∣f ′′[x, y, r + τhn;h0, hn]
∣∣∣ ds

≤ ‖ϕ‖∞‖h0‖ ‖hn‖
∫

G2

g(x, y) ds

≤ C ‖ϕ‖∞‖h0‖ ‖rn − r‖.
Now it follows that

∥∥A′[rn, ·] − A′[r, ·]
∥∥ = sup

‖h0‖≤1

∥∥A′[rn, h0] − A′[r, h0]
∥∥

= sup
‖h0‖≤1

(
sup
‖ϕ‖≤1

∥∥∥A′[rn, h0]ϕ− A′[r, h0]ϕ
∥∥∥
∞,G1

)

≤ C̃ ‖rn − r‖X ,

i.e. we have continuity for A′[r, ·] with respect to r. �

Remark 3.25. We have adapted the generality of Potthast [58] as to the sets G1

and G2. This allows us to employ Theorem 3.24 for line integrals as well as
for volume integrals and it is regardless with respect to the image domain, i.e.
it covers continuous and weakly singular boundary integrals and also potential
operators.
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3.4 Domain sensitivity results for the solution

to the Boundary Value Problem

In this section we will consider the sensitivity of the solution u = uθ to the
Boundary Value Problem 2.1 for the geometry (Γ, Dθ) with respect to the shape
parameter θ.

In Section 3.2 we have pointed out that the dependence of u and F on the ge-
ometry is nonlinear and non-convex. For this class of optimization problems, the
general existence and uniqueness results from classical optimization theory, which
basically require only continuous dependence of the functional on the shape pa-
rameter, are more or less non-constructive and rather impracticable for numerical
approximations.

Generally speaking, a numerical solution to an optimization problem is obtained
by successive approximations. Starting from an initial guess, we seek to improve
the approximand in nonlinear problems by using information that are extracted
from the linearization of the functional and the PDE-solution with respect to the
shape parameter. However, this procedure requires differentiation with respect
to the shape parameter, a field in shape optimization or applied mathematics
generally that has been coined sensitivity analysis or shape sensitivity analysis.
Work in this area has started in the late seventies and early eighties being mainly
inspired from structural mechanics. We refer to Haslinger and Mäkinen [33] for
an instructive introduction to the field, and to Sokolowski and Zolesio [70] for a
comprehensive study of shape sensitivity that in their case is motivated from a
geometric point of view.

Sensitivity analysis has also entered the inverse scattering community with the
work of Kirsch [44]. In his approach the so-called shape derivative or domain
derivative is characterized by an additional boundary value problem that is either
derived directly or via variational methods. In this approach the shape derivative
is not obtained completely and explicitly. It is rather a black-box approach
that allows to calculate the shape derivative in the direction of a certain given
boundary perturbation. In a numerical realization of the approach, one will
therefore choose finitely many basis functions for the boundary perturbations, and
obtain an approximation to the shape derivative by interpreting the calculated
directional derivatives as the projection onto the subspace spanned by these basis
functions. Among others, Kirsch [44] and Hettlich [37, 38] have applied this
approach successfully.

We also mention here a related approach by Roger [60] employing so-called adjoint
solutions. This approach has been picked up recently by Bochniak and Cakoni [9],
who established the sensitivity analysis for mixed boundary value problems to
the Helmholtz equation. The method of adjoint solutions allows to obtain the
shape derivative directly rather than in terms of projections. The key idea here
is to start out from the characterization of the shape derivative as the solution
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to an additional boundary value problem, and represent the shape derivative in
terms of its Cauchy data on the boundary using Green’s Representation Theorem.
Now the adjoint solution is defined as the solution to an auxiliary boundary value
problem such that one can eliminate the term in Green’s Representation formula
which depends on the normal derivative of the shape derivative.

Although this method is conceptually appealing, it is only of little practical use.
The reason for this is that it turns out that - roughly speaking - one has to
solve one adjoint problem for each point where one wants to evaluate the shape
derivative.

In the work at hand we will follow a third approach from the mid-nineties which is
due Potthast [58]. The approach exploits explicitly the existence of a fundamental
solution in, for example, scattering theory or potential theory. The central idea
is to perform the shape differentiation directly to the solution of the underlying
PDE, which can be represented in terms of layer potentials over the varying
boundaries.

Subsequently, we will adapt the results of Potthast, that have been presented
in [58] for the three-dimensional Helmholtz equation, to the Laplace equation in
two dimensions. Essentially, we will see that the boundary integral formulation
of the Problem 2.1 renders an elegant way to prove sensitivity. The main point
is to re-write the solution to Problem 2.1 as the composition of Fréchet differen-
tiable mappings where the dependence on the domain enters explicitly as a shape
parameter with respect to which these mappings are also differentiable.

So, let us first of all introduce a concept how we can equip the set of admissible
domains locally with an affine structure.

Definition 3.26. Let D0 be an admissible domain for a given arc Γ, a given
transport current I and given magnetic permeabilities µe, µ1, . . . , µn. For some
sufficiently small constant m > 0 consider the space

Um,η(D0) :=
{
θ ∈ C2

0 (R2) : ‖θ‖C2 < m, supp (θ) ⊂ Vη(∂D0)
}
,

where C2
0(R2) denotes the space of all compactly supported, twice continuously

differentiable vector fields on R
2 and Vη is some neighbourhood of ∂D0 such that

dist(x, ∂D0) < η for all x ∈ Vη.

Then a C2-diffeomorphism Iθ : R
2 → R

2 is called a perturbation forD0 if it can be
represented in the form Iθ = Id + θ for some θ ∈ Um,η(D0). Accordingly, we call
a domain Dθ a perturbation of D0 if there exists a corresponding perturbation Iθ

for D0 such that Dθ = Iθ(D0). The corresponding element θ ∈ Um,η(D0) will be
called shape parameter.
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This notion of perturbations of a domain is presented along the lines of Pot-
thast [58] and Simon [69]. We compile the properties of perturbations for D0 in
the following lemma.

Lemma 3.27. Let D0 be an admissible domain, and let Um,η(D0) be given as in
Definition 3.26. Then the following properties hold:

1. Um,η(D0) is open and convex.

2. The perturbations Dθ of D0 are admissible domains for any θ ∈ Um,η(D0)
provided dist(∂D0,Γ) > η.

3. The mapping θ 7→ uθ that maps θ ∈ Um,η(D0) to the corresponding solution
to Problem 2.1 for the geometry (Γ, Dθ) is well-defined.

Proof. The first statement follows immediately from the definition of Um,η(D0).

For the second statement we observe that we have Iθ = Id on R
2 \ Vη(∂D0).

Hence we have for dist(∂D0,Γ) > η also Dθ∩Γ = ∅. The regularity of ∂Dθ follows
from Iθ being a C2-diffeomorphism, the boundedness of Dθ is a consequence of
the boundedness of θ. Finally the bound m on the C2-norm of θ being sufficiently
small ensures that Dθ has the same number of connected components, which are
all simply connected.

The last statement follows directly from the second statement and the proper-
ties of the admissible domains in connection with the geometric assumptions of
Problem 2.1.

�

With this affine structure for the geometry in hand we can now introduce the
occuring mappings for the solution u = uθ to the Boundary Value Problem 2.1
for the geometry (Γ, Dθ) and formalize the dependence on the domain.

So, let D0 be an admissible domain, regard it as a fixed reference domain in
the sense of Definition 3.26, and define U = Um,η(D0) accordingly. Then we
can according to Lemma 3.27 establish on the one hand a functional dependency
between the solution uθ to Problem 2.1 for the geometry (Γ, Dθ) and the shape
parameter θ ∈ U . On the other hand we know from (2.10) and Theorem 2.10
that we can represent uθ by applying layer potential operators to the solution of
the system of integral equations (2.36). A brief inspection of (2.10) and (2.36)
shows that all occuring quantities depend explicitly on the shape parameter θ. In
other words, we can re-write the solution uθ to the Problem 2.1 for an admissible
geometry (Γ, Dθ) in the sense of Definition 3.26 in the form

uθ = P
(
θ, (S + A)−1(θ)f(θ)

)
, (3.35)
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denoting explicitly the dependence on the geometry via the shape parameter.
Here, the right-hand side f(θ) to the system of integral equations (2.36) is re-
garded as a mapping

f : U → C
1,α
2π,e × C(∂D0), (3.36)

and the solution operator (S + A)−1(θ) from (2.36) is viewed as a mapping

(S + A)−1 : U → L
(
C

1,α
2π,e × C(∂D0), C

0,α
2π,e × C(∂D0)

)
. (3.37)

The potential operator P (θ, ·), which is the sum of the double-layer potential
operator on the boundary ∂Dθ and modified the single-layer potential operator
on the arc Γ as given in (2.10), is understood as a mapping

P : U → L
(
C

0,α
2π,e × C(∂D0),A(Ω)

)
, (3.38)

where Ω ⊂ R
2 \ (Γ ∪ ∂D0) is a compact set depending only on U . We emphasize

that the mappings are not considered in exactly the same way as in Chapter 2.
While there, for example, the operator (S+A) was considered as a mapping from
W0(Dθ) into W1(Dθ), we consider it here as a mapping on the reference domain,
i.e. from W0(D0) into W1(D0). It will be one of the central points of this section
to make the connection between these two perspectives sound.
In view of Section 3.2 we note in that the operator T introduced in (3.9) can be
also be written in terms of the shape parameter θ. We have in particular

T (∂Dθ) = (S + A)−1(θ)f(θ).

The aim of this section is to establish Fréchet differentiability with respect to
the shape parameter θ for the solution uθ in its representation given in (3.35).
Using the foundations from Section 3.3 on Fréchet differentiability we proceed by
examining the operators

(
Si(θ)ϕ

)
(x) :=

∫

Γ

Φi,θ(x, y)ϕ(y) ds(y), x ∈ Σi, ϕ ∈ C∗(Γ), (3.39)

and

(
Ki(θ)ψ

)
(x) :=

∫

∂D0

∂Φi,θ(x, y)

∂νθ(y)
ψ(y) Jθ(y) ds(y), x ∈ Σi, ψ ∈ C(∂D0), (3.40)

where the domain of evaluation Σi is either ∂D0, Γ, or Ω.
To obtain the sensitivity result, we demonstrate that (3.39) and (3.40) satisfy the
assumptions of Theorem 3.24. Moreover, we show that the operators coincide
with the potential operators defined in (1.16) and (1.21) if Σi = Ω. In the cases
where Σi ∈ {∂D0,Γ} we show that (3.40) and (3.39) coincide with the boundary
integral operators that occur in the system of integral equations (2.36) associated
with the geometry (Γ, Dθ).
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We start with the most interesting operator, namely with the double-layer poten-
tial operator for the case where the image domain and the domain of integration
coincide.

Theorem 3.28. The double-layer potential operator

∫

∂Dθ

∂Φ(x, y)

∂ν(y)
ψ(y) ds(y), x ∈ ∂Dθ, (3.41)

regarded as a mapping FKD : U → L(C(∂D0), C(∂D0)) satisfies the assumptions
of Theorem 3.24. Hence, it is continuously Fréchet differentiable with respect to
the parameter θ.

Proof. We start with re-writing (3.41) such that we integrate over the boundary
of the fixed reference domain D0. We find that

FKD(θ) =

∫

∂D0

〈νθ(yθ) , xθ − yθ〉
|xθ − yθ|2

ψ(yθ) Jθ(y) ds(y), x ∈ ∂D0, (3.42)

where xθ := Iθ(x), yθ := Iθ(y), νθ(yθ) denotes the unit normal at yθ with respect
to ∂Dθ and Jθ(y) = ds(yθ)(ds(y))

−1 for y ∈ ∂D0.
We notice that FKD(θ) coincides with the 2D-analogue of the expression K[r]ϕ
(cf. formula (2.1) of [58]) for the case of h2 ≡ 0 and h3 ≡ 1, which are clearly
analytic. Next we observe that Lemma 1 of [58] remains valid in two dimensions
with exactly the same proof. In particular, it follows that (3.41) satisfies the
assumptions (i) and (iv) of Theorem 3.24. From the properties of the double-
layer potential (see [36], Theorem 4.15) it follows that the kernel of (3.42) can be
continuously extended for x = y. Hence it is integrable and (3.42) is an element
of L(C(∂D0), C(∂D0)) For the Fréchet derivative of the kernel we compute

(
∂Φ(x, y)

∂ν(y)

)′

[θ;h] =
〈νθ(yθ) , h(x) − h(y)〉

|xθ − yθ|2
+

〈νz(h(y)) , xθ − yθ〉
|xθ − yθ|2

− 2
〈νθ(yθ) , xθ − yθ〉 〈h(x) − h(y) , xθ − yθ〉

|xθ − yθ|4
(3.43)

for x, y ∈ ∂D0 with x 6= y, where

νz(h(y)) :=

[
d
dτ
h(y)

]⊥
∣∣ d
dτ
Iθ(y)

∣∣ , y ∈ ∂D0, (3.44)

for a smooth parametrization z of ∂D0. While the first and last term are obvious
from differentiating xθ − yθ in the numerator and denominator, the second term
that stems from differentiating νθ(yθ) requires some additional justification.
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We recall that the double-layer potential in its parametrized form reads

∫ b

a

〈[(Iθ ◦ z)′(τ))]⊥ , Iθ(z(t)) − Iθ(z(τ))〉
|Iθ(z(t)) − Iθ(z(τ))|2

ψ(Iθ(z(τ))) dτ

for any (b − a)-periodic, smooth parametrization z. We observe that in this
representation the normal ν(y) is replaced by an expression depending linearly
on θ. Hence the Fréchet derivative of this term is given by the same expression
applied to the perturbation h. Using (3.44) and undoing the parametrization
finally yields (3.43).

Integrability and the mapping property (iii) of Theorem 3.24 now follow easily.
This is due to (3.43) being well-defined and continuous for x 6= y. Furthermore,
Lemma 1 of [58] states that the singularity at x = y is not increasing when taking
the Fréchet derivative. Hence, (3.43) has a continuous extension for x = y.

Therefore, (3.41) satisfies all assumptions of Theorem 3.24 and is by virtue of
the same theorem continuously Fréchet differentiable with respect to the shape
parameter θ. �

We emphasize here that Theorem 3.28 holds regardless of the number of connected
components of D0 as long as their number stays finite and each component is
bounded, simply connected and of class C2. Although we have not been explicit
in the notation, we mention that each component is thought of as being perturbed
independently of the others. Hence, in the case where D0 consists of several
connected components, we think of a differentiation direction h to be given in
the form

h = (h1, . . . , hn), hi ∈ Umi,ηi(Di,0), i = 1, . . . , n.

This interpretation of elements h ∈ U in the case where D0 consists of several
connected components is crucial for the numerical realization as it enables an
easy deduction of the Frechet derivatives for the operators interacting between
the components. It turns out that the kernels (3.43) just need to be splitted
according to the components on which hi is defined.
In principle, this splitting of the kernels can be interpreted as considering Fréchet
diffrentiability for an operator being defined on one component for which the
boundary is varying, and which is mapping to the boundary of another component
where the boundary is assumed to be fixed, and vice versa. In this sense, the
result of Theorem 3.30 is not too surprising, but we point out here that the result
is different to the one above as we equip the image domain of the double-layer
operator with a stronger norm.

For numerical purposes we are interested in the value of the kernel (3.43) of the
operator FKD for x = y.
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Lemma 3.29. Consider the double-layer potential operator as defined in (3.41).
Then the following holds:

1. For a general perturbation h the value of
(

∂Φ(x,y)
∂ν(y)

)′
[θ;h] ds(y) for x = y is

given by

(
〈[z′(τ)]⊥ , h̃′′(τ)〉 + 〈[h̃′(τ)]⊥ , z′′(τ)〉

2|z′(τ)|2

−〈[z′(τ)]⊥ , z′′(τ)〉 〈[z′(τ)]⊥ , [h̃′(τ)]⊥〉
|z′(τ)|4

)
dτ

(3.45)

for x = z(τ), where z is a smooth, periodic parametrization of ∂Dθ.

In (3.45) we have set h̃ := h ◦ I−1
θ ◦ z.

2. For a normal perturbation, i.e. where h is such that h̃ = q[z′]⊥ for a
smooth, periodic parametrization z of ∂Dθ and a smooth scalar function q

of the same periodicity, the value of
(

∂Φ(x,y)
∂ν(y)

)′
[θ;h] ds(y) for x = y is given

by (
1

2
q′′(τ) +

1

2

[
q(τ)

〈z′(τ) , z′′(τ)〉
|z′(τ)|2

]′)
dτ, x = z(τ). (3.46)

3. If, furthermore, ∂Dθ is parametrized by arclength, i.e. the parametrization

satisfies ‖z′‖ = 1, the value of
(

∂Φ(x,y)
∂ν(y)

)′
[θ;h] ds(y) for x = y is given by

1

2
q′′(τ) dτ, x = z(τ). (3.47)

Proof. We assume that ∂Dθ is given in parametrized form, i.e. we suppose that
for some z : [0, 2π) → R

2 we have ∂Dθ = z([0, 2π)). Then we can express (3.43)
for x 6= y in terms of the parametrization z, in particular

(
∂Φ(x, y)

∂ν(y)

)′

[θ;h] ds(y)

=

(
〈[z′(τ)]⊥ , h̃(t) − h̃(τ)〉 + 〈[h̃′(τ)]⊥ , z(t) − z(τ)〉

|z(t) − z(τ)|2

− 2
〈[z′(τ)]⊥ , z(t) − z(τ)〉 〈h̃(t) − h̃(τ) , z(t) − z(τ)〉

|z(t) − z(τ)|4

)
dτ,

(3.48)
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where h̃ is defined as in the statement of the lemma.

We proceed in three steps, determining first the value of the kernel for t = τ

for a general smooth perturbation h̃, checking secondly that (3.46) coincides

with (3.45), when we know that h̃ points in the direction of the normal to the
boundary, and thirdly using the the properties of parametrization by arclength
to obtain (3.47).

We begin the first step by using Taylor expansions on the various terms in the
numerators and denominators. We have

z(t) − z(τ) = (t− τ)

∫ 1

0

z′(τ + λ(t− τ)) dλ (3.49)

as well as

z(t) − z(τ) = z′(τ)(t− τ) +
z′′(τ)

2
(t− τ)2

+
(t− τ)3

2

∫ 1

0

(1 − λ)2z(3)(τ + λ(t− τ)) dλ,
(3.50)

and an expression similar to (3.50) for h̃. Furthermore we observe that the scalar
product is invariant, if the operation [ · ]⊥ is applied to both arguments. This
leads to

〈[z′(τ)]⊥ , h̃′(τ)〉 = −〈[h̃′(τ)]⊥ , z′(τ)〉, (3.51)

because [[ · ]⊥]⊥ = −id. So we see by plugging (3.50) for z and h̃ into the numer-
ator of the first term of (3.48) that it reduces to

(t− τ)2

2

(
〈[z′(τ)]⊥ , h̃′′(τ)〉 + 〈[h̃′(τ)]⊥ , z′′(τ)〉

)
+ O

(
(t− τ)3

)

using (3.51). Similarly, plugging (3.50) for z and h̃ into the numerator of the
second term of (3.48) leads to

(t− τ)4

2
〈[z′(τ)]⊥ , z′′(τ)〉 〈[z′(τ)]⊥ , [h̃′(τ)]⊥〉 + O

(
(t− τ)5

)
,

since 〈[z′(τ)]⊥ , z′(τ)〉 = 0 and 〈h̃′(τ) , z′(τ)〉 = 〈[z′(τ)]⊥ , [h̃′(τ)]⊥〉.
Finally, substituting (3.49) into the denominators of (3.48), using the above rep-
resentations for the numerators and letting (t− τ) tend to zero, we obtain

〈[z′(τ)]⊥ , h̃′′(τ)〉 + 〈[h̃′(τ)]⊥ , z′′(τ)〉
2|z′(τ)|2

− 〈[z′(τ)]⊥ , z′′(τ)〉 〈[z′(τ)]⊥ , [h̃′(τ)]⊥〉
|z′(τ)|4

(3.52)
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for the value of the parametrized kernel at t = τ This proves the first statement
and thereby completes the first step of the proof.

For the second step we may assume that h̃ is of the form q[z′]⊥, where [z′]⊥

is a vector field pointing into the direction normal to the boundary, and where
q : [0, 2π) → R is some smooth, 2π-periodic scalar field. We then compute the

first and second derivative of h̃ as

h̃′(τ) = q′(τ)[z′(τ)]⊥ + q(τ)[z′′(τ)]⊥,

h̃′′(τ) = q′′(τ)[z′(τ)]⊥ + 2q′(τ)[z′′(τ)]⊥ + q(τ)[z(3)(τ)]⊥.

Substituting this into (3.52) and using [[z(k)]⊥]⊥ = −z(k) for k = 1, 2, 3, we obtain
for the numerator of the first term of (3.52)

q′′(τ) 〈[z′(τ)]⊥ , [z′(τ)]⊥〉
+ q′(τ)

(
2〈[z′(τ)]⊥ , [z′′(τ)]⊥〉 − 〈z′(τ) , z′′(τ)〉

)

+ q(τ)
(
〈[z′(τ)]⊥ , [z(3)(τ)]⊥〉 − 〈z′′(τ) , z′′(τ)〉

)
.

Similarly, we calculate the numerator of the second term of (3.52)

−q′(τ) 〈[z′(τ)]⊥ , z′′(τ)〉 〈[z′(τ)]⊥ , z′(τ)〉
− q(τ)〈[z′(τ)]⊥ , z′′(τ)〉 〈[z′(τ)]⊥ , z′′(τ)〉,

which due to 〈[z′(τ)]⊥ , z′(τ)〉 = 0 is equal to

− q(τ)
(
〈[z′(τ)]⊥ , z′′(τ)〉

)2

. (3.53)

As z′

|z′|
and [z′]⊥

|z′|
form an orthonormal basis of R

2 the identity

〈z′′(τ) , z′′(τ)〉 =
〈z′(τ) , z′′(τ)〉2

|z′(τ)|2 +
〈[z′(τ)]⊥ , z′′(τ)〉2

|z′(τ)|2 (3.54)

holds and (3.53) thereby is equal to

q(τ)
(
〈z′(τ) , z′′(τ)〉2 − 〈z′′(τ) , z′′(τ)〉|z′(τ)|2

)
.

With this choice for h̃ it follows that (3.52) reads

1

2
q′′(τ) +

1

2
q′(τ)

〈z′(τ) , z′′(τ)〉
|z′(τ)|2

+
1

2
q(τ)

(〈z′(τ) , z(3)(τ)〉 + 〈z′′(τ) , z′′(τ)〉
|z′(τ)|2 − 2

〈z′(τ) , z′′(τ)〉2
|z′(τ)|4

)
.
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Now it follows that (3.46) coincides with the above as can be seen by differenti-
ating the second summand of (3.46) term by term.

For the last statement of the lemma we just observe that if z is a parametrization
of ∂Dθ by arclength it satisfies 〈z′′(τ) , z′(τ)〉 = 0. Consequently, the second
summand of (3.46) vanishes identically and we obtain (3.47). �

With the previous lemma we have finished the study of the differentiability of the
double-layer potential operator (3.41) that forms the central ingredient for the
sensitivity results we are going to present shortly. Nevertheless, (3.36) - (3.38)
involve several other boundary integral operators which we will treat now in the
same fashion.

Theorem 3.30. The double-layer potential operator

∫

∂Dθ

∂Φ(x, y)

∂ν(y)
ψ(y) ds(y), x ∈M, (3.55)

where M is a compact subset of the complement of supp(θ), regarded as a mapping
FKDM : U → L(C(∂D0), C

2(M)) satisfies the assumptions of Theorem 3.24.
Hence, it is continuously Fréchet differentiable with respect to the parameter θ.

Proof. First, we again re-write (3.55) in terms of the fixed reference domain D0

as

FKDM(θ) =

∫

∂D0

〈νθ(yθ) , x− yθ〉
|x− yθ|2

ψ(yθ) Jθ(y) ds(y), x ∈M, (3.56)

noting that since M ∩ ∂Dθ = ∅ for any θ ∈ U the kernel of (3.56) is smooth in
both variables. Hence, the Fréchet derivatives of the kernel with respect to θ up
to the second order exist and the regularity with respect to x and y is determined
by the regularity of θ, h, ∂D0 and M . Since θ and h vanish on M , the first order
Fréchet derivative for x ∈M and y ∈ ∂D0 reads

(
∂Φ(x, y)

∂ν(y)

)′

[θ;h] = −〈νθ(yθ) , h(y)〉
|x− yθ|2

+
〈νz(h(y)) , x− yθ〉

|x− yθ|2

+ 2
〈νθ(yθ) , x− yθ〉 〈h(y) , x− yθ〉

|x− yθ|4
,

(3.57)

where νz(h(y)) is again understood as in (3.44). Due to the previous observations
we see that in particular (3.57) is continuous for all x, y. Consequently, assump-
tions (i) and (ii) of Theorem 3.24 are satisfied. Furthermore, the compactness of
the perturbed boundary ∂Dθ and its being disjoint from M , which we assume to
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be at least C2-regular imply that FKDM(θ) and its first order Fréchet derivative
map boundedly into twice continuously differentiable functions on M such that
also assumption (iii) of Theorem 3.24 is satisfied. Finally, assumption (iv) of
Theorem 3.24 is checked by employing the estimates

|x− yθ| = |xθ − yθ| ≤ c1|x− y|, x ∈M, y ∈ ∂D0, (3.58)

|x− yθ| = |xθ − yθ| ≥ c2|x− y|, x ∈M, y ∈ ∂D0, (3.59)

on the second order Fréchet derivatives, which are valid for M and ∂D0 being
submanifolds on R

2 as has been stated in [58]. �

The above theorem includes the cases where the double-layer potential maps
either onto the arc Γ or to the domain Ω as it is understood in (3.38). We
finish the examination of the sensitivity properties for the layer potentials by
considering the single-layer potential defined on the arc Γ.

Lemma 3.31. The single-layer potential

∫

Γ

Φ(x, y)ϕ(y) ds(y), x ∈M, (3.60)

where M is a compact subset of the complement of the support of θ, regarded as
a mapping FSΓM : U → L(C∗(Γ), C2(M)) is continuously Fréchet differentiable
with respect to variations of the boundary of D that are expressed in the shape
parameter θ.

Proof. We note that (Γ ∪ M) ∩ supp(θ) = ∅. Hence, (3.60) is constant with
respect to θ and thus, it is Fréchet differentiable with Fréchet derivative being
the zero operator 0 ∈ L(C∗(Γ), C2(M)). �

Similarly to Theorem 3.30, where we have considered FKDM , Lemma 3.31 also
applies in two cases, namely in the one where M = Γ and in the case M = Ω,
where Ω is understood as in (3.38).

Theorem 3.32. The single-layer potential

∫

Γ

Φ(x, y)ϕ(y) ds(y), x ∈ ∂Dθ, (3.61)

regarded as a mapping FSΓD : U → L(C∗(Γ), C(∂D0)) satisfies the assumptions
of Theorem 3.24. Hence, it is continuously Fréchet differentiable with respect to
the parameter θ.
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Proof. First, we note that we can express FΓD in terms of the reference domain
by exchanging xθ for x in (3.61). As before the kernel is analytic in both variables
since Γ∩∂Dθ = ∅. Thus, it is Fréchet differentiable, and the kernel together with
its Fréchet derivatives are as smooth as θ, h, ∂D0 and Γ. The first order Fréchet
derivative for x ∈ ∂D0 and y ∈ Γ reads

(
Φ(x, y)

)′
[θ;h] = −〈xθ − y , h(x)〉

|xθ − y|2 . (3.62)

Now we immediately see that assumptions (i) to (iii) of Theorem 3.24 are satisfied
due to the required mapping properties. Assumption (iv) can again be checked
using the estimates (3.58) and (3.59) with the roles of x and y interchanged. �

Now we have settled the question of Fréchet differentiability for all the operators
occuring in (3.35). Hence, we can state the following theorem which establishes
the differentiable dependence of the solution uθ and the operator T from (3.9) on
the shape parameter θ. This constitutes the central result of this section.

Theorem 3.33. Let (Γ, D0) be an admissible geometry for the Boundary Value
Problem 2.1 and let θ ∈ U . Then the following statements hold:

1. The unique solution Ψθ to the system of integral equations (2.36) for the ge-
ometry (Γ, Dθ), regarded as dependent on the shape parameter θ, is Fréchet
differentiable with respect to θ.

2. The unique solution uθ to Problem 2.1 for the geometry (Γ, Dθ), regarded
as dependent on the shape parameter θ, is also Fréchet differentiable with
respect to θ.

Proof. Firstly, we consider the underlying system of integral equations (2.36) for
the geometry (Γ, Dθ). According to Theorem 2.10 the system is uniquely solvable
for any right hand side from the appropriate spaces, and in particular for the right
hand side given in (2.33) with a solution Ψθ = (ϕ̃θ, ψ1,θ, . . . , ψn,θ) ∈ W0(Dθ).
Defining

Ψ0 := (ϕ̃θ, ψ1,0, . . . , ψn,0) ∈ W0(D0)

with ψi,0 := ψi,θ ◦ Iθ, we can express the solution to (2.36) in terms of a function
defined on the boundary of the fixed reference domain D0. Now the results
of Theorem 3.28, Theorem 3.30, Lemma 3.31 and Theorem 3.32 show that the
system of integral equations (2.36) for the Boundary Value Problem 2.1 and

(
F̃SΓΓ(θ) FKDΓ(θ)

2qF̃SΓD(θ) (Id + 2qFKD)(θ)

)
Ψ0 =


 −FSΓΓ(θ)

(
I
|Γ|

)

−2qFSΓD(θ)
(

I
|Γ|

)

 (3.63)
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are equivalent in the sense that each solution to (2.36) induces a solution to (3.63)
via the above definition of Ψ0, and conversely each solution to (3.63) defines a
solution Ψθ to (2.36) via

Ψθ := (ϕ̃θ, ψ1,0 ◦ I−1
θ , . . . , ψn,0 ◦ I−1

θ ). (3.64)

In (3.63), the operators F̃SΓD(θ) and F̃SΓΓ(θ) are given by

F̃SΓD(θ)
(
ϕ
)

:= FSΓD(θ)
(
Mϕ

)
+

1

|Γ|

∫

Γ

ϕ ds,

F̃SΓΓ(θ)
(
ϕ
)

:= FSΓΓ(θ)
(
Mϕ

)
+

1

|Γ|

∫

Γ

ϕ ds.

As a consequence of the equivalence between (3.63) and (2.36), we deduce from
Theorem 2.10 that (3.63) has a unique solution. Hence we can consider the
mapping (S + A)−1(θ)f(θ) : U → W0(D0) given by

(
F̃SΓΓ(θ) FKDΓ(θ)

2qF̃SΓD(θ) (Id + 2qFKD)(θ)

)−1

 −FSΓΓ(θ)

(
I
|Γ|

)

−2qFSΓD(θ)
(

I
|Γ|

)

 . (3.65)

We note that all operators occuring in (3.65) are continuously Fréchet differen-
tiable with respect to the shape parameter θ due to the results of Theorem 3.28,
Theorem 3.30, Lemma 3.31 and Theorem 3.32. The first statement then follows
from (3.63) by applying Corollary 3.20, Theorem 3.22 and Lemma 3.21.

For the second statement we also exploit the equivalenvce of (2.36) and (3.63).
From Theorem 3.30 and Lemma 3.31 we note that the expression

P (θ,Ψ0) :=
(
FKDΩ(θ) FSΓΩ(θ)

)
Ψ0, (3.66)

where Ψ0 solves (3.63), coincides with the representation (2.10) for a density Ψθ

defined by (3.64). Due to the existence theorem (Theorem 2.10) and the above
equivalence, (3.66) then defines a solution to the Boundary Value Problem 2.1
for the geometry (Γ, Dθ). Now the Fréchet differentiability of P is a consequence
of Theorem 3.30, Lemma 3.31 and Corollary 3.20, and the second statement of
the theorem follows from Lemma 3.21 and the first statement. �

We conclude this section with two remarks. Firstly, we would like to point out
that the form of the Fréchet derivative for Ψθ and uθ can be obtained easily from
the general differentiability results of Section 3.3 and from the expressions for the
kernels that have been derived in the course of the proofs in this section.
Secondly, we emphasize that in view of the factorization (3.13) from Section 3.2
the first statement of Theorem 3.33 implies the Fréchet differentiability of the
operator T given in 3.9 with respect to the shape parameter θ as we have the
correspondence Ψθ = T (∂Dθ).
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3.5 A domain sensitivity result for the Geomet-

ric Optimization Problem

In the introduction to the present chapter and again at the end of Section 3.2
we have pointed out that the key to a numerical approximation scheme for a
nonlinear optimization problem is the differentiable dependence of the objective
functional on the considered parameter, which in our case is the shape parame-
ter θ. Moreover, as differentiability implies continuity it is also at the heart of
theoretical existence proofs. This section consequently deals with establishing
Fréchet differentiability for F with respect to θ. Furthermore, we will derive an
existence result for the Geometric Optimization Problem 3.3.

In view of the representation (3.13) from Section 3.2 and of the first statement of
Theorem 3.33 from the previous section it only remains to study the operators PΓ

defined in (3.10), the operator Mγ defined in (3.11) and the functional G defined
in (3.12). We state the according differentiability results in the following lemmas.

Lemma 3.34. The functional G : C0,α
2π,e → R given by

G(ψ) =
1

2

∫ π

0

(
ψ(t)

)2

dt (3.67)

is Fréchet-differentiable and the Fréchet derivative in direction h is given by

G′[ψ;h] =

∫ π

0

ψ(t)h(t) dt. (3.68)

Proof. The statement simply follows from

G(ψ + h) =
1

2

∫ π

0

(
ψ(t) + h(t)

)2
dt

= G(ψ) +

∫ π

0

ψ(t)h(t) dt+
1

2

∫ π

0

(
h(t)

)2
dt

for ψ, h ∈ C
0,α
2π,e as ∣∣∣∣

1

2

∫ π

0

(
h(t)

)2
dt

∣∣∣∣ ≤
π

2
‖h‖2

C0,α
2π,e
.

�

Lemma 3.35. The operator Bγ : W0(D0) → C
0,α
2π,e defined by

BγΨ :=
(
Mγ ◦ PΓ

)
(Ψ), (3.69)



100 CHAPTER 3. A GEOMETRIC OPTIMIZATION PROBLEM

where PΓ is given by (3.10) and Mγ is defined as in (3.11), is linear and bounded.
The adjoint B∗

γ : C0,α
2π,e → W0(D0) of Bγ with respect to the L2-bilinear pairing is

given by

B∗
γ(ψ) =

(
ψ − 1

|Γ|

∫ π

0

ψ(s)w(γ(cos s)) ds, 0, . . . , 0
)
. (3.70)

Furthermore, Bγ is Fréchet-differentiable and coincides with its Fréchet deriva-
tive.

Proof. Linearity and boundedness of Bγ are obvious from (3.69), (3.10) and
(3.11). Hence, Fréchet differentiability of Bγ and the form of the Fréchet deriva-
tive follow directly from Lemma 3.11.

We denote by 〈·, ·〉 the sum of the L2 bilinear pairings on [0, π] and C(∂Dk)
for k = 1, . . . , n. Then we calculate for ψ ∈ C

0,α
2π,e and (ϕΓ, ϕ1, . . . , ϕn) ∈ W0(D0)

〈
B∗

γ(ψ) , (ϕΓ, ϕ1, . . . , ϕn)
〉

=

∫ π

0

(
ψ(t) − 1

|Γ|

∫ π

0

ψ(s)w(γ(cos s)) ds

)
ϕΓ(t)dt

+
n∑

k=1

∫

∂Dk

0 · ϕk(x) ds(x)

=

∫ π

0

ψ(t) ·
(
ϕΓ(t) − 1

|Γ|w(γ(cos t))

∫ π

0

ϕΓ(s) ds

)
dt

=
〈
ψ , Bγ(ϕΓ, ϕ1, . . . , ϕn)

〉
[0,π]

by interchanging the order of integration. This proves that Bγ and B∗
γ are indeed

adjoint with respect to the L2 bilinear pairing. �

Now we are in the position to combine the previous results in order to obtain
the aspired sensitivity result for the functional F of the Geometric Optimization
Problem 3.3.

Theorem 3.36. Let the functional F be given by (3.4). Then it is Fréchet
differentiable with respect to the shape parameter θ.

Proof. The key observation for the proof is the identity (3.13)

F (∂Dθ) =
(
G ◦Mγ ◦ PΓ ◦ T

)
(∂Dθ)

=
(
G ◦Bγ

)
Ψθ.
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The statement now just follows from Lemma 3.34, Lemma 3.35 and the first state-
ment of Theorem 3.33 by applying the chain rule given in the second statement
of Lemma 3.12. Note that we can indeed apply the chain rule since the proof of
Theorem 3.33 reveals that Ψθ can be thought of as defined on W0(D0). Thus, we
have got rid of the explicit dependence on ∂Dθ for the operator PΓ from (3.10).

�

With Theorem 3.36 we have finally derived the second central result of this chap-
ter, which establishes a differentiable dependence between the shape parameter
and the values of the functional F . As Fréchet differentiability implies also conti-
nuity for F , Theorem 3.36 also provides the key for the following existence result
with which we close this chapter.

Theorem 3.37. Let Γ be an open arc of class C3, and let the parameters I 6= 0
as well as µe, µ1, . . . , µn be given. Furthermore, let D

(1)
0 , . . . , D

(N)
0 be a finite col-

lection of reference domains, and define Umi,ηi(D
(i)
0 ) according to Definition 3.26.

Assume now that Uad is given by

Uad =
N⋃

i=1

{
Iθ(∂D

(i)
0 ) : θ ∈ Vi

}
, (3.71)

where Vi is a compact subset of Umi,ηi(D
(i)
0 ). Then the Geometric Optimization

Problem 3.3 is solvable, i.e. there exists an admissible boundary ∂Dθ∗ ∈ Uad such
that

F (∂Dθ∗) ≤ F (∂Dθ) for all ∂Dθ ∈ Uad,

and correspondingly, uθ∗ is a solution to the Boundary Value Problem 2.1 for the
geometry (Γ, ∂Dθ∗).

Proof. Let us consider Problem 3.3 with Uad given by (3.71). From the fac-
torization (3.13) and the properties of G (see Lemma 3.34) that there exists a
minimizing sequence

(
∂Dθn

)
n∈N

for F , i.e.

lim
n→∞

F (∂Dθn) = inf
∂Dθ∈Uad

F (∂Dθ) ≥ 0.

From the definition of Uad we obtain that there exists a subsequence for which
the shape parameter θnk

is contained in some Vi. As Vi is compact in Umi,ηi(D
(i)
0 ),

there exists an element θ∗ ∈ Vi and a subsequence which converges to θ∗ in Vi.
To keep the notation simple we denote the convergent subsequence again by θn .
This means that we have in terms of Uad

∂Dθn → ∂Dθ∗ , n→ ∞,



102 CHAPTER 3. A GEOMETRIC OPTIMIZATION PROBLEM

where the convergence is understood in the sense of

θn → θ∗, n→ ∞,

in Vi ⊂ Umi,ηi(D
(i)
0 ) with respect to the C2-norm. Now the sensitivity result

Theorem 3.33 yields that the we also have

uθn → uθ∗ , n→ ∞,

as Fréchet differentiability implies continuity. Similarly the Fréchet differentia-
bility of F with respect to θ (see Theorem 3.36) implies that we have convergence

F (∂Dθn) → F (∂Dθ∗), n→ ∞.

As
(
∂Dθn

)
is a subsequence of a minimizing sequence, we have that

F (∂Dθ∗) = lim
n→∞

F (∂Dθn) = inf
∂Dθ∈Uad

F (∂Dθ).

Hence, ∂Dθ∗ is a minimizer for the Geometric Optimization Problem 3.3 and uθ∗

is a solution to the Boundary Value Problem 2.1 for the geometry (Γ, Dθ∗). �

We finish the theoretic considerations with the remark that the existence result
of Theorem 3.37 is still of rather abstract nature as it is not at all obvious how to
realize Uad as the set of perturbed boundaries Iθ(∂D

(i)
0 ) of finitely many reference

domains D
(i)
0 .



Chapter 4

Numerical treatment

In this chapter we present approximation schemes to both the Boundary Value
Problem of Chapter 2 and the Geometric Optimization Problem of Chapter 3. We
will see in the first section that the approximation scheme for the solution to the
Boundary Value Problem 2.1 emerges from the constructive nature of proving the
existence of a solution in Section 2.3. The Geometric Optimization Problem 3.3
will be treated in the second and third section using two conceptually antithetic
approaches. In the second section we will present an approach using explicit
boundary representation by restricting the boundaries ∂Di, i = 1, . . . , n, to be
parametrizable in the form

∂Di =

{
x ∈ R

2 : x = x0,i + ri(t)

(
cos t
sin t

)
, t ∈ [0, 2π)

}

with radial functions ri ∈ C2
2π. The optimization is then realized through a

steepest descent approach on a finite dimensional subspace. In the third section
we seek to find a solution to Problem 3.3 using implicit boundary representation.
This approach is based on so-called level set methods, where the boundaries of
the geometric objects to be optimized are carried along implicitly as the 0-level
sets of a higher dimensional function φ, i.e. for a fixed t ≥ 0 we have

∂D =
{
x ∈ R

2 : φ(x, t) = 0
}
.

In this approach the optimization is realized through advecting the higher dimen-
sional level set function φ in artificial time t in an appropriate fashion.

103
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4.1 An exponentially convergent approximation

scheme for the solution to the Boundary

Value Problem

The aim of this section is to describe an approximation scheme to the solution of
the Boundary Value Problem 2.1 from the second chapter. The approximation
scheme will be based on the representation of the solution as a combination of
double-layer potentials over the boundary of D and a single-layer potential over
the arc Γ as has been done in Section 2.3. We will start out from the represen-
tation (2.10) and seek approximate solutions using a combination of collocation
and quadrature methods on the transformed system of integral equations (2.36).
So let us begin by stating rigorously, what we understand by the above.

Consider the spaces W̃0 := C
0,α
2π,e ×⊗n

i=1C2π and W̃1 := C
1,α
2π,e ×⊗n

i=1C2π as well as

the finite dimensional subspace W̃ (m) := Tm0,e×⊗n
i=1Tmi

with m := (m0, . . . ,mn),
where

Tmi
:=

{
mi∑

k=0

αk,i cos(kt) +

mi−1∑

k=1

βk,i sin(kt) : αk,i, βk,i ∈ R, t ∈ R

}

is the space of trigonometric polynomials of degree ≤ mi, and where

Tm0,e :=

{
m0∑

k=0

αk,0 cos(kt) : αk,0 ∈ R, t ∈ R

}

is the space of even trigonometric polynomials of degree ≤ m0. We observe
that W̃ (m) is a subspace of W̃0 as well as of W̃1. It is of dimension

M := 1 +m0 +
n∑

i=1

2mi

and has the property that in the limit m→ ∞ it is dense both in W̃0 and W̃1.

We now equip W̃ (m) with points

x
(0)
k ∈ [0, π], k = 0, . . . ,m0,

x
(i)
k ∈ [0, 2π), i = 1, . . . , n, k = 1, . . . ,mi, (4.1)

such that W̃ (m) is unisolvent with respect to these points. (In the actual im-

plementation we have chosen equidistantly spaced collocation points x
(0)
k := k π

m0

for k = 0, . . . ,m0, and x
(i)
k := (k− 1) 2π

mi
for i = 1, . . . , n and k = 1, . . . ,mi, which

fit our needs perfectly.)
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Next we note that by using smooth, regular, 2π-periodic parametrizations zi of
the boundaries ∂Di for i = 1, . . . , n, we can consider the operator equation

(
S + A

)
Ψ = f

as given in (2.36) to hold in W̃1 for a density in W̃0, where we use the identification

ψ̂i(t) = ψi(zi(t)), t ∈ R,

for ψ̂i ∈ C2π and ψi ∈ C(∂Di). We observe that in this sense the subspace W̃ (m)

is also dense in W0 and W1 for m → ∞. Then the collocation method is given
by the following.

Problem 4.1. Find Ψ(m) ∈ W̃ (m) satisfying the parametrized version
(
Ŝ + Â

)
Ψ(m) = f̂ (4.2)

of (2.36) at the so-called collocation points
(
x

(i)
k

)
given by (4.1).

In (4.2) the operator Ŝ differs from the operator S given in (2.31) only in the
sense that the identities have to be understood as identities on C2π, and not as
mappings on C(∂Di) anymore. Similarly, the right-hand side f̂ emerges from f

given in (2.33) through

f̂ =
(

−S̃Γ
(

I
|Γ|

)
−2q1S

Γ,D
1

(
I
|Γ|

)
(z1(·)) · · · −2qnS

Γ,D
n

(
I
|Γ|

)
(zn(·))

)T

. (4.3)

Finally, also the operator Â emanates from A defined in (2.32) in the sense that
the operators

(
K̂D

j,kψ̂j

)
(t) :=

∫ 2π

0

∂Φ(zk(t), zj(τ))

∂ν(zj(τ))
ψ̂j(τ) dτ, t ∈ [0, 2π], (4.4)

(
K̂

D,Γ
j ψ̂j

)
(t) :=

∫ 2π

0

∂Φ(γ(cos t), zj(τ))

∂ν(zj(τ))
ψ̂j(τ) dτ, t ∈ [0, π], (4.5)

(
K̂

Γ,D
k ϕ̃

)
(t) :=

(
K̃

Γ,D
k ϕ̃

)
(zk(t)), t ∈ [0, 2π], (4.6)

are obtained from the respective operators KD
j,k, K̃

D,Γ
j and K̃Γ,D

k that are defined
in (2.14), (2.29) and respectively (2.26), by inserting the appropriate parametriza-
tions zj.

From (4.2) and from the form of the operators (4.4) - (4.6) we see that the
collocation method is only semi-discrete as it is still required to evaluate the
integral operator Â and the right-hand side f̂ , which also is an integral operator,
but with a fixed density. Nevertheless, the operator Ŝ, which apart from the
identities on C2π also contains the operator L̃ defined in (2.22), can be evaluated

exactly on W̃ (m) due to the following Lemma.
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Lemma 4.2. The operator L̃ defined in (2.22) maps Tn,e bijectively onto itself.
It can be evaluated exactly on elements of Tn,e. In particular, let

Ln
j (t) :=

1

2n

(
1 + 2

n−1∑

k=1

cos(k(t− tj)) + cos(n(t− tj))

)
, t ∈ [0, 2π],

be the Lagrange basis of Tn for j = 0, . . . , 2n− 1. Then L̃ takes the values

(
L̃ Ln

j

)
(t) =

1

2n

(
1 +

n−1∑

k=1

1

k
cos(k(t− tj)) +

1

2n
cos(n(t− tj))

)
, t ∈ [0, 2π].

Proof. see [36], Section 5.1. �

Nevertheless, the operator Â and the right-hand side f̂ require further treatment
to render a fully discrete approximation scheme. We will resort to a quadrature
method, which in combination with trigonometric interpolation yields excellent
convergence rates.

In particular, we carry on by discretizing the occuring integral operators using the
composite trapezoidal rule with equidistantly spaced interpolation points given by
the collocation points (4.1). This yields a fully discrete operator A(m) : R

M → R
M

and an approximation f (m) ∈ R
M to the right-hand side f̂ that can be easily

implemented. Substituting A(m) for Â and f (m) for f̂ in collocation method
formulation (4.2), we arrive at a fully discrete approximation scheme, that is then

used to recover approximations Ψ(m) ∈ W̃ (m) to the solution Ψ of the system of
integral equations (2.36).

Remark 4.3. When implementing the above approximation scheme it is important
to bear two things in mind.

1. According to Corollary 1.20 the operator L̃ is invertible from C
0,α
2π,e to C1,α

2π,e

in the representation given in (1.40). This representation in particular
involves an integral over [0, 2π]. Hence, the elements of the Lagrange basis
from Lemma 4.2 have interpolation points in [0, 2π]. As has been stated
by Mönch in [51] these can be interpreted as being taken from [0, π] using
the symmetry of 2π-periodic, even functions with respect to π. In fact, it
is this observation, which eliminates linearly dependent equations from the
discretized system of equations. With this approach the evaluation of L̃
on elements of Tn,e has to be done using the fact that the Lagrange basis
of Tn,e is given by {Ln

0 , L
n
n, L

n
j + Ln

2n−j : j = 1, . . . , n− 1}.
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2. The operator −SΓ
(

I
|Γ|

)
that appears in the right-hand side (4.3) also con-

tains a logarithmic singularity, which has to be treated adequately in dis-
cretizing. We propose to split the operator −SΓ

(
I
|Γ|

)
analogously to (2.21)

into a part containing the singularity and a part that has a continuous ker-
nel, which will again lead to the operators L̃ and L0 as defined in (2.22)
and (2.23). Then we use the fact that we can evaluate the singular integral
exactly as the density is a constant.

So far, the presented scheme deals with obtaining the approximate solution Ψ(m)

to (4.2). We note that this is crucial for approximating the potential u that
solves Problem 2.1 or any of its partial derivatives which correspond to com-
ponents of the magnetic field B via (1). The argument for this is as follows.
Once we have obtained Ψ(m) we can derive a semi-discrete approximation to u

from the representation (2.10) by discretizing the occuring boundary integrals
in the same fashion as described above. As the occurring kernels are analytic
for x ∈ R

2 \ (Γ ∪ ∂D), we can also derive approximations to the partial deriva-
tives by differentiating the kernels accordingly. Furthermore, the analyticity of
the integrands implies that we can expect the convergence rates of the potential
and its derivatives to be as good as the convergence rates for Ψ(m).

In the following, we will accordingly present the error analysis for the approxi-
mation scheme described above, deriving exponential convergence rates for the
approximate solutions Ψ(m) of the fully discrete system to the solution Ψ of the
exact system. To keep the error analysis as straight forward as possible, we in-
terpret the approximation scheme as a projection method, which allows us to
use standard arguments for projection methods for equations of the second kind
as described in [47], Section 13.2. In a first step we present a result for the
semi-discrete scheme.

Lemma 4.4. Given equation (2.36) with sufficiently smooth parametrizations

of ∂D as well as the finite-dimensional subspace W̃ (m) and the corresponding
projection operator

P̃ (m) :=




P 1,α
m0,e 0 · · · 0

0 Pm1

. . .
...

...
. . . . . . 0

0 · · · 0 Pmn


 ,

where P 1,α
m0

: C1,α
2π,e → Tm0,e and Pmi

: C2π → Tmi
for m1, . . . ,mn ∈ N are

the interpolation operators corresponding to the collocation points (4.1), then the
approximating equation

P̃ (m)
(
Ŝ + Â

)
Ψ(m) = P̃ (m)f (4.7)
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is uniquely solvable for sufficiently large m0, . . . ,mn, and we have the error esti-
mate ∥∥Ψ(m) − Ψ

∥∥ ≤ C
ln m̃

m̃ν

∥∥Ψ
∥∥, (4.8)

where Ψ is the solution to the exact equation (2.36).

Proof. From Theorem 2.10 we already know that the operator S +A is injective
and consists of an invertible operator S with bounded inverse and a compact
operator A. Consequently, the same holds also for the operator Ŝ + Â that is
obtained by parametrization. Moreover, Lemma 4.2 shows that the operator Ŝ
is bijective from W̃ (m) to W̃ (m), so that for the semi-discrete projection method
to converge (see [47], Theorem 13.12), we are left to prove

∥∥P̃ (m)Â− Â
∥∥→ 0, m→ ∞. (4.9)

Considering each entry of (P̃ (m)Â−Â) separately, we use the fact that the entries

of Â are bounded operators together with the general estimate (see [59])

‖Png − g‖l,β ≤ C
lnn

nk−l+β−α
‖g‖k,α (4.10)

for the interpolation operator Pn from C
l,β
2π to Tn and g ∈ C

k,α
2π , k, l ∈ N ∪ {0}

with l ≤ k, 0 < β ≤ α ≤ 1 and some constant C depending on l, k, α and β.
From this we see that, as the additional regularity of the parametrizations yields
also additional regularity of the densities, we have convergence in (4.9) in the
limit as m = (m0, . . . ,mn) tends to infinity. This establishes unique solvability
of the approximating equation (4.7) for sufficiently large m0, . . . ,mn. The error
estimate (4.8) again follows from (4.10) and the general estimate

∥∥Ψ(m) − Ψ
∥∥ ≤M

∥∥P̃ (m)SΨ − SΨ
∥∥

(see [47], Theorem 13.12). In (4.8) we have set ν := min{β − α, α1, . . . , αn}
and m̃ := min{m0, . . . ,mn}. Here, β − α is given by (4.10), and α1, . . . , αn are
given by similar estimates for the operators Pmi

(see [47], Theorem 11.6). �

Although Lemma 4.4 gives a positive result, it is still very poor with regard to
the convergence rate (4.8). Nevertheless, we are able to improve the convergence
rate by assuming higher regularity from the parametrizations zi, i = 1, . . . , n,
and γ. The key observations here is the fact that in the case of a real-valued,
2π-periodic and analytic function g we have the estimate

∥∥Png − g
∥∥
∞

≤ Ce−ns (4.11)

for trigonometric interpolation, where the constants C and s solely depend on g
(see [45]).
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Corollary 4.5. Provided the parametrizations zi of ∂Di, i = 1, . . . , n, and γ

of Γ are analytic, the error estimate (4.8) can be sharpened to

∥∥Ψ(m) − Ψ
∥∥
∞

≤ Ce−ems,

where m̃ := min{m0, . . . ,mn}, and C and s are constants depending on the exact
solution Ψ of (2.36).

Proof. Analogous to the proof of Lemma 4.4 using the error estimate (4.11) in-
stead of (4.10). �

In a second step we now use the results from above for analogous results in
the case of the fully discrete scheme. Here it is again necessary to increase the
assumptions on the regularity of the parametrizations zi, i = 1, . . . , n in order to
secure that the kernels K̂D

i,i for i = 1, . . . , n, are twice continuously differentiable.

Lemma 4.6. Under the assumptions of Lemma 4.4 with increased assumptions
on the regularity of the parametrizations zi, i = 1, . . . , n, the approximating equa-
tion

P̃ (m)
(
S + A(m)

)
Ψ(m) = P̃ (m)f (m)

of the fully discrete approximation scheme is uniquely solvable for sufficiently
large m0, . . . ,mn, and we have the error estimate

∥∥Ψ(m) − Ψ
∥∥ ≤ C

ln m̃

m̃ν
. (4.12)

Proof. According to the general result for fully discrete projection schemes given
in [47], Theorem 13.13, to show unique solvability of the approximating equation
of the fully discrete scheme, we need to establish pointwise convergence

(
P (m)A(m) − P (m)Â

)
Ψ → 0

for all Ψ ∈ W̃0 as m → ∞, which follows from the pointwise convergence of
the composite trapezoidal rule and the fact that the operator P (m) is bounded
because of the additional regularity of the parametrizations. Furthermore, we
need to show convergence

∥∥P (m)A(m) − P (m)Â
∥∥

fW (m)→fW (m) → 0

in the operator norm on W̃ (m) as m→ ∞. But this again follows from the addi-
tional regularity since the composite trapezoidal rule yields quadratic convergence
in the case of twice continuously differentiable functions. Thus, using standard
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arguments we can establish unique solvability of the approximating equation of
the fully discrete scheme. Using the general estimate

∥∥Ψ(m) − Ψ
∥∥ ≤ M

{∥∥P (m)SΨ − SΨ
∥∥+

∥∥P (m)(A(m) − Â)Ψ
∥∥

+
∥∥P (m)(f (m) − f)

∥∥
}

(see [47], Theorem 13.13), we compute the error estimate (4.12) from the corre-
sponding result (4.8) for the semi-discrete case, from the general estimate (4.10)
and from the quadratic convergence of the composite trapezoidal rule. In (4.12),
we have set ν := min{β − α, α1, . . . , αn} and m̃ := min{m0, . . . ,mn} as in the
semi-discrete case. Here again, β−α is given by (4.10), and α1, . . . , αn are given
by similar estimates for the operators Pmi

(see [47], Theorem 11.6). �

Again the result of Lemma 4.6 is not satisfying with regard to the convergence
rate (4.12). But as in the semi-discrete case, we are able to increase the conver-
gence rate provided we assume a higher regularity of the parametrizations.

Corollary 4.7. Provided the parametrizations zi of ∂Di, i = 1, . . . , n, and γ

of Γ are analytic, the error estimate (4.12) can be sharpened to
∥∥Ψ(m) − Ψ

∥∥
∞

≤ Ce−ems,

where m̃ := min{m0, . . . ,mn}, and C and s are constants depending on the exact
solution Ψ of (2.36).

Proof. Analogous to the proof of Lemma 4.6 using the error estimate (4.11) for
the trigonometric interpolation of analytic functions. �

4.2 A steepest descent algorithm for the Geo-

metric Optimization Problem

In the following we will proceed in turning the sensitivity results of Section 3.5
into a numerical approximation scheme.

One of the major difficulties in geometric optimization is that the set of admissible
domains with respect to which the optimization should be performed does not
have a linear structure. Hence, the usual optimization approaches are prone to
fail if employed naively.

In Section 3.4 we have already seen an approach how to describe the set of ad-
missible domains in an affine setting. There, we have made use of compactly
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supported, C2-smooth vector fields as a diffeomorphic perturbation of the iden-
tity. Unfortunately, this description of the set of admissible domains is rather
unhandy for setting up an approximation scheme.

For the rest of this section we will assume that the domain D is bounded, simply
connected and starlike with a smooth boundary curve. In particular, let

Vad :=
{
r ∈ C2

2π : r > 0
}
⊂ C2

2π, (4.13)

and define for r ∈ Vad and x0 ∈ R
2

Dx0,r :=
{
x ∈ R

2 : x = x0 + sr(t)

(
cos t
sin t

)
, s ∈ [0, 1), t ∈ [0, 2π)

}
. (4.14)

Then the boundary of Dx0,r is given by

∂Dx0,r :=
{
x ∈ R

2 : x = x0 + r(t)

(
cos t
sin t

)
, t ∈ [0, 2π)

}
. (4.15)

From the definition of Dx0,r it is immediately clear that the boundaries are ad-
missible provided Γ∩Dx0,r = ∅. In order to use the class of domains given by Vad

for the Geometric Optimization Problem we need the sensitivity analysis from
Chapter 3 to be applicable for boundaries that are induced by Vad. To this end
we relate Vad to the space Um,η(D0) of compactly supported vector fields as intro-
duced in Definition 3.26. The following theorem states that the set of admissible
domains that is induced by Vad can be described in terms of diffeomorphisms.

Theorem 4.8. Let x0 ∈ R
2, and let r1, r2 ∈ Vad be the radial functions for

two domains Dx0,r1 and Dx0,r2. Then there exists a compactly supported, twice
continuously mapping f such that

(
Id − f

)
is a C2-diffeomorphism on R

2 with
the property that

(
Id − f

)
(Dx0,r1) = Dx0,r2.

Proof. The proof constructs f in three steps. Without loss of generality we
assume that x0 = 0. Furthermore we consider R

2 using polar coordinates.
In a first step we consider the mapping g : R

2 → R
2 given by

g(t, r) :=

(
t,
r2(t)

r1(t)
r

)
, t ∈ [0, 2π), r ∈ [0,∞)

We immediately observe that g is twice continuously differentiable, and has the
property that g(Dx0,r1) = Dx0,r2 . Furthermore, g is invertible due to the positivity
of r1, with the inverse of g being given by

g−1(t, r) :=

(
t,
r1(t)

r2(t)
r

)
, t ∈ [0, 2π), r ∈ [0,∞),
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which is again well-defined as r2 is positive. Hence, we have constructed a C2-
diffeomorphism that maps Dx0,r1 bijectively onto Dx0,r2 .

In a second step we introduce f̃ : R
2 → R

2 by setting

f̃(t, r) :=

(
t,

r

r1(t)

(
r1(t) − r2(t)

))
, t ∈ [0, 2π), r ∈ [0,∞),

and observe that f̃ satisfies Id − f̃ = g. Hence Id − f̃ is a C2-diffeomorphism
and a perturbation of the identity.
In the last step it remains to modify f̃ using an appropriate C2-smooth cut-off
function α : R

2 → R
2 that has support in a neighbourhood of ∂Dx0,r1 . Then the

support of f := αf̃ is compact. �

The result of Theorem 4.8 is already very promising as it has shown how we can
think of the space Vad as being obtained locally by perturbations of a fixed refer-
ence domain D0 in the sense of Definition 3.26. Still, for the sensitivity analysis
of Chapter 3 to be applicable, Vad has to satisfy some additional properties which
we are going to verify in the following lemma.

Lemma 4.9. The set Vad as defined in (4.13) is open and convex with respect to
the C2-norm.

Proof. To see that Vad is open, we let r ∈ Vad and set

ε := inf
t∈R

r(t) = min
t∈[0,2π]

r(t)

using the periodicity of r. Thus, we obtain that ε > 0 due to the positivity of r.
Then for any v ∈ C2

2π satisfying ‖v − r‖C2 < ε
2

we calculate

|v(t) − r(t)| ≤ ‖v − r‖∞ ≤ ‖v − r‖C2 <
ε

2

for any t ∈ R. Now the positivity of r yields in particular that

v(t) > r(t) − ε

2
≥ ε

2
> 0

for any t ∈ R. Hence, v ∈ Vad which settles openness of Vad.

Convexity follows directly from the definition Vad as C2
2π is a linear space and we

have for r1, r2 ∈ Vad the pointwise estimate

λr1(t) + (1 − λ)r2(t) > min{r1(t), r2(t)} > 0

for any λ ∈ [0, 1] and any t ∈ R. �



4.2. A STEEPEST DESCENT APPROACH FOR THE GOP 113

By virtue of Theorem 4.8 and Lemma 4.9 we can now apply the sensitvity analysis
also to the restriction of Uad to those admissible boundaries that are given in terms
of Vad for a set of finitely many given center points CD := {x(1)

0 , . . . , x
(n)
0 }. In

other words, we may consider Problem 3.3 also for the set of admissible boundaries
U ′

ad ⊂ Uad, where

U ′
ad :=

{
∂Dx0,r ⊂ R

2 : r ∈ Vad, x0 ∈ CD, Dx0,r ∩ Γ = ∅
}
. (4.16)

We note that also the existence result of Theorem 3.37 remains valid for U ′
ad.

For implementation purposes Vad is much more easily accessible than Um,η(D0),
but it still remains infeasible in its infinite-dimensional generality. Only the
restriction to a finite-dimensional subspace of C2

2π will make the algorithmic idea
practicable. The choice of a finite-dimensional subspace (or a collection subspaces
of this kind) is very delicate. On the one hand it should incorporate the flexibility
of the original space C2

2π, where we consider the basis functions as being taken
from. Thus, it is desirable that the finite-dimensional subspace satisfies a kind of
denseness property. On the other hand it should be appropriate to the problem,
and can hence be regarded as one of the most important issues in the design of
an approximation scheme.

In the following we will consider two choices for collections of finite-dimensional
subspaces. The first is the (2n + 1)-dimensional space of trigonometric polyno-
mials of order ≤ n given by

Tn := span
({

cos kt : k = 0, . . . , n
}
∪
{

sin kt : k = 1, . . . , n
})
. (4.17)

Trigonometric polynomials are the most simple and straightforward approxima-
tion space to be considered. The denseness property holds due to the Weierstraß
Theorem, they are versatile and simple to implement.
Nevertheless, they also display some features which can be interpreted as draw-
backs. So, the basis functions have non-local support, they are highly oscillatory
for large n, and the basis functions take both positive and negative values. This
makes additional considerations necessary to ensure that r ∈ Tn satisfies r > 0
when Tn is used as a subspace of Vad .

The second collection of finite-dimensional subspaces we are going to consider in
the numerical examples is given by

T̃n,k := span
({

1
}
∪ {hj(· − ti) : j = 1, . . . , n, i = 0, . . . , k

})
(4.18)

for ti = 2πi
k

, i = 0, . . . , k, where the basis functions hj are given by the periodic
extensions of

h̃j(t) := π−2(j+1) sin2(jt)
(
π2 − t2

)j+1
, j ∈ N, t ∈ [−π, π). (4.19)
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A direct calculation shows that h̃j can be extended periodically as a twice contin-
uously differentiable function on R for any j ∈ N. This is due to the order of the
zero at t = ±π that comes from the damping factor. Furthermore, we directly
observe that h̃j is non-negative, and has a localized support. The behaviour of

the basis functions h̃j is illustrated in Figure 4.1.

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

h0
h1,0
h2,0
h4,0
h8,0

Figure 4.1: Illustration of the basis functions hj given in (4.19) for j = 1, 2, 4, 8
together with the constant basis function.

The choice for T̃n,k comes from the perspective of design. The examples of Sec-
tion 5.2 that have been performed with trigonometric polynomials display that
the effects of the functional F are rather localized even for this type of basis
functions that have a non-local support. The results are spoiled by oscillations
in the boundary curve in regions that are rather far away from the arc. Contrar-
ily, the space T̃n,k contains functions with a more localized support and should
consequently not display these phenomena. Moreover, the positivity of the basis
functions should help the algorithm in not getting trapped in local boundary
minima that are due to the radial function becoming negative in ’unimportant’
regions of the boundary.

With these finite-dimensional approximation spaces for Vad in hand, the Geomet-
ric Optimization Problem 3.3 now becomes tractable. It reduces to a constrained
optimization problem for the coefficients of the basis functions of Tn or T̃n,k re-
spectively. In this sense, the set of admissible boundaries that are induced by Tn

can be characterized by

Pn :=
{
a ∈ R

2n+1 : r(a) ∈ Vad ∩ Tn, ∂Dx0,r(a) ∈ U ′
ad

}
, (4.20)
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where the radial function r(a) is defined by

(
r(a)

)
(t) := a0 +

n∑

k=1

a2k−1 sin kt+ a2k cos kt, t ∈ R.

Similarly, the set of admissible boundaries that are induced by T̃n,k can be char-
acterized via

P̃n,k :=
{
a ∈ R

n(k+1)+1 : r(a) ∈ Vad ∩ T̃n,k, ∂Dx0,r(a) ∈ U ′
ad

}
, (4.21)

where the radial function r(a) is given through

(
r(a)

)
(t) := a0 +

k∑

i=0

n∑

j=1

aij hj(t− ti), t ∈ R.

The numerical approximation scheme which we are going to present now is effec-
tively solving a finite-dimensional analogue to Problem 3.3 given by

min
a∈P

F (∂Dx0,r(a)) + β Gc(∂Dx0,r(a)) + µGϑ,d(∂Dx0,r(a)), (4.22)

where P is either given by Pn as defined in (4.20) or by P̃n,k as defined in (4.21).
The additional terms Gϑ,d and Gc are introduced to ensure that the algorithm
runs stably and incorporates the admissibility constraint D ∩ Γ = ∅. We will
discuss each term in more detail after considering the feasibility of the overall
algorithm.

We suggest a simple Steepest Descent Algorithm to solve the minimization prob-
lem (4.22). In particular, we know from Theorem 3.36 and Theorem 4.8 that the
functional F is differentiable on U ′

ad. (The differentiability of the terms Gϑ,d and
Gc will be settled later in this section.) So we have for a ∈ P and h ∈ T with
‖h‖C2 sufficiently small that

(
F + βGc + µGϑ,d

)
(r(a) + h)

=
(
F + βGc + µGϑ,d

)
(r(a))

+ F ′[r(a);h] + βG′
c[r(a);h] + µG′

ϑ,d[r(a);h] + o(‖h‖).

(4.23)

Here, we use the radial functions r(a)+h as a short-hand notation for ∂Dx0,r(a)+h,
and r(a) as an abbreviation for ∂Dx0,r(a) respectively. Note that the perturbation
h ∈ T is identified with the perturbation it induces in the sense of Theorem 4.8,
and T is given either by Tn or by T̃n,k depending on which approximation space
we are considering. Then the steepest descent algorithm reads
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a(n+1) := a(n) − αn

[(
F ′[r(a(n));h1], . . . , F

′[r(a(n));hN ]
)T

+ β
(
G′

c[r(a
(n));h1], . . . , G

′
c[r(a

(n));hN ]
)T

+ µn

(
G′

ϑ,d[r(a
(n));h1], . . . , G

′
ϑ,d[r(a

(n));hN ]
)T
]
,

(4.24)

where h1, . . . , hN are the basis functions of T , αn > 0 is a sufficiently small step
size parameter, and β and µn are appropriately chosen regularization parameters.

Lemma 4.10. Let a(0) ∈ P and define a(n) recursively via (4.24) for αn ∈ R
+

sufficiently small. Then the sequence

((
F + βGc + µGϑ,d

)
(∂Dx0,r(a(n)))

)
n∈N0

⊂ R

is monotonically decreasing.

Proof. The vector

(
F ′[r(a(n));h1], . . . , F

′[r(a(n));hN ]
)T

has a natural interpretation in C2
2π via

N∑

k=1

F ′[r(a(n));hk]hk,

and the analogue holds also for the other summands in (4.24). Hence, the up-
dated iterate a(n+1) can be written in terms of the asymptotic expansion (4.23).
Using the linearity of the Fréchet derivative, we can expand the corresponding
expression in terms of the basis functions to obtain

(
F + βGc + µGϑ,d

)
(r(a(n+1))) −

(
F + βGc + µGϑ,d

)
(r(a(n)))

= −αn

N∑

k=1

(
F ′[r(a(n));hk]

2 + β2G′
c[r(a

(n));hk]
2 + µ2G′

ϑ,d[r(a
(n));hk]

2
)

+ o(‖h‖).

Now the statement follows from αn and the sum being non-negative, and the
faster decay of o

(
‖h‖
)

by choosing αn sufficiently small . �
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Although this algorithm is analytically sound, it suffers from a severe drawback.
The scaling parameters αn are analytic quantities that are a priori not explicitly
available. Hence, we suggest modifying the algorithm as to incorporating a line
search procedure.

Algorithm 4.11 (Steepest Descent Algorithm with Line Search).
We a priori choose a regularization parameter β > 0, and a gradient toler-
ance εg > 0 below which we assume the gradient of F + βGc + µGϑ,d to be
vanishing.
For the line search we choose a set A of line search parameters and a step size
tolerance εb below which we assume a step to be too near to the boundary of P .
Then the algorithm reads

• Set n := 0 and choose a(0) ∈ P .

• Calculate

gf :=
(
F ′[r(a(n));h1], . . . , F

′[r(a(n));hN ]
)
,

gc :=
(
G′

c[r(a
(n));h1], . . . , G

′
c[r(a

(n));hN ]
)
,

gϑ,d :=
(
G′

ϑ,d[r(a
(n));h1], . . . , G

′
ϑ,d[r(a

(n));hN ]
)
.

• Compute µn according to (4.30).

• If ‖gf + βgc + µngϑ,d‖ ≤ εg : STOP

⇒ ∂Dx0,r(a(n)) is a local minimizer.

Else

– Compute ãi := a(n) − σi(gf + βgc + µngϑ,d)
T for all σi ∈ A.

– If ãi 6∈ P : Set fi := ∞.

Else: Set fi := F (∂Dx0,r(eai))

– Set αn := σi∗ for fi∗ = mini fi

– If αn ≤ εb : STOP

⇒ ∂Dx0,r(a(n)) is a boundary point of P locally minimizing F .

Else: Set a(n+1) := a(n) − αn(gf + βgc + µngϑ,d)
T , n := n+ 1

and GOTO step 2.

Remark 4.12. We would like to emphasize at this point that the use of a line
search procedure has both its advantages and drawbacks, especially if it is used
in such a crude form as in Algorithm 4.11. On the one hand it makes the descent
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algorithm extremely efficient, since it enables to select the most favourable step
size for one descent step. Moreover, it enables to detect inadmissible geometries
on the fly.
On the other hand the line search procedure renders the algorithm rather ineffi-
cient in terms of computation time since for every step size σi ∈ A the resulting
boundary parametrization has to be tested for admissibility. Furthermore, and
computationally even more costly, then the Boundary Value Problem 2.1 has to
be solved for each admissible r(ãi) in order to calculate fi and determine the
most favourable step size for the current descent step.

In the remainder of this section we are going to discuss how the admissibility
constraints r(a) > 0 and D∩Γ = ∅ are incorporated into the algorithm, and how
we guarantee essentially non-oscillatory radial functions for ∂D.

Let us address the positivity of the radial function r(a) as a first issue. As can be
seen from Algorithm 4.11 the restriction r > 0 is tested explicitly whenever an
update for ∂Dx0,r is computed, by checking the sign of r at all boundary points
of the discrete approximation to ∂Dx0,r. In the case r < 0 for some point on the
boundary, we reduce the step size parameter until the restriction r > 0 is again
satisfied at all boundary points. In this sense we also make use of the line search
procedure described above.

Secondly, the algorithm has to ensure that Dx0,r(eai) ∩ Γ = ∅, a restriction which
is rather delicate to ensure. The treatment of a related problem in theoretical
physics (see [30]), where the magnetic environment consisted of half-spaces in-
stead of bounded domains, has indicated that decreasing the distance between the
magnets D and the superconducting film Γ also reduces the concentration of the
current distribution in a neighbourhood of the endpoints of Γ. This behaviour is
confirmed from our numerical experience. We have found in all numerical exper-
iments that a decrease in the distance between Γ and D also caused a dominant
decrease of F .
Consequently, the approximation scheme has to be built such that it prevents
the domain D and the arc Γ from overlapping both theoretically and numeri-
cally. Hence, we suggest an Augmented Lagrangian Approach to overcome this
difficulty for some specially designed geometric setups, which we consider the
most important from a geometric and applicational point of view.

Suppose Γ = [−1, 1] × {0} ⊂ R
2, and x0 ∈ R

2 satisfies 〈 z−1−x0

|z−1−x0|
, e1〉 = cosϑ for

an angle |ϑ| < c, where e1 is the first standard unit vector in R
2 and c is some

appropriate constant, i.e. we have a situation as illustrated in Figure 4.2.
For this geometric setup we impose the following equality constraint

Gϑ,d

(
∂Dx0,r

)
= 0, (4.25)

where

Gϑ,d

(
∂Dx0,r

)
:=

∥∥∥∥z−1 −
(
x0 + r(ϑ)

(
cosϑ
sinϑ

))∥∥∥∥− d.
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Figure 4.2: Schematic of positioning for Γ and x0

We note that by construction

z−1 − x0 = |z−1 − x0|
(

cosϑ
sinϑ

)
.

Hence Gϑ,d

(
∂Dx0,r

)
= |z−1 − x0| − (r(ϑ) + d). Observing that r(ϑ) is linear

with respect to the basis functions of Tn, or T̃n,k respectively, we also have affine
linearity of Gϑ,d. Consequently, with the help of Lemma 3.11, we see that Gϑ,d is
Fréchet differentiable with respect to ∂Dx0,r ∈ U ′

ad, and its Fréchet derivative is
given by

G′[r(a); ·] =
(
Gϑ,d(h1) + d− |z−1 − x0|, . . . , Gϑ,d(hN) + d− |z−1 − x0|

)
, (4.26)

where hk are the basis functions of Tn, or T̃n,k respectively. Hence, considering
the so-called Augmented Lagrangian Functional

Lϑ,d

(
∂Dx0,r, µ

)
:= F (∂Dx0,r) + βGc

(
∂Dx0,r

)
+ µGϑ,d

(
∂Dx0,r

)
(4.27)

leads to the necessary optimality conditions

F ′[r; ·] + β G′
c[r; ·] + µG′

ϑ,d[r; ·] = 0, (4.28)

Gϑ,d

(
∂Dx0,r

)
= 0, (4.29)

which can be exploited in the context of the Steepest Descent Algorithm 4.11
such that each iterate satisfies D ∩ Γ = ∅. Hence, we consider Lϑ,d(·, µ) and an
element r(a(n)) satisfying (4.29). Then we find that by setting

µn := −Gϑ,d

(
F ′[r(a(n)); ·] + βG′

c[r(a
(n)]
)

Gϑ,d

(
G′

ϑ,d[r(a
(n)); ·]

) (4.30)

the new iterate

a(n+1) := a(n) − αn

[
F ′[r(a(n)); ·] + βG′

c[r(a
(n)); ·] + µnG

′
ϑ,d[r(a

(n)); ·]
]
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also satisfies (4.29) due to the affine linearity of Gϑ,d with respect to the basis
functions. In this sense the Augmented Lagrangian Approach is superior to a naive
Steepest Descent Algorithm as it automatically ensures D ∩ Γ = ∅ for geometric
situations as depicted in Figure 4.2.

Remark 4.13. In the case of less restrictive assumptions on the position of the
centre x0 of Dx0,r the Augmented Lagrangian Approach does not ensure the con-
dition Dx0,r ∩ Γ = ∅ as easily. In such situations it might be better to consider
modifications of F that are obtained by penalization, which is beyond the scope
of this thesis. A possible penalty term ensuring thatDx0,r and Γ remain separated
may be given for example by

∫

∂Dx0,r

∫

Γ

∣∣∣∣ln
‖x− y‖

d

∣∣∣∣
p

ds(y)ds(x), (4.31)

where the parameter d determines a favourable distance between Dx0,r and Γ,
and the parameter p incorporates a measure of the severeness of a deviation from
that distance.
Nevertheless, the effect of such penalty terms in the behaviour of the Geometric
Optimization Problem 3.3 remains somewhat unclear, since they penalize devia-
tions from the favourable distance d uniformly over Dx0,r and Γ. In particular,
the effect of employing such a penalty term might lead to unnatural deformation
and shrinking of Dx0,r due to the fact that the penalty term also seeks to decrease
the distance between the side of Dx0,r that does not face Γ and the endpoint of
Γ that does not face Dx0,r.

Finally, we discuss the suppression of possible oscillations in the radial function.
The need for this is justified from the construction of Tn and T̃n,k. Both spaces
contain rapidly oscillating basis functions when the dimension of the approxi-
mation space is chosen large. This may cause an oscillatory behaviour of the
radial function r, which is supported from our numerical experience. According
examples will be presented in Section 5.2.
The algorithm should therefore be able to suppress oscillatory behaviour of r ap-
propriately. This task is also rather delicate since Genenko et al. propose in [30]
that regions with high curvature are a desired feature for the problem. In [30]
Genenko et al. predict an improvement in the current distribution for a super-
conducting film in the vicinity of a magnetic environment that is obtained from
deforming a half-space via conformal mappings. In particular it was found that
current distribution was less inhomogeneous when the boundary of the magnetic
environment was given by

∂D1 =

{
x = (x1, x2) ∈ R

2 : x1 + ix2 = 2
(
1 + i

w2

2

) 1
2
, w2 ∈ R

}
,

where the constant 2 is due to the length of Γ and where the square root is inter-
preted by choosing the main branch of the logarithm, instead of the undeformed
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half-space boundary {x = (x1, x2) ∈ R
2 : x1 = 2}. The situation is depicted

in Figure 4.3. It shows that regions of high curvature can be expected in the
vicinity of the endpoints of Γ, whereas we judge them as unnatural in parts of
the boundary ∂D that are not close to the endpoints. The numerical experiments
from Section 5.2 support this point of view.

Γ 

∂D∂D 1 2 

Figure 4.3: Example for the homogenizating effect on the current distribution by
conformal mapping of two half-spaces.

The chosen functional (3.4) provides no inherent means of damping such os-
cillatory behaviour. Hence, we suggest regularizing the Steepest Descent Algo-
rithm with respect to damping the formation of regions with high curvature
in the boundary parametrization for ∂Dx0,r. In accomplishing this we follow a
rather standard procedure by penalizing the second derivative of the boundary
parametrization, i.e. we add the penalty term

Gc

(
∂Dx0,r

)
:=

∫ 2π

0

∥∥∥∥
(
r(t)

(
cos t
sin t

))′′∥∥∥∥
2

dt (4.32)

=

∫ 2π

0

(r′′(t) − r(t))2 + 2r′(t)2 dt,

which will be weighted by some regularization parameter β.

The Steepest Descent Algorithm 4.11 requires Fréchet differentiability for Gc with
respect to ∂Dx0,r, which will be established in the following lemma.

Lemma 4.14. Let r ∈ T ∩ Vad such that ∂Dx0,r ∈ U ′
ad. Then Gc is Fréchet

differentiable with respect to ∂Dx0,r in the sense of Section 3.4 and Theorem 4.8,
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and the Fréchet derivative is given by

G′
c[r;h] = 2

∫ 2π

0

(r′′(t) − r(t))(h′′(t) − h(t)) + 2r′(t)h′(t) dt (4.33)

for h ∈ T .

Proof. From (4.32) we see that the penalty term only depends on the boundary
via its integrand, which is a polynomial expression in the radial function and its
first two derivatives. According to Theorem 4.8 Fréchet differentiability in the
sense of Section 3.5 is equivalent to Fréchet differentiability with respect to r.
Thus, the statement of the Lemma follows by differentiating the integrand. �

4.3 A level set approach to the Geometric Op-

timization Problem

In this section we propose a second approach to numerically solve the Geometric
Optimization Problem 3.3. It is based on the so-called level set idea, which was
invented in 1988 by Osher and Sethian in their seminal paper [56].
The idea has been widely used in Stefan problems [15, 16] and in the modelling of
chrystal growth [32, 67]. Rather recently, level sets have been successfully used
in computational fluid dynamics [71, 77], computer vision [62], and structural
optimization [5, 68]. Level sets have been introduced to inverse problems in 1996
in a paper by Santosa [63], where also the idea has been prevalent to obtain the
velocity field from differentiation with respect to the boundary. This idea has been
studied further in the context of eigenvalue problems for the Laplacian by Santosa
and Osher in [55]. Other approaches to use level set methods in the context of
inverse problems are mainly due to Burger (see [6, 12, 13]). The combination
of level set methods and boundary integral equations has not been studied yet in
the mathematical community, only in the work of Sethian and Strain [67] from
1992 the velocity field is derived from the boundary representation of a heat
potential, but without the idea of differentiating with respect to the boundary.
Nevertheless, there is a series of papers in the engineering community by Ferrayé,
Dauvignac and Pichot [26, 27, 28, 29], where the inverse scattering problem for
perfectly conducting media is treated using a combination of boundary integral
methods and level set methods. We will discuss the conceptual relation between
this approach and our work in the discussion in Section 6.1.

Firstly, we will give a concise introduction to the idea of level set methods without
going too much into details about the theory on which they are based. We will
then describe how the general idea of level set evolution can be related with and
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used for the Geometric Optimization Problem from Chapter 3. Subsequently,
we will discuss various issues of the numerical realization of level set methods in
general and also focus on questions that are specific to the problem at hand. We
will especially describe and examine how to resolve the 0-level set in the context
of a level set method and how to derive a velocity field from a ’boundary’ velocity.
Both issues have not been discussed in the literature on level set methods so far.
We will propose newly developed algorithms which realize these issues exploiting
a kind of duality relation between them.

Let us begin with a brief description of level set methods and their origins. We
first of all give a rigorous definition of level sets themselves.

Definition 4.15 (Level sets). Let φ ∈ C(R2 × [0,∞)) be a real-valued function.
Then for t ≥ 0 and c ∈ R the set

Ct,c(φ) :=
{
x ∈ R

2 : φ(x, t) = c
}

(4.34)

is called the c-level set of φ at time t.

By the implicit function theorem the set Ct,c(φ) is of class C1 provided φ is
continuously differentiable. In this way we can relate a desired regularity of the
level set Ct,c(φ) to a required regularity of φ. Although in general each c-level
set of φ has equal rights, we will only consider the 0-level set for conceptual and
computational simplicity.
Level sets, being motivated from a geometric point of view, appear as the level
sets of the time-dependent solution to certain evolution equations that are called
level set equations. We will introduce the evolution equations in the following.

Problem 4.16. Let C ⊂ R
2 be a curve in R

2, and let V : R
2 × [0,∞) → R

2 be
a (smooth) vector field.

Find a function φ : R
2 × [0,∞) → R satisfying the Initial Value Problem given

through the advection equation

∂φ(x, t)

∂t
+
〈
V (x, t) , grad φ(x, t)

〉
= 0 (4.35)

together with the initial condition

C0,0(φ) = C. (4.36)

Let us consider (4.35) in more detail. Concentrating on the 0-level set, we observe
that the velocity field V induces spatial movement of the points on the 0-level set
of φ, which is balanced by the temporal evolution of φ. In this sense V propagates
the level sets of φ in space as we progress in time. Furthermore, one can observe
that a general velocity field V contains information that is irrelevant for the
evolution of the 0-level set of φ. We illustrate this in the following example.
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Example 4.17. Consider Problem 4.16 with initial curve

C := {x ∈ R
2 : |x| = 1}

being the unit circle, and a velocity field V that satisfies

V (x, t) =

(
− sinϑ

cosϑ

)
for all t ≥ 0,

and for all x = (cosϑ, sinϑ)T with ϑ ∈ [0, 2π). Then a smooth solution to the
initial values is given by

φ(x, 0) = |x|2 − 1, x ∈ R
2.

Calculating the gradient of φ(·, 0), we obtain that

〈
V (x, 0) , grad φ(x, 0)

〉
= 2

〈(
− sinϑ

cosϑ

)
,

(
cosϑ
sinϑ

)〉
= 0

for all x = (cos t, sin t)T on the 0-level set. In view of (4.35) this implies that

∂φ(x, 0)

∂t
= 0 for all x = (cos t, sin t)T ,

which means that the 0-level set of φ does not change in time.

Generally speaking, we can summarize the observation of Example 4.17 as follows.
The gradient of the solution φ is orthogonal (or normal) to the level sets of φ.
Hence, (4.35) does not ’see’ velocity fields V that are tangential to the level sets.
Consequently we can split any (smooth) velocity field V on R

2 according to

V = Vn ·N + Vt · T, (4.37)

where

N(x, t) :=
grad φ(x, t)

|grad φ(x, t)| , T (x, t) :=
[grad φ(x, t)]⊥

|grad φ(x, t)| , (4.38)

are the normal, respectively tangential, field of φ, and Vn : R
2 → R, Vt : R

2 → R

are the normal, respectively tangential, component of V . Plugging the represen-
tation (4.37) into (4.35), we see that (4.35) is equivalent to the so-called level set
equation

∂φ(x, t)

∂t
+ Vn(x, t) |grad φ(x, t)| = 0. (4.39)

The solution φ to Problem 4.16 with the advection equation (4.35) replaced by
the level set equation (4.39) is accordingly called level set function.
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We would like to remark here that in the literature also (4.35) is sometimes re-
ferred to as the level set equation. This is due to the fact that in the cases of
externally generated velocity fields, such as in fluid flow, (4.35) is used directly
for level set methods, as V is more easily accessible than its normal component.
Opposed to that, (4.39) is used whenever the velocity field is internally or self-
generated, as it happens for example in applications involving mean curvature
flow. We refer to [54] and the references therein for a closer study of the dif-
ferences between (4.35) and (4.39). For the application of level set methods to
the Geometric Optimization Problem 3.3 we will only employ (4.39), but we will
have to turn back to (4.35) during our discussions in order to illustrate various
phenomena.

Let us proceed with a rough overview of the theoretical backgrounds of level
set methods that render the numerical schemes mathematically sound. From a
systematic point of view the level set equation (4.39) can be seen as a particular
example for a Hamilton-Jacobi equation, which is generally given in the form

φt +H(grad φ) = 0 (4.40)

for some function H depending on the spatial gradient of φ. Furthermore, there
is a connection to hyperbolic conservation laws which can be formulated directly
in one spatial dimension in the following example.

Consider the one-dimensional Hamilton-Jacobi equation

φt +H(φx) = 0,

and differentiate formally with respect to the spatial variable x to obtain the
equation

ut +
[
H(u)

]
x

= 0

for the slope u = φx, which is a scalar conservation law. In this sense, solutions
to Hamilton-Jacobi equations and hyperbolic conservation laws correspond.

Based on this correspondence we may draw several conclusions on the solution
of Problem 4.16. First, we note that the solution to Problem 4.16 is by no
means unique, nonetheless as we only impose incomplete initial conditions by
prescribing the 0-level set of φ at the initial time-level t = 0. Furthermore, the
above correspondence reveals an additional argument for non-uniqueness, since
hyperbolic conservation laws can have non-unique solutions. In this context,
entropy conditions have to be imposed to pick out the ’correct’ or ’physically
relevant’ solution (see, for example [65]). Correspondingly, for Hamilton-Jacobi
equations a theory of weak solutions or vanishing viscosity solutions has been
developed, in which the solutions to equations of the form of (4.40) may be
interpreted as the limit of solutions uε to the equation

uε
t +H(grad uε) = ε∆uε (4.41)
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as ε → 0 in the right-hand side. For a detailed study of the theory of vanishing
viscosity solutions to Hamilton-Jacobi equations we refer to [20, 21, 25].

How are level set methods realized in general?

We will not attempt to solve the Problem 4.16 analytically, since we are not
interested in the level set function φ as a whole, but just in its steady state
part or, to be even more precise, in the 0-level set of that steady state part.
Consequently, we only strive to solve Problem 4.16 numerically, by propagating
the initial choice for φ according to (4.39) using numerical methods that have
been developed for hyperbolic conservation laws. In the following algorithm we
present a generally valid procedure for the numerical realization of a level set
method by means of the particular example given by the Geometric Optimization
Problem 3.3. The central ideas and algorithms that build the foundations of the
individual steps of Algorithm 4.18 will be discussed in detail in the subsequent
paragraphs of this section.

Algorithm 4.18 (Level Set Algorithm). Let Γ ⊂ R
2 be an open arc of class C3

in the sense of Definition 1.5, and let I 6= 0, µe > 0 and µi > 0, i = 1, . . . , n,
be given. Furthermore, let C ∈ Uad be the boundary curve of some admissible
domain D0 in the sense of Definition 3.1. Then the level set algorithm works as
follows.

Initialization Step: Using C as an initial curve for the time-level t = 0, we
first build a level set function φ(·, 0) that satisfies the initial conditions (4.36).
Then we repeat the following steps until the functional (3.4) stabilizes.

1. Contouring Step: Using a contouring algorithm, we resolve the 0-level
set Ct,0 in the sense that we calculate an ordered set of points {z1, . . . , zn}
approximating Ct,0. Exploiting properties of the level set function we also
compute the normal to Ct,0 and the curvature at these points.

2. Evaluation and Descent Direction Step: We interpret the 0-level
set Ct,0(φ) as the boundary of the domain

Dt := {x ∈ R
2 : φ(x, t) < 0}

and use the calculated boundary information from the previous step to nu-
merically solve the Boundary Value Problem 2.1 for the geometry (Γ, Dt).
From the solution u to Problem 2.1, we can evaluate the functional F (Ct,0)
of the Geometric Optimization Problem 3.3. Furthermore, we can employ
the sensitivity analysis of Chapter 3 to calculate Fréchet derivative

F ′[Ct,0;αiN ], i = 1, . . . , n,
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for the directions αiN , as it has been introduced in Theorem 3.36. Here, N
is given by (4.38) and the αi : Ct,0 → [0, 1] ⊂ R are smooth functions that
form a partition of unity for Ct,0 and satisfy αi(zj) = δij.

(According to Section 3.4 the perturbations αiN are defined on the boundary
only. But they can be extended to compactly supported vector fields on R

2

that meet the requirements of Section 3.4. In [39], Hohage has proposed
Whitney-type extension operators for a similar situation.)

3. Extension and Re-Distancing Step: The Fréchet derivative of F at
the current boundary Ct,0 in direction αiN indicates whether F is increasing
or decreasing when the current boundary Ct,0 is perturbed in direction αiN .
In this sense we can interpret the Fréchet derivative F ′[Ct,0;αiN ] for the
directions αiN as a ’boundary’ velocity via

Fn = −
n∑

i=1

F ′[Ct,0;αiN ]αiN (4.42)

which induces a perturbation of the current boundary that decreases the
functional F . We then extend Fn as the normal part Vn · N of a velocity
field in the spirit of (4.37). Simultaneously, we re-initialize the level set
function φ(·, t) to a signed distance function using a re-distancing algo-
rithm.

4. Propagation Step: Driven by the normal velocity Vn we propagate the
0-level set in a last step in artificial time. As Vn aims at decreasing the cost
functional F , we expect that F is indeed decreasing if we perform a discrete
time-step. We therefore numerically approximate the evolution of (4.39) by
performing a time-stepping algorithm. That is, we use an explicit forward
Euler time discretization with an appropriately chosen step size ∆t, and ex-
ecute one time step. For the spatial approximation of grad φ(·, t) we employ
techniques such as upwind differencing that have been especially developed
for hyperbolic conservation laws. In this way we obtain an approximation
for the level set function φ at the next time-level t+ ∆t.

The numerical implementation of the level set function φ and the normal com-
ponent Vn of the velocity field work as follows. We discretize an a priori chosen
computational domain with a uniform mesh xi,j with mesh size h in both direc-
tions. Then the discretized version of φ at time tk is given as a matrix φk of
discrete values φk(xi,j). Similarly Vn is discretized as matrix that contains the
values Vn(xi,j).
If realized naively, this method is inefficient, since the values for φ are close to
zero only in a comparatively small region of the computational domain. As we
neither expect nor want additional components of the 0-level set to occur in
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regions far away from the existing 0-level set, we discretize φ and Vn only in a
narrow band around the existing 0-level set, and assign either undefined values
or ±∞ to all grid points that are further away from the existing 0-level set than
some prescribed bandwidth. The idea of discretizing only a narrow band around
the current 0-level set is due to Adalsteinsson and Sethian [1]. We observe in
particular that the 0-level set never reaches regions with undefined values for φ
and Vn, as in the course of the re-distancing algorithm we automatically adjust
the narrow band to be centered around the 0-level set of the current time-level.

How to initialize a level set function for a given geometry?

This issue has to be adressed in the initial phase of a level set method, where in
terms of Problem 4.16 we have to find a level set function φ for the initial time-
level t = 0 that satisfies the initial conditions (4.36). As the literature on level set
methods is rather vague on this topic, we describe four off-hand approaches. The
first two are analytic methods, of which the first one may also be used directly
for numerical implementation. The second approach displays several drawbacks,
especially in its straightforward numerical implementation. Hence, we have also
included the third and fourth approach, which are numerical realization of the
second approach that overcome these drawbacks.

1. Let the simple, closed curve C be described as the solution to an algebraic
equation of the form

p(x1, x2) = c, x =
(
x1, x2

)
∈ R

2.

Then set

φ(x, 0) := ±
(
p(x1, x2) − c

)
, x =

(
x1, x2

)
∈ R

2

to obtain the corresponding level set function. Depending on whether
the domain D enclosed by C is meant to be {x ∈ R

2 : p(x1, x2) < c}
or {x ∈ R

2 : p(x1, x2) > c}, the corresponding sign has to be chosen for φ.

2. Let the simple, closed curve C be given in terms of a parametrization
z : [0, 2π) → R

2, and let D be the domain enclosed by C.
Then define the double-layer potential T D on C = ∂D with density ϕ ≡ 1
according to Definition 1.11 and set

φ(x, 0) :=
(
T D1

)
(x) +

1

2
,

where we consider the value of
(
T D1

)
for x ∈ ∂D by its direct value and

use that the double-layer potential with a constant density is constant in
the interior, respectively exterior of its domain (see [47], Example 6.16).
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3. Let the simple, closed curve C be given in terms of a parametrization
z : [0, 2π) → R

2, and let D be the domain enclosed by C. Assume that

• the grid is so fine that the distance between the intersection points
of C and any grid line is strictly larger than the mesh size h.

• the curve C is nowhere tangent to the grid lines.

Then for each grid line L (vertical or horizontal) calculate the intersection
points s between L and z as well as the unit normal νs at the intersections
pointing into the exterior of D. In the special case of s being a grid point
itself, we move s by h · 10−2 along L in any direction. (Observe that this
does not change the property that between any two intersections of C of
the same grid line L there is at least one grid point.) Then we assign to
the two uniquely determined grid points x+ and x− on L being next to s
the value

〈νs , x± − s〉
for φ, provided φ has not already been assigned with a smaller absolute
value. In this way we assign to each grid point that is ’next to an intersec-
tion’ a distance value that is at most the distance between the grid point
and the nearest intersection.

4. Let the simple, closed curve C be piecewise linear, i.e. D is a polygon with
corners given by {x1, . . . , xn}. Assume that

• the grid is so fine that the distance between the intersection points of C
and any grid line is strictly larger than the mesh size h. (This implies
in particular, that no side of the polygon lies on a grid line.)

• xi 6∈ L for any grid line L and any i = 1, . . . , n.

Then we can proceed as in the third method.

The first method is extremely simple to implement as long as one is content with
simple geometries such as circles or ellipses for an initial curve C. It will be
used throughout the examples of Section 5.3. The second approach is of nearly
no practical and also just of little theoretical importance. From the practical
side one has to bear in mind that the double-layer potential will in general be
approximated via a quadrature rule that becomes more and more inaccurate as
the evaluation point tends to ∂D. Precisely there, the sign of φ has to be most
reliable, which renders this method numerically unsatisfactory. From a theoretical
point of view the level set function obtained by the second approach is of rather
little value as the only information it contains is basically the information whether
a point is in D or not. This can be seen best from the equation

(
T D1

)
(x) +

1

2
=

1

2

(
χ

R2\D(x) − χD(x)
)
.
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The third and fourth approach may be viewed as more accurate versions of the
second approach. In the third method we still assume to know the parametriza-
tion of the boundary exactly, whereas in the fourth method we are only given a
polygon which may be interpreted as an approximation by linear splines. The
difference of both approaches to the second method is that we treat the grid
points nearest to the curve C as accurately as possible, and equip the discrete
values of φ with as much information about the distance from the point to the
curve C as possible.
One might pose the objection against these two methods that they only care about
the grid points nearest to the curve C and assign no values to grid points that are
further away. Fortunately, this objection can be ruled out with the observation,
that the assignment of distance values to grid points that are further away can
be subsumed under the issue of re-distancing, which will be treated in one of the
following paragraphs.
Secondly, we remark that for any reasonable choice for an initial curve C a mesh
size and shift can be obtained such that the technical assumptions on the third
and fourth method can also be neglected.

The above algorithms are concerned with creating a level set function for a simply
connected, bounded domain. The generalization to domains with an arbitrary
finite number of connected components is straightforward. After having built
level set functions φ1, . . . , φn for each connected component, we define

φ(x) := min
{
φ1(x), . . . , φn(x)

}
.

As the components are disjoint, we have for x ∈ Di = {y ∈ R
2 : φi(y, 0) < 0}

that φj(x, 0) > 0 for all j 6= i as well as φi(x, 0) < 0. Consequently φ(·, 0) satisfies

φ(x, 0) < 0 for all x ∈
n⋃

i=1

Di,

φ(x, 0) > 0 for all x ∈ R
2 \
(

n⋃

i=1

Di

)
,

φ(x, 0) = 0 for all x ∈
n⋃

i=1

∂Di.

We close this paragraph with the remark that the method described above also
works if the subdomains Di are not disjoint. In this case we can use the method
to create initial curves of more elaborate nature from rather simple ones.
Apart from this, multiple level set functions can also be used to distinguish
material properties that vary within the domain. We refer to [14, 17, 72] for
further studies on this idea.
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How to do the contouring?

Contouring is a task which level set methods normally seek to avoid as the evo-
lution of the 0-level set of φ is regarded as a side effect of the evolution of φ as a
whole, although it is the only evolution we are concerned about. This philosophy
of not resolving the 0-level set works fine as long as there is a more or less natural
way to define a velocity field in all of R

2 that induces the correct evolution. We
will see in the paragraph on velocity extension on page 141 that this require-
ment has been relaxed in the literature, in the sense that the velocity field has
to be given only in a small neighbourhood of the 0-level set. But still, off-front
evaluation of the velocity field is one of the keys to level set methods.

Unfortunately, there are numerous applications, where only on the 0-level set
itself the definition of a velocity makes sense. Examples can be found in etching
processes (see [2]) or Stefan problems (see [15]). The Geometric Optimization
Problem 3.3 also presents an example of that kind. In Chapter 3 we have intro-
duced the functional F as a measure for the deviation of the current distribution
on Γ from being constant. This deviation has been interpreted as a function of
the boundary ∂D, and the Fréchet derivatives of F in direction αiN have been
interpreted as a ’boundary’ velocity in (4.42).
The Geometric Optimization Problem 3.3 displays thereby that this class of appli-
cations, where off-front evaluation of the velocity field is undefined, provides two
problems. Not only that one needs to find a way how to extend the ’boundary’
velocity to a velocity field on all of R

2 which induces the correct evolution, but
one also needs to know the 0-level set exactly in order to calculate this ’boundary’
velocity.

Level set methods in general provide only a discrete approximation to the level set
function on the grid points of a uniform mesh. In the following we will use this
information in the spirit of the Fast Marching Method, which will be described
in detail in the paragraph on re-distancing, in order to find a finite set of points
{x(1), . . . , x(n)} on the 0-level set that forms a linear spline approximation to
it. We will furthermore use properties of the level set function to recover more
information about the 0-level set than just its position. In particular, we will
derive formulae for the normal and the curvature at the points x(k). In this way
we obtain all the information the boundary integral formulation of the Boundary
Value Problem 2.1 and the Geometric Optimization Problem 3.3 require in order
to numerically calculate the Fréchet derivatives of F in direction αiN .

Assume that we are given the discretized version φn ≈ φ(·, t) of the level set
function φ at time-level t, and assume that no grid point is on the 0-level set, i.e.
φn(xi,j) 6= 0. Then there is a well-defined band of grid cells through which the
0-level set is running. This is illustrated in Figure 4.4.
Observe in particular that it is sufficient for this that the level set function is
defined only on the grid points adjacent to the sides of the grid cell which the
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Figure 4.4: Possible position of the 0-level set for a given level set function φ

0-level set intersects. (In Figure 4.4 these grid points are marked with green
circles when φ is positive, they are marked with blue triangles when φ is negtive.)
Focussing on one particular grid cell and disregarding possible rotations as well as
a possible multiplication of the level set function with the factor −1, the position
of the 0-level set in that grid cell is given by one of the schematics of Figure 4.5.
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Figure 4.5: Schematics for the possible position of the 0-level set in a grid cell

The aim of a contouring algorithm now is to construct one, respectively two,
points x in this grid cell such that the resulting linear spline curve is a good
approximation to the 0-level set.

We begin with the treatment of the case displayed in Figure 4.5 a). Here, we have
distance values at all four grid points that build the corners of the grid cell, the
two at the upper corners being positive, the two at lower corners being negative.
We illustrate the following procedure in Figure 4.6. By linear interpolation along
the vertical grid lines we can find two points z1 and z2 where the linear approx-
imation to φ vanishes. Connecting z1 and z2 by a line we obtain a line segment



4.3. A LEVEL SET APPROACH FOR THE GOP 133

x1,1

x2,2

x2,1

1 / 2

x

x1,2

- (x )f 1, 1

f f(x )  - (x )2, 1 1, 1

(x )f 2, 2

f f(x )  - (x )2, 2 1, 2

1 / 2

(x )f 1,2

f f(x )  - (x )2,1 1,1

z2
- (x )f 1, 2

f f(x )  - (x )2, 2 1, 2

z1
nn

n

n

n

n

n

n n

n

n n

Figure 4.6: Illustration for the construction of x in the case of Figure 4.5 a)

in the grid cell which is an approximation to the 0-level set. As there is no more
information in the values of φ at the corners, in horizontal direction any point
on the constructed line can be used as a point approximating the 0-level set. For
symmetry reasons we therefore choose the point in the middle of the particular
line. The so constructed point x can be described as a convex combination of the
corners. If we assume that the lower left corner is indexed with (1, 1) we obtain

x := a1,1x1,1 + a2,1x2,1 + a1,2x1,2 + a2,2x2,2,

where the convex weights are given by

a1,1 =
φn(x1,2)

2(φn(x1,2) − φn(x1,1))
, a1,2 =

−φn(x1,1)

2(φn(x1,2) − φn(x1,1))
,

a2,1 =
φn(x2,2)

2(φn(x2,2) − φn(x2,1))
, a2,2 =

−φn(x2,1)

2(φn(x2,2) − φn(x2,1))
.

Furthermore, we can determine an approximation to the gradient of φ on the grid
cell for each corner by

grad φn(x1,1) ≈
(
φn(x2,1) − φn(x1,1)

h
,
φn(x1,2) − φn(x1,1)

h

)T

,

grad φn(x2,1) ≈
(
φn(x2,1) − φn(x1,1)

h
,
φn(x2,2) − φn(x2,1)

h

)T

,

grad φn(x1,2) ≈
(
φn(x1,2) − φn(x1,1)

h
,
φn(x2,2) − φn(x1,2)

h

)T

,

grad φn(x2,2) ≈
(
φn(x2,2) − φn(x1,2)

h
,
φn(x2,2) − φn(x2,1)

h

)T

.

(4.43)



134 CHAPTER 4. NUMERICAL TREATMENT

Consequently, the approximation to the gradient of φ is derived using the same
convex combination as above, and reads

grad φn(x) := a1,1 grad φn(x1,1) + a2,1 grad φn(x2,1)

+ a1,2 grad φn(x1,2) + a2,2 grad φn(x2,2).

Naturally, the gradient of φ is perpendicular to the level lines of φ and points into
the direction of the steepest ascent. Hence, it coincides with the exterior normal
to the boundary ∂D = Ct,0(φ) of D = {x ∈ R

2 : φ(x, t) < 0}.
Furthermore the curvature of the 0-level set is a quantity which is inherent in the
level set function. From geometry we know that the curvature of a curve is given
as the divergence of the unit normal. In terms of level set functions this means
that

κ(x) = div

(
grad φ

|grad φ|

)
. (4.44)

Using central differences φx, φy, φxx, φxy, φyy to approximate the first and second
order partial derivatives of φ at the corners xi,j we can calculate an approximation
to (4.44) on each grid point as

κ(xi,j) ≈
φxx(φy)

2 − 2φxφyφxy + φyy(φx)
2

((φx)2 + (φy))
3
2

, (4.45)

and thus derive the approximation for

κ(x) := a1,1 κ(x1,1) + a2,1 κ(x2,1) + a1,2 κ(x1,2) + a2,2 κ(x2,2).

The reason for using central differences for the curvature opposed to one-sided
differences for the gradient approximation is that the curvature is a diffusive term
while the gradient is advective.
Summarizing the above, we have found a point x approximating the 0-level set
in a grid cell of the type of Figure 4.5 a) together with approximations for ν(x)
and κ(x).

Next, we examine the situation of Figure 4.5 b). Here, differently to a) distance
values are available only for the corners x1,1, x1,2 and x2,1. Proceeding by linear
interpolation as in case a) finally leads to a point x that is closer to x1,1 as the
distance value φn(x1,1) indicates. Hence we choose a different approach. As we
only have distance values for x1,1, x1,2 and x2,1, only the approximation to the
gradient (4.43) in x1,1 is well-defined. Hence, we set

x := x1,1 − φn(x1,1)
grad φn(x1,1)

|grad φn(x1,1)|
(4.46)

as well as
grad φn(x) := grad φn(x1,1).
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Figure 4.7: Illustration for the construction of x in the case of Figure 4.5 b)

Note that in (4.46) the value of φn(x1,1) is negative. Therefore x lies indeed
inside the grid cell and approximates the 0-level set correctly. The procedure is
illustrated in Figure 4.7.
We also have to assign a curvature value to x. As mentioned above the curvature
is of a diffusive nature, so that it is not sensible to use only the curvature approx-
imation from x1,1 for x. Instead, we use a convex combination of the curvature
approximations from x1,1, x1,2 and x2,1 in the spirit of case of Figure 4.5 a). We
set

κ(x) := b1,1 κ(x1,1) + b2,1 κ(x2,1) + b1,2 κ(x1,2),

where κ(x1,1), κ(x2,1), and κ(x1,2) are obtained from (4.45), and where the convex
weights are given by

(
b2,1, b1,2

)
= − φn(x1,1)

h |grad φn(x1,1)|
grad φn(x1,1), b1,1 = 1 − b2,1 − b1,2.

Finally, we consider the case of Figure 4.5 c). We first observe that this case is
of a rather philosophical nature as the topology of the 0-level is not determined
from the values of φ at the corners. The possible topologies are illustrated in
Figure 4.8.
We see that the resolution of the mesh is just not fine enough to resolve the
correct topology. In such a situation we assume that the 0-level set is given by
the right-hand side option as this ensures that the region where φ is positive
remains connected. Thereby we try to avoid the formation of holes in the region
where φ is negative, and which is interpreted as the domain D.
As soon as this choice has been made, we can treat the disconnected parts of the
0-level set separately. This yields twice the case of Figure 4.5 b), which then is
treated as described above.

If we proceed as described above for all grid cells through which the 0-level set
is running, we obtain a set of points {x(1), . . . , x(n)} that is roughly of the same
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Figure 4.8: Possible topologies for the regions φ > 0 and φ < 0 in the case of
Figure 4.5 c)

number as the number of grid cells through which the 0-level set is running.
The set approximates the 0-level set yielding, together with the approximations
{ν(x(1)), . . . , ν(x(n))} for the normal and {κ(x(1)), . . . , κ(x(n))} for the curvature, a
discrete approximation to a C2-smooth curve. Still, the sets are not yet ordered,
but an ordering that corresponds to a positive orientation can be obtained as
follows. Picking an arbitrary point x(k), we obtain the corresponding grid cell
through which the 0-level set is running. We know that it leaves the grid cell
through two of its sides and choose the one that is roughly obtained by turning
the corresponding normal ν(x(k)) counter-clockwise by 90 degrees. Once the next
grid cell has been determined we can add the point x(j) from that grid cell to the
ordered set of points. Now furthermore, the next grid to be considered is uniquely
defined since the 0-level set does not fork. Iterating this procedure, we obtain an
ordering of the boundary points that corresponds to a positive orientation.

If we arrive at the point x(k) chosen in the first place before all other points have
been used, this indicates that the 0-level set has several connected components.
We then pick again an arbitrary point of the not yet ordered points and proceed
as above. In this way we also immediately gain the information about the number
of connected components of which the 0-level set consists.

How to do the re-distancing?

Let us begin the discussion with an explanation for the need of re-distancing by
considering the following example.
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Example 4.19. Consider the Initial Value Problem 4.16 with initial conditions
given by C0,0(φ) = {x ∈ R

2 : |x| = 3} and the normal velocity field

Fn(r, θ, t) := 2(r − (3 + 2t)) sin(4θ) + 2 (4.47)

in polar coordinates. Then the 0-level set of the solution φ to Problem 4.16 is
an expanding circle of radius (3 + 2t) given that φ initially satisfies |grad φ| = 1
on C0,0. From the level set equation (4.39) we see that φ satisfies

∂φ

∂t

∣∣∣
t=0

= −2|grad φ|

on C0,0 for all angular directions. If we now suppose that the level sets of φ(·, 0)
are given as concentric circles, we observe that the other level sets of φ do not
move with constant speed with respect to the angle θ, as is obvious from (4.47).
So, for example, the circle with radius 4 around the origin does not expand as a
circle. Instead, we have Fn(4, π

8
, 0) = 4 for the angle θ = π

8
, while for θ = −π

8
we

have Fn(4,−π
8
, 0) = 0. Consequently, the initially circular c-level sets for c 6= 0

become more and more distorted as we propagate in time.

Example 4.19 displays that the gradient of φ can flatten in certain angular regions,
whereas it can become rather steep in other angular sectors. This then implies
that the quality of the finite difference approximations to the gradient and to
other geometric quantities become less and less accurate as we propagate in time,
which may lead to considerable deterioration of the entire method.

The idea of re-distancing has been invented to overcome this unfavourable be-
haviour of certain velocity fields. The aim is to modify the level set function φ

such that the 0-level set remains unchanged, but the gradient of φ has the same
magnitude almost everywhere. In other words, re-distancing seeks to restore the
signed distance function property

∣∣grad φ
∣∣ = 1 (4.48)

on the computational domain.

In the literature, one can mainly find two concepts for re-distancing. The first
approach, often refered to as the re-initialization equation, seeks to restore the
signed distance function property (4.48) by solving the auxiliary initial value
problem

∂φ̂

∂t
+H(φ(·, t0))

(
|grad φ̂(x, t)| − 1

)
= 0, φ̂(·, 0) = φ(·, t0)

for φ̂ to steady state, and use the steady state of φ̂ as a new initialization for
the level set function φ(·, t0). Here H is the Heavyside function. This auxiliary



138 CHAPTER 4. NUMERICAL TREATMENT

problem resembles the level set equation with the difference that it does not move
the 0-level set at all, whereas all other level sets are driven towards restoring the
signed distance function property (4.48). For a closer study of re-distancing using
the re-initialization equation we refer to [54, 71].

In this work we will employ an approach that has been proposed by Sethian
in [64] under the name of Fast Marching Method (see also [66]). The key idea
of this approach is to restore the signed distance function property (4.48) by
interpreting the distance of a point to the 0-level set as the crossing time of a
moving front, that is travelling out from the 0-level set in normal direction with
unit speed. Formally, this can be framed as a boundary value problem for the
eikonal equation, namely we seek a solution of

|grad φ̂| = 1, φ̂(x) = 0 ⇔ φ(x, t0) = 0.

In the numerical realization, the Fast Marching Method treats the positive side
and the negative side of the 0-level set separately. It assumes that there are
accurate distance values given for all grid points nearest to the 0-level set on the
particular side under consideration. These grid points are tagged as ’accepted’.
We then march outwards from the accepted grid points assigning ’tentative’ values
to all neighbouring grid points, that are not yet accepted. These grid points are
tagged as ’trial points’, while all other grid points are tagged as ’far away’. The
tentative values are obtained from an upwind formulation for the discretization
of |grad φ̂|2 = 1, that can also be thought of as applications of Huygen’s principle
(see [66], Chapter 8). For the assignment of tentative values we have to distinguish
between five different cases.

a) In the case of a ’trial point’ xi,j having just one ’accepted’ neighbour xs

with a distance value φs this means that we solve
(
φi,j − φs

h

)2

= 1 (4.49)

for φi,j. From the point of view of Huygen’s principle (4.49) the value φi,j

is obtained as the time when a circular front with unit speed reaches xi,j

provided it starts at xs at time φs.

b) In the case of a ’trial point’ xi,j having two ’accepted’ neighbours such
that xi,j lies on the connecting line, Huygen’s principle tells to consider the
solutions to (4.49) for each of the neighbours separately, and use the smaller
one as the value for φi,j .

c) In the case of a ’trial point’ xi,j having two ’accepted’ neighbours xs1 , xs2

such that the three points are not collinear, the upwind approximation
to |grad φ̂|2 = 1 reads

(
φi,j − φs1

h

)2

+

(
φi,j − φs2

h

)2

= 1, (4.50)
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which again needs to be solved for φi,j . As (4.50) is a quadratic equa-
tion it may have two or only one solution, or maybe even no solution at
all. Although the latter two cases can be ruled out theoretically from the
perspective of Huygen’s principle, they may occur in practice due to poor
or inconsistent initial data or numerical error. As an indicator for such a
situation we may use the sign of

(
φs2 − φs1

h

)2

− 1. (4.51)

If the sign is positive, we are confronted with poor data. In this case we
neglect the neighbour corresponding to the larger value of {φs1 , φs2} and
proceed with the other neighbour by applying case a). In the other case,
when the sign of (4.51) is non-positive, we can be sure that at least one
solution to (4.50) exists. We then choose the solution of (4.50), which
corresponds to the ’+’-sign in the quadratic formula, as ’tentative’ distance
value for φi,j.

d) In the case of the ’trial point’ xi,j having three ’accepted’ neighbours, these
can be grouped as two times case c). Again, Huygen’s principle tells to
consider the solutions to the two situations separately, and use the smaller
one. It turns out that it is equivalent to first apply case b) to the two
neighbours being collinear with xi,j to find the correct side, and then apply
case c) to this point and the remaining neighbour.

e) In the case of the ’trial point’ xi,j having four ’accepted’ neighbours, we
proceed in the spirit of d) and apply c) to each non-collinear pair, and
then take the minimal value. Equivalently, we apply b) to both collinear
directions to find the correct sides, and then apply c) only once.

After all ’trial points’ have been assigned according tentative values, we begin
the marching process, repeating the following steps:

1. We tag one of the ’trial points’ as ’accepted’, namely the one that has the
smallest ’tentative’ value, since this ’trial point’ is reached first by a front
moving outward from the band of ’accepted’ grid points with unit speed.

2. We then tag all neighbouring grid points of this newly ’accepted’ grid point
that are not yet accepted as ’trial points’. This means that some ’far away’
points will become ’trial points’, and some ’trial points’ will get their tag
renewed.

3. We (re-)calculate the ’tentative’ distance values for all ’trial points’, where
the tag has been changed or renewed in the previous step. This can be
interpreted from the point of view of Huygen’s principle: The newly ’ac-
cepted’ point sends out a circular wave with unit speed that contributes to
all neighbouring grid points that have not yet been accepted.
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The Fast Marching Method is an upwind method in the sense of the third step,
as the distance values only influence grid points with larger distance values. So
the information is flowing away from the 0-level set or downwind. We illustrate
the marching process in Figure 4.9.

accepted points 

trial points 

far away points 

0−level set 

trial point with 
smallest tentative value           

accepted points 

trial points 

far away points 

newly accepted
point         

new trial point
(compute
tentative value)

refreshed trial point
(re−compute
tentative value) 

Figure 4.9: Illustration of the way the Fast Marching Method works

In the upper schematic, we see a possible situation for the Fast Marching Method
with the ’accepted’ grid points marked as blue triangles, the ’trial points’ in as red
circles, and the ’far away’ grid points as black squares. Consider the ’trial point’
with minimum ’tentative’ distance value as indicated. In the lower schematic we
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see how the bands of ’accepted’, ’far away’ and ’trial points’ have changed after
the grid point with minimum tentative distance value has been accepted to the
’accepted’ grid points. The grid point itself now has a blue triangle as tag and is
indicated as newly accepted point. The neighbours that are not yet accepted get
their tags re-refreshed. In the schematic the lower and right hand side neighbours
are affected. The left hand side neighbour has not had a tentative distance value
before as it was tagged as ’far away’. The lower neighbour has had a tentative
distance value before, which we have to re-compute as it now is a ’trial point’
with two accepted neighbours instead of only one as before. Note furthermore
that the tentative values of all other ’trial points’ remain unaffected, because the
tags of their neighbours have not changed.

Proceeding in this way, we assign distance values in an ascending order to all grid
points. The complexity of this algorithm if of order O(n log n), where n is the total
number of grid points. Note that the log n term is due to the fact that after each
accepting of a grid point, we have to find the ’trial point’ with minimal tentative
value, which involves a sorting algorithm that has complexity O(n log n). In [54]
Osher and Fedkiw suggest to exploit a heapsort algorithm as used by Tsitsiklis
in [73], but we have found the implemented min-algorithms of standard software
packages to be much faster than C-implementations of heapsort.
Furthermore, we observe that the Fast Marching Method and the narrow band
technique described on page 128 complement each other ideally. On the one hand
the narrow band technique reduces the overall complexity of the Fast Marching
Method as it reduces the number of points to which we have to assign a distance
value. On the other hand the desired bandwidth for the narrow band technique
is easily realized in the framework of the Fast Marching Method. Namely, we
simply stop tagging ’far away’ points as ’trial points’ once we have reached the
desired bandwidth. This creates a natural stopping criterion for the Fast Marching
Method.

How to extend a ’boundary’ velocity?

Let us first of all discuss the need for extending a ’boundary’ velocity. Although
we are interested only in the 0-level set of the solution φ to Problem 4.16, we see
from the level set equation (4.39) that in the initial value formulation the normal
component Vn of the velocity field has to be known on all of R

2, i.e. for all level
sets. Contrary to the examples in the paper of Sethian and Osher [56] or the
examples for curvature driven motion (see [54], Chapter 4), where the geometry
of the other level sets naturally defines a velocity field everywhere, there are many
situations such as the Geometric Optimization Problem from Chapter 3, where
there exist no natural speed functions off the 0-level set. As such a speed function
is needed to make the level set algorithm work, it has to be somehow obtained
from the well-defined ’boundary’ velocity.



142 CHAPTER 4. NUMERICAL TREATMENT

The issue of creating an extension velocity has been around in several applications
of level set methods (see for example [3, 15, 67, 71, 77]), although none of these
schemes seems to have proved superior against the others. It has been common
to all these approaches that explicit formulations for the ’boundary’ velocity were
proposed, for which it made sense to evaluate them not only on the 0-level set
itself, but also in a small neighbourhood of it. Thereby these approaches already
solved the most immediate difficulty of creating a meaningful velocity somewhere
off the 0-level set. In a second step, the values for the velocity in this small
neighbourhood were extended in an appropriate fashion to all 0-level set. In our
description we will follow the approach of Adalsteinsson and Sethian [3] for the
second step, as their approach can be easily incorporated into the re-distancing
algorithm. For the first step we will present a newly developed approach that
carries the idea of [3] one step further.

Let us therefore illustrate the idea of [3] in more detail. Suppose that we are
given a level set function φ, which is a signed distance function, i.e. φ satisfies the
signed distance function property (4.48). Furthermore we are given a ’boundary’
velocity Fn, which we interpret as the restriction of the normal component Vn of
a velocity field to the 0-level set via

Vn

∣∣∣
Ct,0(φ)

= Fn. (4.52)

We immediately see that the requirement (4.52) for Vn leaves considerable amount
of freedom to design a velocity with desirable features. Adalsteinsson and Sethian
raise the natural claim that the first property an extension velocity should have,
is to retain the properties of the level set function φ, namely the signed distance
function property (4.48). As a sufficient condition they required the extended
velocity to be constant perpendicular to the level lines of φ, i.e. the extended
velocity Vn has to satisfy

〈grad Vn , grad φ〉 = 0. (4.53)

That (4.53) is indeed a necessary and sufficient condition can be seen from the
following simple calculation assuming that Vn and φ are smooth. Then it holds
that

∂

∂t
|grad φ|2 = 2

〈
grad φ , grad

∂φ

∂t

〉

= −2
〈
grad φ , grad (Vn|grad φ|)

〉

= −2
〈
grad φ , grad Vn

〉
,

where we have used the level set equation (4.39) and the signed distance function
property (4.48) of φ at time t0.

Algorithmically, the creation of an extension velocity satisfying (4.53) can be
easily incorporated into the Fast Marching Method described in the paragraph on
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re-distancing. Assume that we have finished the initial step of the Fast Marching
Method and assigned ’tentative’ distance values to all ’trial points’ for the initial
band of accepted grid points. Assume furthermore that we have values for Vn on
the accepted grid points. (This is the numerical eaquivalent to the widely used
assumption from the literature that the ’boundary’ velocity can be evaluated in
a small neighbourhood of the 0-level set.)
As we tag the ’trial point’ xi,j with minimal ’tentative’ distance value φi,j as
’accepted’, we know that the distance value is obtained either from the knowledge
of a single neighbouring grid point xs, or from the knowledge of two neighbouring
grid points xs1 and xs2 which are not collinear as a triplet (xi,j, xs1 , ss2). For the
first case we may assume without loss of generality that xi,j and xs coincide in
their second component. Then the approximation to the gradient of φ vanishes
in the second component so that the discrete upwind analog of (4.53) is given by

〈(
φi,j − φs

h
, 0

)
,

(
Vi,j − Vs

h
,
Vi,j − V ∗

h

)〉
= 0,

which can be solved for Vi,j yielding

Vi,j = Vs. (4.54)

We note in particular, that we only use the known value Vs for the construction
of Vi,j , while the unknown value V ∗ is neglected due to our assumption on the
gradient direction for φ. For the second case we similarly assume without loss
of generality that xi,j and xs1 coincide in their second component, while xi,j

and xs2 coincide in their first component. Then both influence the gradient
direction for φ and the upwind discretization of (4.53) reads

〈(
φi,j − φs1

h
,
φi,j − φs2

h

)
,

(
Vi,j − Vs1

h
,
Vi,j − Vs2

h

)〉
= 0,

which is again solved for Vi,j to find

Vi,j =
Vs1(φi,j − φs1) + Vs2(φi,j − φs2)

(φi,j − φs1) + (φi,j − φs2)
. (4.55)

In this case both values Vs1 and Vs2 that contribute to Vi,j are known, since they
belong to grid points with an ’accepted’ distance value.

As all other cases occuring in the algorithm of the Fast Marching Method can
be described as the combination of a preliminary step and one of the two cases
above, (4.54) and (4.55) give a complete algorithm for the creation of an extension
velocity satisfying a discrete form of (4.53) that is easily incorporated into the
Fast Marching Method provided we have values for Vn at the grid points ’closest’
to the 0-level set.
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As mentioned before, the existing approaches in the literature assume that the
values for Vn at the grid points ’closest’ to the 0-level set can be obtained from
some analytical expression. In our approach we differ from this widely used
assumption, and try to follow a concept which is in a certain sense the dual
formulation to the contouring algorithm described in one of the the previous
paragraphs. In the contouring algorithm we have considered a grid cell, through
which the 0-level set is running, and extrapolated the position of a point on the
0-level set from the known distance values on the grid points at the corner of this
grid cell. The dual formulation for the extension of a ’boundary’ velocity, which
is assumed to be known on exactly these points on the 0-level set, consists in
extrapolating these values using the information about the gradient direction on
the 0-level set.

To be more specific, let us consider a grid point xi,j which is ’closest’ to the
0-level set. Then, in at least one of its neighbouring grid points, the level set
function φ has a different sign, and as the level set function is continuous, the
0-level set intersects the grid line which connects these two grid points. Thus,
there are at least two grid cells adjacent to xi,j through which the 0-level set is
running, and we know from the contouring algorithm that in each of these grid
cells we have constructed a point x(k) that approximates the position of the 0-level
set. Furthermore, we know from the contouring algorithm that we can divide the
position of the 0-level set in an indivdual grid cell into two types which are shown
in Figure 4.4 a) and b). In each case we can calculate

i) the distance di,j := |x− xi,j| between the point x on the 0-level set and the
grid point xi,j that is a corner of the grid cell. In case of Figure 4.10 a) the
point xi,j may be any corner, in the case of Figure 4.10 b) it may be one of
the upper corners or the lower right corner.

ii) the signed distance si,j between the corner xi,j and the point xprop. The
location of xprop is obtained as follows. Consider the grid line L through the
corner xi,j which does not intersect with the 0-level set on the grid cell under
consideration. Then propagate x in normal direction until it reaches the
grid line L, and define xprop as the intersection point. Now si,j is obtained
by solving

x+ t grad φ(x, t0) = xi,j + si,j vi,j , (4.56)

where vi,j ∈ {±e1,±e2} is chosen as the direction parallel to L pointing
from xi,j into the grid cell under consideration.

The above algorithm is depicted in Figure 4.10. We guarantee its soundness with
the following remarks.

Remark 4.20. For the distances di,j and the signed distances si,j the following
holds:
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1. The normal direction at x and L always intersect, since the normal direction
at x is given by the approximation to the gradient at x. Consequently,
the normal direction being parallel to L would imply that the level set
function φ is constant perpendicular to L. This is a contradiction as the
0-level set intersects the grid line perpendicular to L, and hence the signs
of the level set function φ at xi,j and at the neighbouring grid point on that
grid line are different.

2. In Figure 4.10 b) we cannot determine a grid line L for the lower left corner
that does not intersect with the 0-level set on the grid cell. But we note
that the contouring algorithm has constructed

x := xi,j − φn(xi,j)
grad φn(xi,j)

|grad φn(xi,j)|
,

which implies that (4.56) yields si,j = 0 for any choice of L and vi,j .
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grad ( x )f
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grad ( x )f
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a) b)

x

xprop

v2,2
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L L

v1,2

Figure 4.10: Illustration of the construction of di,j, xprop and si,j for the possible
positions of the 0-level set in a grid cell

Proceeding in this fashion for all grid cells adjacent to xi,j through which the
0-level set is running, we obtain from each of these grid cells a set of values of
the form (d

(k)
i,j , s

(k)
i,j , f

(k)), where f (k) is the value of the ’boundary’ velocity at x(k)

and the upper index (k) denotes the dependence on the grid cell. Then the value
of the extension velocity Vn at xi,j is obtained as follows.

In the case {s(k)
i,j ≤ 0} 6= ∅ we define

Vn(xi,j) := f (k0), where

∣∣∣∣∣
d

(k0)
i,j

f (k0)

∣∣∣∣∣ = min

{∣∣∣∣∣
d

(k)
i,j

f (k)

∣∣∣∣∣ : s
(k)
i,j ≤ 0

}
, (4.57)
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and in the case {s(k)
i,j ≤ 0} = ∅ we define

Vn(xi,j) :=
s
(k2)
i,j f (k1) + s

(k1)
i,j f (k2)

s
(k1)
i,j + s

(k2)
i,j

, (4.58)

where the grid cells k1, k2 are chosen such that

• the restriction of the 0-level set to these grid cells is a connected set,

• the weighted sum

qi,j (k1, k2) :=
s
(k2)
i,j

s
(k1)
i,j + s

(k2)
i,j

∣∣∣∣∣
d

(k1)
i,j

f (k1)

∣∣∣∣∣+
s
(k1)
i,j

s
(k1)
i,j + s

(k2)
i,j

∣∣∣∣∣
d

(k2)
i,j

f (k2)

∣∣∣∣∣

of the arrival times is minimal over all pairs of grid cells satisfying the first
property.

In words, the above way of defining an extension velocity on the grid points
’closest’ to the 0-level set works as follows.
If there are points x(k) on the 0-level set in grid cells adjacent to xi,j , that would
hit xi,j directly when propagated in normal direction, we determine the one which
would reach xi,j first and extend the according value of the ’boundary’ velocity
the grid point xi,j. (Note that in (4.57) we are minimizing the quotient of distance
and speed, i.e. the time when the 0-level set moving from x(k) with speed f (k) in
the direction of xi,j would reach xi,j .) This case occurs whenever xi,j is the lower
left corner of (a maybe rotated version of) Figure 4.10 b).
For all the other corners in Figure 4.10 the propagation of x(k) in normal direction
does not necessarily lead to hitting xi,j, but we see that it might happen in the
case of Figure 4.10 a) that x(k)

prop lies on the other side of xi,j, i.e. that the signed

distance s
(k)
i,j is negative. In that case there has been an intermediate time where

the position of the 0-level set is of the form of Figure 4.10 b). Hence, we assume
in this case that f (k) is the only value of the ’boundary’ velocity that influences
the extension velocity Vn(xi,j) from this grid cell. This is why the case s

(k)
i,j < 0

is subsumed under (4.57).

The remaining case to consider is that a point x(k) on the 0-level set does not
hit xi,j directly, and the propagated point x(k)

prop on the same grid line of xi,j has

a positive signed distance s
(k)
i,j to xi,j . Then the reasoning is as follows. The

further apart x(k)
prop and xi,j are, the less influence f (k) should have on Vn(xi,j),

and the closer they are, the more influence f (k) should have. Assume that we
have one set of values (d

(k1)
i,j , s

(k1)
i,j , f (k1)) for xi,j . As we have argued before, the

0-level set leaves the grid cell through one grid line on which xi,j lies. Hence,
the 0-level set also goes through the neighbouring grid cell and provides a second
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set of values (d
(k2)
i,j , s

(k2)
i,j , f (k2)) for xi,j there. Now both f (k1) and f (k2) influence

the extension velocity Vn(xi,j). Hence, we extend the ’boundary’ velocity using
a convex combination of f (k1) and f (k2) that is inversely proportional to the
distances between the grid point xi,j and the propagated boundary points x(k)

prop,

i.e. f (k1) is weighted stronger than f (k2) in (4.58) if s
(k1)
i,j < s

(k2)
i,j , and vice versa.

Since the configuration described above might occur several times for xi,j (at most
once for each direction), we have to decide in the case of multiple occurences which
convex combination to take. As a criterion we use the same convex combination
for the arrival times that has been used for the values of the ’boundary’ velocities,
following the idea that the point with the smaller value for the signed distance
should get a stronger weight, and vice versa.

We illustrate the way the algorithm works in two examples in Figure 4.11. In
Figure 4.11 a) there are two grid cells with boundary points x(k1) and x(k2) such
that xi,j is exactly in normal direction. Hence, the value for the extension velocity
is chosen using (4.57). In Figure 4.11 b) for none of the boundary points xi,j is in
normal direction. Hence, we choose the pair of boundary points x(k1) and x(k2),
lying on the same connected part of the 0-level set, for which the sum of the
weighted distances is smallest. Then the value for the extension velocity is ob-
tained by a convex combination of f (k1) and f (k1) that is inversely proportional to
the distance between xi,j and the propagated points x(k1)

prop and x(k2)
prop using (4.58)

for the corresponding choice of k1 and k2.

How to propagate a level set function in time?

The time-stepping algorithm is the best understood algorithm in level set methods,
and their strongest point. Various schemes have been proposed yielding different
temporal and spatial accuracy. For an overview we refer to the book by Osher and
Fedkiw [54]. The common characteristic of all proposed schemes is the particular
perspective that is taken for the discretization of the spatial gradient, which
is taken from hyperbolic conservation laws. We will illustrate this idea in the
following example.

Example 4.21. Consider the one-dimensional wave equation

ut(x, t) + ux(x, t) = 0, u(x, 0) = f(x), (4.59)

which has the exact solution u(x, t) = f(x−t). This means that the characteristics
for u are lines of slope 1. In other words, information is travelling from lower
values of x to higher values of x.
If we are going to discretize (4.59), we have to think of schemes that approximate
this behaviour most adequately. Using Taylor expansion in the time-variable we
find

ut(x, t) =
u(x, t+ ∆t) − u(x, t)

∆t
+ O

(
(∆t)2

)
.
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Figure 4.11: Extension of a ’boundary’ velocity to the grid points closest to the
0-level set - two examples
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Similarly, for the discretization of the spatial derivative we may choose

D−
x u :=

u(x, t) − u(x− h, t)

h
,

D+
x u :=

u(x+ h, t) − u(x, t)

h
,

D0
xu :=

u(x+ h, t) − u(x− h, t)

2h
.

Although D0
xu is the most accurate approximation to ux(x, t), the approach via

the characteristics suggests to use D−
x u instead, as u(x, t + ∆t) is then built

from the information of u(x, t) and u(x − h, t), i.e the information information
is roughly flowing in the direction of the characteristics, whereas choosing D+

x u

or D0
xu would cause the information to flow numerically in a direction almost

perpendicular to the characteristics.

Example 4.21 shows that in a hyperbolic system the approximation to the spatial
gradient has to depend on the direction in which the information is propagating.
In view of the level set equation (4.39) this means that the approximation of the
spatial gradient has to be chosen depending on the sign of Vn.

For our work we have employed the most simple forms of discretization for both
the temporal and the spatial variables of the level set equation (4.39), namely
first order accurate explicit forward Euler time discretization

∂φ(x, t)

∂t
≈ φ(x, t+ ∆t) − φ(x, t)

∆t

as well as first order accurate upwind discretization for the spatial gradient ac-
cording to Godunov’s scheme, which we apply using the formulae of Rouy and
Tourin [61]:

(
∂φ(x, t)

∂xi

)2

≈ max
(
max

(
D−

x,iφ, 0
)2
,min

(
D+

x,iφ, 0
)2)

if Vn(x, t) > 0, and

(
∂φ(x, t)

∂xi

)2

≈ max
(
min

(
D−

x,iφ, 0
)2
,max

(
D+

x,iφ, 0
)2)

if Vn(x, t) < 0. Here we have set

D−
x,iφ :=

φ(x, t) − φ(x− hei, t)

h
, D+

x,iφ :=
φ(x+ hei, t) − φ(x, t)

h

for the standard unit vectors e1 and e2. This finally leads to the update

φ(x, t+ ∆t) := φ(x, t) − ∆t Fn(x, t)

√(
∂φ(x, t)

∂x1

)2

+

(
∂φ(x, t)

∂xi

)2

, (4.60)
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which can be easily implemented.

Let us finish this paragraph with a remark on the choice of the time-step. The
time-step ∆t cannot be chosen arbitrarily in order to yield a convergent method.
The general theory on finite difference approximations to linear partial differential
equations states that a scheme is convergent if and only if it is consistent and
stable, where the stability requirement guarantees that approximation errors are
not amplified as we propagate in time.
Stability can be enforced using the Courant-Friedrichs-Levy condition, which says
that the numerical wave should propagate as fast as the physical one. This leads
to the time-step restriction

∆t <
h

‖Vn‖∞
, (4.61)

where h is the mesh size for the spatial discretization. In practice the choice

∆t = 0.9
h

‖Vn‖∞
has proved very successful. In view of level set methods the Courant-Friedrichs-
Levy condition can also be interpreted in a second way. It states basically that in
one time-step the 0-level set should nowhere propagate more than one grid cell.



Chapter 5

Numerical examples

In this chapter we present numerical results that confirm the feasibility of the
algorithms proposed in Chapter 4 for both the Boundary Value Problem 2.1 and
the Geometric Optimization Problem 3.3.

5.1 The Boundary Value Problem

In this section we are going to discuss the feasibility of the constructive approx-
imation algorithm for the solution u of the Boundary Value Problem 2.1. We
will provide evidence that with our implementation of the algorithm presented
in Section 4.1 we can indeed obtain exponential convergence rates in the case
of Γ and ∂D being analytic.
For an exemplary geometry we will furthermore present illustrations of the dis-
tribution of the components of the magnetic field B as well as the corresponding
current distributions.

Let us begin with a description of the geometric and physical setup for the first of
the two exemplary cases we are going to study. For applicational reasons, which
we are going to present in the sequel, it will be the one which we study in detail.

Example 5.1. Let the arc Γ be a line segment of the x1-axis given by

Γ :=
{
x = (x1, x2) ∈ R

2 : x1 ∈ [−1, 1], x2 = 0
}
.

Let D be a simply connected, kidney-shaped domain contained in the right half-
plane with center x0 = (1.4, 0)T ∈ R

2, the boundary of which is given by

∂D :=
{
x = x0 + r(t)(cos t, sin t) ∈ R

2 : t ∈ [0, 2π)
}
,

where the radial function r is given by

r(t) := 0.5 + 0.35 cos t− 0.05 cos 2t, t ∈ [0, 2π).

151



152 CHAPTER 5. NUMERICAL EXAMPLES

−1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 p1

p2
p3

p4

Γ 

D 

∂D 

De 

µ = 1 

µ = 50 

e 

1 

Figure 5.1: Geometric setup for Example 5.1.

Obviously, both boundaries are analytic.

The physical parameters for the magnetic permeabilities are set to µe = 1 and
µ1 = 50, the total current is set to I = 10. The setup is depicted in Figure 5.1.

The geometric setup is of a rather simple nature, and contains symmetries. From
an applicational point of view Example 5.1 is particularly interesting. In practice,
thin superconducting films are built by epitaxial chrystal growth of the super-
conducting material on some flat, non-conducting substrate (see also Figure 1).
Hence, modelling the film by a line segment is most appropriate as it is almost the
only geometry, for which we can compare the mathematical model with physical
experiments. The symmetry of D with respect to the line defined by Γ is also
justifiable from the invariance of the entire system with respect to translations.

Table 5.1 displays the values of the solution to Problem 2.1 for the exemplary
geometry and parameters given in Example 5.1. Here, n denotes the level of
the discretization in the sense that we have discretized ∂D using n equidistanly
spaced collocation points. Similarly, Γ has been discretized using n + 1 collo-
coation points that are chosen such that they are equidistantly spaced after the
cosine substitution. The solution u has been evaluated in the points p1, p2, p3

and p4 which are marked by ∗ in Figure 5.1. Thus, Table 5.1 reveals that we can
indeed recover the theoretical result of Corollary 4.7 for the analytic geometries
of Example 5.1 and obtain exponential convergence as discretization gets finer.
The exponential convergence may be checked by the rule of thumb which states
that the number of correct digits doubles when the discretization level doubles. If
we compare the convergence behaviour for p1 and p2 or for p3 and p4, we see fur-
thermore that the exponential convergence sets in the later the nearer the point
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is to either Γ or ∂D. This is also expected from Corollary 4.7 as the constant C
in (4.11) depends on the distance between x and Γ or ∂D.

n p1 = (0, 1) p2 =(−0.7, 0.05) p3 = (1.6, 0.2) p4 = (2,−0.4)
8 -1.520927088895 -0.037599875532 -1.898003565254 -3.179545568397

16 -1.520351860980 -0.108320070213 -1.896468850137 -3.454160875251
32 -1.520355179455 -0.118897716268 -1.896929014141 0.828562085719
64 -1.520355180674 -0.119328288116 -1.896929178871 -2.268415137929

128 -1.520355180674 -0.119328237529 -1.896929178878 -2.854189897583
256 -1.520355180674 -0.119328237297 -1.896929178878 -2.852754451516
512 -1.520355180674 -0.119328237297 -1.896929178878 -2.852754227133

Table 5.1: Convergence results for Example 5.1.

From the physical point of view we are interested in the global behaviour of
the potential u and its partial derivatives. The reason for this has been stated
in the introduction. Namely, the partial derivative with respect to x1 can be
interpreted as the negative of the x2-component of the magnetic field B for the
physical model and vice versa. Similarly, the x1-component of B corresponds to
the partial derivative with respect to x2. The potential itself is also interesting
as its level lines can be interpreted as the magnetic field lines of B. In the
Figures 5.2 - 5.4 we therefore illustrate the behaviour of the potential and its
partial derivatives.

Let us make an explanatory remark for the figures first. If we take a closer look
at the representation (2.10) for the potential u we see that it depends on the
magnetic permeability µ given by (2.1). Now µ is piecewise constant with value
µ = 1 in the exterior and value µ = 50 in the interior of D. This induces a large
amplification of the values for the partial derivatives of u in the interior of D. For
visualization purposes we have suppressed this amplification by setting µ ≡ 1 in
all of R

2 when evaluating.
In Figure 5.2 we have displayed the distribution of the potential u that solves
Example 5.1. The position of the arc Γ is marked by the solid black line, the
position of ∂D by the chequered areas. These areas have not been treated espe-
cially, they mark the area where the quadrature rule with which we approximate
the double-layer potential yields unreliable results. For a better visualization we
have also marked the isolines of the potential by the thin black lines.
If we examine Figure 5.2 a little more in detail, we see that the symmetry between
the left-hand side of the arc Γ and the right-hand side in exterior of D is disturbed
by D. The isolines of u have a fixed angle at the boundary of D between the
inside and the outside. This angle is determined by the ratio of the magnetic
permeabilities µe and µ1 outside and inside D. In comparison, the disturbance
of the ellipse-shaped isolines is a little more pronounced on the side of D which
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Figure 5.2: Distribution of the potential for Example 5.1 with superimposed
isolines.

is not facing Γ. We observe in particular that the domain, or physically speaking
the magnet, sucks in the isolines. In this sense it conditions the magnetic field
surrounding the arc Γ.

Next, we consider the horizontal and vertical component of the magnetic field
that are obtained from the potential according to (1). In Figure 5.3 we have
depicted the horizontal component of the magnetic field B which correspondes

to ∂u
∂x2

. It already gives an impression how the jump
[

∂u
∂νΓ

]
of the normal derivative

of u across Γ looks like. We see in particular that on the left-hand tip of Γ a little
blue area is visible on the upper side, whereas there is a corresponding little red

area on the lower side of the tip. This indicates that
[

∂u
∂νΓ

]
becomes large in a

neighbourhood of the endpoint of Γ. On the right-hand tip of Γ this behaviour
is similar. Nevertheless the stronger influence of D on that side of Γ makes the
effect less visible. We remind again that the color coding for the strength of the
magnetic field is not correct in D. The correct values are amplifications of the
depicted values by a factor of 50.

Figure 5.4 analogously shows the vertical component of the magnetic field B

which corresponds to − ∂u
∂x1

. As in the case of Figure 5.3 we note that the magnetic
field has a local maximum at the tips of Γ. On the left-hand side of Γ this peak
is clearly visible in reddish colours, whereas it does not show up as clearly on the
right-hand tip due to the influence of D.

From the representation (2.40) for the current distribution on Γ and from the
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Figure 5.3: Distribution of the horizontal component of the magnetic field for
Example 5.1 with superimposed field lines.

Figure 5.4: Distribution of the vertical component of the magnetic field for Ex-
ample 5.1 with superimposed field lines.
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relation (2.24) between the density ϕ ∈ C∗(Γ) that occurs in the right-hand
side of (2.40) and the corresponding component of the solution of (2.36), we can
express the current distribution in terms of this particular component. This gives
excellent means to obtain a numerical approximation to the current distribution
on Γ. We depict the current distribution for the situation of Example 5.1 in the
left plot of Figure 5.5. Here, the values on the horizontal axis are given as the
x1-coordinate of the corresponding point on Γ. Due to the possible singularity
of the current distribution, it is only displayed for x ∈ [−1 + δ, 1 − δ], where δ is
given as the distance from the endpoints z±1 to the next collocation point on Γ.
In Figure 5.5 we have δ ≈ 10−4. In the right plot of Figure 5.5 the corresponding
density ϕ̃ that is the first component of the solution to (2.36) is displayed.
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Figure 5.5: Current distribution on Γ for Example 5.1 (left), and corresponding
component ϕ̃ of the solution Ψ to (2.36) (right).

In the plot on the right-hand side of Figure 5.5 we see in particular that ϕ̃ does
not vanish at the endpoints. In view of Lemma 1.15 and Theorem 2.15 this
gives evidence that the current distribution depicted on the left indeed develops
singularities of square root type at the endpoints of Γ.
If we study the plot on the left-hand side of Figure 5.5 in more detail with the
perspective of Chapter 3, we see that the current distribution on Γ is not only
inhomogeneous, but it is in particular assymmetric. The peak for x = 1, which
corresponds to the endpoint z+1, is suppressed in comparison to the other peak
at x = −1 which corresponds to z−1. Keeping in mind that both peaks are sin-
gularities of square root type in theory, and taking into account that the mathe-
matical model does not agree with the physical reality in a small neighbourhood
of the endpoints of Γ, we can conclude that a suppression of the current is taking
place on the side of Γ that is facing the magnet D. This implies especially that
the placing of a domain D in the vicinity of the arc Γ indeed influences the current
distribution towards a homogenization. Thus, the examination of the Geometric
Optimization Problem is justified.

We will finish the study of numerical examples for the Boundary Value Prob-
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Figure 5.6: Geometric setup for Example 5.2.

lem 2.1 with a second example that displays the feasibility of the approximation
scheme presented in Section 4.1 for a more involved geometric setup that contains
less symmetries.

Example 5.2. Let the arc Γ be given by the parametrization

Γ :=

{
γ(t) =

(
2 sin

(
π

2
+

3πt

8

)
,− sin

(
π +

3πt

4

))
∈ R

2 : t ∈ [−1, 1]

}
.

Let D be a domain consisting of two simply connected components. The first is
a peanut-shaped component D1 with center x0,1 = (2.5, 2.0)T ∈ R

2, the boundary
of which is given by

∂D1 :=
{
x = x0,1 + r1(t)(cos t, sin t) ∈ R

2 : t ∈ [0, 2π)
}
,

where the radial function r1 is given by

r(t) := 1 − 0.3 cos 2t− 0.1 cos 3t− 0.5 sin 2t, t ∈ [0, 2π).

The second is a pacman-shaped component D2 with center x0,2 = (−1.8, 0)T ∈ R
2,

the boundary of which is given by

∂D1 :=
{
x = x0,2 + r2(t)(cos t, sin t) ∈ R

2 : t ∈ [0, 2π)
}
,

where the radial function r2 is given by

r(t) := 1 + 1.4h1,0(t) + 0.5h2,0(t) + h3,0(t), t ∈ [0, 2π)

with the basis functions defined by (4.18). Obviously, all boundaries are analytic.
The physical parameters for the magnetic permeabilities are set to µe = 1 and
µ1 = µ2 = 10, the total current is prescribed as I = 1. The setup is depicted in
Figure 5.6.
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We again choose four points, where we evaluate the potential u for different
levels of discretization which are displayed in the first column. As in the previous
example each connected component of D is discretized using n equidistantly
spaced collocation points. Likewise Γ is discretized as before. The choice of
the points p1, . . . , p4 is such that we can see from Table 5.2 how the exponential
convergence behaviour sets in later for p2 and p3 in comparison to p1 and p4 as
we can expect the constant C from (4.11) to be the larger for points that are
closer to the domains of integration given by Γ, ∂D1 and ∂D2.

n p1 = (0, 3) p2 =(−1.1, 0.05) p3 = (1.65, 0.3) p4 = (3,−2)
8 -0.439780111128 -0.645583810320 -0.003172708520 -0.303000264934

16 -0.369829044165 -0.884201024012 -0.002526395722 -0.264781301013
32 -0.333334297242 -0.150394350861 -0.003494080618 -0.248763690015
64 -0.334334954889 -0.204989978041 -0.003408895744 -0.249240200276

128 -0.334399699500 -0.206730271847 -0.003403852331 -0.249275240634
256 -0.334400007987 -0.206738098709 -0.003403831087 -0.249275407531
512 -0.334400007995 -0.206738098991 -0.003403831086 -0.249275407535

Table 5.2: Convergence results for Example 5.2.

We therefore abstain from examining the applicational quantities of Example 5.2
in favour of a more detailed study of the behaviour of optimized geometries that
are obtained by the algorithms of the following two sections.

5.2 The Geometric Optimization Problem via

the Steepest Descent Approach

In this section we present numerical examples for the algorithm described in
Section 4.2. We will thereby cover the algorithm in its final form, but also give
numerical evidence for the necessity of the regularization terms Gc and Gϑ,d.
For computational and conceptual simplicity we will focus mainly on magnetic
environments with only one connected component.
Nevertheless, the methodology works also for any finite number of components,
which we will address at the end of this section. There we also compare the
computed optimal shapes for the different choices of parameters and consider the
physically relevant features for one particular example.
Throughout most of the examples we apply only a defensive line search strategy
for instructive reasons, namely the largest step size parameter is α = 1, and this
parameter is chosen whenever it leads to an admissible geometry with a positive
radial function. Only if the positivity of the radial function is violated, we choose
a smaller step size.
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Figure 5.7: Geometric evolution of the SDA without regularization.

So, first we consider the functional without any regularization. We see from
Figure 5.7 that the Steepest Descent Approach breaks down after several iterations
due to an overlap of Dx0,r and Γ. At the same time the lower inset of Figure 5.8
shows that the cost functional is decreasing as the distance between D and Γ is
decreasing. In particular, we see that the decrease is more pronounced if D is
close to Γ. From this we can already conclude that the homogenizing effect is of
a local nature. This argument is supported by the current distributions that are
displayed in Figure 5.8. Here we can see that the domain D has almost no effect
on the far side of Γ in the sense that the current distribution remains virtually
unchanged (see the large plot in Figure 5.8 in the region near x = 1), even the
peak of the current distribution at x = 1 increases only marginally. The effects
are different for the near side of Γ. Here, we do not only see a drastic reduction
in the peak at x = −1, we also notice a slight decrease in the local current in the
interval [−1,−0.6].

Finally, in Figure 5.9 we have illustrated the evolution of the Fréchet deriva-
tive in the direction of the basis functions of T3 (this numerical experiment has
been calculated using trigonometric polynomials for the approximation space).
As expected, the derivatives with respect to the sine functions vanish. This con-
firms the view that for the problem at hand given a symmetric configuration the
algorithm should favour keeping up a symmetric configuration.

Let us finish the discussion of this experiment with two important observations.
Firstly, we note from Figure 5.9 that all basis functions, for which the directional
Fréchet derivatives do not vanish, also contribute to the evolution of D towards Γ.
This illustrates the difficulties in ensuring D ∩ Γ = ∅ if we choose Tn as approx-
imation space, since the position of ∂D for the angle ϑ = 0 is influenced by all
these basis functions. Secondly, we observe from Figure 5.7 that decreasing the
distance between D and Γ is the dominant feature in the minimization process.
Although the approximation space has the power to form a cavity around Γ, there
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geometric evolution of Figure 5.7.
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Figure 5.9: Evolution of the directional Fréchet derivatives for the geometric
evolution of Figure 5.7.

is no evidence for this to happen from the evolution.

The general observations that have been discussed above re-appear for virtually
every tested initial setup and for each tested positioning of the centre x0 for D.

Table 5.3 indicates that the initial setups given in Figure 5.10 become invalid after
several iterations due to an overlap between Dx0,r and Γ, that the Euclidean norm
of the directional Fréchet derivatives of the basis functions are increasing as the
distance between the domain Dx0,r and the arc Γ is decreasing, and that the
homogenizing effect on the current distribution is much more pronounced on the
near side of Γ compared to the far side of Γ.

In a second example for the evolution we consider the optimization process with
the choice of T̃n,k as approximation space. Furthermore, we incorporate the Aug-
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breakdown reduction reduction increase increase
initial geometry after steps of cost of peak of peak of norm of

functional at x = −1 at x = 1 gradient
medium circle at (−1.5, 0) 2 11.1 % 34.6 % 1.1 % 68.5 %
small circle at (−1.5, 0) 11 25.1 % 45.6 % 3.8 % 516.0 %
large circle at (−2.5, 0) 16 20.4 % 43.2 % 4.9 % 401.4 %
large circle at (−2.5, 1) 57 28.2 % 96.3 % 10.2 % 1377 %

kidney at (−1.5, 0) 35 25.6 % 79.4 % 6.7 % 228.4 %
kidney at (−1.5,−0.5) 21 27.6 % 70.7 % 5.8 % 338.3 %

peanut at (−1.5, 0) 7 9.4 % 28.7 % 1.2 % 200.5 %
peanut at (−2, 0.5) 18 31.2 % 95.5 % 7.9 % 4588 %

Table 5.3: Performance of the SDA without regularization or line search.
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Figure 5.10: Tested initial geometric setups.

mented Lagrangian Approach into the functional. We emphasize that in the case
of a symmetric configuration for T̃n,k we need not set a hard constraint for the
distance. Instead, we prescribe a lower bound on the distance. This approach
works, as in the case of T̃n,k the constant is the only basis function contributing to
the distance for the direction ϑ = 0 (see Figure 4.1). Still, the choice of the mini-
mum distance in the Augmented Lagrangian Approach cannot be arbitrary small.
This is due to the way in which the system of integral equations (2.36) is solved.
In solving (2.36) it is assumed that the off-diagonal operators have smooth ker-
nels, which is true since Dx0,r and Γ do not overlap. Nevertheless, the stability
of the scheme depends on how good the composite trapezoidal rule approxi-
mates the kernels. In the case of very small distances between Dx0,r and Γ the
kernels display an almost singular behaviour and the approximation quality for
the composite trapezoidal rule deteriorates and thereby creates instabilities. To
some extent this behaviour can be encountered by finer discretizations of ∂Dx0,r

and Γ, and by introducing substitution functions in parametrizing ∂Dx0,r. We
have found from our numerical experience that using 128 collocation points for
the discretization of each of the contours ∂Dx0,r and Γ, the system can deal with
a minimum distance of d = 10−3 without problems.

The geometric evolution for the second example is depicted in Figure 5.11. We
see that the evolution draws the domain D close to Γ. After 41 iterations the
constraint becomes active, the minimal distance being set to d = 0.05. Due to
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Figure 5.11: Geometric evolution for the SDA using T̃n,k with n = 5, k = 0 and
the Augmented Lagrangian Approach.
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Figure 5.12: Evolution of the cost functional and the peaks of the current density
for the geometric evolution of Figure 5.11.

the special form of the approximation space, D already forms a cavity around Γ
which is slightly getting narrower in the remaining iterations. But this narrowing
has only a very small effect on the cost functional as can be see from the upper
graph in Figure 5.12.
Figure 5.11 shows furthermore that the narrowing of the cavity around Γ induces
oscillatory behaviour in the upper and lower parts of the boundary of D. This
behaviour is undesired and also in a certain sense unnatural. This is revealed by
an examination of Figure 5.13.
Here, we see that the directional Fréchet derivative with respect to the constant
is the largest coefficient in the finite dimensional approximation to the gradient of
the functional F . At the first iteration it clearly overrates all other components.
This discreprancy becomes even more pronounced in the further evolution, show-
ing that the formation of the cavity around Γ is still of minor importance, and
that the algorithm tries to make up for the constraint on the distance by nar-
rowing the cavity. The evolution of the gradient in Figure 5.13 displays another
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Figure 5.13: Evolution of the gradient for the geometric evolution of Figure 5.11.

feature which requires explanation. Contrary to the case of trigonometric polyno-
mials the space T̃n,k contains basis functions that are non-negative and oscillate
symmetrically with respect to the angle ϑ = 0. Hence, the geometric evolution
differs in its general appearance from Figure 5.7 in the sense that a cavity is
building up right away. This formation becomes more and more pronounced as
the boundary evolves until the tips of the cavity are located above or beneath
the endpoint of Γ. From this time onwards the evolution of the cavity reduces
rapidly, and the inner end of the cavity where only the constant basis function
contributes can ”catch up”. This tendency eventually becomes so strong that
the gradient changes the sign for the oscillatory basis functions. This induces a
rapid increase in the directional Fréchet derivative of the constant basis function.
Soon afterwards the constraint sets in preventing an overlap between D and Γ.
Now the Augmented Lagrangian Approach sets the directional derivative for the
constant basis function to zero and the forming of the cavity around Γ becomes
the dominant feature in the evolution. The system then converges towards an
equilibrium state in the further evolution.

Finally, in Figure 5.12 and Figure 5.14 we consider the current distributions for
the iterates corresponding to the geometries depicted in Figure 5.11.

We observe especially from the upper graph in Figure 5.12 that the peak in the
current density on the far side of Γ undergoes only a mild increase, whereas the
peak on the near side is significantly suppressed during the first steps of the
iteration. As soon as the distance constraint has set in, the peaks stay almost
constant for the rest of the iteration, although we observe that there is a slight
tendency in the beginning to undo the evolution of the first iterations. In general,
one can observe from Figure 5.14 that the overall shape of the current density
is not changed in the evolution. Only a closer look at the right graph, which
displays a zoom-in of the left graph, reveals that the narrowing of the cavity
seems to underline the effect that has been visible also in the behaviour of the
peaks. Namely, the redistribution of the current density towards the suppressed



164 CHAPTER 5. NUMERICAL EXAMPLES

−1 −0.5 0 0.5 1
0

5

10

15

−1 −0.8 −0.6 −0.4 −0.2 0

0.3

0.5

0.7

0.9

1.1

0.3

0.5

0.7

0.9

1.1

it = 1
it = 41
it = 100
it = 200
it = 291

it = 1
it = 41
it = 100
it = 200
it = 291

Figure 5.14: Evolution of the current density for the evolution from Figure 5.11.

peak. It seems that, as the distance on the side where the peak is suppressed is
fixed, the influence of the increased peak at the far end does indeed influence the
further evolution. The functional now seeks to reduce the peak on the far side as
a further suppression of the peak at near side cannot be accomplished. Thereby
it accepts a less homogeneous distribution in a region of Γ that is comparatively
far away from the left endpoint.
We close the discussion of the second numerical experiment again with a remark.
We address the geometric evolution after the set-in of the constraint. In the
above we have given reasons for the effect of the narrowing of the cavity. We
point out that this narrowing does not only influence the general behaviour of
the current density as it is depicted in the right graph of Figure 5.14, it also leads
to oscillatory behaviour in the upper and lower part of the boundary of D. These
effects have two consequences. Firstly, an effective homogenization of the current
distribution can only be obtained by placing components of the domain D at
both endpoints of Γ due to the local nature of the homogenization. Secondly,
the suppression of regions with high curvature in the parametrization of D is
an issue which must not be neglected, as the optimal shape from Figure 5.11 is
undesirable from an applicational point of view.

As a third example we include an examination illustrating the efficiency of both
the curvature regularization and the Augmented Lagrangian Approach. The ex-
ample has been computed using T32 as approximation space, i.e. trigonometric
polynomials of degree ≤ 32 . The initial setup is a circle of radius r = 0.999,
the center being placed at (−2, 0). The minimum distance between D and Γ has
been fixed to d = 10−3 accordingly. Furthermore, we regularize oscillations in the
boundary using the regularization term Gc introduced in Section 4.2. The regu-
larization parameter has been determined by trial and error, it is set to β = 10−6.
The geometric evolution which is depicted in Figure 5.15 shows clearly the ef-
fects of the two regularization terms Gϑ,d and Gc. The domain D is kept at the
prescribed distance d from the arc Γ. As before, a cavity is building out im-



5.2. THE GOP USING THE STEEPEST DESCENT APPROACH 165

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5

−1.5

−1

−0.5

0

0.5

1

1.5 it = 1
it = 10
it = 50
it = 100
it = 200

D 

Γ 

Figure 5.15: Geometric evolution for the SDA using curvature regularization with
regularization parameter β = 10−6 and the Augmented Lagrangian Approach with
minimum distance d = 10−3.
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Figure 5.16: Evolution of the cost functional for the geometric evolution from
Figure 5.15.

mediately. It has reached its full extent already after ten iterations. From then
on, the regularization of the curvature governs the evolution flattening the shape
of D at the upper and lower boundary. In the region of the boundary facing Γ
the influence of the functional F is nevertheless stronger than the effect of the
regularization. Hence, here regions with large values for the curvature remain
present. The evolution of the objective functional for the corresponding situation
is displayed in Figure 5.16.

We observe a pronounced reduction in the current distribution in the first iterates
when the cavity is forming. Afterwards the reduction slows down considerably,
but continues up to the 200th iterate, where the evolution becomes stable. At the
same time the gradient of F remains still large since the original functional still
displays the tendency to draw D nearer to Γ which is prevented by the Augmented
Lagrangian Approach.

After these illustrations for the necessity for the regularization terms as well as for
their feasibility, we now turn to the comparison of the computed optimal shapes
for different sets of parameters.
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Figure 5.17: Optimal shapes for different sets of parameters using T̃n,k as approx-
imation space.

Let us explain and discuss the results of Figure 5.17 and Figure 5.18 in some
detail. In the examples of Figure 5.17 we have used the approximation space T̃n,0

for two different values of the dimension n and for different values of the regular-
ization parameter β for the curvature regularization.

In the graph on the left-hand side of the top row we have n = 8, and additionally
we have employed curvature regularization with β = 10−6. On the right-hand
side we have n = 32 and β = 0. We see that the higher dimension of the
approximation space leads to a narrower cavity of D around Γ. At the same time
the larger approximation space contains also more oscillatory basis functions
which is clearly visible in the plot on the right-hand side.

In the bottom row we have started with a smaller initial setup. Here, we have
used n = 8 basis functions, and we consider curvature regularization with the
regularization parameter being set to β = 10−6 on the left-hand side and β = 0
on the right-hand side. The comparison here reveals that the curvature regu-
larization acts as a counterweight against making the cavity narrow, but this is
expected as the cavity is a region with high curvature. We note again, that the
distant constraint for the Augmented Lagrangian Approach is again only a lower
bound on the distance, it is set to d = 0.001. This implies that the most reduc-
tion in the cost functional can be obtained by drawing D nearer to Γ. We can
observe furthermore that the general appearance is the same for all experiments.
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The current distributions look always similar to the one displayed in Figure 5.14.
Correspondingly, the objective functional stabilizes at values around ≈ 0.024.
Expectedly, the values are slightly larger (≈ 0.026) in the case of curvature reg-
ularization.

In the examples of Figure 5.18 we have used the approximation space Tn (i.e.
trigonometric polynomials), again for different values of n and for different values
of the regularization parameter β for the curvature regularization.
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Figure 5.18: Optimal shapes for different sets of parameters using Tn as approx-
imation space.

The top row compares the results for the approximation space Tn for values of
the dimension being n = 8 on the left-hand side and n = 32 on the right-hand
side. In the case of trigonometric polynomials we realize the Augmented La-
grangian Approach via a hard constraint on the minimal distance. It is again set
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to d = 0.001. Note that we have used an initial setup in the top row that does
not satisfy this hard constraint. The adaptive choice of the regularization param-
eter µn from (4.30) then yields a geometry which satisfies the constraint already
in the second iterate. Additionally, we have applied curvature regularization
with β = 10−6 on the right-hand side. We notice that in the case of trigono-
metric polynomials a small approximation space with essentially non-oscillating
basis functions does not work satisfactorily. Opposed to that, oscillations can be
damped out efficiently using the curvature regularization. At the same time the
rapidly oscillating basis functions enable the forming of a rather narrow cavity
around the arc Γ.

In the center row we have repeated the experiment for a different initial setup,
namely a circle with a larger radius of r = 0.999 around (−2, 0). The left-
hand side shows that the basis functions of the approximation space just do not
oscillate fast enough to form a cavity around Γ. The right-hand side shows that
even for n = 32 and β = 0 we cannot obtain the same narrowness of the cavity as
above. This is mainly due to the fact that all coefficients in the finite-dimensional
representation of the radial function are large, because the distance between Γ
and the centre of D is larger.

Finally, in the bottom row we compare the efficiency of the curvature regular-
ization for different setups. The setup on left-hand side coincides with the setup
of the left-hand side of the top row, the setup on the right-hand side coincides
with the setup of the right-hand side of the second row. In both cases we have
additionally employed curvature regularization, the regularization parameter be-
ing set to β = 10−6. We observe that the curvature regularization has nearly no
effect on the left-hand side, whereas the effect is rather drastic on the right-hand
side. The reason for these differences is that in the larger approximation space
that has been used for the example on the right-hand side, there are enough
degrees of freedom left to suppress the oscillations in the boundary effectively
without destroying the cavity around Γ. In the experiment on the left-hand side
all degrees of freedom have to be employed to build up the cavity such that the
curvature regularization remains without effect.

Comparing the results for the different approximation spaces we see that for
domains with one connected component small initial setups in combination with
a large dimension for the approximation space give the best results from a visual
point of view. From our perspective this is the critical criterion as the optimal
shapes are all comparable with respect to the value of the objective functional,
and they also yield qualitatively similar current distributions which basically
resemble Figure 5.14. Furthermore, the value β = 10−6 has proved to be a
fairly good choice which balances the forming of a cavity and the suppression of
oscillations in the boundary. Finally, we observe that the curvature regularization
generally seeks to flatten the upper and lower part of the boundary thereby
indicating how a simpler geometry may look like that can be manufactured for
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Figure 5.19: Optimal shape for a domain consisting of two connected components.

physical experiments.

With these optimal shapes we finish the examination into the nature of the ap-
proximation spaces and the curvature regularization. For the remainder of this
section we consider a setup consisting of two symmetrically placed components
for D. We judge this setup as the most relevant for the application by the rea-
soning in the beginning of this section.
In Figure 5.19 we see the initial and the optimized shape for a domain D con-
sisting of two connected components D1 and D2. For each component we have
chosen the space T̃12,1 of the especially designed basis functions from Section 4.2.
Furthermore, we have employed curvature regularization with a regularization
parameter β = 10−6, the minimal distance has been set to d = 0.001.
We see that as in the case of only one connected component, the components
are drawn towards the arc by the evolution. As soon as the distance constraint
from the Augmented Lagrangian Approach sets in, a cavity is evolving, which
is balanced by the curvature regularization. The main feature here is, that the
cavity is much less pronounced than in the case of only one connected component.
The reason for this is given by an examination of evolution of the functional in
Figure 5.20 and the corresponding current densities in Figure 5.21.
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Figure 5.20: Evolution of cost functional for geometric evolution of Figure 5.19.

We see that the value of the cost functional is not only smaller compared to
Figure 5.16, where the optimization has been carried out using a domain with
one connected component, but also the reduction is much more pronounced.
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Figure 5.21: Current distributions for initial and optimized shape of Figure 5.19.

In the experiments with one connected component for D the value of the cost
functional could be reduced by a factor > 0.5, here the factor is ≈ 0.25.

Similarly, in Figure 5.21 we see that the two components induce a considerable
reduction of the peaks in the current distribution at both endpoints of Γ. In
view of what we have said above, the cavity consequently does not need to try
to reduce the peak at the other end. Instead, it is employed just to flatten the
current distribution in the regions near the endpoints. The reduction of the peaks
is not as pronounced as before, since now there is a re-distribution from both side
towards the other which in a way cancels out. Still we see from the zoomed in
graph on the right-hand side of Figure 5.21 that a considerable redistribution
towards the centre of Γ has taken place. This is a particular difference to the
case of only one connected component, where no effect has been visible at x = 0
(see Figure 5.14). Furthermore, the local values of the current distribution at
the first and at the final iterate display the same behaviour in a region around
the centre. The major differences happen in the interval [−1,−0.5] and similarly
in [0.5, 1] due to the symmetry, where the current distribution for the optimized
geometry has a local maximum near x = −0.6. From there the local values are
again decreasing until about x = −0.9, where the formation of the peak sets in.

This change in the overall behaviour of the current distribution is the most im-
portant feature of the optimized system, and it is in accordance with the overall
aim of the scheme. The current distribution is less inhomogeneous over the entire
arc, and the local current values near the endpoints are reduced. This is not only
meant with respect to the peak which is forming nevertheless, but also for the
local current values that are in a still local although larger region around the
endpoint. We observe that the reduction amounts up to a factor of ten compared
to the current density for an arc without any domains being placed in its vicinity.
This has also been approved in [43].

We conclude this section with a short comparison of additional, physically rele-
vant quantities, namely the distribution of the horizontal and vertical components
of the magnetic field. The distribution of the horizontal component is given in
Figure 5.22, the vertical component is displayed in Figure 5.23. In both figures
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Figure 5.22: Distribution of the horizontal component of the magnetic field for
the optimized geometry of Figure 5.19. The lower graph is a zoom-in of the
upper, where the red dashed line denotes the position of Γ.

the isolines of the potential are visible in the form of the magnetic field lines.

In Figure 5.22, the current density which corresponds to the jump in the hori-
zontal component of the magnetic field across Γ is clearly visible and more pro-
nounced than in Figure 5.3. This clearly indicates the redistribution of the local
current towards the centre of the arc and can be seen best from the lower graph
which is a zoom-in of the upper one. Nevertheless we observe that the magnetic
field becomes strong at the tips of the cavity while it is small at the inner end.

Figure 5.23 accordingly displays the vertical component of the magnetic field, the
lower graph being again a zoom-in of the upper. Before discussing the features
in more detail, we remark again that the values for the magnetic field in the
components of D are not displayed correctly. We have suppressed the necessary
multiplication with the magnetic permeability for the sake of a better visualiza-
tion. We see that the vertical component of the magnetic field is particularly
strong in the cavity, which seems to be similar to the case where no domain is
present in the vicinity of Γ (see left-hand side of Figure 5.4). The field lines re-
veal that the reason here is completely different. As mentioned in Section 5.1 the
domain sucks in the magnetic field lines. This has the consequence that in the
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Figure 5.23: Distribution of the horizontal component of the magnetic field for
the optimized geometry of Figure 5.19. The lower graph is a zoom-in of the
upper, where the black dashed line denotes the position of Γ.

present example no ellipse-shaped field lines appear around the endpoints of Γ
on a visible scale, but all of them end in the boundary of D. This corresponds
to a drastic suppression of the magnetic field directly at the endpoint, and thus
enables much stronger currents to be transported by Γ in this setup.

We can conclude that the Steepest Descent Approach satisfies the requirements
of the physical application and the mathematical model very well, and that it
has given clear ideas on how geometries for the magnetic environment should
look like that allow an enhancement of the current carrying capability. Never-
theless, further tuning and numerical experiments are necessary to incorporate
features into the geometric design that make the optimal shapes appropriate for
manufacturing such that these theoretical results can be verified in experimental
physics.

In preview of the examples from the following section we would like to add two
arguments for not considering non-symmetrically placed domains with respect to
the line defined by Γ. First of all, the specialized shape of the approximation
space T̃n,k can only be used sensibly in a symmetric setup due to the strongly
oscillatory behaviour of the basis functions. Otherwise, this would render the
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Augmented Lagrangian Approach effectless. And secondly, when employing the
space Tn of trigonometric polynomials, we have to impose a hard constraint, i.e.
fix the distance between Γ and D as shown in Figure 4.2. This already causes
the results obtained in that way to be not comparable with the results which we
are going to obtain via the Level Set Approach in the following section.

5.3 The Geometric Optimization Problem via

the Level Set Approach

In this section we present evidence for the ability of the Level Set Method pre-
sented in Section 4.3 to succeed in numerically solving the Geometric Optimiza-
tion Problem 3.3.

Therefore, we give examples for the feasibility of the contouring and the extension
algorithm. In the course of these studies we will see a deficiency in the scheme,
namely the unsmooth spacing of boundary points, that might cause larger numer-
ical errors in the boundary integral method, and consequently render optimized
shapes of inferior quality in comparison with the Steepest Descent Approach.

The section is closed with an example for the feasibility of the algorithm. Here,
we restrict ourselves to the presentation of the physically relevant situation of a
domain D with two connected components, that are placed symmetrically at the
endpoints of Γ.

But let us consider the central steps of the Level Set Algorithm 4.18 first. In
Section 4.3 we have argued that it needs two additional steps in order to relate
boundary integrals and level sets. One of these necessary steps was the resolution
of the 0-level set, a task which is normally avoided in Level Set Methods.
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Figure 5.24: Comparison of the contouring algorithm with the standard MatLab-
implementation for two examples.
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In Figure 5.24 we compare the performance of the contouring algorithm that we
have proposed in Section 4.3 with the standard MatLab-contouring algorithm.
Both algorithms accept the discretized version φn of the level set function as
input and produce an ordered set of points as output that is an approximation
to the 0-level set. The difference between both algorithms is that the MatLab-
implementation obtains the points on the boundary by linear interpolation along
the grid lines, whereas our contouring algorithm returns boundary points that are
in the interior of the grid cells. This makes a numerical comparison impossible as
the generated sets of boundary points are not only different, they are even meant
to have no points in common. The only way of comparing the two generated
contours is a visual comparison.

The result is that both for the simple circular geometry on the left-hand side of
Figure 5.24 and also for the more complex geometry on the right-hand side the
contours match perfectly. The geometry in the graph on the right-hand side has
been generated using the peaks-function from MatLab. This matching between
the two algorithms is again illustrated in Figure 5.25, where we have zoomed in
to interesting regions of the boundary contours for the examples of Figure 5.24.
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Figure 5.25: Comparison of the contouring algorithm with the standard MatLab-
implementation for two examples (zoom-in of Figure 5.24).

Figure 5.25 also reveals two important features of the two algorithms. Let us
first focus on the MatLab-implementation. From the graph on the right-hand
side we see that interpolation along the grid lines as it is done in the MatLab-
implementation may lead to an extremely irregular spacing of the boundary
points. Directly at the centre of the graph on the right-hand side we see that the
0-level set is crossing two grid lines very near to the grid point (0.72, 0.72). These
intersections are marked with the green stars. At the same time the contouring
algorithm places just one boundary point in that region which is marked by the
blue ’+’-sign. This feature of extremely irregular spacing of grid points has been
one of the central reasons why have proposed this other kind of method.

Nevertheless, the contouring algorithm is also not too robust against irregular
spacing of boundary points. This is illustrated in Figure 5.26.
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Figure 5.26: Comparison of the contouring algorithm with the standard MatLab-
implementation for two examples (zoom-in of Figure 5.24).

In both graphs we see that kinds of pairs of boundary points are forming. The
effect is less pronounced than in the standard MatLab-implementation, but it is
still visible. The irregular spacing becomes even more clear if we display the dis-
tance between neighbouring grid points as an approximation to the line element.
Using Taylor expansion for the parametrization x, we have the approximation

‖x(tk+1) − x(tk−1)‖ ≈ (tk+1 − tk−1)‖x′(tk)‖

which we employ as an approximation for ‖x′k‖. Now if the points xk come from
a smooth parametrization with regularly spaced tk, we expect that also the left-
hand side of the above displays the same smoothness. For example, in the case of
the standard parametrization of the circle with equidistantly spaced tk, both the
right-hand side and the left hand side are constant. For the contouring algorithm
this unfortunately is not the case as Figure 5.27 shows.
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Figure 5.27: Distances ‖xk+1−xk−1‖ for the boundary points xk that are obtained
by the contouring algorithm for the circle.

This reveals the severest drawback of the Level Set Algorithm in the form we
present it. The unsmooth approximation to the line element first of all leads
to deterioration of the boundary integral method. Secondly, the evaluation of
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Figure 5.28: Examples for the feasibility of the extension algorithm for artificial
’boundary’ velocities. The velocities are sine functions of periodicity 2π (left) and
periodicity 0.1π (right). The position of the 0-level set is marked by the black
line

the Fréchet derivative requires the evaluation of the second derivative for the
unknown perturbation (see Lemma 3.29). As the perturbation is unknown we
have to approximate the second derivative using finite differences. Here now, the
unsmooth approximation to the line element enters a second time, but now as a
quadratic term, which induces even more numerical error.

The evaluation of the Fréchet derivative leads to the second algorithm we have
proposed as an additional step for the Level Set Algorithm, namely the extension
algorithm. In the following, we give two illustrations for artificial ’boundary’
velocities for the case of a circular domain.

We see in Figure 5.28 how the extended velocities look like. The one on the
left-hand side corresponds to a ’boundary’ velocity given by a sine function with
periodicity 2π, the one on the right-hand side to a sine function with periodic-
ity 0.1π. The figures display clearly that the extended field is constant normal to
the 0-level set which is marked by the black line. In the faster oscillating ’bound-
ary’ velocity on the right-hand side we can also observe a slight displacement
between the inner and the outer side. This is partly due to the colourcoding
of MatLab, but also to the fact that the values of the extended velocity at two
gridpoints that are connected via a grid line crossing the 0-level set are influenced
by different boundary points when the 0-level set is roughly diagonal to the grid.
This can be seen also from Figure 4.11 a). Here, the left grid point on the centre
grid line is influenced only by x(1), whereas the central grid point is influenced
by x(2) and x(3). In the case of rapidly oscillating ’boundary’ velocities the values
might already differ considerably, which explains the displacement.

As a second example for the feasibility we display in Figure 5.29 the extended
velocity that corresponds to the Fréchet derivative of F from (3.4). The position
of the domain is marked by the black line, the arc Γ is placed to the left of D. As
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Figure 5.29: Example for the feasibility of the extension algorithm. The ’bound-
ary’ velocity is given by Fréchet derivative of the objective functional F from
(3.4), the position of the 0-level set is marked again by the black line

before, it is a line segment of length 2 lying parallel to the first coordinate axis,
the right-hand side endpoint being located at (1, 0).
We observe that the general behaviour of the Fréchet derivative agrees with the
behaviour we have encountered in the previous section. The derivative is very
small on the side not facing the arc Γ and it develops strong peaks that are rather
localized in the regions that are directly facing Γ. Moreover, we observe that the
derivative is strongest not directly in the direction of Γ, where it has a weak local
minimum. We conclude that the Fréchet derivative seeks to evolve the domain
towards a flat surface that is perpendicular to Γ.

Before considering and presenting the optimal shapes for the Geometric Opti-
mization Problem that are obtained using the Level Set Approach, we have to
address another issue, which has already played a central role in the Steepest
Descent Approach. As the Steepest Descent Approach, the Level Set Approach
does not automatically incorporate the separation between D and Γ, but it is
much easier to include this feature. The idea is to mask the extended velocity
which induces the evolution of the 0-level set. We simply set the velocity to zero
in a small region around Γ. This has the effect that the level lines of the level
set function φ stay constant with respect to time in that region. As the 0-level
set initially is not in this region it cannot enter it during the evolution. Thus, it
is kept away from the arc Γ. The process of masking is illustrated in Figure 5.30
for the case of the artificial ’boundary’ velocity given by the cosine function.
This masking process is very easy and efficient as long as the masked area remans
simple. For the masking of more complicated geometries one can also use level
set functions in combination with the Heavyside function as a mask. This leads
to the masking of a domain which is defined via the usual definition of a domain
in the context of Level Sets.

After these preparatory steps we now present the results for the Geometric Opti-
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Figure 5.30: Example for the masking of the extended normal velocity. The
artificial ’boundary’ velocity is given by a ccosine function, the positions of Γ
and the 0-level set are marked again by the black lines. The left-hand side graph
shows the unmasked velocity, the graph on the right-hand side shows the masked
velocity.

mization Problem using the Level Set Approach. The example we present is the
analogue to the symmetric example from Section 5.2. The domain D is given by
two ellipse-shaped components that are placed symmetrically at both endpoints
of the arc Γ, which is again a line segment parallel to the x1-axis with the en-
points being at (±1, 0). The mesh width of the the level set grid is h = 0.05,
the masked area is a rectangle of width W = 2.042 and height H = 0.102 being
placed symmetrically with respect to the origin. The step size for the level set
evolution is chosen adaptively according to the Courant-Friedrichs-Levy condi-
tion (4.61). The physical parameters are chosen as usual. We have set I = 1,
and µe = 1, µ1,2 = 50. The arc Γ is discretized using 129 collocation points. The
geometric evolution of the system is depicted in Figure 5.31, the corresponding
evolution of the cost functional is displayed in Figure 5.32.
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Figure 5.31: Optimal shape for the Geometric Optimization Problem using the
Level Set Approach.

Let us first examine the evolution of the cost functional from Figure 5.32. We see
that the decrease in the cost functional is not as steady as in the Steepest Descent
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Figure 5.32: Evolution of the cost functional for the geometric evolution via the
Level Set Approach given in Figure 5.31.

Approach. Nevertheless, the values of the cost functional are comparable to the
values for the Steepest Descent Approach given in Figure 5.20. As the functional
is not monotonically decreasing, we have to be careful when to stop the iteration.
In the example above we have stopped as soon as the differences in the means of
the values of the cost functional fell below a certain threshold.
Turning to Figure 5.31, we see that contrary to the Steepest Descent Approach
a non-symmetric solution for each component of D evolves. Still, viewing the
two components together we also observe that one is the rotation by 180◦ of the
other. The reason for this is that in an early period non-symmetrical features
appear in D2, that we judge to be the effect of numerical errors in the Fréchet
derivative due to the irregular spacing of the boundary points addressed above.
This is displayed in Figure 5.33.
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Figure 5.33: Non-symmetric geometric evolution in the Level Set Approach due
to nummerical errors.

Here we see, how on the left-hand side of D2 the symmetry is locally disturbed.
The disturbances are limited to one or two boundary points which supports our
impression. In the course of the iteration the system is not able to recover this
error. Consequently also the other component builds out the same non-symmetric
feature to restore the symmetry of the whole system. This phenomenon indicates
that symmetric configurations as considered in the previous section are unstable,
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although we have experienced no such instabilities to occur in the framework of
the Steepest Descent Approach. The reasons for this are not fully clear. We think
that the numerical errors are weighted stronger in the Level Set Approach as the
basis functions only have local support.
Turning back to the optimal shape in Figure 5.31 we also notice a second difference
to the optimal shape from the Steepest Descent Approach in Figure 5.19. In
particular, we observe that the boundaries of D have not evolved towards the
endpoint of Γ, but away from it. Here again, we can only speculate about the
reason. First, we note that the optimal shape in Figure 5.19 has been computed
only with a lower bound on the distance. Hence, the system there also had the
possibility of separating the D and Γ further. As this has not happened, the only
reason we can adduce is again the global support of the basis functions, in the
sense that the tendency to form a cavity around Γ is so strong that it dominates
the tendency of separating D and Γ at the endpoint. Now the local support of
the basis functions in the Level Set Approach is able to distinguish between these
two tendencies. Furthermore, the conformal mapping example from Figure 4.3
supports this idea, as it also shows that in forming the cavity, the boundary D

is drawn away from Γ at the endpoints.
Finally, we consider the current distributions for the initial and the optimal shape.
They are displayed in Figure 5.34.
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Figure 5.34: Current distribtions for the initial and optimal shape of Figure 5.31.

Here, we see that the behaviour of the current density is similar to the ones ob-
tained by the Steepest Descent Approach which are given in Figure 5.21. We see
in the zoom-in on the right-hand side, that the general behaviour of the initial
distribution and the optimal distribution coincide in the centre. Furthermore, the
formation of the peak is unaffected although a suppression of the peak is clearly
visible. Again, the interesting feature is the local maximum of the current dis-
tribution near x = −0.6 and the strong decrease until x ≈ −0.95. These features
show again that the Geometric Optimization Problem succeeds in homogenizing
the current distribution and thus allows a transports of transport currents that
are several times larger than for an unshielded superconducting film.



Chapter 6

Discussion and Outlook

This final chapter is devoted to a comparison of the numerical approximation
schemes that we have presented in Section 4.2 and Section 4.3, and for which we
have given numerical examples in the corresponding sections of Chapter 5. We
will also indicate how the ideas of this thesis can be built upon and extended.

6.1 Discussion

The previous chapter has given ample opportunity to compare the performance
of the two approaches for a numerical approximation to the Geometric Optimiza-
tion Problem that have been presented in Section 4.2 and Section 4.3. It is the
the purpose of this finishing section to contrast both approaches reviewing their
advantages and drawbacks.

We start our considerations by a closer look at the Level Set Algorithm. Al-
ready from the introduction the clear and easy conceptual nature of level sets
has become apparent. The embedding of the information on the domain and its
boundary into a higher-dimensional function has made it easy to extract also ad-
ditional information as the normal direction and the curvature (see (4.44)) from
this higher dimensional function.
Furthermore, singular behaviour in the evolution of the domain such as a splitting
of the domain or the merging of two disconnected subdomains is covered in the
smooth evolution of the higher dimensional function. In this way, the Level Set
Approach is most appropriate if topological changes in the geometry are expected
or at least if they cannot be ruled out.
We have experienced that it is extremely simple to implement early, crude Level
Set Algorithms such that the general scheme is easily accessible, both from a
conceptual and a computational point of view.
The methodology has also proved to be much more versatile than explicit bound-
ary representations in the sense that it allows wider classes of geometric setups.

181
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We focus here on two particular features. On the one hand the realization of do-
mains with an arbitrary finite number of connected components is easy and can
be handled adaptively. On the other hand the restriction to starlike shapes is not
present. In particular, the creation of a horseshoe-shaped boundary is completely
generic in the context of the Level Set Approach.

The example from Section 5.3 has shown another very strong point of the Level
Set Approach. It is this appealing way how separation conditions or forbidden
areas are incorporated. The velocity field is simply set to zero in these regions
with the effect that the level set function stays constant with respect to time, i.e.
the 0-level set stays fixed in such a region or it does not propagate into it if it has
not been there initially. We mention here that there exist also other approaches
for topology-preserving level set methods in the literature (see [4]).

In the course of the discussion of the numerical scheme of the Steepest Descent
Algorithm we have concerned ourselves also with the suppression of oscillatory
behaviour of the boundary. We note that there exist various approaches for
smoothing the boundary in Level Set Methods, although we have employed none
of them in our studies. We pick out two approaches that are representatives for
their specific class of methods. The first approach uses the information that is
inherent in the level set function. The boundary is smoothed in the evolution
by adding a curvature dependent term to the level set equation (4.39). Such a
term is diffusive in its nature. Hence, it acts as a counterpart to the formation of
small-scale oscillations or corners. The second approach is indirect, as smoothes
the evolution of the 0-level set by smoothing the velocity field in each time step.
In particular, the velocity field is regularized using the H1 Sobolew-norm of the
velocity field (see [5]).

Nevertheless, the Level Set Approach does not only have advantages. In the
context of the problem we have been studying in this thesis, we have made
the observation that implicit boundary representations do not really fit to the
boundary-oriented integral equation method which is at the heart of the Bound-
ary Value Problem. So, the ideas presented in Section 4.3 should rather be viewed
as a first step towards the development of tools that efficiently and reliably com-
bine boundary integral methods and level set methods. Therefore, we consider
the existing drawbacks in detail.

The first drawback is immediately obvious from the Level Set Algorithm 4.18.
We need two additional steps, the contouring and the extension, to incorporate
the ’boundary’ velocity, which we have derived in Chapter 3, into the level set
framework.

In these steps even more drawbacks are contained. We have seen in the numerical
experiments that the approximation points for the boundary that are obtained by
the contouring algorithm are not smoothly spaced. The has a strongly negative
effect on the integral equation method with which we solve the Boundary Value
Problem and compute the ’boundary’ velocity. Consequently, also the extension



6.1. DISCUSSION 183

algorithm suffers from this drawback. At the same time the finite difference
approximations to the gradient and to the curvature have only low order accuracy
which additionally contributes to the effect.
The geometric accuracy of the Level Set Approach is naturally limited by the
resolution of the discrete grid, which is two-dimensional. Hence, a fine resolution
affects the computation time and the storage requirements much more heavily
than a fine discretization of a basically one-dimensional boundary parametriza-
tion.
Finally, the ’boundary’ velocity that is computed for the Level Set Approach is
somehow the opposite extreme to the approximation of the radial function by
trigonometric polynomials. The basis functions we have used in (4.42) to define
the ’boundary’ velocity are more or less a Lagrange basis for the normal field on
the 0-level set, for which we know nothing more than the Lagrange property. In
this sense, the ’boundary’ velocity decouples, as it does not incorporate informa-
tion from a basis function αjN at the point xi, although αjN should influence
the value of the ’boundary’ velocity via its derivatives. The effect of this is that
the approach does not make up for an oscillatory Fréchet derivative. But this
has to be taken into account due to drawbacks described above.
Hence, we may summarize that the Level Set Approach displays several appealing
and desirable features as a general concept for geometric optimization that let
it appear to be superior to an explicit boundary representation. Nevertheless,
one has to keep in mind that there also exist various, partly severe, drawbacks.
With the tools we have employed in this thesis, these drawbacks still lead to the
consequence that implicit boundary representations are not yet a perfect match for
boundary integral methods. We will present some additional ideas in the outlook
that may help improving the connection between Level Set Methods and boundary
integral equations. If the ideas presented there can be successfully incorporated
into the general scheme, then the combination of both approaches is expected to
render a powerful tool in geometric optimization as it complements the efficiency
and the rapid convergence of boundary integral methods with the versatility and
conceptual simplicity of Level Set Methods.

We contrast the features of the Level Set Approach in the following by the a
corresponding analysis for the Steepest Descent Approach. Here we begin by
presenting the drawbacks that exist, and for many of which we have presented
strategies in Section 4.2 how these drawbacks can be dealt with adequately.
The central point of the approach via explicit boundary representation is the idea
to split the parametrization of the boundary into an angular and a radial part.
Then the optimization is carried out with respect to the radial part only, where
the admissible set of radial functions is a subset of a finite-dimensional space.
This already discloses many drawbacks of the method. Firstly, an admissible ra-
dial function has to be positive, while the finite dimensional approximation space
naturally allows also negative functions. Hence, special care has to be taken



184 CHAPTER 6. DISCUSSION AND OUTLOOK

within an implementation to ensure the positivity for each iterate. Secondly, the
approximation space allows on its own account arbitrary large coefficients for any
basis function. This induces additional problems such as separation problems or
oscillatory behaviour. Thirdly, the resulting domains are always starlike. Ge-
ometries such as horseshoe-shaped domains that may be of particular interest
from an applicational point of view cannot be realized in the framework of this
approach.
Furthermore, the approximation spaces presented in Section 4.2 have either global
or mildly localized support. This leads to more or less global perturbations of the
domain, when claculating the Fréchet derivative. The numerical examples from
Chapter 5 have shown, that contrarily the model requires local perturbations of
the domain. This is understood in the sense that the side of the domain D that is
not facing Γ only gives a marginal contribution to the behaviour of the functional
and the current distribution.
In order to overcome what we have phrased above as separation problems, namely
securing Γ ∩ D = ∅, we have introduced the Augmented Lagrangian Approach,
where we have prescribed a hard constraint on the position of the boundary ∂D
for a certain fixed angular direction. The idea of enforcing a separation of D and
Γ in this way goes further than what is originally required by the problem. It
arbitrarily fixes a distance between D and Γ for one particular direction leaving
all other directions as well as the distance itself out of account. For arbitrarily
placed centres the approach is hence not appropriate for ensuring D ∩ Γ = ∅.
Finally, we observe from the Steepest Descent Algorithm 4.11 directly that the
case of finitely many connected components for D cannot be handled as easily as
in the case of the Level Set Approach. Moreover, we see that adaptive strategies
cause even more severe problems. This is understood in the sense that the merg-
ing of two starlike domains cannot be expressed in the same framework. Similarly,
the framework itself contains no mechanism that indicates when a splitting for a
domain should take place. Hence, the Steepest Descent Approach is topologically
stiff, with the number of connected components for D being an input parameter
that is given a priori and which stays fixed throughout the algorithm.

Some of the drawbacks discussed above have been addressed in the course of
the Steepest Descent Approach, and we have been able to suggest regularization
terms to tackle these problems at least for the situations that are relevant from
an applicational perspective. Other deficiencies like the topological stiffness are
an inherent property of the approach via explicit boundary representations itself
and hence cannot be resolved in this framework.

The drawbacks mentioned above are contrasted by advantages of the approach
via explicit boundary representations, which turn out to be of decisive quality.
The most important point is that the Steepest Descent Approach is the perfect
match for the boundary integral equation method for the Boundary Value Prob-
lem. The sensitivity analysis as well as the Steepest Descent Approach are for-
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mulated in exactly the same language as the boundary integral equation method.
Hence, the evaluation of the Fréchet derivative is achieved without much further
work. Moreover, it has a natural interpretation for updating the boundary of D.
This leads to an appealing simple structure of the basic iterative procedure and
makes it extremely simple to use.
As a second argument we adduce that it is conceptually easy to incorporate
schemes which either suppress oscillatory behaviour in the boundary, or which
are employed for securing Γ ∩ D = ∅. This can be seen from the regularization
terms Gc and Gϑ,d from Section 4.2. Although we have argued above that the
Augmented Lagrangian Approach is not effective when viewed as a general con-
cept, we point out that the regularization term Gϑ,d works extremely efficiently
in the cases that are relevant from an applicational point of view. The regular-
ization term Gc that suppresses oscillations in the radial function serves several
purposes at the same time. Firstly, it can be viewed as a design parameter that
influences the cavity which the domain is forming around the arc. Secondly, it
leads to essentially non-oscillatory boundary curves in regions that are not facing
the arc. And thirdly, it can also be regarded as a stability parameter as it helps
ensuring the positivity of the radial function. These advantages of the Steepest
Descent Approach are complemented by a rapid convergence of the boundary in-
tegral equation method as we have smooth boundary representations which allow
comparatively coarse discretizations of the boundary.

We conclude that, as far as this thesis is concerned, the approach via explicit
boundary representations is better suited for the Geometric Optimization Problem
than the Level Set Approach. From the side of the Steepest Descent Approach
the reason is that we have been able to introduce regularization terms that deal
efficiently and satisfactorily with the most immediate drawbacks for the situations
which are considered the most relevant from an applicational perspective. From
the point of view of Level Set Methods the reason is the desired versatility and
adaptivity that we have gained with the Level Set Approach does not play an
important role in the problem at hand. In particular we have never experienced
the tendency in the geometric evolution for a merging or splitting to take place.
It is our personal view that this is due to the local nature of the homogenization
process. Merging can only occur if the two domains being situated at the opposing
endpoints of the arc evolve across the entire length of the arc. This would require
a stronger dependence of the domain boundary on the current distribution on the
other endpoint of the arc - a behaviour which is not supported by the examples of
the previous chapter. As the crucial advantages of the Level Set Approach have
turned out to be of minor importance for the problem at hand, the approach
is in an inferior position to the Steepest Descent Approach, as its drawbacks
gain weight. Nevertheless the approach via implicit boundary representations
has proved to be a powerful alternative provided the versatility and adaptivity
play a decisive role in an optimization problem.
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6.2 Outlook

We end our considerations of the shape optimization problem in superconductivity
by giving ideas how the work compiled in this thesis can be dwelled upon.
Let us first of all mention that the work at hand is by no means meant to be com-
plete or comprehensive. In nearly every part of this thesis there are possibilities
to extend or modify the presented material.

As a first issue we consider the mathematical model that leads to the Boundary
Value Problem from Chapter 2. The experiments from Chapter 5 have shown
that the optimized geometries of the magnetic environment for a single super-
conducting film can reduce the peak in the current distribution by a factor of up
to ten. This is a strong result on its own account as it allows roughly speaking up
to ten times stronger currents to be carried in a superconducting film that is mag-
netically shielded by magnets as compared to the same film without shielding.
On the other hand the total currents that are transported are still comparatively
small such that the result on its own does not make superconductivity competi-
tive. Nevertheless, by combining several superconducting films one might be able
to attain strengths for the total current that are interesting for applications.
In this context one can pose the question whether the fields that are generated
by the currents in these films may not themselves serve as shieldings for the other
films. For the mathematical model this leads to the study of the interactions of
several disjoint open arcs, in combination with additional permanent magnets.
In such a problem also an appropriate distribution of the total current to each
film becomes a relevant question as it may heavily influence the result.

Turning back to the setup from this thesis, we have to mention that the charac-
terization of the current distribution from Theorem 2.15 is not completely satis-
factory. We have been able to prove in Section 2.4 that the current distribution
for the arc Γ either vanishes at the endpoints of Γ or develops singularities of
at most square root type there. Contrary to this result, there is no occasion in
our experience where either a singularity of lower order or even a non-singular
current distribution has occured. This experience is coherent with the result of
Hayashi [34], where it was proven that the solution to a Dirichlet problem for the
Helmholtz equation in the exterior of an open arc always develops square root
singularities. Hence we propose

Conjecture 6.1. Let (Γ, D) be an admissible geometry, and let I 6= 0. Then the
current distribution for Γ is always singular at the endpoints z±1 of Γ, and the
singularity is of square root type. In other words, we have

[
∂u

∂νΓ

]
(x) =

(
|x− z±1|

)− 1
2f±1(x), Γ 3 x→ z±1,

where the functions f±1 are bounded in neighbourhoods of z±1, and are different
from zero at z±1.
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Strongly related to a comlete characterization of the current distribution are
modifications that might be applied to the Geometric Optimization Problem in
general. In Lemma 1.15 we have seen how delicate the behaviour of functions
in C∗(Γ) is with respect to the endpoints. The weight function in the objec-
tive functional (3.4) complements this behaviour. In this thesis, we have made a
particular choice (3.5) for the weight function, that was motivated from the sim-
plicity that the functional thereby obtains, but it is by no means clear whether
this choice is optimal. Further studies in this direction seem appropriate as the
weight function should not disguise prominent features of the current distribution.

Turning to the approximation schemes for the Geometric Optimization Problem
we find several starting points for possible extensions.
So, the choices for the finite-dimensional approximation spaces used in the Steep-
est Descent Approach have been either basic or extremely design specific. It may
be well worth studying other approximation spaces that have either compact sup-
port or at least a localized support with strong single peaks. The aim should be
to obtain smaller opening angles for the cavity of the domain D around Γ in com-
bination with an essentially non-oscillatory boundary curve in all other regions
of the boundary of D. We have to add that such approaches have to be carried
out rather cautiously, because the approximation scheme for the Boundary Value
Problem requires balancing the distance between the boundary curves and the
level of discretization for each boundary.
A second issue within the framework of the Steepest Descent Approach, which can
lead to improvements, is to think about alternatives to the Augmented Lagrangian
Approach. We have already pointed out in Section 4.2, where the weak points of
the Augmented Lagrangian Approach are. As a possible remedy we have suggested
penalization strategies with a penalty term of the form of (4.31). We judge further
investigations in that direction as rather promising, in particular as one might
be able to exploit the insights gained there for a more localized approach for
curvature regularization. The basic rule here could be the following.

Whenever ∂D and Γ are close, we want to punish oscillations less, but
penalize the too small distance heavier. In areas where the distance
between ∂D and Γ is large we do not want to penalize the distance, but
want to suppress oscillations comparatively strongly.

Nevertheless, it will be quite tricky to come up with a penalty term which realizes
the above defined goal satisfactorily.
The third point we would like to address here, is the development of a more
sophisticated line search. In cases where the evaluation of the Fréchet derivative
is much more costly than solving an additional Boundary Value Problem, it is
desirable and worth the effort to determine an optimal step size for the Steepest
Descent Algorithm. We have used the line search only in a rather crude way in
Section 4.2. On the one hand we have used the approach for regularization by
halving step size until the positivity of the radial function is restored, on the other
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hand we have suggested to sample over a fixed set of step sizes to determine the
optimal step size out of these choices. We think that the use of Wolfe’s condition
will lead to improved performance of the line search.

The Level Set Approach still leaves the most room for improvements. We have
seen that although the approach is conceptually simple and straightforward, the
numerical results can not compete with the results obtained by the Steepest De-
scent Algorithm. The possible reasons for this have been discussed in detail in
the first part of this chapter. We point out that up to the present there is no
agreed way how to combine the two conflicting approaches of either explicit or
implicit boundary representation efficiently and satisfactorily. Consequently, two
different paths become apparent how to proceed.
A first idea would be to exploit the geometric information contained in the dis-
crete version of the level set function even more. This would mean to employ
spatial and temporal discretizations of higher accuracy to handle the rapidly
changing velocity field more adequately. Based on these more accurate infor-
mation about the shape of the 0-level set, one can also think of interpolating
additional boundary points in order to obtain an approximately equidistantly
spaced representation of the 0-level set.
A second idea is of a more conservative nature and follows the approach of Ferrayé
et. al (see [26, 27, 28, 29]). It restricts the information extracted from the
level set function to the position of the 0-level set using the extrapolation as
in Section 4.3. All other required quantities are then obtained after a second
approximation step. In this step we use tools from approximation theory to
generate a smooth parametrized curve which approximates the 0-level set based
on the discrete information we have from the first step.

Finally, also the context in which we view the physical application can be modified
and extended. On the one hand, a generalization to the three-dimensional case
seems interesting. Here, one is not so much interested in transport currents, but
in so-called magnetization experiments, where an externally generated magnetic
field induces a circular shielding current in the superconducting medium. In this
context one might seek to extend the mathematical model to the case of two-
dimensional planar cracks, and develop an analogous analysis as has been done
here. On the other hand, one might want to view the existing two-dimensional
problem in the context of alternating currents instead of direct currents. This
would then lead to time-harmonic magnetic fields, which can be modelled using
the Helmholtz equation. Here, an ansatz similar to the one presented in this thesis
seems possible, both for the Boundary Value Problem and for the Geometric
Optimization Problem.
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[37] F. Hettlich: Fréchet derivatives in inverse obstacle scattering, Inv. Prob. 11,
371 - 382, (1995)
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