
Susanne Scholl

Customer-Oriented Line Planning

Vom Fachbereich Mathematik
der Technischen Universität Kaiserslautern

genehmigte

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Doctor rerum naturalium, Dr. rer. nat.)

Erstgutachterin: Prof. Dr. Anita Schöbel
Zweitgutachter: Prof. Dr. Leo G. Kroon

Datum der Disputation: 15. Juli 2005

D 386

Scholl, Susanne:
Customer-Oriented Line Planning / Susanne Scholl. –
Als Ms. gedr.. – Berlin : dissertation.de – Verlag im Internet GmbH, 2006
 Zugl.: Kaiserslautern, Techn. Univ., Diss., 2005
 ISBN 3-86624-084-8

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische
Daten sind im Internet über <http://dnb.ddb.de> abrufbar.

dissertation.de – Verlag im Internet GmbH 2006

Alle Rechte, auch das des auszugsweisen Nachdruckes, der
auszugsweisen oder vollständigen Wiedergabe, der Speicherung
in Datenverarbeitungsanlagen, auf Datenträgern oder im
Internet und der Übersetzung, vorbehalten.

Es wird ausschließlich chlorfrei gebleichtes
Papier (TCF) nach DIN-ISO 9706 verwendet.
Printed in Germany.

dissertation.de - Verlag im Internet GmbH
Pestalozzistraße 9
10625 Berlin

URL: http://www.dissertation.de

3

Wir stolzen Menschenkinder
sind eitel, arme Sünder

und wissen gar nicht viel.
Wir spinnen Hirngespinnste

und wissen viele Künste
und kommen weiter von dem Ziel.

(Matthias Claudius, 1778)

Meiner lieben Großtante
Schwester Therese,

geborene Else Molitor
gewidmet.

4

Acknowledgements

I would like to take the opportunity to thank all the people who supported
my work in various ways.

First of all, I thank Prof. Dr. Anita Schöbel and Prof. Dr. Horst Hamacher of
the Technical University of Kaiserslautern, who gave me the opportunity to
get deeper into the field of integer programming and traffic planning. For me
it was a great experience to have all the freedom I wanted to decide about
my scientific work and at the same time knowing that I get the support I need.

The thesis was prepared and written during my three years scholarship of the
Graduate College Mathematics and Practice of the German Research Foun-
dation (DFG) at the Technical University of Kaiserslautern. I thank my
project partners Dr. Frank Wagner from Die Bahn (German Railway) and
Dr. Norbert Ascheuer from Intranetz for the support and real-world data.

I thank all my colleagues in the department Optimization for the pleasant
times there. In particular, I would like to mention Olena Gavriliouk and
Mangalika Jayasundara. Furthermore Martin Pieper was a patient proof-
reader and a first friend at the Georg-August University of Göttingen, where
I finished this work.

I am thankful to my grandaunts Hanna and Else Molitor for paving the way
for women at German universities.

Besides all these, I am very grateful to Ludger, my brother Peter, and more
than all, to my parents Dagmar and Hanspeter, and my husband Alexander
for their love and imperturbable belief in me and the completion of this work.

i

ii

Contents

Acknowledgements i

1 Introduction 1

I Modeling Line Planning Problems 3

2 Survey on line planning literature 5

2.1 Passenger demand . 5

2.2 Line planning: Problem description and notations 6

2.3 Finding a feasible line concept 7

2.4 Objectives . 8

2.4.1 Cost-oriented approaches 10

2.4.2 Customer-oriented approaches 13

2.5 Real-world applications . 18

3 A new Model 21

3.1 Motivation and basic definitions 21

3.2 Complexity . 25

3.2.1 An introduction to computational complexity 25

3.2.2 Complexity of (LPMT) 27

3.3 Model formulations . 29

3.3.1 Change&go-network 29

3.3.2 Integer programming formulations 33

3.3.3 Bicriteria formulation 36

3.3.4 Formulation including frequencies 41

3.4 Discussion of the formulations 42

3.4.1 Equivalence and strength 42

3.4.2 Model structure . 54

3.4.3 Special cases . 56

iii

iv CONTENTS

II Solution Methods 61

4 Heuristics 63
4.1 Variable Fixing . 63
4.2 Greedy heuristics . 65

4.2.1 Starting with empty set 65
4.2.2 Starting with line pool 70

4.3 Relaxation and Separation . 71
4.4 Line segment heuristic . 73
4.5 Summary . 74

5 Dantzig-Wolfe-Decomposition 79
5.1 Theory . 79
5.2 Dantzig-Wolfe applied on (LPMT) 87

5.2.1 Master formulations 89
5.2.2 Strength of the Master Program 95
5.2.3 Initialization . 97

5.3 Computational results . 99
5.3.1 Variations of the Decomposition 99
5.3.2 Variations of the line pool 100

6 Exact solution method 103
6.1 Branch & Bound . 103
6.2 Branch & Bound applied on (LPMT) 105
6.3 Preprocessing . 111

7 Conclusions 113

List of Symbols 116

List of Figures 118

List of Tables 119

Bibliography 125

Chapter 1

Introduction

The rail transportation industry is very rich in terms of problems that can
be modeled and solved using mathematical optimization techniques. Public
transportation planning is based on the anticipatory determination of vehi-
cle runs from a start to an end point and the assignment of an operating
resource and employees to these runs. In 2003, German Rail had 243700
employees that carried 1.7 billion travelers on a total of 70 billion kilometers.
The German rail network consists of 35000 kilometers of rail track and 5665
stations ([Rai]). Facing these dimensions it is clear that is is not possible
to plan such a complex system in just one step. Thus, the typical plan-
ning process is divided in three planning levels: the strategical level treating
long-term decisions such as the estimation of passengers demand, the stop
location problem or the line planning problem. These decision have a time
horizon of 10 to 20 years. The second level is the tactical level where the time
schedule and the duty roster is made. These problems have a time horizon
of about one year. The last level is the dispositive level, where short-term
decisions like delay management are covered. Delay management is the prob-
lem: which vehicle should wait if another vehicle has a delay. [Goo04] gives a
nice introduction into the different planning problems for passenger railways.

This thesis deals with the line planning problem which is part of the strate-
gic, the long-term level. It is concerned with the question of the routes the
trains will run in a given public transportation network. Even though the
real world data our approaches are developed for comes from rail transport,
the ideas mentioned in this thesis can easily be adapted to the line planning
problem for other transportation systems, e.g. buses.

A comprehensive discussion of the line planning problem including its model-
ing and solution applying mathematical programming methods, constitutes

1

2 CHAPTER 1. INTRODUCTION

the core of this thesis. Therefore we concentrate on structural properties of
the problem. We show that it belongs to the class of hardest optimization
problems and present numerous solution approaches. In opposite to other
line planning models presented in literature so far, which aim to minimize
the operational costs or to maximize the number of direct travelers, we min-
imize the travel times over all customers including penalties for the transfers
needed while keeping the operational costs in mind. Penalties on transfers
are important since customers associate inconvenience and the risk of a de-
lay due to a missed connection with transfers. If a customer has to be at a
destination in time and has a short transfer time on his way, he will either
take one train earlier and so its total travel time will increase a lot or, in the
worst case, he will not use public transportation at all. Psychologically, the
annoyance about a missed connection is much higher than about a delay of a
train the customer is sitting in. This is called the ”‘red light phenomenon”’
because the (running) traveler just sees the red back-lights of the leaving
train.
If we are able to find a solution of the line planning problem such that the
travelers can travel with a low number of transfers, we also simplify the delay
management problem. This means we somehow combine a problem of the
strategical level with one of the dispositive level.

The thesis is organized as follows. In the next chapter we introduce the line
planning problem and give a short literature survey. In Chapter 3 we intro-
duce a new customer-oriented line planning model. Various integer program-
ming models are proposed and discussed. In Chapter 4 we present different
heuristic approaches. In Chapter 5 we dwell on the structure of the inte-
ger programs to solve its LP-relaxation by using a Dantzig-Wolfe approach.
All these techniques are combined finally to an exact solution approach pre-
sented in Chapter 6. In the last chapter, we draw some conclusion and give
a prospect of future research on the line planning problem.

Part I

Modeling Line Planning
Problems

3

Chapter 2

Survey on line planning
literature

In this chapter we will give a short survey on the work that has been done
in the field of line planning in the last century. It does not claim to be
complete but tries to classify the - with respect to this thesis - most important
publications.

First we will show how passengers data is estimated. Then, after a for-
mal problem description, we will explain the two major ways how to find
a feasible line concept. In Section 2.4 we will explain in more detail the
main types of line planning approaches, namely the cost- and the customer-
oriented approaches. We will close the chapter with some information about
the real-world data that is used in this thesis.

2.1 Passenger demand

The volume of traffic or passenger demand must be given to establish a
customer-oriented transportation service. Given a set of stations S, the
conventional form is an S × S origin-destination matrix, where the entry
in the ith row and the jth column denotes the number of passengers that
want to travel from station i to station j within a given time period. The
origin-destination matrix is difficult, and often costly to obtain by direct
measurements or interviews, but by using traffic counts and other available
information one may obtain a ”reasonable” estimate. Various approaches to
estimate the origin-destination matrix using traffic counts have been devel-
oped and tested. [Abr98] gives a detailed survey on these approaches.

The origin-destination matrix, in general, refers to the number of trips be-
tween two geographic locations which are not classified regarding their travel

5

6 CHAPTER 2. SURVEY ON LINE PLANNING LITERATURE

mode, such as car, bus, train or airplane. The splitting of all trips over the
available travel modes is called modal split.
Train travelers often have a number of train lines and connections available
to travel from their origin to their destination. These connections may even
involve geographically different routes. The passengers choice depends on
criteria like travel time, comfort, or ticket price. The problem of estimating
how customers travel through the network specific for railway systems is
described by [Olt94].
The symmetry depends on the length of the time period as we can assume
that most of the customers travel from their origin to their destination and
back again since they mainly travel to work or to holidays and back home
again. So, an origin-destination matrix for a whole year will be very symmet-
ric whereas the matrix for the time between 6 and 9 o’clock in the morning
will not be symmetric at all because it will reflect for example the traffic from
the suburbs to the city centers.
In this thesis the origin-destination matrix is assumed to be given and sym-
metric. Estimating the origin-destination matrix is outside the scope of this
thesis.

2.2 Line planning: Problem description and

notations

Definition 2.1. A public transportation network is a finite, undirected graph
PTN = (S,E) with a node set S representing stops or stations, and an edge
set E, where each edge {u, v} indicates that there exists a direct ride from
station u to station v (i.e., a ride that does not pass any other station in
between).

Definition 2.2. A line is a path in a public transportation network. It is
specified by a sequence of stations, or, equivalently a set of edges.

If we consider periodic transportation planning, each line is connected with
a number of trips it runs within a given time interval, called the frequency fl

Definition 2.3. A line concept L is a set of lines in a public transportation
network. In periodic transportation planning, it is a set of lines together
with their frequencies (L, f).

Definition 2.4. The frequency of an edge e in a line concept (L, f) is given
as

f(e) =
∑

l∈L:e∈l

fl.

2.3. FINDING A FEASIBLE LINE CONCEPT 7

fmin
e and fmax

e denote the minimal and maximal allowed frequency on edge
e ∈ E.

For example, fmin
e can be chosen as the minimal number of vehicles on edge

e that is needed to transport all customers. The upper frequency fmax
e is

often defined due to safety reasons.

We can generalize all line planning problems treated so long by a basic line
planning problem:

Definition 2.5. Given a public transportation network and an origin-destination
matrix, the basic line planning problem is to find a line concept, such that
all customers are served.

2.3 Finding a feasible line concept

There are two ways to find a set of lines.

1. We can choose lines out of a given set of possible lines, the so called line
pool L. In this case, the basic line planning problem can be formulated
as

Definition 2.6. Given a public transportation network, a line pool L,
and lower and upper frequencies fmin

e ≤ fmax
e for all e ∈ E, the basic

line planning problem (LP0-pool) is to find a line concept (L, f) with
L ⊆ L and fl ∈ N for all l ∈ L such that the line frequency requirement

fmin
e ≤

∑
l∈L:e∈l

fl ≤ fmax
e (2.1)

holds for all e ∈ E.

This problem is known to be NP-complete, even if fmin
e = fmax

e = 1
for all e ∈ E (see [Bus98]).

If we neglect the upper frequencies, the problem is polynomial solvable
by the following algorithm.

Algorithm 2.7. ([Sch01a])
Given: PTN, line pool L, lower frequencies fmin

e for all e ∈ E

(a) Set L = ∅, fl = 0 for all l ∈ L

8 CHAPTER 2. SURVEY ON LINE PLANNING LITERATURE

(b) If for all e ∈ E :
∑

l∈L:e∈l fl ≥ fmin
e Stop: (L, f) is a feasible line

concept.
Otherwise take some e ∈ E with

∑
l∈L:e∈l fl < fmin

e

(c) If there is a line l ∈ L with e ∈ l define L := L ∪ {l}, fl := fmin
e

and goto Step 2.
Otherwise stop: no feasible line concept exists.

2. We can construct lines from scratch. The resulting basic line planning
problem can be formulated as follows.

Definition 2.8. Given a public transportation network, and lower and
upper frequencies fmin

e ≤ fmax
e for all e ∈ E, the basic line planning

problem (LP0-construct) is to construct a line concept (L, f) with fl ∈
N for all l ∈ L such that the line frequency requirement

fmin
e ≤

∑
l∈L:e∈l

fl ≤ fmax
e (2.1)

holds for all e ∈ E.

This problem is easy to solve, if no additional constraints have to be
satisfied since we just have to define a line for each edge e ∈ E with
frequency fmin

e .

2.4 Objectives

If we solve the basic line planning problem (LP0-pool) or (LP0-construct),
we get a feasible line concept. But we do not know how ”good” it is. There
are three (conflicting) criteria that need to be considered:

1. Serve all customers.

2. Maximize passengers convenience.

3. Minimize the costs of the public transportation company.

The first criterion is achieved by the line frequency requirement (2.1). As we
have already mentioned, the lower edge frequencies are chosen such that all
customers are transported. Therefore, we have to estimate or assume how
passengers will traverse the network. One possibility is to assume an a priori

2.4. OBJECTIVES 9

assignment of passengers to geographical routes through the network. From
the passengers perspective, this is comparable to the restrictions enforced by
the ticket regulations. The freedom of the line planning model is now re-
stricted to assigning the passengers to train lines along the prescribed route.
This assumption has two important implications. Firstly, it can be used to
exclude unrealistic traffic assignments in which some travelers have to travel
a large detour. Secondly, this assumption can be used to simplify the line
planning models considerably, for example in the multi-type line planning
problem in [Goo04], where different types of trains, such as high speed and
regional trains are considered. The prescribed routes could be the shortest
paths in the PTN or the observed routes taken by the customers traveling
to the current line concept and timetable.
Another possibility is to let the line planning model determine the traffic as-
signment, that is ideal for minimizing the operating cost of the line concept.
In this case the model dictates the routes of the passengers. This solution can
be far from the true traffic assignment made by the passengers themselves. It
could force a passenger on a large detour if this would have a positive effect
on the chosen objective.
It is also possible to estimate the time needed to change from one train to
the next to predict the shortest path of passengers with respect to travel
time. Different to the first traffic assignment, this assignment depends on
the chosen line concept. It prevents unnecessarily large detours and will be
used in the model developed in this thesis.

The second criterion, we have to consider, is the maximization of the pas-
sengers convenience. This can be short travel times or a small number of
transfers. Customer-oriented approaches are described in more detail in Sec-
tion 2.4.2.

Contrarily the third criterion, the minimization of the operational costs, asks
for an efficient use of its resources such as rolling stock. Note that rolling
stock planning is a self-contained field in traffic planning (see e.g. [Sch93]
or [PK03]). Simplifying, we can assign each line some cost, depending on
the length of the route, the number of coaches, the type of the engine, the
number of crew members, etc.. Cost-oriented line planning approaches have
been investigated extensively in the last ten years. A literature survey on
cost-oriented approaches is given in Section 2.4.1.

10 CHAPTER 2. SURVEY ON LINE PLANNING LITERATURE

2.4.1 Cost-oriented approaches

In the cost-oriented approaches next to the lines and their frequencies also
the number of coaches per train are determined. The number of coaches is
assumed to be identical for each train serving line l. These identical trains
are called compositions.
All cost-orientated models in the literature have the common style:

(LPP)

min
∑
l∈L

fl · costl

s.t.

fmin
e ≤

∑
l∈L
e∈l

fl ≤ fmax
e ∀ e ∈ E

fl ≥ 0 ∀ l ∈ L

fl ∈ N0 ∀ l ∈ L

where fl is the frequency of line l, fmin
e , fmax

e the edge restrictions explained
in Section 2.2. Since we minimize fl in the objective function, the lower fre-
quencies fmin

e are important to make sure that all passengers are transported
(see Section 2.4, 1st criterion). costl is a cost factor for each line which might
be divided into various parts.

In the master thesis of Claessens ([Cla94]), (see also [CvDZ98], [ZCvD96])
the costs are divided into:

• fixed cost per coach (costcfix) and motor unit (costtfix) given by de-
preciation cost, capital cost, fixed maintenance cost, cost of overnight
parking

• variable cost per coach (costcvar) and motor unit (costtvar) given by
energy consumption and maintenance cost

The number of coaches in an operating line is bounded from below and above
by NCmin and NCmax, while SC denotes the capacity of a single coach. Also
a turn-around time for cleaning, maintenance and changing the crew is con-
sidered. The running time plus the needed cleaning time is divided by the
length of the time interval to obtain the number of compositions Tl needed
for operating a line once per basic time interval. The multiplication of Tl

2.4. OBJECTIVES 11

with the calculated frequency of line l rounded up to the next smallest inte-
ger gives us the total number of compositions needed to serve line l. With
variables fl giving the frequency for each line l and yl counting the coaches
needed we get the following nonlinear model:

(COSTNLP)

min
∑
l∈L

�Tl · fl	(cost
tfix + (yl + NCmin)costcfix)

+dl · xl · (cost
tvar + (yl + NCmin) · costcvar)

s.t.

fmin
e ≤

∑
e∈l∈L

fl ≤ fmax
e ∀ e ∈ E

∑
e∈l∈L

SC · fl(yl + NCmin) ≥ ld(e) ∀ e ∈ E

NCmin ≤ yl ≤ NCmax ∀ l ∈ L

fl ∈ {0, 1, . . . , fmax}, yl ∈ N0 ∀ l ∈ L

The model has integer variables, discontinuous and quadratic terms. As solv-
ing it by Lagrangian relaxation gives only poor results, a heuristic has been
proposed which is solvable in reasonable time. The heuristic is based on a
relaxation combined with iterative rounding of the fl variables. If we fix
fl-variables we get an integer multi-commodity flow problem.

Two linearizations to this nonlinear model are proposed in [CvDZ98] and
[Bus98].

1. In the (COSTNLP) model the quadratic terms always have the form
fl · yl and are substituted in [CvDZ98] by introducing a new class of
variables

zl,φ,γ =

⎧⎪⎨
⎪⎩

1 if the line concept contains a line l

with frequency φ and γ coaches

0 otherwise

Now, the quadratic term can be substituted by

flyl :=
∑

φ∈{1,...,fmax}

NCmax∑
γ=NCmin

φγzl,φ,γ

12 CHAPTER 2. SURVEY ON LINE PLANNING LITERATURE

and fl by

fl :=
NCmax∑

γ=NCmin

φzl,φ,γ .

The discontinuous �Tlfl	 term is substituted by

�Tlfl	 :=
∑

φ∈{1,...,fmax}

NCmax∑
γ=NCmin

�Tlφ	γzl,φ,γ .

The resulting formulation (COSTBLP) is a binary linear program with
an unchanged number of constraints but much higher number of vari-
ables. In real-world instances the number of variables grows by a factor
of 10. Therefore some preprocessing must be done before the model can
be solved using a general linear programming-based branch-and-bound
algorithm.

2. The second linearization of (COSTNLP) is proposed in [Bus98]. In
this approach the quadratic terms are avoided by introducing binary
variables for the combination of a particular line and frequency:

xl,φ =

{
1 if the line concept contains a line l with frequency φ

0 otherwise

and integer variables yl,φ ∈ N0 representing the number of coaches of
the line l with frequency φ.

The quadratic term in the (COSTNLP) can now be substituted by

flyl :=
∑

φ∈{1,...,fmax}

φyl,φ

if we guarantee that

yl,φ ≥ NCmin ⇔ xr,φ = 1.

fl can be replaced by

fl =
∑

φ∈{1,...,fmax}

φxl,φ

and the discontinuous term �Tlfl	 by

�Tlfl	 =
∑

φ∈{1,...,fmax}

�φTl	yl,φ.

2.4. OBJECTIVES 13

In the resulting integer linear program (COSTILP) the number of vari-
ables grows by a factor of fmax and the number of constraints increases
by |L| ·fmax compared to (COSTNLP). In comparison to (COSTBLP),
the size of the model significantly reduces whereas the quality of the
initial linear programming relaxation keeps unchanged. Again, pre-
processing is done to reduce the size.

Comparing (COSTILP) and (COSTBLP) using a cutting plane algorithm,
we get that the much more compact (COSTILP) formulation is preferable
to generate good feasible solutions. On the other hand the lower bounds
provided by the (COSTBLP) are superior to the lower bounds of the (COS-
TILP). Therefore the (COSTBLP) is preferable for proofing optimality of a
feasible solution.

In [GvHK04] it is shown that the (COSTBLP) formulation can be used to
solve large instances of the problem using branch-and-cut.
In [Goo04] and [GvHK02] the authors get rid of the assumption that the
passengers are assigned a priori for example by modal split to different types
of trains. This is done by assigning every node in the PTN a certain type,
representing for example the size of the station.Then the type of a line de-
termines the stations they pass. For example a line of type 1 stops at every
station it passes, a line of type 2 will not halt at a station of type 1 but at
every station of type 2 or higher. Several models, correctness and equivalence
proofs are presented.
Recently, a fast heuristic variable fixing procedure which combines nonlinear
techniques with integer programming is proposed in [BLL04].
In [Goo04] a model that reconsiders the stations at which the trains stop for a
given line plan. This model is used to determine the halting stations in such a
way that the total travel time of passengers is minimized. Lagrangian relax-
ation is used to find lower bounds for this problem. Preprocessing and tree
search techniques augment the efficiency of the branch&bound framework,
the bounds are used for.

2.4.2 Customer-oriented approaches

From the customers point of view a good public transportation system is
cheap, fast, reliable, and serves directly with a high frequency from origin
to destination. Of course not all of these objectives can be pleased at once.
Customer-oriented line planning tries to find a line plan that offers a good
comfort to the passenger, such as fast connections with a small number of
transfers. This can be done by maximizing the number of direct travelers

14 CHAPTER 2. SURVEY ON LINE PLANNING LITERATURE

which is quite well studied in literature.
In the direct travelers approach the objective is to maximize the number
of direct customers (i.e. customers that need not change the line to reach
their destination). In this case, an upper bound to the number of vehicles is
important. To this end, we either have to make sure that not more vehicles
are established than it is possible due to safety reasons:∑

l∈L:e∈L

fl ≤ fmax
e ∀ e ∈ E (2.2)

or more than it is affordable for the transportation company∑
l∈L

costlfl ≤ B

where costl is the fixed cost the company has to spend to run a vehicle on
line l and B is the budget the company is willing to spend.
This budget constraint is used in [Sim80], [Sim81b] and [Sim81a], where Si-
monis presents a solution approach that starts with an empty line concept
and adds successively lines on shortest paths with a maximum number of
direct travelers. The algorithm stops if all passengers find an appropriate
travel path or the budget constraint is violated.

The problem of maximizing the number of direct travelers with respect to
upper line frequency requirements (2.2) has been well studied. Starting in
1925, where Patz presents a first model for the line optimization problem
that determines a line plan with small penalty. The penalty is calculated
with respect to the number of empty seats and the number of passengers
changing to another line to reach their destination. The algorithm starts with
a line plan containing a line for each non-zero entry of the origin-destination
matrix, the so called origin-destiantion pairs. Lines will be eliminated in a
greedy method with respect to the penalty.
Such greedy heuristics that either add lines to an empty set or delete lines
from a line pool are also presented in [Son77], [Son79], [RR92], [PRE95],
and [Völ01]. Other heuristics construct lines out of small pieces, see [LS67],
[Weg74], [Son77] and [Son79].
In [Sch01b] the passengers demand is not assumed to be fixed but depends
on the level of service.
A recent work by Quak [Qua03] treats line planning for buses instead of
trains. He develops a two phase algorithm with the construction of the lines
in the first and setting of frequencies and departure times in the second phase.
In contrary to the other models he is not taking lines out of a given line pool

2.4. OBJECTIVES 15

but constructs them from the scratch, which is the main part of his work.
The two main objectives of this model are ”minimizing the total drive time
of the vehicles” to keep the costs for the company low and ”minimizing the
mean detour time of the passengers requests” to keep the passengers comfort
high since short travel times are requested by the passengers. As he sets up
also a timetable in the second phase, he tries to keep the changing times low
to couple the second objective. But if the changing times are low, the risk
of loosing a connection in case of a small delay in the network is very high.
We also have to mention that a transfer is a bigger discomfort than a slightly
longer travel time.

In the last ten years, exact solution methods have been proposed. The two
main approaches will be explained in the following in more detail.

Bussieck, [Bus98]

In his PhD-thesis as well as in [ZBKW97], [BKZ96], and [BZ97], Bussieck et
al. decompose the network into a short-distance, a medium-distance and a
long-distance network and compute them independently because a customer
who wants to travel a long distance from a small town A to a small town B
will in general not find a direct connection that does not stop at each small
village in between. So this customer will travel first from the small town A
to the next big town C, change there to the long-distance network to travel
to a big town D, which is near the small town B and change back to the
short-distance network.
Bussieck assumes the customers to travel on shortest path Pij respective
travel time which is reasonable on long-distance networks but not in local
bus-networks of bigger towns. With this assumption the travel load ld(e) on
each edge e ∈ E can easily be calculated by

ld(e) :=
∑

(s,t)∈R:e∈Pst

wst

with R be the set of origin-destination pairs and wst their weights (i.e. the
number of customers traveling from node s to node t). With fixed vehicle
capacity V C, we now get

fmin
e ≥

⌈
ld(e)

V C

⌉
The upper frequency bound fmax

e is motivated by safety reasons and set to
20%:

fmax
e ≥

⌈
1.2 · ld(e)

V C

⌉

16 CHAPTER 2. SURVEY ON LINE PLANNING LITERATURE

With a given line pool, i.e. a set of possible new lines, L, which is reduced
to combinations of shortest paths and a class of variables dijl, counting the
direct travelers from node i to node j using line l, we get a mixed integer
programming model:

(LOP)

max
∑
l∈L

∑
(i,j)∈R
Pij⊆l

dijl

s.t. ∑
l∈L

Pij⊆l

dijl ≤ wij ∀ (i, j) ∈ R (2.3)

∑
i,j∈R

e∈Pij⊆l

dijl ≤ V C · fl ∀ e ∈ E, l ∈ L (2.4)

fmin
e ≤

∑
l∈L
e∈l

fl ≤ fmax
e ∀ e ∈ E (2.5)

dijl, fl ∈ N0 ∀ (i, j) ∈ R, l ∈ L (2.6)

Constraint (2.3) restricts the number of direct travelers on an origin desti-
nation pair to the total number of passengers on this relation. Constraints
(2.4) prevents that there are more passengers using a line than can be served.
Constraint (2.5) are the frequency requirement constraints explained above
and constraint (2.6) is the integrality constraint.
The problem is shown to be NP-hard and since the line pool is very big, it is
not possible to solve this problem for a real-world instance within reasonable
time. Relaxations of the problem are related to relaxations methods of multi-
commodity flow problems, including Lagrangian relaxation. Furthermore,
constraint (2.4) can be relaxed to

dijl ≤ V C · fl ∀ (i, j) ∈ R, l ∈ L : Pij ⊆ l (2.7)

and furthermore all these constraints can be aggregated to one for each origin-
destination pair:∑

l∈L:Pij⊆l

dijl ≤ V C
∑

l∈L:Pij⊆l

fl ∀ (i, j) ∈ R (2.8)

In the resulting model the dijl variable always occur in the form
∑

l∈L:Pij⊆l dijl

and can be substituted to a new variable Di,j:

2.4. OBJECTIVES 17

(lop)

max
∑

(i,j)∈R

Dij

s.t.

Dij ≤ wij ∀ (i, j) ∈ R(1)

Dij ≤ V C
∑

l∈L:Pij⊆l

fl ∀ (i, j) ∈ R(2∗∗)

fmin
e ≤

∑
l∈L
e∈l

fl ≤ fmax
e ∀ e ∈ E(3)

Dij, fl ∈ N0 ∀ (i, j) ∈ R, l ∈ L(4)

The integrality of fl, wij and V C implies the integrality of Dij, such that the
integrality constraint of the Dij variables can be relaxed to Dij ≥ 0 without
any changes on the solution but with significant reduction of the problem
size. A similar relaxation can be done in the (LOP) but here the integrality
of the dijl variables is not implied by the fl variables.
The solution of the relaxed model (lop) provides a feasible line plan, but the
objective value of an optimal solution of (lop) gives an upper bound for the
number of direct travelers, only.
The size of the (lop) is substantially reduced and the linear relaxation is quite
fast even for larger instances. Nevertheless more computation time can be
saved by preprocessing and constraint generation.

Dienst, [Die78]

In 1978, Dienst proposes a branch-and-bound algorithm for the line planning
problem with respect to the number of direct travelers based on the following
simplification of the problem, described in section 2.4.2. Dienst assumes an
infinite train capacity and sets fmax

e = 1 for all e ∈ E. fmin
e is used to

overcome infeasibility. He tries to get a line cover by adding successively
lines. After adding a line, the data is updated:

1. All origin-destination pairs (i, j) ∈ R with Pij ⊆ l are deleted from R,
because these customers are served by line l.

2. If for any edge e ∈ E the lower frequency bound fmin
e = 1, no other

line will use this edge (since fmax
e = 1 by assumption). Therefore all

origin-destination pairs (i, j) ∈ R with e ∈ Pij and Pij �⊆ l are deleted
from R. These customers will not travel directly to their destination.

18 CHAPTER 2. SURVEY ON LINE PLANNING LITERATURE

3. Reduce fmin
e along the new line l.

Dienst searches within a node of the branch-and-bound tree by a Greedy
method for the line l∗ with the maximal number of direct travelers and
branches on it.

• Add line l∗ to the partial line cover: The upper bound of the optimal
value reduces by the number of not direct travelers (see step (2) in the
data correction). The value of the line cover increases by the amount
of direct travelers served by line l∗. Correct data.

• Do not add line l∗ to the partial line cover: The upper bound of the
optimal value reduces by the number of travelers who only can use line
l∗. Delete these origin-destination relations from R.

The rest of the algorithm are standard branch-and-bound methods. The
algorithm works quite good, but is very slow, such that it will be stopped
after a given time or number of steps. The resulting problems are that the
actually best line cover might be infeasible if it cannot be completed by the
remaining lines and if the algorithm is stopped by time or iteration restriction,
the relation of the calculated solution to the optimal solution is unknown.

2.5 Real-world applications

The solution approaches presented in this thesis are tested on real-world
data of German Railway (DB) and Intranetz. The instances are based on
the german long-distance train network, shown in Figure 2.1. It consists of
233 stations and 319 edges. The origin-destination matrix has 35322 non-zero
entries. The given line pools sometimes do not cover all customers, i.e. even
if all lines would be used some customers would not reach their destination.
In this case the models presented in this thesis would be infeasible. Therefore
we deleted these origin-destination pairs in a preprocessing step. Table 2.1
shows the instances used in this thesis. Instance No.0 is the instance of
Example 3.11, Figure 3.5. |L| denotes the number of lines in the line pool
and |R| the number of non-zero origin-destination pairs.
The line pools are generated by the line pool generator of DB. It uses different
methods to produce a huge set of lines, such as

• enumeration of (straight) paths or sequences of stations which produces
good but ”‘main-stream”’-lines

• constructive graph algorithms such as

2.5. REAL-WORLD APPLICATIONS 19

No. |L| |R|
0 3 2
1 10 2602
2 50 4766
3 100 11219
4 132 18238
5 200 10126
6 250 13246
7 275 14071
8 300 17507
9 330 18433

10 350 17095
11 375 18350
12 400 22191
13 423 22756

Table 2.1: Instances for different line pool sizes

– global spanning tree: solve a Max-Spanning-Tree problem of a set
of important stations. A path in this tree is a line. Choose the
”best” line and reduce arc weights. Recalculate Max-Spanning-
Tree.

– local spanning tree: for each start or end station distribute the
demand on the network. Solve a Max-Spanning-Tree problem and
determine the x ”best” lines.

This huge set of possible lines is then reduced by using ad-hoc-filters, quality-
functions or tools avoiding detours to get a line pool of potential lines.

20 CHAPTER 2. SURVEY ON LINE PLANNING LITERATURE

Figure 2.1: The network with the main stations of long-distance trains in Ger-

many. [Rai]

Chapter 3

A new Model

In this chapter we present a new model to find a line concept minimizing
the travel time over all customers while taking into account the number of
transfers needed on their ways. This approach maximizes the comfort of the
passengers. Since it is possible to put a penalty on transfers, the resulting
timetable will be more reliable. In Section 3.1 we introduce some basic
definitions and motivate why there is need for a new model. We show the
difference between the direct travelers approach of Bussieck and our approach
in an example. In Section 3.2 we present some complexity results. In Section
3.3 we introduce an extended network and various integer formulations which
are discussed in Section 3.4.

3.1 Motivation and basic definitions

In this section we introduce some basic definitions we need for our model and
show that the direct traveler approach of Bussieck (see Section 2.4.2) is not
equivalent to our approach.
We first define the network which we assume to be given and fixed.

Definition 3.1. A public transportation network is a finite, undirected graph
PTN = (S,E) with a node set S representing stops or stations, and an edge
set E, where each edge {u, v} indicates that there exists a direct ride from
station u to station v (i.e. a ride that does not pass any other station in
between). For each edge {u, v} we assume that the driving time tuv is known.

Definition 3.2. The line pool L is a set of paths in the PTN. Each line l ∈ L
is specified by a sequence of stations, or, equivalently, by a sequence of edges.
Let E(l) be the set of edges belonging to line l. Given a station u ∈ S we
furthermore define

L(u) = {l ∈ L : u ∈ l}

21

22 CHAPTER 3. A NEW MODEL

as the set of all lines passing through u.

The next definition corresponds to the passengers demand.

Definition 3.3. R ⊆ S × S denotes the set of all origin-destination pairs
(s, t) where wst is the number of customers wishing to travel from station s
to station t.

As we want to keep the number of transfers small in our approach, we first
have to define formally, what a transfer is.

Definition 3.4. Given a set of lines L ⊆ L, a customer can travel from
his origin s to his destination t, if there exists an s-t-path P in the PTN
only using edges {E(l) : l ∈ L}. The minimum number of lines of L needed
to cover these edges minus one is the number of transfers needed by this
customer.

The line planning problem then is to choose a subset of lines L ⊆ L, the so
called line concept, which

• allows each customer to travel from its origin to its destination,

• is not too costly, and

• minimizes the “inconvenience” for the customers.

In the literature, the common customer-oriented approach dealing with the
inconvenience of the customers is the approach of [Bus98] (see also [BKZ96])
in which the number of direct travelers is maximized. In this work, however,
we deal with the sum of all transfers over all customers. On a first glance,
the problem to minimize the number of transfers seems to be similar to
maximizing the number of direct travelers. That is in general not the case,
as the following example demonstrates.

Example 3.5. Given a PTN with 9 nodes and 8 edges as shown in Figure
3.1 and a line pool L containing 11 lines L = {l1, . . . , l11} shown in Table
3.1. In Figure 3.1 for simplicity only lines l1, l2 and l3 are named. The
remaining lines correspond to the single edges of the PTN. Let the set of
origin-destination pairs be R := {(1, 3), (2, 8), (7, 9)} with customer demand
w1,3 = w2,8 = w7,9 = 1. Assume that due to safety rules not more than one
vehicle per edge is allowed within our planning period of e.g. 30 minutes.
Then the optimal solutions for the two objectives are the following line con-
cepts:

3.1. MOTIVATION AND BASIC DEFINITIONS 23

line stations
l1 1,2,3
l2 7,8,9
l3 2,3,4,5,6,7,8
l4 1,2
l5 2,3
l6 3,4
l7 4,5
l8 5,6
l9 6,7
l10 7,8
l11 8,9

Table 3.1: The line pool of example 3.5.

1 3

4 6

7

8

9

2

5

l2

l1

l3

Figure 3.1: Difference between the objectives ”maximize direct travelers” and

”minimize transfers”.

• ”maximize number of direct travelers”: L = {l2, l3, l6, l7, l8, l9}, see Fig-
ure 3.2
In this case the two passengers (1, 3) and (7, 9) can travel directly, but
passenger (2, 8) has 5 transfers.

• ”minimize number of transfers”: L = {l1, l4, l11}, see Table 3.3
In this case only one passenger, namely passenger (2, 8) travels directly,
but the total number of transfers is only two because passengers (1, 3)
and (7, 9) have to change the vehicle once each.

Note that considering the number of transfers only would lead to solutions
with very long lines, serving all origin-destination pairs directly but having
large detours for the customers. To avoid this we determine not only a line
concept, but also a path for each origin-destination pair and count the num-
ber of transfers and the length of the paths in the objective function. This

24 CHAPTER 3. A NEW MODEL

1 3

4 6

7

8

9

2

5

l2 l3

l8

l9

l7

l6

Figure 3.2: Solution ”maximize direct traveler”.

1 3

4 6

7

8

9

2

5

l1l4 l11

Figure 3.3: Solution ”minimize transfers”.

is specified next.

Given a set of lines L ⊆ L, a customer can travel from his origin s to his
destination t, if there exists an s-t-path P in the PTN only using edges in
{E(l) : l ∈ L}. The “inconvenience” of such a path is then approximated
by the weighted sum of the traveling time TimeP along the path and the
number of transfers TransfersP , i.e.

inconvenience(P) = k1TimeP + k2TransfersP . (3.1)

On the other hand, the cost of a line concept L ⊆ L is calculated by adding
the costs Cl for each line l ∈ L, assuming that such costs Cl are known
beforehand.

Definition 3.6. If each origin-destination pair can be served, the line concept
is called feasible.

We can now give a formal definition of the line planning problem.

Definition 3.7. The line planning problem hence is to find a feasible set of
lines L ⊆ L together with a path P for each origin-destination pair, such that

3.2. COMPLEXITY 25

the costs of the line concept do not exceed a given budget B and such that
the sum of all inconveniences as defined in (3.1) over all paths is minimized.

Since the capacity of a vehicle is not arbitrarily large, we have to extend
the basic problem to include frequencies of the lines. This makes sure that
there are enough vehicles along each edge to transport all passengers. We
remark that often, the number of vehicles running along the same edge is
also bounded from above, e.g., for safety reasons.

3.2 Complexity

3.2.1 An introduction to computational complexity

The theory of computational complexity tries to categorize the computational
requirement of algorithms and important classes of problems. Although,
this theory and the corresponding notation can be found in literature (e.g.
[Wol98], [NW88]) we repeat the basic concepts here to make the thesis more
self-contained.
The time complexity of a problem is the number of steps that it takes to solve
an instance of the problem, as a function of the size of the input, (usually
measured in bits) using the most efficient algorithm. This function is called
the time complexity function. To understand this intuitively, consider the
example of an instance that is n bits long that can be solved in n2 steps. In
this example we say the problem has a time complexity of n2. Of course, the
exact number of steps will depend on exactly which machine or language is
being used. To avoid that problem, we generally use Big O notation. An
algorithm is said to run in O(f(n)) time if for some numbers c and n0, the
time complexity function is at most c · f(n) for all n ≥ n0. If a problem
has time complexity O(n2) on one typical computer, then it will also have
complexity O(n2) on most other computers, so this notation allows us to
generalize away from the details of a particular computer.
An algorithm is said to be a polynomial-time algorithm or efficient algorithm
if it runs in O(f(n)) time, where f is bounded by a polynomial of fixed degree,
e.g. O(n2) and O(n log n). An algorithm is said to be an exponential-time
algorithm if its complexity function cannot be polynomially bounded by the
input size n, e.g. O(2n) and O(n!).
Obviously, polynomial-time algorithms are ”good” algorithms. Nevertheless,
we might not succeed in developing a polynomial-time algorithm for a par-
ticular problem. The theory of NP-completeness provides us a way to prove
that the problem is inherently hard in the sense that if we develop an efficient
algorithm for this problem, we would be able to develop an efficient algorithm

26 CHAPTER 3. A NEW MODEL

for a huge class of intractable problems, including famous problems like the
traveling salesman problem (TSP) or graph coloring.
The theory of NP-completeness helps us to classify a given problem into
broad classes:

1. easy problems that can be solved by polynomial-time algorithms, and

2. hard problems that are not likely to be solved in polynomial-time and
for which all known algorithms require exponential time.

Much of complexity theory deals with decision problems. A decision problem
is a problem where the answer is always YES or NO. The problems discussed
in this thesis are optimization problems. It is easy to see that the optimiza-
tion and the decision version of a problem are equivalent in terms of whether
or not they can be solved in polynomial time. We refer to an instance of
the decision problem as a YES instance if the answer to this problem in-
stance is yes, and a NO instance otherwise. We say that a problem P1 is
polynomially reducible to another problem P2 if for every instance I1 of P1

we can construct in polynomial-time in terms of the size of I1 an instance
I2 of P2 such that I1 is a yes instance of P1 if and only if I2 is a yes in-
stance of P2. If problem P2 is polynomially reducible to problem P1, P2 is at
least as hard as P1: Given an algorithm for problem P2 we can always use
it to solve problem P1 with comparable (i.e. polynomial or not) running time.

We can now specify the most common classes of computational complexity
theory:

• P: The class of decision problems that can be solved in polynomial
time.

• NP: The class of problems that can be solved in non-deterministic
polynomial time. For a decision problem P to be in NP we require
that if I is a YES instance of P , then there exists a polynomial-time
algorithm that verifies the solution.

• NP-complete: A decision problem P is said to be (in the class) NP-
complete if

1. it is in NP, and

2. All problems in NP are polynomially reducible to P .

• NP-hard: When a decision version of a combinatorial optimization
problem is proved to belong to the class of NP-complete problems,
then the optimization version is NP-hard.

3.2. COMPLEXITY 27

If we do succeed in showing that a problem is NP-complete, we have sufficient
reasons to believe that the problem is hard and no efficient algorithm can ever
be developed to solve it. We should concentrate our efforts on developing
efficient heuristics and at developing various types of enumeration algorithms.

3.2.2 Complexity of (LPMT)

In this section we first show that the line planning problem as defined in
Definition 3.7 is NP-hard, even in a very simple case, corresponding to k1 = 0.

Theorem 3.8. ([SS04a]) The line planning problem is NP-complete, even if

• we only count the number of transfers in the objective function,

• the PTN is a linear graph, and

• the line costs are equal for all lines

Proof. In the decision version, the line planning problem in the above case
can be written as follows:
Given a graph PTN=(S,E), the set of all origin-destination pairs R, and a
budget B, does there exist a feasible set of B lines with less than K transfers?

We show that the set covering problem is polynomially reducible to our given
problem: Given the set covering problem in its integer programming problem
formulation

min{1x : Ax ≥ 1, x ∈ {0, 1}m}

with an 0-1 n×m-matrix A, we construct a line planning problem as follows:
We define the PTN as a linear graph with 2n nodes S = {s1, t1, s2, t2 . . . , sn, tn}
and edges E = {(s1, t1), (t1, s2), (s2, t2), (t2, s3), . . . , (sn, tn)}. We define an
origin-destination pair for each row of A,

R = {(si, ti) : i = 1, . . . , n}.

For column j of A we construct a line lj passing through nodes si and ti if
aij = 1. As an example, Figure 3.4 shows the line planning problem obtained
from a set covering problem with

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

28 CHAPTER 3. A NEW MODEL

s1 t1 s2 t2 s3 t3 s4 t4 s5 t5 s6 t6

l1 l2

l3

l4

Figure 3.4: Construction of the line planning problem in the proof of Theorem

3.8.

Setting K = 0 we hence have to show that a cover with less than B elements
exists if and only if the line planning problem has a solution in which all
passengers can travel without changing lines.

”⇒”: Given a cover with less than B elements. In the integer programming
formulation this means, that we have a solution vector x̄ ∈ {0, 1}m that
satisfies the following

• for all i ∈ {1, . . . , n}, there is a j ∈ {1, . . . ,m} with aij = 1 and x̄j = 1.

•
∑m

j=1 xj ≤ B

Thus, by construction of the line planning problem, the corresponding solu-
tion, the so called line concept consists of less than B lines, no transfers are
needed (since K = 0) and for all (si, ti) ∈ R there exists a line lj in the line
concept that serves this customer directly.

”⇐”: Given a solution of the line planning problem in which all passengers
can travel without changing lines. This means that each origin-destination
pair is served directly by at most B lines. Thus, x̄j = 1 if and only if line j
is in the line concept, solves the set covering problem.

�

A question that might arise in this context is what happens if the lines need
not be chosen of a given line pool, but can be constructed as any path. Some
of the basic cost models become very easy in this case, but unfortunately,
the complexity status of the line planning problem treated in this paper does
not change.

Theorem 3.9. ([SS04a]) The line planning problem in which all possible
simple paths are allowed is NP-complete, even if we only count the number
of transfers in the objective function.

3.3. MODEL FORMULATIONS 29

Proof. We show that the Hamiltonian path problem is polynomially reducible
to our problem.
Let G = (V , E) be the graph in which we want to check the existence of a
Hamiltonian path from a given node s to a given node t.

We construct the line planning problem as follows:
We define the PTN as the given graph G and construct

R = {(s, v), (v, t) : v ∈ V}

as the set of origin-destination pairs. Furthermore, we set the budget B = 1.
The line planning problem with K = 0 hence is to find one line serving all
origin-destination pairs. Such a line must start in s, pass through all nodes
and end in t (otherwise at least one element of R would have to change
for its trip), and hence constitutes a Hamiltonian path. Vice versa, any
Hamiltonian path is a solution of the line planning problem with a total of
zero transfers. �

3.3 Model formulations

3.3.1 Change&go-network

For line planning we extend the PTN to the undirected change&go-network
GCG = (V , E) as follows:
Given a line pool L and a PTN, we extend the set S of stations to a set V of
nodes consisting of nodes representing station-line-pairs (change&go nodes
VCG) and nodes representing the start and end points of the customer paths
(origin-destination nodes VOD).
The new set of edges E consists of edges between nodes of the same station
(representing getting in or out of a vehicle, EOD or changing a line, Echange)
and edges between nodes of the same line (representing driving on a line,
Ego).

We now give a formal definition of the new extended graph.

Definition 3.10. Given a public transportation network PTN = (S,E) and
a line pool L, the corresponding undirected change&go-graph GCG = (V , E)
consists of a set of nodes

V := VCG ∪ VOD

with

• VCG := {(s, l) ∈ S × L : l ∈ L(s)} (set of all station-line-pairs)

30 CHAPTER 3. A NEW MODEL

No. |L| |R| |V| |E|
0 3 2 10 16
1 10 2602 419 606
2 50 4766 1015 5576
3 100 11219 1716 16040
4 132 18238 2487 24394
5 200 10126 3590 69308
6 250 13246 4716 111517
7 275 14071 5303 134348
8 300 17507 5931 158372
9 330 18433 6706 191453

10 350 17095 6503 233750
11 375 18350 7101 272414
12 400 22191 7682 300174
13 423 22756 8268 339691

Table 3.2: Instances for different line pool sizes

• VOD := {(s, 0) : (s, t) ∈ R or (t, s) ∈ R} (in/out-nodes)

and edges
E := Echange ∪ Ego ∪ EOD

with

• Echange := {{(s, l1), (s, l2)} ∈ VCG × VCG : l1 �= l2} (changing edges)

• E l := {{(s, l), (s′, l)} ∈ VCG × VCG : {s, s′} ∈ E} (driving edges of line
l ∈ L)

• Ego :=
⋃

l∈L E
l (driving edges)

• EOD := {{(s, 0), (s, l)} ∈ VOD × VCG and {(t, l), (t, 0)} ∈ VCG × VOD :
(s, t) ∈ R} (in/out-edges)

The following example shows the extension of a simple public transportation
network with a small line pool. Table 3.2 shows some instance sizes of real-
world instances.

Example 3.11. We consider the public transportation network with three
nodes and two edges of Figure 3.5 together with the line pool

L = {l1, l2, l3} = {(1, 2), (2, 3), (1, 2, 3)}

3.3. MODEL FORMULATIONS 31

1 2 3

Figure 3.5: The public transportation network of Example 3.11.

We get the change&go-graph with the node sets

VOD = {(1, 0), (2, 0), (3, 0)}

VCG = {(1, l1), (2, l1), (2, l2), (3, l2), (1, l3), (2, l3), (3, l3)}

and the edge sets shown in Figure 3.6.

driving edge

changing edge

in/out edge

1,0

1,l1 2,l1 2,l2 3,l2

1,l3 2,l3 3,l3

3,0

2,0

Figure 3.6: The change&go graph of Example 3.11.

We now define weights on all edges e ∈ E of the change&go-graph represent-
ing the inconvenience customers have by using the edge. Then, for a single
origin-destination pair we can determine the lines the customer is likely to
use by calculating a shortest path in the change&go-graph. Therefore the
choice of the edge costs ce is very important.

Some examples (Remark 3.12 gives an explanation of the choice of the in/out-
edges EOD):

32 CHAPTER 3. A NEW MODEL

1. Customers only count transfers:

ce =

⎧⎪⎨
⎪⎩

1 e ∈ Echange

1 e ∈ EOD

0 else

Note that in this case, it is possible to shrink the change&go-network
to a line-change-network with only |L|+ |S| nodes and |Echange|+ |EOD|
edges (see Figure 3.7 as an example.).

1,0

2,0

3,0

l1 l2

l3

in/out edge

changing edg

Figure 3.7: The shrunken line-change-network of Figure 3.6 in the special case:

”Customers only count transfers”.

2. Real travel time:

ce =

⎧⎪⎨
⎪⎩

ceOD
e ∈ EOD

te e ∈ Ego

time needed for changing platform e ∈ Echange

Remark 3.12. The weights ce for e ∈ EOD must be set to a fixed number
at least bigger than 1

2
· max{ce : e ∈ Echange} to avoid that it is cheaper to

use two in/out-edges instead of a changing-edge. Remember that in/out-
edges represent the start- and end-point of a customers path. So, for each
customers path exactly two in/out-edges are used. If we choose these weights
ceOD

arbitrarily (large enough) and equal for all e ∈ EOD, we just have to
subtract 2 · ceOD

of the length of any origin-destination path to get the real
length.

Remark 3.13. It is often reasonable to make transfers more inconvenient
by increasing ce for all e ∈ Echange in the real travel time model. It is also

3.3. MODEL FORMULATIONS 33

possible to prefer special stations for transfers because of their infrastructure
by decreasing the costs of the changing edges corresponding to this station.

Other combinations and variations are possible.

Since we assume that customers prefer shortest paths according to the weights
ce we need an implicit calculation of shortest paths within our model. This
is obtained by doubling the edges to get a directed graph and solving the
following network flow problem for each origin-destination pair (s, t) ∈ R.

θxst = bst,

where θ ∈ Z
|V|×|E| is the node-arc-incidence matrix of the (directed) GCG,

θie =

⎧⎪⎨
⎪⎩

1 if e = (i, j) ∈ E

−1 if e = (j, i) ∈ E

0 else

and bst ∈ Z
|V| is defined by

bi
st =

⎧⎪⎨
⎪⎩

1 if i = (s, 0)

−1 if i = (t, 0)

0 else

,

The variables are x ∈ {0, 1}|R|×|E| with xe
st = 1 if and only if edge e is used

on a shortest dipath from node (s, 0) to (t, 0) in GCG.

To specify the lines in the line concept we introduce a variable yl ∈ B for
each line l ∈ L which is set to 1 if and only if line l is chosen to be in the
line concept.

3.3.2 Integer programming formulations

Our model, Line Planning with Minimal Transfers can now be presented in
four different binary programming formulations.

The objective function we use is customer-oriented. We allow to specify
some edge cost ce for each edge in the change&go-network depending on the
objective the decision maker has. There are various possibilities to choose ce,
some of them have been mentioned in Section 3.3.1. Note that the variety
of possibilities of edge cost choices is a big advantage of this model. In the

34 CHAPTER 3. A NEW MODEL

objective function we sum up these costs to the length of a shortest path from
s to t for each origin-destination pair (s, t) ∈ R . Adding over all (s, t) ∈ R
means that we minimize the average costs of the customers.∑

(s,t)∈R

∑
e∈E

wst ce xe
st (3.2)

As we want the customer to travel on shortest paths according to the edge
costs ce we introduce shortest path constraints for each origin-destination pair
as explained in the previous section.

θxst = bst ∀ (s, t) ∈ R (3.3)

Note that so far the best line concept from a customer-oriented point of view
would be to introduce all lines of the line pool. This is certainly no option
for a public transportation company, since running a line is costly. Let Cl

be an estimation of the costs which occur if line l is chosen and let B be
the budget the public transportation company is willing to spend. Then the
budget constraint takes into account the economic aspects.∑

l∈L

Clyl ≤ B (3.4)

Now we need a link between the x- and the y-variables. The coupling con-
straints make sure that a line must be included in the line concept if the line
is used by some origin-destination pair. This can be done in a couple of ways.
We will represent four of them and discuss their strength and equivalence in
Section 3.4.1.

∑
(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl ∀ l ∈ L (3.5)

∑
(s,t)∈R

xe
st ≤ |R|yl ∀ l ∈ L, e ∈ E l (3.6)

∑
e∈El

xe
st ≤ |E l|yl ∀ l ∈ L, (s, t) ∈ R (3.7)

xe
st ≤ yl ∀ (s, t) ∈ R, e ∈ E l : l ∈ L (3.8)

Restricting the variables to B := {0, 1}, we can now present our four formu-
lations of the Line Planning with Minimal Transfers (LPMT).

The first formulation consists of |L| + |V||R| + 1 constraints.

3.3. MODEL FORMULATIONS 35

(LPMT1)

min
∑

(s,t)∈R

∑
e∈E

wst ce xe
st (3.9)

s.t.
∑

(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl ∀ l ∈ L

θxst = bst ∀ (s, t) ∈ R∑
l∈L

Clyl ≤ B

xe
st, yl ∈ B ∀ (s, t) ∈ R, e ∈ E , l ∈ L

The second formulation consists of |L||Ego| + |V||R| + 1 constraints.
(LPMT2)

min
∑

(s,t)∈R

∑
e∈E

wst ce xe
st (3.10)

s.t.
∑

(s,t)∈R

xe
st ≤ |R|yl ∀ e ∈ E l : l ∈ L

θxst = bst ∀ (s, t) ∈ R∑
l∈L

Clyl ≤ B

xe
st, yl ∈ B ∀ (s, t) ∈ R, e ∈ E , l ∈ L

The third formulation consists of (|L| + |V|)|R| + 1 constraints.
(LPMT3)

min
∑

(s,t)∈R

∑
e∈E

wst ce xe
st (3.11)

s.t.
∑
e∈El

xe
st ≤ |E l|yl ∀ l ∈ L, (s, t) ∈ R

θxst = bst ∀ (s, t) ∈ R∑
l∈L

Clyl ≤ B

xe
st, yl ∈ B ∀ (s, t) ∈ R, e ∈ E , l ∈ L

36 CHAPTER 3. A NEW MODEL

The fourth formulation consists of (|L||Ego| + |V|)|R| + 1 constraints.
(LPMT4)

min
∑

(s,t)∈R

∑
e∈E

wst ce xe
st (3.12)

s.t. xe
st ≤ yl ∀ (s, t) ∈ R, e ∈ E l : l ∈ L

θxst = bst ∀ (s, t) ∈ R∑
l∈L

Clyl ≤ B

xe
st, yl ∈ B ∀ (s, t) ∈ R, e ∈ E , l ∈ L

3.3.3 Bicriteria formulation

As we have mentioned above we have to restrict the number of lines allowed
to be chosen out of the line pool. Otherwise all lines of the line pool would
be chosen which is not affordable by any company. In Section 3.3.2 we have
treated this problem by introducing the budget constraint (3.4). Of course
it would also be possible to minimize the number of lines while minimizing
the inconvenience of the passengers at the same time. This can be done
by formulating bicriteria programs which can be solved using methods of
multiobjective optimization.

Basics of bicriteria optimization (e.g. [Ehr00])

The bicriteria optimization problem we consider in this section is given by
a discrete set of feasible points X ⊆ Z

n and two objective functions f1, f2 :
X → R.

(BP)

min
x∈X

(
f1(x)
f2(x)

)

Definition 3.14. (e.g. [Ehr00]) Let x1, x2 ∈ X

• x1 dominates x2 if
f1(x1) ≤ f1(x2)

3.3. MODEL FORMULATIONS 37

and

f2(x1) ≤ f2(x2)

where at least one of the inequalities is strict.

• x ∈ X is a Pareto solution, if there does not exist any y ∈ X that
dominates x.

The goal in bicriteria optimization is to determine the Pareto solutions, i.e.,
the set of all x ∈ X which are non-dominated. However, it often is enough
to know the objective values of the Pareto solutions. To this end, let

f(X) =

{(
f1(x)
f2(x)

)
: x ∈ X

}

denote the objective space of (BP). Then a point

(
f1(x)
f2(x)

)
∈ f(X) is called

efficient, if x ∈ X is a Pareto solution.

For an illustration, see Figure 3.8. In this example let us assume that the set
of objective values for all points x ∈ X is given by the points depicted in the
figure. Then the five filled points p1, . . . , p5 are not dominated by any other
point, i.e. exactly these points are efficient.

For finding Pareto solutions we can solve a one-criteria optimization problem.
This method is called weighted sum scalarization.

Theorem 3.15. (e.g. [Ehr00]) If x is an optimal solution of

(BP(λ))

min
x∈X

λf1(x) + (1 − λ)f2(x)

for some 0 < λ < 1 then x is a Pareto solution of (BP).

Unfortunately, not all Pareto solutions can be found by weighted sum scalar-
ization, if the set X ⊆ Z

n consists of a discrete set of points. In Figure
3.8, the efficient points p1, p2 and p5 can be found by solving a weighted
sum problem, while no λ exists such that p3 and p4 are optimal solutions of
(BP(λ)).

Definition 3.16. (e.g. [Ehr00]) A Pareto solution x is called supported if
there exists a λ with 0 < λ < 1 such that x is the optimal solution of (BP(λ)).

38 CHAPTER 3. A NEW MODEL

��������������������������������

p1

p2
p3

p4

p5

f1

f2

Figure 3.8: Efficient solutions of bicriteria optimization problem.

Note that the name supported is due to the following fact: If x is a supported

Pareto solution, then f(x) =

(
f1(x)
f2(x)

)
lies on the boundary of the convex

hull of f(X). Hence there exists a supporting line of f(X) passing through
f(x).

By weighted sum scalarization, we find the set of supported Pareto solutions.
With the following result we find also non-supported Pareto solutions. It uses
the constraint version of (BP).

Lemma 3.17. ([HC83]) Let {i, j} = {1, 2} and let x be a unique optimal
solution of

min{fi(x) : x ∈ X and fj(x) ≤ yj}

for some yj. Then x is a Pareto solution of (BP).

Using Lemma 3.17 to find Pareto solutions is known as the ε-constraint
method, see e.g. [Ehr00].

3.3. MODEL FORMULATIONS 39

Bicriteria line planning problem

We now reformulate our line planning problem as a bicriteria problem, min-
imizing both

ftime :=
∑

(s,t)∈R

∑
e∈E

wst ce xe
st

and

fcost :=
∑
l∈L

Cl yl

We will present it for one formulation, corresponding to the single criteria
formulation (LPMT1) in Section 3.3.2. Obviously we can formulate three
alternative bicriteria formulations by changing the coupling constraints (3.5)
to (3.6), (3.7) or (3.8).

The bicriteria line planning model with minimal transfers:

(BLPMT1)

min

(
ftime

fcost

)
(3.13)

s.t.
∑

(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl ∀ l ∈ L

θxst = bst ∀ (s, t) ∈ R

xe
st, yl ∈ B ∀ (s, t) ∈ R, e ∈ E , l ∈ L

If we apply the weighted sum scalarization method of theorem 3.15, we get
as single objective function

min W1ftime + W2fcost

with 0 < W1 < 1 and W2 = 1 − W1. But this means comparing apples and
oranges. The problem to find an appropriate weights W1 and W2 such that
the obtained solution represents the wishes of the decision maker might be
very difficult.

Applying the ε-constrained method of Lemma 3.17, and setting yj to the
budget B, we get the following one-criteria ε-constraint problem resulting
from (BLPMT1):

40 CHAPTER 3. A NEW MODEL

(BLPMT-time)

min ftime (3.14)

s.t.
∑

(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl ∀ l ∈ L

θxst = bst ∀ (s, t) ∈ R

fcost ≤ ycost

xe
st, yl ∈ B ∀ (s, t) ∈ R, e ∈ E , l ∈ L

Due to Lemma 3.17 we have the following result.

Lemma 3.18. Let (x̄, ȳ) be a unique optimal solution of (BLPMT-time).
Then (x̄, ȳ) is a Pareto solution of (BLPMT). If more than one optimal
solution of (BLPMT-time) exists, the solutions that additionally minimize
fcost are Pareto solutions.

Unfortunately, (BLPMT-time) is hard to solve.

Corollary 3.19. (BLPMT-time) is NP-hard.

Proof. Setting ycost to the budget B, this model is equal to (LPMT1) which
is already shown to be NP-hard. �

This approach reflects exactly what a decision maker would do intuitively in
real world if we would give him a set of Pareto optimal solutions and leave
him to choose one of them. It is obvious that the more lines one can estab-
lish, the better the solution is for the passengers but on the other hand, the
more costly it is for the company. So the decision maker would check how
much money the company is willing to spend and would set an upper bound
on the second objective. Note that this is exactly, what we do in our single
objective formulation (LPMT1).

Since there exist much more powerful solution methods for single objective
programming than for multiobjective programming we will treat only the
single-objective formulations of (LPMT) in the following. The relaxation of
the bicriteria programs by using the budget constraint (3.4) is acceptable
since in real world applications a financial budget that must not be exceeded
is always given.

3.3. MODEL FORMULATIONS 41

3.3.4 Formulation including frequencies

In (LPMT) we implicitly assume that all customers traveling from station s
to station t choose the same path in the change&go network, i.e., the same
set of lines. This can be done if edge capacities are neglected in (LPMT). In
practice, this is usually not the case, since each vehicle only can transport a
limited number of customers and usually there is only a limited number of
vehicles possible along each line (e.g. due to safety rules). In the following,
we therefore present an extension of (LPMT) taking into account the number
of vehicles on each line in a given time period. Consequently, this formulation
allows to split customers along different paths from s to t in the change&go-
network GCG.
Let N denote the capacity of a vehicle and let the new variables fl ∈ N

contain the frequency of line l, i.e., the number of vehicles running along line
l within a given time period. Furthermore we choose variables xe

st ∈ N and
change the vector bst to

bi
st =

⎧⎨
⎩

wst if i = (s, 0)
−wst if i = (t, 0)

0 else

Then the Line Planning Model with minimal transfers and frequencies
(LPMTF) is the following:

(LPMTF)

min
∑

(s,t)∈R

∑
e∈E

ce xe
st (3.15)

s.t.

1

N

∑
(s,t)∈R

xe
st ≤ fl ∀ l ∈ L, e ∈ El (3.16)

θxst = bst ∀ (s, t) ∈ R (3.17)∑
l∈L

Clfl ≤ B (3.18)

∑
l∈L:k∈El

fl ≤ fmax
k ∀ k ∈ E (3.19)

xe
st, fl ∈ N ∀ (s, t) ∈ R, e ∈ E , l ∈ L (3.20)

42 CHAPTER 3. A NEW MODEL

Constraints (3.16) make sure that the frequency of a line is high enough to
transport the passengers. If fl = 0, line l is not chosen in the line concept.
Constraints (3.17) are flow conservation constraints routing the passengers
through the network. Note that the xe

st variables can take integer values, such
that passengers may choose different paths for the same origin-destination
pair. Constraint (3.18) is again the budget constraint but with costs for each
vehicle of a line (which are multiplied by the frequency to get the costs of
the line). The capacity constraint (3.19) may be included if upper bounds
for the frequencies are present.

3.4 Discussion of the formulations

3.4.1 Equivalence and strength

In this section we will show that the four formulations of the (LPMT) pre-
sented in section 3.3.2 are equivalent and thus will yield the same set of
feasible integer solutions. Therefore we first have to repeat some polyhedral
theory. For more details the reader is referred to [Wol98] and [NW88].

First we make precise what we mean by a formulation.

Definition 3.20. ([NW88]) Given an integer program

min{cx : x ∈ X ⊂ Z
n}

where X represents the set of feasible points in Z
n. We say that

min{cx : Ax ≤ b, x ∈ Z
n}

is a valid IP formulation if X = {x ∈ Z
n : Ax ≤ b}.

In general there are many choices of (A, b) and it is usually easy to find some
(A, b) that yields one. But an obvious choice may not be a good one when
it comes to solving the problem.

Definition 3.21. ([Wol98]) A subset of R
n described by a finite set of linear

constraints P = {x ∈ R
n : Ax ≤ b} is a polyhedron.

Definition 3.22. ([Wol98]) A polyhedron P ⊆ R
n is a formulation for a set

X ⊆ Z
n if and only if X = P ∩ (Zn).

Example 3.23. In Figure 3.9 we show two different formulations for the set:

X = {(2, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 2)}

3.4. DISCUSSION OF THE FORMULATIONS 43

P1

1 2 3 4 5

0

1

2

3

4

P2

Figure 3.9: Two alternative formulations for the same integer set proposed in

Example 3.11.

We will now show that the integer formulations of the (LPMT) presented in
Section 3.3.2 are valid IP formulations for the same integer set. Therefore
we recall that the integer formulations (3.9), (3.10), (3.11), and (3.12) only
differ in the coupling constraints (3.5), (3.6), (3.7), and (3.8).∑

(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl ∀ l ∈ L (3.5)

∑
(s,t)∈R

xe
st ≤ |R|yl ∀ l ∈ L, e ∈ E l (3.6)

∑
e∈El

xe
st ≤ |E l|yl ∀ l ∈ L, (s, t) ∈ R (3.7)

xe
st ≤ yl ∀ e ∈ cEl : l ∈ L, (s, t) ∈ R (3.8)

with
xe

st, yl ∈ {0, 1}

Theorem 3.24. The feasible set of (LPMT4), denoted by X4, is included in
the feasible set of the other formulations: X4 ⊆ X1, X4 ⊆ X2, and X4 ⊆ X3.

44 CHAPTER 3. A NEW MODEL

Proof. If a point (x, y) satisfies the constraints

xe
st ≤ yl ∀ (s, t) ∈ R, e ∈ E l

for all l ∈ L, then summing up

• over all (s, t) ∈ R and e ∈ E l shows that it also satisfies the constraints∑
(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl.

Thus X4 ⊆ X1.

• over all (s, t) ∈ R shows that it also satisfies the constraints∑
(s,t)∈R

xe
st ≤ |R|yl ∀ e ∈ E l

and thus X4 ⊆ X2.

• over all e ∈ E l shows that it also satisfies the constraints∑
e∈El

xe
st ≤ |E l|yl ∀ (s, t) ∈ R

and thus X4 ⊆ X3.

�

Theorem 3.25. (LPMT1), (LPMT2), (LPMT3), and (LPMT4) given in
Section 3.3.2 are valid IP formulations of the same integer set X.

Proof. We will show that the integer sets X1, X2, and X3 described by
(LPMT1), (LPMT2), and (LPMT3), respectively are equal to the integer
set X4 described by (LPMT4). Given a feasible solution (x̄, ȳ) of

• (LPMT1), if ȳl = 0 then
∑

(s,t)∈R

∑
e∈El x̄e

st = 0 and thus x̄e
st = 0 for all

(s, t) ∈ R, e ∈ E l : l ∈ L.

• (LPMT2), if ȳl = 0 then
∑

(s,t)∈R x̄e
st = 0 for all e ∈ E l and thus x̄e

st = 0

for all (s, t) ∈ R, e ∈ E l : l ∈ L.

3.4. DISCUSSION OF THE FORMULATIONS 45

• (LPMT3), if ȳl = 0 then
∑

e∈El x̄e
st = 0 for all (s, t) ∈ R and thus

x̄e
st = 0 for all (s, t) ∈ R, e ∈ E l : l ∈ L.

So, we see that the coupling constraints of (LPMT4) are satisfied in all cases
and together with Theorem 3.24, we get that the formulations are equivalent,
i.e. X = X1 = X2 = X3 = X4. �

It is easy to see that there is an infinite number of formulations for each
integer problem. But there are some formulations that are ”better” than
others and there exists also always an ”ideal” one, which is in general difficult
to find. In the following we will give definitions for ”better” and ”ideal” and
will show, that some of our formulations of the (LPMT) are better than
others.

Definition 3.26. ([NW88]) Given a set P ⊆ R
n, a point x ∈ R

n is a convex
combination of points of P if there exists a finite set of points {x1, . . . , xt} in
P and a λ ∈ R

t
+, with

t∑
i=1

λi = 1

and

x =
t∑

i=1

λix
i

.
The convex hull of P, denoted conv(P), is the set of all points, that are
convex combinations of points in P .

Proposition 3.27. ([Wol98]) conv(X) is a polyhedron.

Definition 3.28. ([NW88]) x ∈ Q = {x ∈ R
n : Ax ≤ b} is an extreme point

of Q if there do not exist x1, x2 ∈ Q, x1 �= x2, such that x = 1
2
x1 + 1

2
x2.

Proposition 3.29. ([Wol98]) The extreme points of conv(X) all lie in X.

Because of these two results, we can replace the IP : {min cx : x ∈ X} by
the equivalent linear program: {min cx : x ∈ conv(X)}. This ideal reduction
to a linear program also holds for unbounded integer and mixed integer sets
with rational coefficients. The ideal formulation of Example 3.23 is shown in
Figure 3.11. As mentioned above this is in general only a theoretical solu-
tion, because in most cases there is such an enormous number of inequalities
needed to describe conv(X), and there is no simple characterization for them.
But how can we compare different formulations? Most integer programming
algorithms require a lower bound on the value of the objective function, and

46 CHAPTER 3. A NEW MODEL

the efficiency of the algorithm is very dependent on the strength of the bound
(see Chapter 6). A lower bound is determined by solving the LP-relaxation

zLP = {min cx : Ax ≤ b, x ∈ R
n}

since P = {x ∈ R
n : Ax ≤ b} ⊇ X = {x ∈ Z

n : Ax ≤ b}. Now, given
two formulations of X, defined by (Ai, bi) for i = 0, 1, let P i = {x ∈ R

n :
Aix ≤ bi} be their formulations and zi

LP = {min cx : Aix ≤ bi, x ∈ R
n} the

lower bound provided by their LP-relaxations. Note that if P 0 ⊆ P 1, then
z0

LP ≥ z1
LP . Hence, we get the better bound from the formulation based on

(A0, b0) and we can say that it is the better or stronger formulation.

Definition 3.30. ([Wol98]) Given a set X ⊆ R
n, and two formulations PA

and PB for X, PA is a stronger formulation than PB if PA ⊂ PB.

Lemma 3.31. ([NW88]) Given two formulations PA and PB for the same
integer set X with PA stronger than PB, then

min
x∈X

cx ≥ min
x∈PA

cx ≥ min
x∈PB

cx.

Example 3.32. In Figure 3.10, the formulation P3 is better than the for-
mulations P1 and P2 which are not comparable, but it is still worse than
the ideal formulation shown in Figure 3.11.

Notation 3.33. In this section we will denote the feasible set described by
the LP-relaxation of (LPMT1) by P1. We get it by restricting the variables
to 0 ≤ xe

st ≤ 1 for all (s, t) ∈ R, e ∈ E and 0 ≤ yl ≤ 1 for all l ∈ L instead to
{0, 1}.
The corresponding polyhedra described by (LPMT2), (LPMT3), and (LPMT4)
are denoted by P2, P3, and P4, respectively.

Lemma 3.34. Using Notation 3.33, we get P4 ⊆ P1, P4 ⊆ P2, and P4 ⊆ P3.

Proof. If a point (x, y) satisfies the constraints

xe
st ≤ yl ∀ (s, t) ∈ R, e ∈ E l

for all l ∈ L, we get that

yl ≥ max
e∈El

max
(s,t)∈R

xe
st

for all l ∈ L. Summing up

3.4. DISCUSSION OF THE FORMULATIONS 47

P1

P3

1 2 3 4 5

0

1

2

3

4

P2

Figure 3.10: P3 is a better formulation of the integer set of Example 3.11 than

P1 and P2, but not ideal.

• over all (s, t) ∈ R and e ∈ E l shows that it also satisfies the constraints∑
(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl.

Thus P4 ⊆ P1.

• over all (s, t) ∈ R shows that it also satisfies the constraints∑
(s,t)∈R

xe
st ≤ |R|yl ∀ e ∈ E l

and thus P4 ⊆ P2.

• over all e ∈ E l shows that it also satisfies the constraints∑
e∈El

xe
st ≤ |E l|yl ∀ (s, t) ∈ R

and thus P4 ⊆ P3.

48 CHAPTER 3. A NEW MODEL

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

P3

P1

1 2 3 4 5

0

1

2

3

4

P2

Figure 3.11: P3 is the ideal formulation of the integer set of Example 3.11.

�

We will now discuss the strength of our formulations. We will demon-
strate the results on Example 3.11. Figure 3.12 recalls the corresponding
change&go-network and names the driving edges e1, . . . , e4. Let the set of
origin-destination pairs be R = {(1, 2), (1, 3)}. Figure 3.13 and 3.14 show
two feasible path-combinations for the two customers. We will call them
alternative A and alternative B. The corresponding feasible point reads like
follows: if edge ei is depicted in the figure for customer j, then xei

j = 1 and
zero otherwise. The yl will be explained in the proofs.

Theorem 3.35. P4 is stronger than P1.

Proof. In Lemma 3.34 we have shown that P4 ⊆ P1.
To show that P4 ⊂ P1, we need to find a point in P1 that is not in P4.
In our example, the solution (x̄, ȳ) with the x̄-values of alternative A (Figure
3.13) and ȳ = (1

2
, 0, 1

2
) is a feasible point in P1 but not in P4 since e.g.

constraint x̄e1

1 ≤ ȳ1 is violated.
More general, a solution in which not all driving edges of a line are used by all
origin-destination pairs, i.e. ∃e∗ ∈ E l∗ such that x̄e∗

ab = 0 for some (a, b) ∈ R,

3.4. DISCUSSION OF THE FORMULATIONS 49

driving edge

changing edge

in/out edge

1,0

1,l1 2,l1 2,l2 3,l2

1,l3 2,l3 3,l3

3,0

2,0

e1 e2

e4e3

Figure 3.12: The change&go graph of Example 3.11.

and

ȳl :=

∑
(s,t)∈R

∑
e∈El x̄e

st

|R||E l|

for all l ∈ L lies in P1 \ P4. �

Theorem 3.36. P4 is stronger than P2.

Proof. In Lemma 3.34 we have shown that P4 ⊆ P2.
To show that P4 ⊂ P2, we need to find a point in P2 that is not in P4.
In our example, the solution (x̄, ȳ) with the x̄-values of alternative A (Figure
3.13) and ȳ = (1

2
, 0, 1

2
) is a feasible point in P2 but not in P4 since e.g.

constraint x̄e1

1 ≤ ȳ1 is violated.
More general, a solution (x̄, ȳ) in which one line is not used at all by one
customer, i.e. ∃(a, b) ∈ R, l∗ ∈ L such that x̄e

ab = 0 for all e ∈ E l∗ but there
is another edge of this line used by some customer, i.e. ∃(c, d) ∈ R, (c, d) �=
(a, b) such that x̄e

cd = 1 for some e ∈ E l∗ and

ȳl = max
e∈El

∑
(s,t)∈R x̄e

st

|R|

for all l ∈ L lies in P2 \ P4. �

50 CHAPTER 3. A NEW MODEL

1,0

1,l1 2,l1 2,l2 3,l2

1,l3 2,l3 3,l3

3,0

2,0

e1

e4e3

customer (1,2)

customer (1,3)

Figure 3.13: path combination: alternative A.

Theorem 3.37. P4 is stronger than P3.

Proof. In Lemma 3.34 we have shown that P4 ⊆ P3.
To show that P4 ⊂ P3, we need to find a point in P3 that is not in P4.
In our example, the solution (x̄, ȳ) with the x̄-values of alternative B (Figure
3.14) and ȳ = (0, 1, 1

2
) is a feasible point in P3 but not in P4 since e.g.

constraint x̄e3

1 ≤ ȳ3 is violated.
More general, a solution (x̄, ȳ) in which there is one edge of a line that is not
used by any customer, i.e. ∃ e∗ ∈ l∗ such that x̄e∗

st = 0 for all (s, t) ∈ R but
there is another edge of this line used by some customer, i.e. ∃ ê ∈ E l∗ , ê �= e∗

such that x̄ê
st = 1 for some (s, t) ∈ R, and

ȳl = max
(s,t)∈R

∑
e∈El x̄e

st

|E l|

for all l ∈ L lies in P3 \ P4. �

Theorem 3.38. P2 is stronger than P1.

Proof. If a point (x, y) satisfies the constraints∑
(s,t)∈R

xe
st ≤ |R|yl ∀ e ∈ E l,

3.4. DISCUSSION OF THE FORMULATIONS 51

1,0

1,l1 2,l1 2,l2 3,l2

1,l3 2,l3 3,l3

3,0

2,0

e2

e3

customer (1,3)

customer (1,2)

Figure 3.14: path combination: alternative B.

then summing up over e ∈ E l shows that it also satisfies the constraints∑
(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl

and thus P2 ⊆ P1.
To show that P2 ⊂ P1, we need to find a point in P1 that is not in P2.
In our example, the solution (x̄, ȳ) with the x̄-values of alternative B (Figure
3.14) and ȳ = (0, 1

2
, 1

2
) is a feasible point in P1 but not in P2 since e.g.

constraint
∑

(s,t)∈R x̄e3

st ≤ 2 · ȳ3 is violated.

More general, a solution (x̄, ȳ) in which there is an edge that is not used by
all customers, i.e. ∃e∗ ∈ l∗ such that x̄e∗

st = 0 for some (s, t) ∈ R but there is
an edge of this line that is used by all customers, i.e. ∃ê ∈ E l∗ , ê �= e∗ such
that x̄ê

st = 1 for all (s, t) ∈ R, and

ȳl :=

∑
(s,t)∈R

∑
e∈El x̄e

st

|R||E l|

for all l ∈ L lies in P1 \ P2. �

Theorem 3.39. P3 is stronger than P1.

52 CHAPTER 3. A NEW MODEL

Proof. If a point (x, y) satisfies the constraints∑
e∈El

xe
st ≤ |E l|yl ∀ (s, t) ∈ R,

then summing over up (s, t) ∈ R shows that it also satisfies the constraints∑
(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl

and thus P3 ⊆ P1.
To show that P3 ⊂ P1, we need to find a point in P1 that is not in P3.
In our example, the solution (x̄, ȳ) with the x̄-values of alternative A (Figure
3.13) and ȳ = (1

2
, 0, 1

2
) is a feasible point in P1 but not in P3 since e.g.

constraint
∑

e∈E1 x̄e
1 ≤ 1 · ȳ1 is violated.

More general, a solution (x̄, ȳ) in which there is an edge that is not used by
all customers, i.e. ∃e ∈ E l∗ such that x̄e

st = 0 for some (s, t) ∈ R but there
is a customer that uses all edges of a line, i.e. ∃(a, b) ∈ R such that x̄e

ab = 1
for all e ∈ E l∗ , and

ȳl =

∑
(s,t)∈R

∑
e∈El x̄e

st

|R||E l|

for all l ∈ L lies in P1 \ P3. �

Theorem 3.40. Comparing P2 and P3, none of them is stronger than the
other.

Proof. We can find a point, that is in P2 but not in P3 and vice versa.
In our example, the solution (x̄, ȳ) with the x̄-values of alternative B (Figure
3.14) and ȳ = (0, 1

2
, 1) is a feasible point in P2 but not in P3 since e.g.

constraint
∑

e∈E2 x̄e
3 ≤ 1 · ȳ2 is violated.

More general, a solution (x̄, ȳ) in which there is a customer that uses all edges
of a line, i.e. ∃(a, b) ∈ R such that x̄e

ab = 1 for all e ∈ l∗ but there is no edge
of this line that is used by all customers, i.e. x̄e

st = 0 for some (s, t) ∈ R for
all e ∈ E l∗ , and ∑

(s,t)∈R

x̄e
st = k < |R|

and

ȳl = max
e∈El

∑
(s,t)∈R x̄e

st

|R|

for all l ∈ L lies in P2 \ P3.

3.4. DISCUSSION OF THE FORMULATIONS 53

On the other hand, in our example, the solution (x̄, ȳ) with the x̄-values of
alternative B (Figure 3.14) and ȳ = (0, 1, 1

2
) is a feasible point in P3 but not

in P2 since e.g. constraint
∑

(s,t)∈R x̄e3

st ≤ 2 · ȳ3 is violated.

More general, a solution (x̄, ȳ) in which there is an edge that is used by all
customers, i.e. ∃e∗ ∈ E l∗ such that x̄e∗

st = 1 for all (s, t) ∈ R but there is a
customer that does not use all edges of this line, i.e. ∃(a, b) ∈ R such that
x̄e

ab = 0 for some e ∈ E l∗ , e �= e∗, and

ȳl := max
(s,t)∈R

∑
e∈El x̄e

st

|E l|

for all l ∈ L lies in P3 \ P2. �

Remark 3.41. Note that in real world instances (LPMT3) comes out to be
much better than (LPMT2) (see Table 3.5). Unfortunately, due to its huge
amount of constraints it is only computable for smaller instances (see Table
3.4).

Figure 3.15 shows schematically the results of this section. All formulations
describe the same integer set but the (LPMT4) formulation is better than all
others. (LPMT1) is the worst and (LPMT2) and (LPMT3) are not compa-
rable but better than (LPMT1) and worse than (LPMT4). Later we will see
that in real world instances (LPMT3) figures out to be better than (LPMT2)
in most cases (see Section 3.4.3).

P4

P3

P2

P1

Figure 3.15: Schematical summary of the results of Section 3.4.

54 CHAPTER 3. A NEW MODEL

3.4.2 Model structure

Integer programs and their associated linear relaxations encountered in appli-
cations almost always exhibit a large deal of structure. Constraint matrices
are typically very sparse, having non zero elements in the order of magnitude
of one percent, or less. This well known phenomenon is due to the fact that
activities associated with variables are subject to only a few of the condi-
tions represented by the constraints, respectively. On top of that, there may
exist a hierarchical, geographical or logical segmentation of the underlying
problem, which is reflected in the model formulation. Thus, it is likely that
the non zeros are grouped in such a way that independent subsystems of vari-
ables and constraints result, possibly linked by a distinct set of constraints
and/or variables. Figure 3.16 shows schematically the distribution of non ze-
ros for different angular block diagonal matrices, occurring in practice most
frequently ([Min86]).

Figure 3.16: Block diagonal matrix structure, (a) with coupling constraints, (b)

with coupling variables, and (c) with coupling constraints and variables. Only the

shaded regions may contain non-zero elements.

All our model formulations presented in Section 3.3.2 have block diagonal
structure with only a few coupling constraints and all blocks (except the
single budget constraint) are totally unimodular.

The block structure of the model (LPMT1) is shown in the following scheme.

min
∑

(s,t)∈R

∑
e∈E wstcex

e
st

∑
(s,t)∈R

∑
e∈El xe

st ≤ |R||E l|yl coupling constraints (3.5)

θxs1t1 = bs1t1

. . . (3.3)

θxs|R|,t|R|
= bs|R|,t|R| ∑

l∈L Clyl ≤ B (3.4)

3.4. DISCUSSION OF THE FORMULATIONS 55

Note that the other formulations (LPMT2), (LPMT3), and (LPMT4) only
differ in the coupling constraints (3.6), (3.7), and (3.8) and thus the structure
is equivalent.
The shortest path constraint set (3.3) decomposes in |R| many independent
blocks: one for each origin-destination pair (s, t) ∈ R. These shortest-path-
blocks are identical on the left-hand side and differ only in the right-hand
side bst. We get one more independent block for the budget constraint (3.4).
The constraints (3.5) are coupling constraints.

Since the change&go-network and hence the corresponding problem formu-
lations get huge, it is not possible to compute the optimal solution of the
LP-relaxation of the different formulations using standard optimization soft-
ware. Table 3.4 shows the CPU times for some real world instances explained
in Table 3.2 for the different formulations. The results are based on a 3.06
GHz Intel4 processor with 2 GB RAM using Xpress IVE Version 1.15.01.
The size of (LPMT) depends on two criteria: the size of the line pool and
the number of origin-destination pairs. Table 3.3 shows computation times
of the (LPMT1) relaxation for different line pool sizes and origin-destination
sets.
Even though the LP-relaxation of (LPMT) is not solvable for real world
instances, we can exploit its nice structure to decompose the problem into
many small (solvable) subproblems linked by only few coupling constraints.
In Section 5.2 we will present a solution approach based on Dantzig-Wolfe
decomposition to solve the LP-relaxation of our problem. Note that in this
case the subproblems can also be computed on parallel machines since they
are independent.

The size of (LPMT) depends on two criteria:

1. the size of the line pool: the change&go-network is constructed out
of the line pool and thus the size of the node-arc incidence matrix θ
increases with with the line pool size

2. the number of origin-destination pairs: we solve a shortest path prob-
lem for each origin-destination pair and so the number of constraints
increases if we treat more origin-destination pairs

Table 3.3 shows the CPU times for the LP-relaxation of (LPMT1) for in-
stances with different sizes of line pools |L| and sets of origin-destination
pairs |R|. If the problem was not solvable due to lack of memory, this is
indicated by ”M”.

56 CHAPTER 3. A NEW MODEL

|L| |R|=2 |R|=10 |R|=50 |R|=100 |R|=150 |R|=200 |R|=1476
10 0.187 0.860 4.219 8.563 12.469 16.453 154.281
50 4.875 23.610 118.844 239.782 361.063 M M
100 25.172 124.359 626.640 M M M M
132 52.047 257.906 M M M M M
150 M M M M M M M

Table 3.3: CPU times for the LP-relaxation of (LPMT1) for different line pool

sizes and origin-destination sets. ”‘M”’ denotes out of memory.

Instance |L| Budget (LPMT1) (LPMT2) (LPMT3) (LPMT4)

0 3 1 0.03 0.03 0.03 0.03
1 10 7 154.8 146.2 153.3 M
2 50 30 M M M M

Table 3.4: CPU times for the LP-relaxation of the four formulations using

XpressMP, ”M” denotes out of memory)

In the next section we will present a method to check if the trivial solution,
i.e. the solution we get, if we compute the shortest path problem on the
change&go-network constructed of all lines of the line pool, is already an op-
timal solution of the LP-relaxation. Depending on the formulation (LPMT1),
(LPMT2), (LPMT3), and (LPMT4), this may appear quite often.

3.4.3 Special cases

In some special cases the solution of the LP-relaxation of the (LPMT1) is
easy to find.

Proposition 3.42. If Cl = 1 ∀ l ∈ L and if for each origin-destination pair
(s, t) ∈ R there is a line l ∈ L that serves (s, t) directly on shortest path, then
the solution that chooses exactly this special line for each origin-destination
pair is always feasible and optimal for the LP-relaxation of (LPMT1).

Proof. Let x̄e
st be the optimal solution of the shortest path problem on the

change&go-network constructed of all lines of the line pool and

ȳl :=

∑
(s,t)∈R kl

st

|R||E l|

for all l ∈ L with kl
st :=

∑
e∈El x̄e

st. Note that kl
st ≤ |E l| for all (s, t) ∈ R, l ∈

L. Since by assumption each passenger can travel directly on one line, the

3.4. DISCUSSION OF THE FORMULATIONS 57

number of non-zero kl
st is equal |R|.

This solution (x̄, ȳ) satisfies the coupling constraints of (LPMT1) (3.5).
It also satisfies the budget constraint (3.4)

∑
l∈L

Clȳl =
1

|R|

∑
l∈L

∑
(s,t)∈R

≤1︷︸︸︷
kl

st

|E l|︸ ︷︷ ︸
≤|R|

≤ 1

independently of the choice of the budget since a budget smaller than one
does not make sense if Cl = 1 for all l ∈ L. So, the solution (x̄, ȳ) is feasible
for (LPMT1). It is also optimal since there is no better way than traveling
on shortest path without transfer. �

Definition 3.43. A trivial solution (x̄, ȳ1), (x̄, ȳ2), (x̄, ȳ3), (x̄, ȳ4) of (LPMT1),
(LPMT2), (LPMT3), (LPMT4), respectively, is defined as the solution of the
shortest path problem on the change&go-network constructed of all lines of
the line pool x̄e

st and

ȳ1
l :=

∑
(s,t)∈R

∑
e∈El x̄e

st

|E l||R|
∀ l ∈ L (for (LPMT1))

ȳ2
l :=

maxe∈El

∑
(s,t)∈R x̄e

st

|R|
∀ l ∈ L (for (LPMT2))

ȳ3
l :=

max(s,t)∈R

∑
e∈El x̄e

st

|E l|
∀ l ∈ L (for (LPMT3))

ȳ4
l := max

(s,t)∈R
max
e∈El

x̄e
st ∀ l ∈ L (for (LPMT4))

It is in general not unique and need not to be feasible in the sense that it
fulfills the budget constraint.

In real world instances it appears quite often that a trivial solution is an
optimal solution of the LP-relaxation of (LPMT1) even if not all assumptions
of Proposition 3.42 are fulfilled. This is clear since the right hand sides |R||E l|
of the coupling constraints (3.5) are chosen such that all passengers could use
all edges of all lines. In real world only few edges of the network are used
and so Kl :=

∑
(s,t)∈R

∑
e∈El xe

st is much smaller than |R||E l|, hence

∑
l∈L

Clȳ
1
l =

∑
l∈L

Cl

Kl

|E l||R|
≤ B

is often satisfied.

58 CHAPTER 3. A NEW MODEL

No. |L| obj.val. T1 T2 T3 T4 CPU

1 10 2271.3 0.69 0.99 9.53 10 0
2 50 9459.9 0.20 0.35 25.31 48 10
3 100 24780.0 0.13 0.29 41.83 96 60
4 132 31654.2 0.11 0.26 53.12 129 131
5 200 15128.9 0.07 0.19 54.89 197 342
6 250 19096.0 0.05 0.16 61.07 235 418
7 275 20118.2 0.04 0.15 63.47 252 579
8 300 26598.3 0.06 0.19 72.35 282 811
9 330 26817.7 0.04 0.16 74.44 302 1052

10 350 26450.0 0.07 0.23 90.04 331 966
11 375 27517.8 0.06 0.20 90.75 345 1215
12 400 34781.3 0.06 0.20 100.05 370 1571
13 423 35135.5 0.06 0.20 102.19 389 1972

Table 3.5: Minimal budgets such that trivial solution is optimal solution of the

LP-relaxation of the different formulations of the (LPMT), see Lemma 3.44. CPU

times in seconds.

Lemma 3.44. Let i ∈ {1, 2, 3, 4} and let (x̄, ȳi) be a trivial solution of
(LPMTi), as defined in Definition 3.43. If

Ti :=
∑
l∈L

Clȳ
i
l ≤ B

is satisfied, the trivial solution (x̄, ȳi) is an optimal solution of the (LPMTi).
Note that for i = 4 the solution (x̄, ȳ4) of the LP-relaxation of (LPMT4) is
integer and thus if T4 ≤ B holds, the trivial solution is an optimal solution
to the original problem.

Proof. Clear by the formulation of (LMPT1), (LMPT2),(LPMT3), and
(LMPT4). �

Table 3.5 shows some computational results of real world instances of Lemma
3.44 with line costs Cl = 1 ∀ l ∈ L. T1, T2, T3 and T4 represent the minimal
budgets such that the trivial solution still is the optimal solution of the LP-
relaxation of the corresponding formulation. This means, if the given budget
is smaller than the Ti-value, the trivial solution does not fulfill the budget
constraint and we have to use other methods to find a solution of the LP-
relaxation. Our approach is a Dantzig-Wolfe decomposition approach and
will be presented in Chapter 5.

3.4. DISCUSSION OF THE FORMULATIONS 59

If the given budget is higher than the Ti-value, it is sufficient to solve the
shortest path problem which can be done in polynomial time. Even if it
seems simple, this result is very useful for the computational realization of a
solution method, as we will see in Chapter 6.

If we have a closer look on the Ti-values, we see that the T1- and the T2-
values in Table 3.5 are always smaller than one, so an optimal LP-relaxation
solution of (LPMT1) and (LPMT2) is for all instances and for all budgets
(remember that a budget smaller than one does not make sense) equal to the
trivial solution. One might think that this is due to the fact that the line
costs are all set to one. The budget then represents the maximum number of
lines allowed to be chosen into the line concept. But the following example
will show that even if the line costs are set to one, there may exists a PTN
and a line pool such that the T1- and the T2-value is bigger than 1.

Example 3.45. We consider a PTN consisting of four nodes S := {1, 2, 3, 4}
and three edges E := {(1, 2), (2, 3), (3, 4)}. The line pool contains three lines
L := {l1, l2, l3} := {(1, 2), (2, 3, 4), (1, 2, 3, 4)} where line l3 is a regional
(slow) train and l1 and l2 are fast trains. The line costs are all equal to one.
The time the trains need from one station to another station is shown in
Figure 3.17.

l1

l2

l3

3 3 3

111
1 2 3 4

Figure 3.17: Line pool of Example 3.45.

We have three origin-destination pairs R := {(1, 2), (1, 4), (2, 4)}. The edge
costs are set to the driving times on the driving-edges and to 4 on the
changing-edges. Obviously the solution of the shortest path problem if we
allow all lines of the line pool is: origin-destination pair (1, 2) uses line l1
without transfer, origin-destination pair (2, 4) uses line l2 without transfer,
and origin-destination pair (1, 4) uses line l1 and line l2 with transfer at
station 2.

60 CHAPTER 3. A NEW MODEL

In this case, we get the following Ti-values as defined in Lemma 3.44:

T1 =
2

3
+

4

6
+

0

9
=

4

3

T2 =
2

3
+

2

3
+

0

3
=

4

3

T3 =
1

1
+

2

2
+

0

3
= 2

T4 = 1 + 1 + 0 = 2

Thus, choosing line l1 and line l2 would be the optimal solution if the budget
is set to 2 or 3. If it is set to 1, the optimal solution is the line concept
L = {l3} because it is the only line that serves all customers.

The T3-values are much ”better” than the T1- and the T2-values in the
sense that the solution of the LP-relaxation of (LPMT3) is not equal to the
trivial solution if the given budget is smaller than the relatively high T3-
value, and hence is stronger. So, in practice we can say, that the (LPMT3)
formulation is stronger than the (LPMT2) formulation even if we have shown
in Theorem 3.40 that they are not comparable. But this means only that
there exists a case in which one formulation is stronger than the other and
vice versa. This case is mentioned in the proof of the theorem. It uses the
fact that ȳ2

l is near one if there is an edge of a line l that is used by almost all
customers which hardly ever appears in real world instances. On the other
hand ȳ3

l is near one if almost all edges of a line l are used by some customer,
which is much more likely since there may be a customer that uses a line
from the start- to the end-node and by doing so, he reaches his destination
without transfer. Unfortunately the (LPMT3) formulation also has much
more constraints than (LPMT2) and so the solution of the LP-relaxation is
computationally hard for larger instances (see Table 3.4).
As we have shown in Section 3.4 the (LPMT4) formulation yields the best
Ti-values of all formulations. Calculating its LP-relaxation would rise up
to a highly integer solution but unfortunately it has too many constraints
to solve even small instances with standard LP solvers. Even the resulting
master problem in the Dantzig-Wolfe approach presented in Chapter 5 gets
too big, so it can only be used for heuristic approaches.

Part II

Solution Methods

61

Chapter 4

Heuristics

As we have seen in Section 3.2 our problem belongs to the class of NP-hard
problems. That is, there is strong evidence that no efficient algorithms for its
solution exist. Fortunately our integer formulations of (LPMT) have a nice
structure. All computational results presented in this section are computed
on a Pentium 4 processor with 3Ghz and 2GB RAM. The heuristics are im-
plemented using Visual C++ 6.0. Shortest path subproblems are calculated
using the Dijkstra algorithm.

Notation 4.1. In this section we denote the edge set of a change&go-network
constructed by the lines of a given line concept L ⊆ L by

E(L) := ∪l∈LE
l ∪ Echange ∪ EOD.

Furthermore, to simplify the notation, we will call the origin-destination pairs
r ∈ R instead of (s, t) ∈ R.

4.1 Variable Fixing

As we mentioned in Section 3.3.2, the (LPMT4) formulation (3.12) is the
strongest among our formulations and so we will use it as a basis of various
heuristics presented in this chapter.

Therefore we first recall (LPMT4). We remember that the formulation con-
sists of the objective function (3.2), the coupling constraints (3.8), the short-
est path problems (3.3) and the budget constraint (3.4).

63

64 CHAPTER 4. HEURISTICS

(LPMT4)

min
∑
r∈R

∑
e∈E

wr ce xe
r (3.2)

s.t. xe
r ≤ yl ∀ r ∈ R, e ∈ E l : l ∈ L (3.8)∑

e∈E

θiex
e
r = bi

r ∀ r ∈ R, i ∈ V (3.3)

∑
l∈L

Clyl ≤ B (3.4)

xe
r, yl ∈ B ∀ r ∈ R, e ∈ E , l ∈ L

We can divide the variables of the model into two groups: the x-variables and
the y-variables. The x-variables correspond to the choice of the passenger
paths and the y-variables correspond to lines chosen to be in the line concept.

What happens if we fix one of the variable groups?

1. Fixing the y-variables:
This means, that we assume the line concept L to be known. The
budget-constraint thus reduces to

∑
l∈L

Cl ≤ B

which does not contain any variables and only makes sure that the cho-
sen line concept does not exceed the given budget and thus is feasible.
The coupling constraints fix the xe

r to zero for all e ∈ Ego \ E(L) and
thus the shortest path constraints reduce to

∑
e∈E(L)

θiex
e
r = bi

r ∀ r ∈ R, i ∈ V

The remaining problem we have to solve is

4.2. GREEDY HEURISTICS 65

(LPMT(L))

min
∑
r∈R

∑
e∈E(L)

wr ce xe
r (4.1)

s.t.
∑

e∈E(L)

θiex
e
r = bi

r ∀ r ∈ R, i ∈ V

∑
l∈L

Cl ≤ B

xe
r ∈ B ∀ r ∈ R, e ∈ E

This problem is a shortest path problem and can be solved in polyno-
mial time. We denote an optimal solution of (LPMT(L)) by x̄(L).

2. Fixing the x-variables:
This means, we have the paths of the customers already given. Since
each driving edge corresponds to exactly one line, we get the solution
of the y-variables straightforwardly by setting

yl := max
r∈R,e∈El

xe
r ∈ {0, 1}

for all l ∈ L. Again we have to check the budget constraint to find out
if the corresponding solution is feasible.

4.2 Greedy heuristics

The idea of a Greedy heuristic is to construct a solution, choosing at each
step the item bringing the ”best” immediate reward. Often, the solutions
are constructed from scratch starting with the empty set.

4.2.1 Starting with empty set

More formally, we suppose that the problem can be written as a combinatorial
problem in the form. Let c(Q) be a real-valued function defined on all subsets
of X, we consider the problem

min{c(Q) : Q ⊆ X}

.
The pure Greedy heuristic can formally be formulated as followed.

66 CHAPTER 4. HEURISTICS

Algorithm 4.2. ([Wol98], [NW88]) Greedy heuristic - general form

1. Set Q0 = ∅ (start with the empty set). Set t = 1.

2. Set jt = arg minj∈X\Qt−1(c(Qt−1 ∪ {j}) − c(Qt−1)) (choose the element
whose additional cost is minimum).

3. If the previous solution Qt−1 is feasible, and the objective value has not
decreased, i.e. c(Qt−1) ≤ c(Qt−1 ∪ {jt}), stop with QG = Qt−1.

4. Otherwise set Qt = Qt−1 ∪ {jt}.

5. If Qt = X, and solution Qt is feasible, stop with QG = Qt.
If Qt is not feasible, stop: problem is infeasible.

6. Otherwise set t := t + 1, and return to 2.

In our case we get a combinatorial problem if we minimize over all possible
line concepts. The corresponding reformulation is:

(CLPMT)

min
L⊆L

∑
r∈R

∑
e∈E(L)

wr ce xe
r (4.2)

s.t.
∑

e∈E(L)

θiex
e
r = bi

r ∀ r ∈ R, i ∈ V (4.3)

∑
l∈L

Cl ≤ B (4.4)

xe
r ∈ B ∀ r ∈ R, e ∈ E(L) (4.5)

Corresponding to the notation of Algorithm 4.3, we define L := Q (line
concept), Lt := Qt (line concept in tth iteration),

c(L) =
∑
r∈R

∑
e∈E(L)

wr ce x̄e
r(L) := c(Q),

where x̄(L) is a solution of the shortest path problem in the change&go-
network constructed from the corresponding line concept L, i.e. a solution
of (LPMT(L)).

4.2. GREEDY HEURISTICS 67

A line concept L is feasible if it satisfies the constraints∑
l∈L

Cl ≤ B, (4.6)

and ∑
e∈E(L)

θiex̄
e
r(L) = bi

r ∀ r ∈ R, i ∈ V. (4.7)

We now get the following Greedy algorithm for (LPMT).

Algorithm 4.3. Greedy for (LPMT)

1. Set L0 = ∅ (start with the empty set). Set t = 1.

2. Set

lt = arg min
l∈L\Lt−1

(c(Lt−1 ∪ {l}) − c(Lt−1)))

= arg min
l∈L\Lt−1

(
∑

e∈E(Lt−1∪{l})

∑
r∈R

wrcex̄
e
r(L

t−1∪{l})−
∑

e∈E(Lt−1)

∑
r∈R

wrcex̄
e
r(L

t−1))

(choose the line that serves passengers that have not been served yet
and shortens the path of passengers that have been served already by
another line).

3. If the previous line concept Lt−1 is feasible, and the objective value has
not decreased, i.e. c(Lt−1) ≤ c(Lt−1 ∪ {lt}), stop with LG = Lt−1.

4. Otherwise set Lt = Lt−1 ∪ {lt}.

5. If t = |L|, and line concept Lt is feasible, stop with LG = Lt.
If Lt is not feasible, stop: problem is infeasible.

6. Otherwise set t := t + 1, and return to 2.

Unfortunately the calculation of the ”best” line in Step 2 is too time con-
suming for real world instances. So, we have to find different functions to
find a ”good” line.

68 CHAPTER 4. HEURISTICS

Different line choice criteria in Step 2

The main changes between different Greedy heuristics occur in Step 2 where
we have to find a criterion that tells us which line to choose for the line
concept. It should be the one bringing the ”best” immediate reward, as we
mentioned above. As we are not allowed to exceed a given financial budget,
we should choose a line with low line cost Cl. Thus the line costs will be in
the nominator in Step 2. On the other hand, we have to find a line concept
that serves all passengers. One possibility is to choose the line that covers
the most not yet covered stations in the PTN. The criterion in Step 2 can
thus be formulated as:

lt = arg min
l∈L\Lt−1

Cl

|S(l) \ ∪t−1
i=1S(li)|

with S(l) be the set of all stations of line l.
We call the resulting Greedy algorithm Cover Greedy since we try to cover
all stations of the PTN first to find a feasible solution as fast as possible.
Table 4.1 shows the results and CPU times for different real world instances
explained on Table 3.2. The line costs are set equal to one for all lines.

No. |L| budget obj.val. CPU

1 10 7 2560.7 0
2 50 30 10837.6 89
3 100 50 27550.1 221
4 132 70 32059.3 740
5 200 70 16298.9 1245
8 300 70 30521.0 11921

Table 4.1: Solutions of the cover greedy algorithms for different line pool sizes

The next heuristic is based on the following idea: We calculate a trivial
solution (x̄, ȳ3) of (LPMT3), as defined in Definition 3.43. A line l with a
high ȳ3

l -value is a line, that is used by some customer on a large number
of edges respectively to the total number of its edges. This means, there
is strong evidence that this client travels directly on shortest path from its
origin to its destination and so, if on the other hand the line cost of this line
Cl is low, it may be a good choice for the line concept.
The criterion in Step 2 can thus be formulated as:

lt = arg min
l∈L\Lt−1

Cl

ȳ3
l

4.2. GREEDY HEURISTICS 69

Note, that the ”importance” (Cl/ȳ
3
l) of a line does not depend on the current

line concept Lt−1. So, it is possible to sort the lines by their importance
(li1 , . . . , li|L|

) before starting the algorithm. During the algorithm the lines
are added successively according their precalculated importance to the line
concept until a stopping criterion is fulfilled.
We call the resulting Greedy algorithm List Greedy since we add the lines
according to a precalculated list. Table 4.2 shows the results and CPU times
for different real world instances explained in Table 3.2. The line costs are
equal to one for all lines.

No. |L| budget obj.val. CPU

1 10 6 infeasible 0
1 10 9 2290.3 0
2 50 30 infeasible 12
2 50 47 9460.9 117
3 100 50 infeasible 16
3 100 91 24945.1 130
4 132 70 infeasible 134
4 132 121 32059.3 292
5 200 70 infeasible 166

Table 4.2: Solutions of the list greedy algorithms for different line pool sizes

Other line-choice criteria are possible, such as

• Choose the ȳ1-value or the ȳ2-value instead the ȳ3-value in the List
Greedy algorithm.

• Let ODl denote the number of origin-destination pairs that use one or
more driving edges of line l on their shortest path in the change&go-
network constructed on the whole line concept:

ODl :=
∑
r∈R

(max
e∈El

x̄e
r) (4.8)

Sort the lines by the minimal cost and maximum ODl value: Cl

ODl
and

apply this list to the List Greedy algorithm.

Note that in the first iterations of these heuristics the shortest path feasibility
criterion (4.7) will likely not be fulfilled since there are not enough lines to
serve all passengers. To save computation time it is possible to check feasi-
bility in these first iterations by checking shortest path in the corresponding
(smaller) line-change-graph presented in Section 3.3.1 (see Figure 3.7).

70 CHAPTER 4. HEURISTICS

4.2.2 Starting with line pool

So far we started with an empty line concept and added lines successively.
In this subsection we present heuristics that work the opposite way around.
We start with the complete line pool as line concept and delete successively
expensive, unimportant lines until the budget constraint is fulfilled and no
improvement of the objective value is possible. We call this kind of heuristic
delete heuristics.
Note that this is a way to implement the Relaxation-and-Separation Heuris-
tic explained in Section 4.3, since we successively set some ylt = 0 and by
adjusting the corresponding change&go-network, we set the corresponding
xe

st = 0 for all e ∈ E lt .

Algorithm 4.4. Delete heuristic - general form

1. Set L0 = L (start with line pool as line concept). Set t = 1.

2. Set lt = arg maxl∈L\Lt
Cl

W (l)
(choose the line with maximal cost and

minimal relevance, measured by some relevance function W).

3. If the previous solution Lt−1 is feasible, and the objective function value
has not decreased, stop with LD = Lt−1.

4. Otherwise set Lt = Lt−1 \ {jt}.

5. Otherwise set t := t + 1, and return to 2.

As before, feasibility has to be checked concerning

• the budget constraint (4.6)

• the shortest path constraints (4.7)

But now, in the beginning of the algorithm, the budget constraint is violated
and the shortest path constraints are satisfied. Therefore we have to check in
each iteration the length of the shortest paths in the real change&go-graph
and not as in the first iterations of the Greedy heuristics that start with an
empty set, in the shrunken line-change-graph and thus the computational
effort increases.

We have various possibilities to choose the relevance function in Step 2 of
the algorithm.

4.3. RELAXATION AND SEPARATION 71

1. Let ODl(L) denote the number of origin-destination pairs that use one
or more driving edges of line l on their shortest path in the change&go-
network constructed by the current line concept L:

ODl(L) :=
∑
r∈R

(max
e∈El

x̄e
r(L)) (4.9)

Then, the relevance function can be set to:

W (l) := ODl

We call this algorithm OD-delete heuristic. Table 4.3 shows solution
values and CPU times for different instance sizes.

2. Let x̄e
st(L) denote the solution of the shortest path problem of origin-

destination pair (s, t) ∈ R in the change&go-network constructed by
the current line concept L. Then

W (l) :=
∑
e∈Elt

∑
(s,t)∈R

x̄e
st(L)

We call this algorithm path-delete heuristic. Table 4.4 shows solution
values and CPU times for different instance sizes.

Of course many other relevance functions are possible such as sorting the
lines in advance by their ȳi-value of Lemma 3.44 for i = 1, 2, or 3 and setting
the relevance function to

W (l) := ȳi.

4.3 Relaxation and Separation

In this section we relax the given problem (LPMT4) by ignoring the coupling
constraints

xe
st ≤ yl ∀ (s, t) ∈ R, e ∈ E l : l ∈ L

to get a polynomial solvable problem, namely a shortest path problem with
solution vector x̄. In a second step, the separation step, we calculate the
values of the ȳ-variables as mentioned in Section 4.1 (Fixing the x-variables)
and consider the coupling constraints that are not satisfied by the shortest
path solution. In this case there is a x̄e

st with

x̄e
st > ȳl.

Now we have two possibilities. We can set x̄e
st := 0 or ȳl := 1.

72 CHAPTER 4. HEURISTICS

No. |L| budget obj.val. CPU

1 10 6 2615.2 3
2 50 30 9828.1 161
3 100 50 27695.3 2131
4 132 70 31854.5 4405
5 200 70 15721.2 30393
5 200 180 15133.4 4441
6 250 200 19116.3 24675
7 300 250 26624.8 46185
8 330 50 28510.2 348654

Table 4.3: Delete OD-heuristics for different line pool sizes

No. |L| budget obj.val. CPU

1 10 6 2615.2 2
2 50 30 9926.9 161
2 50 40 9525.4 85
3 100 50 26008.4 3036
3 100 80 14912.2 1255
4 132 70 32504.0 8954
4 132 100 31843.2 4806
5 200 70 15689.2 29764
5 200 180 15131.3 4169
6 250 200 19114.5 16206
7 300 250 26616.5 35750
8 330 50 28415.6 331672

Table 4.4: Delete path-heuristics for different line pool sizes

4.4. LINE SEGMENT HEURISTIC 73

1. If we set x̄e
st := 0, this means that we do not allow any passenger to

use this driving edge. We delete the edge from the change&go-graph,
but we do not change the problem itself. The remaining problem still
is a shortest path problem.

2. It we set ȳl := 1, this means that this line has to be in the line concept
and we can delete its cost Cl from the budget.

More formally we get the following algorithm:

Algorithm 4.5. Relaxation and separation - general form

1. Solve (LPMT4) without the coupling constraints 3.8 with solution x̄
and compute the corresponding ȳ-values.

2. Feasibility check: If x̄e
st ≤ ȳl is true for all (s, t) ∈ R, e ∈ E l : l ∈ L

then stop with L := {l ∈ L : yl = 1}
Otherwise: there is at least one xe

st > yl, e ∈ E l

3. Add the constraint xe
st = 0 to the relaxed (LPMT4) and goto Step 1.

This idea will be discussed in more detail in Section 6.

4.4 Line segment heuristic

In the heuristics introduced so far, the lines have always been chosen from a
given line pool. The heuristic we will present in this section will construct the
lines from scratch. Nevertheless it uses the idea of the change& go-network.

Notation 4.6. We denote by Vs := {(s, l) ∈ V} the set of all nodes in the
change& go-graph that correspond to node s ∈ S of the underlying PTN
and by Es := {{(s, l1), (s, l2)} ∈ Echange} all changing edges of the change&
go-graph between lines that stop at station s ∈ S of the PTN.

Idea: The line pool is initially constructed by defining each edge in the PTN to
be a line. We construct the corresponding change&go-network and calculate
shortest paths for all origin-destination pairs to get the solution x̄e

st. So, we
get values ve for all changing edges e ∈ Echange:

ve :=
∑

(s,t)∈R

x̄e
st ∀ e ∈ Echange.

Now, for each station in the PTN, we consider all corresponding changing
edges Es and solve the weighted matching problem for them, which is solvable
in polynomial time.

74 CHAPTER 4. HEURISTICS

Definition 4.7. ([Wol98]) Given a graph G = (V,E). A matching M ⊆ E
is a set of disjoint edges, that is, at most one edge of a matching is incident
to any node v ∈ V .

Definition 4.8. ([NW88]) Given a graph G = (V,E) with m nodes and n
edges, and integral weights ce for e ∈ E. The weighted matching problem can
be given in the integer programming formulation as follows:

max
∑
e∈E

cexe

s.t.
∑

e∈δ(i)

xe ≤ 1 ∀ i ∈ V

x ∈ Z
n
+

where δ(i) is the set of edges incident to node i. This means, we want to find
the matching with the maximum sum of the edge-costs of the edges contained
in the matching.

If an edge e = {(s, l1), (s, l2)} is in the matching M we join the lines l1 and
l2 to a new (longer) line l∗. Doing so for each station of the PTN we end up
with a line concept that serves all passengers. As we join the line segments
where initially many people had to change to a new line we assure that these
people have no transfer at this station and so the number of transfers in the
network stays small.

Example 4.9. In Figure 4.1 we see a part of a change& go-network. In the
big circle we see all nodes and edges corresponding to station s ∈ S of the
underlying PTN. The numbers on the changing edges correspond to the edge
costs. They represent the number of passengers that would have to change
between the corresponding lines. The thick lines represent the solution of
the weighted matching. We now join the lines l2 = (b, s) and l5 = (s, e) to a
new line l∗ := (b, s, e) and the lines l3 = (c, s) and l4 = (s, d) to a new line
l′ := (c, s, d). Line l1 = (a, s) ends at station s.

4.5 Summary

The heuristics starting with the empty set (in the following named add-
heuristics are much faster than the heuristics starting with the complete line
pool (called delete-heuristics). This has many reasons:

4.5. SUMMARY 75

s,l1

s,l2

s,l3

s,l4s,l5

1

2

4

6

1

7 2

5

5

2

Station s

a,l1

b,l2

c,l3

d,l4
e,l5

changing edges

matching

driving edges

Figure 4.1: Joining lines in the line segment heuristic.

• In real-world instances the budget is much smaller than the number
of possible lines in the line pool. Thus, a heuristic that starts with
an empty set and adds in each iteration one line needs less iterations
than a heuristic that deletes a line from the complete line pool in each
iteration.

• The solutions of the add-heuristics are in the first iterations infeasible
with respect to the shortest path constraints. Thus, as we mentioned
above, it is sufficient to check feasibility using the much smaller line-
change-graph. This is not possible for the delete-heuristics since their
solutions satisfy the shortest path constraints in the beginning, but
violate the budget constraint.

• Solving the shortest path problems of the current change&go-network
is the most time consuming step and has to be done in each iteration
in the delete-heuristics in contrary to the add-heuristics, where once,
the current line concept is feasible and the shortest paths for all origin-
destination pairs are computed, we only have to update the paths that
may change by adding the new line. This can be done much faster
than solving the shortest path problem of the updated network for all
origin-destination pairs in each step.

76 CHAPTER 4. HEURISTICS

Figure 4.2 shows graphically the CPU times of the three main heuristics for
different line pool sizes.
On the other hand, the delete-heuristics are more reliable in finding a feasible
solution. As we have seen in Table 4.2, the list-heuristic, which is one of the
add-heuristics hardly ever finds a feasible solution. This happens if the sum
of the costs of the lines of the current line concept exceeds the budget while
not all customers are served yet. This happens especially at add-heuristics
that work with a precalculated list of lines. The new line that is chosen to
be in the line concept is chosen beforehand without considering the actual
situation. As calculating in each step the currently best line to choose, as it is
done in the cover-heuristic, costs some computation time, the list-heuristic is
much faster. The possibility that a delete-heuristic will find a feasible solution
is much higher because they start with a shortest-path-feasible solution. If
a line is selected to be deleted that violates the shortest path constraints,
it is easy to not delete it and to select a different line. That means that
some kind of interchange-heuristic or local search is included to make the
procedure more reliable.
Regarding the solution values in Figure 4.3, the delete-heuristics are slightly
better. So, it depends on the instance size if the decision maker prefers a fast
add-heuristic or a delete-heuristic that will provide a better solution value
and a lower risk of not finding a feasible solution.
A speed-up of all heuristics can be done by preprocessing (see Section 6.3)
and the use of faster shortest path algorithms. The solution can be enhanced
by local search methods such as replacing lines from the line concept by lines
that are not in the line concept (for details on local search see [NW88],
[Wol98]).
The line segment heuristic is somehow different since it is the only method
that does not need a line pool but constructs lines itself. Therefore, it
will soon be subject of a project work at the Georg-August University of
Göttingen.

4.5. SUMMARY 77

cover−heur.

path−heur.

OD−heur.

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100 120 140 160 180 200

C
P

U

size of line pool

Figure 4.2: CPU times of different heuristics.

LP−relax

cover−heur.

path−heur.

OD−heur.

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300 350

line pool size

o
b
je

ct
iv

e
v
al

u
e

Figure 4.3: Objective values of different heuristics.

78 CHAPTER 4. HEURISTICS

Chapter 5

Dantzig-Wolfe-Decomposition

5.1 Theory

Dantzig-Wolfe decomposition (see [DW60]) is a classic approach for struc-
tured linear programming problems. It is an important tool to solve struc-
tured models that cannot be solved using standard linear programming algo-
rithms as they exceed the capacity of the available LP solvers. The approach
also has a potential using parallel computer architectures.
Although this approach can be found in the literature ([Wol98], [Las70]), for
the sake of completeness of this thesis, we give a short introduction.

Consider the LP:

(P)

min cx

s.t. Ax = b

x ≥ 0

Matrix A has block diagonal structure with coupling constraints:

Ax =

⎛
⎜⎜⎜⎜⎜⎝

A0 A1 A2 · · · AK

B1

B2 0

0
. . .

BK

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x0

x1

x2
...

xK

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

b0

b1

b2
...

bK

⎞
⎟⎟⎟⎟⎟⎠

where A0 is a m0 × n0 matrix. The constraints
K∑

k=0

Akxk = b0

79

80 CHAPTER 5. DANTZIG-WOLFE-DECOMPOSITION

corresponding to the top row of sub-matrices are called coupling constraints.
Note that every linear program with more than one constraint can be written
in block angular structure for K = 1.
Linear programs of type (P) that are appropriate to be solved using Dantzig-
Wolfe decomposition preferably contain a number of variables much larger
than the number of constraints, and so large that the matrix A can not
be stated completely (in practice this means that it can not be completely
stored in the memory of the computer). We assume that the matrix is known
implicitly, i.e. its columns are well defined, but very large in number.

The idea of the Dantzig-Wolfe approach is to decompose this problem, such
that never a problem has to be solved with all subproblems Bkxk = bk in-
cluded. Instead an equivalent master problem is devised which only concen-
trates on the coupling constraints and contains only a few more rows than
the number of coupling constraints m0 but with very many columns. This
problem is solved without tabulating all these columns by generating them by
solving subproblems when the simplex method needs them, a technique that
is called column generation. The subproblems are solved individually. As a
result only a series of smaller problems needs to be solved. The subproblems
receive a set of parameters (simplex multipliers or prices) from the master
program. They send their solution in terms of new columns to the master
program, which combines these with previous solutions and computes new
simplex multipliers, which are send again to the subproblems. This process
proceeds until an optimality test is passed.
The procedure has an elegant economic interpretation, in which the master
program coordinates the actions of the subproblems by setting prices on re-
sources used by these problems.

The development of the Dantzig-Wolfe decomposition depends principally on
two ideas: column generation and the Minkowski Theorem.

First, we need some basic definitions of polyhedral theory.

Definition 5.1. ([NW88]) Let Q0 = {r ∈ R
n : Ar ≤ 0}. If Q = {x ∈ R

n :
Ax ≤ b} is non-empty, then r ∈ Q0 \ {0} is called a ray of Q.

Definition 5.2. ([NW88]) A ray r of Q is an extreme ray if there do not
exist rays r1, r2 ∈ Q0 = {r ∈ R

n : Ar ≤ 0}, r1 �= λr2 for any λ ∈ R+ such
that r = 1

2
r1 + 1

2
r2.

Proposition 5.3. ([NW88]) A polyhedron has a finite number of extreme
points and extreme rays.

5.1. THEORY 81

Theorem 5.4. (Minkowski’s Theorem, [NW88])
If the feasible region of Q = {x : Ax = b, x ≥ 0} is non-empty , then any
point x ∈ Q can be characterized as a convex combination of a finite number
of its extreme points x(j) plus a non-negative linear combination of extreme
rays r(j), i.e.

x =
∑

j

λjx
(j) +

∑
i

µir
(i)

∑
j

λj = 1

λj ≥ 0

µi ≥ 0

A more compact formulation is sometimes used:

x =
∑

j

λjx
(j) (5.1)

∑
j

δjλj = 1

λj ≥ 0

where

δj =

{
1 if x(j) is an extreme point

0 if x(j) is an extreme ray

If Q is bounded, this result is as follows:

Theorem 5.5. ([NW88])
If the feasible region of Q = {x : Ax = b, x ≥ 0} is non-empty and bounded,
then any point x ∈ Q can be characterized as a convex combination of a
finite number of its extreme points x(j), i.e.

x =
∑

j

λjx
(j)

∑
j

λj = 1

λj ≥ 0

82 CHAPTER 5. DANTZIG-WOLFE-DECOMPOSITION

This means, we can describe the problem in terms of variables λ instead of
the original variables x. In practice this reformulation can not be applied
directly, as the number of variables λj becomes very large.

Back to our problem (P), let Pk = {xk : Bkxk = bk, xk ≥ 0} be the feasible

region defined by the submatrices and x
(j)
k its extreme points and rays. By

substituting equation (5.1) into (P), we get the an equivalent problem, the
so-called master problem.

(Master)

min c0x0 +
K∑

k=1

pk∑
j=1

(ckx
(j)
k)λ

(j)
k (5.2)

s.t. A0x0 +
K∑

k=1

pk∑
j=1

(Akx
(j)
k)λ

(j)
k = b0 (5.3)

pk∑
j=1

δ
(j)
k λ

(j)
k = 1 ∀ k = 1, . . . , K (5.4)

x0 ≥ 0 (5.5)

λ
(j)
k ≥ 0 (5.6)

where

δ
(j)
k =

{
1 if x

(j)
k is an extreme point of Pk

0 if x
(j)
k is an extreme ray of Pk

Constraints (5.3) are called coupling constraints and (5.4) are called convex-
ity constraints of the master program.

This is a huge LP. Although the number of rows is reduced, the number of
extreme points and rays x

(j)
k of each subproblem is very large, resulting in

the enormous number of variables λ
(j)
k . The idea is that only variables with

a promising reduced cost will be considered, what is also known as column
generation algorithm.

Definition 5.6. ([HK00]) Assume that an initial feasible basic solution xB

of (P) is available with associated basis matrix B and cost coefficients cB.

5.1. THEORY 83

Then

π = cBB
−1

are called the simplex multipliers or duals associated with B. Denoting the
jth column of A by Aj,

c̄ = cj − πAj

are called the reduced cost coefficients.

Note that a feasible basic solution, if one exists, can be found by using Sim-
plex phase I procedure or a heuristic. The simplex multipliers are always
available by the simplex method.

The attractiveness of a variable λ
(j)
k can be measured by its reduced cost. The

operation to find reduced costs is often called pricing.

Let B be a feasible (m0 + K) × (m0 + K) basis matrix of the master pro-
gram, and let π := (π1, π2) be the simplex multipliers for this basis, with
π1 := (π11, . . . , π1m0

) associated with the coupling constraints (5.3) and
π2 := (π21, . . . , π2K) with the convexity constraints (5.4), then the reduced

cost for variable λ
(j)
k is

c̄
(j)
k = (ckx

(j)
k) − π

(
Akx

(j)
k

δ
(j)
k

)
= (ck − π1Ak)x

(j)
k − π2kδ

(j)
k (5.7)

If for fixed k

min
j

c̄
(j)
k < 0

then, barring degeneracy, the current solution may be improved by introduc-
ing λ

(j)
k into the basis via a pivot transformation.

Assuming the subproblems to be bounded, the problem of finding, for fixed
k, minj c̄

(j)
k is equivalent to solving the kth subproblem:

(Subproblem k)

min z0
k = (ck − π1Ak)x

(j)
k (5.8)

s.t. Bkxk = bk

xk ≥ 0

84 CHAPTER 5. DANTZIG-WOLFE-DECOMPOSITION

If the minimal reduced cost obtained by all subproblems is non-negative, i.e.

min
k

min
j

c̄
(j)
k = min

k
(z0

k − π2k) ≥ 0 (5.9)

stop. The current solution xopt = (xopt
1 , . . . , xopt

K) is an optimal solution to
(P) with

xopt
k =

∑
j basic

λ
(j)
k x

(j)
k (5.10)

If not, the column to enter the basis is that with

min
k

(z0
k − π2k).

If the minimum above occurs for k = s and xs(π) solves the subproblem s,
the column entering the basis with cost coefficient csxs(π) is given by

⎛
⎝ Asxs(π)

−−−−−
es

⎞
⎠ (5.11)

where es is the K-component unit vector.

Until now, the Dantzig-Wolfe decomposition solves optimization problems
only on the subproblem-level, but not on the master-level where only a sin-
gle pivot operation is performed. Furthermore similar columns to the column
that has entered the basis could have been generated from the subproblem so-
lution of other subsystems. Probably some of them had negative reduced cost
and might be used to reduce the objective in one of the next iterations with
new simplex multipliers since successive sets of simplex multipliers should
not differ greatly.
Therefore we now introduce a restricted master program. This is simply the
master program (5.2)-(5.6) with all columns dropped but those in the cur-
rent basis and one column to enter for each subsystem. Let x∗

1, . . . , x
∗
K be

the latest subproblem solutions.

5.1. THEORY 85

(Restricted Master)

min c0x0 +
K∑

k=1

∑
j basic

(ckx
(j)
k)λ

(j)
k (5.12)

s.t. A0x0 +
K∑

k=1

∑
j basic

(Aj
kx

(j)
k)λ

(j)
k +

K∑
k=1

(Akx
∗
k)λ

∗
k = b0 (5.13)

∑
j basic

λ
(j)
k + λ∗

k = 1 ∀ k = 1, . . . , K (5.14)

x0 ≥ 0 (5.15)

λ
(j)
k , λ∗

k ≥ 0 (5.16)

where λ
(j)
k , for ”j basic” are the current basic variables and λ∗

k are the vari-

ables entering.
This program has m0 +K constraints and n0 +m0 +2K variables. In general
a greater decrease in the objective value in each step results by adding more
than one column in each iteration.

Sub 1

Sub 2

Sub 3

Master

New Columns

Duals
.
.
.

Figure 5.1: Communication between restricted master and subproblems.

Figure 5.1 shows the communication between the restricted master and the
subproblems. A basic Dantzig-Wolfe decomposition algorithm can now be
formulated.

Algorithm 5.7. Dantzig-Wolfe decomposition algorithm

86 CHAPTER 5. DANTZIG-WOLFE-DECOMPOSITION

1. {Initialization}
Choose initial subset of variables.

2. {Master problem}
Solve the restricted master problem to get
π1 := simplex multipliers of coupling constraints
π2 := simplex multipliers of convexity constraints

3. {Subproblems}
forall k = 1, . . . , K do
Adjust subproblem k by the new simplex multipliers π1 and π2k ob-
tained in Step 2, see (5.8).
Solve subproblem k
If minj c̄

(j)
k < 0, and x∗

k the solution of subproblem k: generate new

column

⎛
⎝ Akx

∗
k

−−−
ek

⎞
⎠, see (5.11)

Add this new column with cost coefficient ckx
∗
k to the restricted master

program and goto Step 2.

4. If no new columns are generated, i.e. if (5.9) is satisfied, then Stop:
optimal.

If the master program is non degenerate, then each iteration decreases the
objective value by a non-zero amount. Since there are only a finite number
of possible bases, and none is repeated, the decomposition principle will find
the optimal solution in a finite number of iterations.
Note that the optimal solution xopt need not to be one of the subproblem so-
lutions. By (5.10) xopt = (xopt

1 , . . . , xopt
K) is a convex combination of a number

of such solutions. Thus, the function of the Master program is not only to
send appropriate prices to the subproblems. It has to combine the subprob-
lem solutions to an overall optimum.

We did not yet pay attention to the initialization of the decomposition. The
first thing we can do is solve each subproblem

min ckxk

Bkxk= bk

xk ≥ 0

If any of the subproblems is infeasible, the original problem is infeasible.
Otherwise, we can use the optimal values x∗

k to generate an initial set of

5.2. DANTZIG-WOLFE APPLIED ON (LPMT) 87

columns.
We also can start with any feasible basic solution for the master program,
that we have e.g. by some heuristic.

The initial columns may violate the coupling constraints. We can formulate a
Phase I problem by introducing artificial variables and minimizing those. The
use of artificial variables is explained in any textbook on Linear Programming
(e.g. [HK00]). It is noted that the reduced costs for a Phase I problem are
slightly different from the Phase II problem.
As an example, if the coupling constraints are∑

j

xj ≤ b,

we can add an artificial variable xa ≥ 0 as follows:∑
j

xj − xa ≤ b

The Phase I objective will be

min xa

The reduced cost of a variable xj is now as in equation (5.7) but with ck = 0.
It is noted that it is important to remove artificials once a Phase II starts.

5.2 Dantzig-Wolfe applied on (LPMT)

The line planning problem introduced in Chapter 3 is NP-hard, and, more-
over in real-world instances, gets huge (see Table 3.2). But fortunately the
formulations of (LPMT) and (LPMTF) presented in Section 3.3.2 and 3.3.4
have block diagonal structure with only few coupling constraints. Moreover,
in both models, all blocks (except the one containing the single budget con-
straint) are totally unimodular since they are network flow problems. We
take advantage of this structure by using a Dantzig-Wolfe decomposition.
In this section we present our approach for the (LPMT) formulations. The
method can also be applied for solving (LPMTF) since the model structure
is very similar. However, the numerical results deal with (LPMT).

The block diagonal structure of the formulations presented in Section 3.3.2
is exemplified on the following reformulation of the LP-relaxation of the
(LPMT1) formulation (3.9). The other formulations (LPMT2), (LPMT3),
(LPMT4) as well as (LPMTF) can be reformulated analogously.

88 CHAPTER 5. DANTZIG-WOLFE-DECOMPOSITION

(LPMT1(LP))

min
∑

(s,t)∈R

∑
e∈E

wstcex
e
st (5.17)

∑
(s,t)∈R

∑
e∈El xe

st ≤ |R||E l|yl ∀ l ∈ L coupling constraints

Xs1,t1

Xs2,t2

. . .

Xsr,tr

Y

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

|R| + 1 blocks

where
Xst := {xst ∈ R

|E| : θxst = bst, 0 ≤ xe
st ≤ 1, ∀ e ∈ E}

Y := {y ∈ R
|L| : CT y ≤ B, 0 ≤ yl ≤ 1, ∀ l ∈ L}

The coupling constraints can be written as∑
(s,t)∈R

AX xst − AY y ≤ 0

where the coefficient matrix (AX | . . . |AX | − AY) of the coupling constraints
looks as follows:

• AX is an |L| × |E| matrix given by elements ale = 1, if e ∈ E l, zero
otherwise. It is equal for each origin-destination pair.

• AY is an |L|×|L| diagonal matrix containing |R||E l| as its lth diagonal
element.

So, we get the following coefficient matrix of (LPMT1):⎛
⎜⎜⎜⎜⎜⎜⎜⎝

AX AX . . . AX AY

θ
θ

. . .

θ
CT

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

5.2. DANTZIG-WOLFE APPLIED ON (LPMT) 89

5.2.1 Master formulations

As we have seen in Section 5.1, the formulation of the Master Problem de-
pends on the definition of the blocks. The blocks we have defined in formula-
tion (5.17) is the finest decomposition we can think of. But it is also possible
to keep the budget constraint in the set of coupling constraints or to treat
all shortest path blocks as one block. Thus, we can formulate four different
Master Problems. Many others are also possible if we join not all but some
shortest path blocks together to bigger blocks, e.g. for all (s, t) ∈ R starting
at a given station s.
In the following we define the weight-cost-parameters ce

st := wstce.

1. The Master Problem corresponding to the decomposition (5.17):

(Master 1)

z = min
∑

(s,t)∈R

∑
i

(cst x
(i)
st)αi

st (5.18)

s.t.
∑

(s,t)∈R

∑
i

(AX x
(i)
st)αi

st −
∑

i

(AY y(i))βi + Iv = 0

∑
i

αi
st = 1 ∀ (s, t) ∈ R

∑
i

βi = 1

vl, α
i
st, β

i ≥ 0

where the |L|-vector v are slack variables, and x
(i)
st and y(i) are the ex-

treme points of Xst, and Y , respectively. This problem has |L| coupling
constraints and |R| + 1 convexity constraints.

For each (s, t) ∈ R we obtain the following subproblem

zst = min(cst − πAX)xst − µst

s.t. xst ∈ Xst

The subproblem of the Y -block is

z = min(−πAY)y − µ00

90 CHAPTER 5. DANTZIG-WOLFE-DECOMPOSITION

s.t. yl ∈ Y,

where {πi}i∈L are the dual variables of the coupling constraints, {µst}(s,t)∈R

are the dual variables of the alpha convexity constraints and µ00 is the
dual variable of the single beta convexity constraint.

Since the Xst blocks correspond to shortest path problems which are
known to be totally unimodular, the x

(i)
st -values in {0, 1}|E|.

2. If we add the budget constraint to the set of coupling constraints, we
get the following reformulation:

(LPMT1)

min
∑

(s,t)∈R

∑
e∈E

ce
stx

e
st (5.19)

∑
(s,t)∈R

∑
e∈l x

e
st ≤ |R||E l|yl ∀ l ∈ L∑

l∈L Clyl ≤ B
coupling constraints

Xs1,t1

Xs2,t2

. . .

Xsr,tr

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

|R| blocks

The corresponding Master Program is:

5.2. DANTZIG-WOLFE APPLIED ON (LPMT) 91

(Master 2)

z = min
∑

(s,t)∈R

∑
i

(cst x
(i)
st)αi

st (5.20)

s.t.
∑

(s,t)∈R

∑
i

(AX x
(i)
st)αi

st − AY y + Iv = 0

∑
l∈L

Clyl ≤ B

∑
i

αi
st = 1 ∀ (s, t) ∈ R

vl, α
i
st, yl ≥ 0

where the |L|-vector v are slack variables, and x
(i)
st are the extreme

points of Xst. This problem has |L| + 1 coupling constraints and |R|
convexity constraints.

For each (s, t) ∈ R we obtain the same subproblems as for our first
formulation, namely

zst = min(cst − πAX)xst − µst

s.t. xst ∈ Xst

where {πi}i∈L are again the dual variables of the coupling constraints,
and {µst}(s,t)∈R are the dual variables of the alpha convexity con-
straints.

Again the Xst blocks correspond to shortest path problems which are
known to be totally unimodular, hence the x

(i)
st -values are in {0, 1}|E|.

3. If we join the shortest path problems to one common block and the
budget constraint as a second block we get the following reformulation:

92 CHAPTER 5. DANTZIG-WOLFE-DECOMPOSITION

(LPMT1)

min
∑
e∈E

cexe (5.21)

∑
e∈l x

e ≤ |R||E l|yl ∀ l ∈ L coupling constraints

X

Y

}
2 blocks

with X := {x ∈ R
|E| : xe =

∑
(s,t)∈R xe

st ∀e ∈ E , xst ∈ Xst},

Y := {y ∈ R
|L| : CT y ≤ B, 0 ≤ yl ≤ 1, ∀ l ∈ L}, and

ce :=
∑

(s,t)∈R ce
st.

The corresponding Master Program is

(Master 3)

z = min
∑

i

(c x(i))αi (5.22)

s.t.
∑

i

(AX x(i))αi −
∑

i

(AY y(i))βi + Iv = 0

∑
i

αi = 1

∑
i

βi = 1

vl, α
i, βi ≥ 0

where the |L|-vector v are slack variables, and x(i) and y(i) are the ex-
treme points of X, and Y , respectively. This problem has |L| coupling
constraints and only two convexity constraints.

The subproblem of the X-block is

z = min
∑

(s,t)∈R

(cst − πAX)xst − µ

5.2. DANTZIG-WOLFE APPLIED ON (LPMT) 93

s.t. xst ∈ Xst

and xe :=
∑

(s,t)∈R xe
st.

The subproblem of the Y -block is the same as for our first formulation:

z = min(−πAY)y − µ00

s.t. yl ∈ Y,

where {πi}i∈L are the dual variables of the coupling constraints, µ is
the dual variable of the alpha convexity constraint and µ00 is the dual
variable of the beta convexity constraint.

In this formulation the x(i)-values are integer because they are the
component wise sum over shortest path problem solution which are
in {0, 1}.

4. If we add the budget constraint to the coupling constraints and treat
the Xst-blocks as one block we get the following reformulation:

(LPMT1)

min
∑
e∈E

cexe (5.23)

∑
e∈l x

e ≤ |R||E l|yl ∀ l ∈ L∑
l∈L Clyl ≤ B

coupling constraints

X 1 block

with X := {x ∈ R
|E| : xe =

∑
(s,t)∈R xe

st ∀e ∈ E , xst ∈ Xst} and

ce :=
∑

(s,t)∈R ce
st.

The corresponding Master Program is:

94 CHAPTER 5. DANTZIG-WOLFE-DECOMPOSITION

(Master 4)

z = min
∑

i

(c x(i))αi (5.24)

s.t.
∑

i

(AX x(i))αi − AY y + Iv = 0

∑
l∈L

Clyl ≤ B

∑
i

αi = 1

vl, α
i, yl ≥ 0

where the |L|-vector v are slack variables, and x(i) are the extreme
points of X. This problem has |L| + 1 coupling constraints and one
convexity constraints.

The subproblem of the X-block is

z = min
∑

(s,t)∈R

(cst − πAX)xst − µ

s.t. xst ∈ Xst

and xe :=
∑

(s,t)∈R xe
st.

where {πi}i∈L are the dual variables of the coupling constraints, µ is
the dual variable of the alpha convexity constraint.

As in the previous formulation, the x(i)-values are again integer because
they are the component wise sum over shortest path problem solution
which are in {0, 1}.

Table 5.1 summarizes the characteristics of the presented Master Programs:
number of coupling constraints, number of convexity constraints and if the
extreme points of the network flow problems are integer or {0, 1}.

So far, we only considered the possible decompositions and corresponding
Master programs of the (LPMT1) formulation. But what about the other

5.2. DANTZIG-WOLFE APPLIED ON (LPMT) 95

Master No. coupling convexity x(i)

1 |L| |R| + 1 {0, 1}
2 |L| + 1 |R| {0, 1}
3 |L| 2 integer
4 |L| + 1 1 integer

Table 5.1: Characteristics of the Master programs of (LPMT1).

formulations?
As we already mentioned, the extreme points of the X-subproblem of the
(Master 3) and the (Master 4) are not {0, 1}, but integer. This is due to
the fact that we sum up the x̄e

st over all origin-destination pairs. By doing
this, we loose the information of the exact paths of the customers which
are needed in the (LPMT3), (LPMT4) and (LPMTF) formulation. So, it
is easy to see that only (Master 1) and (Master 2) can be adapted to these
three formulations, but (Master 3) and (Master 4) cannot. (LPMT2) can
be decomposed in all mentioned ways like the (LPMT1) without restriction
as the xe

st are summed up over all origin-destination pairs in its coupling
constraints, too.
Table 5.2 summarizes our results.

Master 1 Master 2 Master 3 Master 4

(LPMT1) yes yes yes yes
(LPMT2) yes yes yes yes
(LPMT3) yes yes no no
(LPMT4) yes yes no no
(LPMTF) yes yes no no

Table 5.2: Possible masters for the different formulations

5.2.2 Strength of the Master Program

Since the original and the master formulation may differ in their linear pro-
gramming relaxations, we will now discuss the strength of the linear pro-
gramming masters introduced in this chapter.

Given the following integer program:

96 CHAPTER 5. DANTZIG-WOLFE-DECOMPOSITION

(P)

min cT x

s.t. Ax = b

x ≥ 0

x ∈ Z
n

where A has block-angular structure:

Ax =

⎛
⎜⎜⎜⎜⎜⎝

A0 A1 A2 · · · AK

B1

B2

. . .

BK

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x0

x1

x2
...

xK

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

b0

b1

b2
...

bK

⎞
⎟⎟⎟⎟⎟⎠

Then, the bound provided by the LP-relaxation of (P) is

zLP (P) = min{cx :
K∑

k=0

Akxk = b0,
K∑

k=1

Bkxk = bk, xk ≥ 0}

Theorem 5.8. ([Wol98]) The bound provided by the corresponding Master
program (M) is

zLP (M) = min{
K∑

k=0

ckxk :
K∑

k=0

Akxk = b0, xk ∈ conv(Xk) ∀ k = 1 . . . K}

with Xk := {xk ∈ N
nk : Bkxk = bk}.

Proof. (M) can be obtained from the original problem (P) by substituting

xk =
∑

i x
(i)
k λk,i with

∑
i λk,i = 1, λk,i ≥ 0. This is equivalent to substituting

xk ∈ conv(Xk). �

This theorem tells us precisely how strong a bound is we obtain from the
Master.
From integer programming theory (see e.g. [Wol98]), we know that

zLP (P) ≤ zLP (M) ≤ zIP

where zIP is the integer solution value (zIP = zIP (P) = zIP (M)).

In certain cases the bound provided by the Master has the same strength as
the linear programming relaxation.

5.2. DANTZIG-WOLFE APPLIED ON (LPMT) 97

If conv({xk ∈ N
nk : Bkxk = bk}) = {xk ∈ R

nk
+ : Bkxk = bk} for all k = 1 . . . K

(i.e. if the current formulation of the subsystem already has the integrality
property, that is, all extreme points of the current formulation are integral),
then

zLP (P) = zLP (M).

As we have mentioned, the shortest path blocks Xst in (LPMT) as well as
the corresponding network flow blocks in (LPMTF) are totally unimodular
and thus have the integrality property. We hence get

zLP (LPMT) = zLP (Master 2) = zLP (Master 4)

The same result holds for (LPMTF) with the corresponding Masters.

In our case the LP-relaxation of any formulation of (LPMT) is only solvable
for small instances, see Table 3.4. Since the LP-relaxation thus is not solvable
for real world instances due to the size of the resulting change&go network,
a decomposition makes sense even if the provided bound is not better.

5.2.3 Initialization

In Section 5.1 we mentioned that we can use the solution of the subproblems
to generate an initial set of proposals and what to do if they violate the
coupling constraints.
If in the case of the (LPMT) the solution of the subproblems satisfies the
coupling constraints, we know by Lemma 3.44 that these columns are already
optimal. Thus, we only need to use the Dantzig-Wolfe approach, if the so-
lution of the subproblems violates the coupling constraints which, using the
(LPMT1) or (LPMT2) formulation scarcely appears. In this case, finding
a feasible basic solution of the restricted Master program can be done in a
much more efficient way than a Simplex phase I procedure. It is also more
efficient since some commercial Simplex solvers do not offer a tool that re-
turns the whole Simplex tableau after a solution is found. But in our case
the tableau is needed because we want to continue with a column generation
procedure. Theoretically this problem can be solved as we know the basis B
after the Simplex I phase and thus only have to multiply our new columns
with B−1 but in real world instances our matrix gets huge and so computing
the inverse of it is too costly.

The way we tackle the problem is the following:
We first convert our Master problem to the form

98 CHAPTER 5. DANTZIG-WOLFE-DECOMPOSITION

min cx

s.t. Ax = b

x ≥ 0

To this end we have to introduce non-negative slack variables with zero cost
for all coupling constraints (v1, . . . , v|L|) and the budget constraint (vB). The
result is that we nearly have an initial feasible basic solution. As only problem
remain the convexity constraints which are equality constraints. For each of
these rows we introduce also a non-negative slack variable vCr

with a very
high cost M (higher than the highest objective value of the shortest path
problems, i.e. M >

∑
(s,t)∈R

∑
e∈E ce

st).

The resulting Simplex starting tableau of (Master 4) is

y1 . . . y|L| vB v1 . . . v|L| vC b

0 . . . 0 0 0 . . . 0 M 0
C1 . . . C|L| 1 0 . . . 0 0 B

0 0 0

−AY

... I
...

...
0 0 0

0 . . . 0 0 0 . . . 0 1 1

respectively

y1 . . . y|L| vB v1 . . . v|L| vC b

0 . . . 0 0 0 . . . 0 0 -M
C1 . . . C|L| 1 0 . . . 0 0 B

0 0 0

−AY

... I
...

...
0 0 0

0 . . . 0 0 0 . . . 0 1 1

with vB, v1 . . . v|L|, vC as feasible basic solution.

If we now add columns and solve the new Master to get the dual variables, we
have to keep in mind to subtract M from the dual of the convexity constraint
before adjusting the subproblem with it.

5.3. COMPUTATIONAL RESULTS 99

Decomposition No. 0 No. 1 No. 13
LP relax 0.01 M M
Master 1 0.19 M M
Master 2 0.15 M M
Master 3 0.12 4 17318
Master 4 0.1 1 8715

Table 5.3: CPU times of the LP-relaxation of (LPMT1) using Dantzig-Wolfe

approach with different Masters. Instances are explained in Table 3.2. M denotes

”out of memory”.

5.3 Computational results

We implemented the Dantzig-Wolfe decomposition approach of (LPMT) us-
ing Xpress MP 2003 and Microsoft Visual C++ 6.0. The CPU times of this
section are based on a 3.06 GHz Intel4 processor with 512 MB RAM.
Our computational experience shows that the (Master 4) variation of the
(LPMT1) while solving the subproblem with Dijkstra’s shortest path algo-
rithm finds an optimal solution of the LP-relaxation within minutes. Even for
the biggest instance a solution was found in less than three hours. Note that
line planning is part of the strategic planning level and so even longer com-
putation times of some hours are acceptable. In general only few iterations
are needed.

5.3.1 Variations of the Decomposition

First, we implemented the Dantzig-Wolfe decomposition algorithm for all
four Masters for (LPMT1). Table 5.3 shows the CPU times for some selected
instances. Row ”‘LP relax”’ repeats the computation times solving the LP-
relaxation using standard optimization software. Note, that the computation
times in this section are based on a machine with less memory than the
solutions presented in the rest of this thesis, namely 512 MB instead of 2 GB
RAM.
Our computational experience shows that it is better for solving the complete
problem if the budget constraint belongs to the coupling constraints (i.e.
(Master2) and (Master4)). This is, because it is only one constraint and
its variables do not appear in the objective function. Thus, we only need
a feasible solution and solving the corresponding subproblem to optimality
takes unnecessary computation time.
Normally it is known to be better to split the remaining constraints into as

100 CHAPTER 5. DANTZIG-WOLFE-DECOMPOSITION

many blocks as possible in order to reduce the number of iterations and thus
the computation time. Of course, the number of convexity constraints in the
Master problem increases but since the structure of the convexity constraints
is very simple, modern optimization software can manage them easily. In our
case, the number of convexity constraints increases enormously if we treat the
Xst-blocks individually, namely in (Master1) and (Master2), and so memory
problems arise even for small instances. On the other hand, we figured out
that even if we treat the shortest path problems as one subproblem and thus
only have one convexity constraint, we only need very few iterations such
that there is no need for further decomposition.
With regard to the Ti-values of Table 3.5, we are mainly interested in the
solution of the LP-relaxation of (LPMT3) and (LPMT4). With our know-
ledge about the inefficiency of treating the budget constraint as a separate
block, we implemented the Dantzig-Wolfe approach for these two formula-
tions using (Master2) (remember, that there is no (Master4) for them, see
Table 5.2). Unfortunately, even using the Dantzig-Wolfe approach, it is not
possible to solve even small instances of (LPMT4). Whereas (LPMT3) could
be solved for instances up to 116 lines and 16274 origin-destination pairs (see
Table 5.4).

5.3.2 Variations of the line pool

As already specified, the problem size and thus the CPU time depends mainly
on the size of the line pool and on the number of origin-destination pairs (see
e.g. Table 3.3). We calculated the 14 instances of Table 3.2 to show the
dependency between the running time and the line pool size. As we already
mentioned, we always used the same origin-destination matrix, but to avoid
infeasibility we deleted such origin-destination pairs that could not be served
even if all lines of the line pool were used. The remaining number of elements
of R is shown in Table 5.4 in column ”|R|”.
In column ”CPU1”, we show the CPU time of an implementation of (LPMT1)
with (Master4). Since we only need very few iterations, we can save a lot
of running time by checking whether the π change in comparison to the
last iteration or not after solving the subproblems. If not, there is no need
to recalculate the shortest paths in the next iteration since no distances
will change. In this case, we just have to adjust the last objective value
by −µ. The CPU times of this variation are shown in Table 5.4 in column
”CPU1 check” for (LPMT1) with (Master 4) and in column ”CPU3 check” for
(LPMT3) with (Master 2). In all implementations we solved the subproblems
by Dijkstra’s algorithm.
Figure 5.2 shows graphically the results of Table 5.4.

5.3. COMPUTATIONAL RESULTS 101

No. |L| |R| CPU1 CPU1 check CPU3 check
0 3 2 0.1 0.05 0.1
1 10 2602 2 1 228
2 50 4766 10 3 606
3 100 11219 52 16 8706
4 132 18238 92 48 M
5 200 10126 155 78 M
6 250 13246 689 329 M
7 275 14071 1193 691 M
8 300 17507 2167 1171 M
9 330 18433 3246 1911 M

10 350 17095 2769 1814 M
11 375 18350 5150 2727 M
12 400 22191 6525 4789 M
13 423 22756 15243 8715 M

Table 5.4: CPU times of the LP-relaxation of (LPMT1) and (LPMT3) using

Dantzig-Wolfe approach with (Master4) and (Master2), respectively, for different

line pool sizes. Instances are explained in Table 3.2. M denotes ”‘out of memory”’.

CPU3check

CPU1

CPU1check

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200 250 300 350 400 450

C
PU

line pool size

Figure 5.2: Graphical presentation of Table 5.4.

102 CHAPTER 5. DANTZIG-WOLFE-DECOMPOSITION

Chapter 6

Exact solution method

We are now in a position to present an exact solution method of the line plan-
ning problem with minimal transfers. This method is based on a branch and
bound procedure with the LP-relaxation of one of the (LPMT) formulations
as upper bounds. The choice of the formulation depends on the size of the
network. The bounds can be often calculated in polynomial time by using
Lemma 3.44. If this lemma fails we calculate them by using the Dantzig-
Wolfe procedure presented in Section 5.2. Note that the xe

st variables are
always in {0, 1} since they represent the solution of a shortest path problem.
So, we only have to branch along the yl variables. Since they are {0, 1} vari-
ables and the number of 1s is bounded by the budget, the enumeration tree
itself is relatively small.

6.1 Branch & Bound

The most common way to solve integer programs is to use implicit enumer-
ation, or branch & bound, in which linear programming relaxations provide
the bounds.

Main steps in the branch & bound method:

1. Selecting a subproblem.

2. Relax the subproblem: For each of the subproblems, we need to obtain
a bound on how good its best feasible solution can be. This is usually
done by solving a relaxation of the problem. For integer programming
problems, the most widely used relaxation is the linear programming
relaxation. We can also use other kinds of relaxations, for example
Lagrangian relaxation or Dantzig-Wolfe decomposition. In our case

103

104 CHAPTER 6. EXACT SOLUTION METHOD

these three possibilities lead to the same bounds (see Section 5.2.2 and
[Wol98], Theorem 10.3)

3. Pruning: Pruning or terminating is done partially by using the bound
to discard a subproblem from further investigation. A subproblem P
is pruned if one of the following cases happens:

(a) Pruning by infeasibility: The relaxation of P has no feasible solu-
tion.

(b) Pruning by bound: The optimal objective value of the relaxation
of P is not better than the objective value of the best feasible
solution found so far.

(c) Pruning by optimality: The optimal solution for the relaxation of
P is integer.
Note that if this solution gives better objective value than the
current best solution, it becomes the new best solution.

4. Branching: The branching is done by dividing the original problem into
smaller subproblems. The optimal solution of the relaxed problem will
be cut away through the branching.

The general form of the branch & bound algorithm for binary programs (BIP)
is:

Algorithm 6.1. Branch & Bound Algorithm for binary programs

1. Initialization. Set z̄ = ∞, list = {(BIP)}, n=0.

2. Select subproblem Pk from list. Solve the relaxation of this subproblem
Pk. We denote the solution by xPk and the objective value by zPk

. zPK

gives a lower bound on subproblem Pk.

3. Pruning by infeasibility: If there is no feasible solution to Pk, goto Step
7.

4. Pruning by bound: If zPk
≥ z̄, goto Step 7.

5. Pruning by optimality: If xPk is an integer feasible solution, set z̄ := zPk

and x̂ := xPk , goto Step 7.

6. Branch on a variable xj whose value is not integer by fixing the variable
at value either 0 or 1. We obtain two new subproblems Pn+1 and Pn+2.
Set list = list ∪ {Pn+1, Pn+2} and n := n + 2. Goto Step 2.

6.2. BRANCH & BOUND APPLIED ON (LPMT) 105

7. Set list = list \ {Pk}.
Optimality test: If list = ∅, stop: the current best solution x̂ with
objective value z̄ is optimal to the original (BIP). Otherwise goto Step
2.

6.2 Branch & Bound applied on (LPMT)

As the size of the change&go network and thus the size of the model for-
mulation is huge in real world instances, it is in general not possible to
calculate the LP-relaxation using standard optimization software (see Table
3.4). Therefore, we developed in this thesis two other ways to calculate the
LP-relaxation:

1. Using the trivial solution if Lemma 3.44 holds.

2. Using Dantzig-Wolfe decomposition if Lemma 3.44 does not hold.

We will now show the Branch & Bound algorithm using the (LPMT1) and
the (LPMT3) formulation:

Example 6.2. We consider the PTN shown in Figure 6.1 together with the

3

1 2

4

Figure 6.1: PTN of Example 6.2.

line pool

L := {(l1, l2, l3, l4} = {(1, 2, 3), (2, 4, 3), (1, 3, 4), (1, 3)}

and the origin-destination pairs

R := {(1, 3), (1, 4), (2, 3)}

106 CHAPTER 6. EXACT SOLUTION METHOD

The edge costs for the driving edges are 1 and the costs of the changing edges
are 4. The line costs are set to 1 for all lines and the budget is 2.
A trivial solution is: customer (1, 3) uses l4 (or l3), customer (1, 4) uses l3
and customer (2, 3) uses l1. Using Lemma 3.44, we get the following T-
values representing the minimal budget such that the trivial solution still is
the optimal solution of the LP-relaxation of the corresponding formulation:

T1 =
1

6
+

0

6
+

2

6
+

1

3
=

5

6
< 2

T2 =
1

3
+

0

3
+

1

3
+

1

3
= 1 < 2

T3 =
1

2
+

0

2
+

2

2
+

1

1
=

5

2
> 2

T4 = 1 + 0 + 1 + 1 = 3 > 2

We see, that the trivial solution can be used as LP-relaxation for the (LPMT1)
and the (LPMT2) formulation, but not for the (LPMT3) and the (LPMT4)
formulation. For these, the relaxation must be calculated using Dantzig-
Wolfe decomposition or, as it is still possible in this small example, using
standard optimization software.

We will now show the branch & bound algorithm for the (LPMT1) and the
(LPMT3) formulation.

1. (LPMT1):
Since the xe

st-values are always integer, it is sufficient to consider only
the yl variables. The LP-relaxation solution of the original problem is

y(0) = (0.17, 0, 0.33, 0.33), z(0) = 4

Since this solution is fractional (yl1 = 0.17), our next step is to parti-
tion (branch) the original set of feasible solutions into subsets by fixing
the value of the variable yl1 at yl1 = 0 for one subset and at yl1 = 1
for the other subset. Thus, the original problem is divided into two
smaller subproblems as follows:
Subproblem 1: (yl1 = 0)

min
∑

(s,t)∈R

∑
e∈E

wst ce xe
st

6.2. BRANCH & BOUND APPLIED ON (LPMT) 107

s.t.
∑

(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl ∀ l ∈ L

θxst = bst ∀ (s, t) ∈ R∑
l∈L

Clyl ≤ B

yl1 = 0

xe
st, yl ∈ B ∀ (s, t) ∈ R, e ∈ E , l ∈ L

which is equivalent to:

min
∑

(s,t)∈R

∑
e∈E

wst ce xe
st

s.t.
∑

(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl ∀ l ∈ L \ {l1}

∑
(s,t)∈R

∑
e∈El1

xe
st = 0

θxst = bst ∀ (s, t) ∈ R∑
l∈L\{l1}

Clyl ≤ B

xe
st, yl ∈ B ∀ (s, t) ∈ R, e ∈ E , l ∈ L

which is equivalent to solve (LPMT) with a new line pool L∗ := L\{l1}.

Subproblem 2: (yl1 = 1)

min
∑

(s,t)∈R

∑
e∈E

wst ce xe
st

108 CHAPTER 6. EXACT SOLUTION METHOD

s.t.
∑

(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl ∀ l ∈ L

θxst = bst ∀ (s, t) ∈ R∑
l∈L

Clyl ≤ B

yl1 = 1

xe
st, yl ∈ B ∀ (s, t) ∈ R, e ∈ E , l ∈ L

which is equivalent to:

min
∑

(s,t)∈R

∑
e∈E

wst ce xe
st

s.t.
∑

(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl ∀ l ∈ L \ {l1}

∑
(s,t)∈R

∑
e∈El1

xe
st ≤ |R||E l1| redundant!

θxst = bst ∀ (s, t) ∈ R∑
l∈L\{l2}

Clyl ≤ B − Cl1

xe
st, yl ∈ B ∀ (s, t) ∈ R, e ∈ E , l ∈ L

which is equivalent to the original problem with slightly changed budget

constraint.

6.2. BRANCH & BOUND APPLIED ON (LPMT) 109

It is easy to see that the developed solution methods of the LP-relaxation
also work for the subproblems. Solving the LP-relaxation of subprob-
lem 1 and 2 using Lemma 3.44, which has to be adapted for subproblem
2 to

T1 :=
∑

l∈L\{l1}

Cl

T1l

|R||E l|
=

1

3
≤ 1 = B − Cl1

yields their optimal solutions:

y(1) = (0, 0.33, 0.5, 0), z(1) = 5

y(2) = (1, 0, 0.5, 0), z(2) = 4

Both solutions are feasible and the objective values are smaller than
the current best upper bound z̄ = ∞.
Now we have to choose a selection-rule to decide which subproblem
should be branched next. We could do the best first search and choose
the subproblem with the currently best lower bound z or we could do
the breadth first search and discharge a whole level of a tree before go-
ing deeper or we could do the depth first search and continue in one
direction until all variables are fixed. We will use the depth first search
in this example.

So, we branch subproblem 1 and get subproblem 3 by fixing yl2 = 0.
Solving subproblem 3, we find no feasible solution. This is obvious
since there is no more line serving station 2 if we forbid lines l1 and l2.
We now go back to subproblem 1 and get subproblem 4 by fixing yl2 = 1
whose objective value is 5 and thus still better than the best feasible
solution found so far. Note that if we fix a variable to 1 it is sufficient to
check if the last solution still works with the new budget constraint. If
it is so, this is an optimal solution to the new subproblem. Otherwise,
we have to do the Dantzig-Wolfe approach.

The solution procedure of the Branch & Bound method for these two
iterations can be described by a tree search which is shown in Figure
6.2. The nodes of this tree represent the subproblem (node 0 represents
the original problem) and the edges specify how variables are fixed in
the solution process. At edge {0, 1} and {0, 2}, the value of yl1 is spec-
ified. This variable is referred to as fixed variable. All variables whose
values are unspecified at a node are called free variables. The numbers
in the nodes indicate the sequence in which the subproblems have been
investigated. The numbers at the nodes are the optimal solutions with

110 CHAPTER 6. EXACT SOLUTION METHOD

z0=4
y0=(0.17,0,0.33,0.33)

y_1=1

1 2

y4=(0,1,0.5,0)

z4=5

0

3

infeasible

y_2=0

y_1=0

y_2=1

y2=(1,0,0.5,0)
z2=4z1=5

y1=(0,0.33,0.5,0)

4

Figure 6.2: The Branch & Bound tree after two iterations.

their objective values of the LP-relaxation of the subproblem. This tree
continues ”growing branches” iteration by iteration. It is referred to as
the branch and bound tree.

Figure 6.1 shows the complete branch and bound tree of the example.

Subproblem 5 yields the first integer solution. In this step the upper
bound is set to z̄ = 9, because it is the currently best feasible solution.
In subproblem 6, we get again an integer solution with a better objec-
tive value than 9, so we set z̄ = 5 and store this solution as currently
best solution. With this problem, searching for solutions with yl1 = 0
ends and we continue branching subproblem 2. In subproblem 7 we
find a feasible solution of the LP-relaxation of the subproblem with an
objective value bigger than z̄ and so we can stop branching this prob-
lem because we won´t find a better solution in this branch (pruning by
bound). Finally in subproblem 8 we find the optimal solution.

Note that in this example the depth first rule was not applied conse-
quently, since subproblem 2 was treated before subproblem 6. This was
done to show in the beginning of the example how both kinds of sub-
problems are build. The correct sequence of subproblems using depth
first search would be 0,1,3,4,5,6,2,7,8.

2. (LPMT3):

6.3. PREPROCESSING 111

z0=4
y0=(0.17,0,0.33,0.33)

y_1=1

1 2

y4=(0,1,0.5,0) y7=(1,0.17,0,0.33)

z4=5 z7=8 z8=4

z5=9

0

3 4

5 6

7 8

infeasible

y_2=0

y_1=0

y_3=0

y_2=1 y_3=1

y_3=1

y_3=0

y8=(1,0,1,0)

y2=(1,0,0.5,0)
z2=4

y6=(0,1,1,0)

z6=5

y5=(0,1,0,1)

z1=5
y1=(0,0.33,0.5,0)

Figure 6.3: The complete Branch & Bound tree (LPMT1).

If we use the (LPMT3) formulation, solving the LP-relaxation is harder
because the trivial solution is not feasible. But on the other hand, the
bounds provided by this formulation are much better and so the branch
and bound tree is much smaller as we can see in Figure 6.4 that shows
the complete branch and bound tree of this example.

Concluding, we can say, that the number of iterations, i.e. the size of the
tree, depends on the strength of the formulation used, but as we have seen
in Section 5.3, the better the strength of a formulation, the harder it is to
solve the LP-relaxation.

6.3 Preprocessing

As we have seen, the main problem of our approach is the size of the change&go
network whose size depends mainly on the size of the line pool. A wise choice
of a possibly small line pool is therefore advisable. On the other hand it makes
sense to analyze the underlying PTN. For example if two lines go parallel for

112 CHAPTER 6. EXACT SOLUTION METHOD

z0=4

y_1=1

1 2

0

y2=(1,0,1,0)y1=(0,1,1,0)
z1=5 z2=4

y0=(0.5,0,1,0)

y_1=0

Figure 6.4: The complete Branch & Bound tree (LPMT3).

a long time, it is sufficient to add changing arcs only at the first and the
last station. Also arcs between stations without changing possibility can be
shrunken together to decrease the size of the network.

Chapter 7

Conclusions

In this thesis we investigated both, the mathematical and the practical as-
pects of the line planning problem. First, we reviewed some existing ap-
proaches of customer and cost oriented line planning problems.

In Chapter 3 we developed a new customer oriented line planning problem
(LPMT) that minimizes the total travel time of the customers including
penalties for transfers needed. For this, we extended the given public trans-
portation network to a new network, the so-called change&go-network. The
choice of its edge costs provides a wide variety of objectives, beginning from
”count transfers” with the reduced line-change-network up to the possibility
to forbid or to favor special stations for transfers, e.g. because of their in-
frastructure.
We presented four binary programming formulations (LPMTi), i = (1, . . . , 4)
for (LPMT) and have shown their equivalence. Furthermore, we discussed
bicriteria formulations of (LPMT) and have shown that applying the ε-
constrained method for finding the efficient solutions of the problem is equal
to our single-objective binary programming formulations if we set the ε to a
given budget. Finally, we extended our model to include frequencies of the
lines and presented an integer programming formulation for this extension.

We continued with a discussion of the strength of the bounds provided by
the LP-relaxation of our four binary, single-objective formulations and fig-
ured out that in some special cases the trivial solution which can be found in
polynomial time is equal to the solution of the LP-relaxation. Computational
results have shown that for some of the formulation this special case often
appears. If the trivial solution is infeasible, we have to find other ways to
find a solution of the LP-relaxation. In real world instances it is not possible
to use standard optimization software due to the problem size. Therefore, in

113

114 CHAPTER 7. CONCLUSIONS

Chapter 5, we took advantage of the block diagonal structure of the (LPMTi)
formulations and proposed an Dantzig-Wolfe decomposition approach. The
subproblems turned out to be shortest path problems which can be solved
by efficient algorithms and thus the problem was solvable even for large real-
world instances of long distance trains of German Railway within less than
two hours.

Finally, in Chapter 6 we proposed a branch & bound procedure to find an ex-
act solution. As lower bound, we used the solution value of the LP-relaxation
which can be found by the trivial solution or if it is infeasible by the Dantzig-
Wolfe approach.

Another way to tackle our problem was based on heuristics. In Chapter 4 we
presented and discussed various different heuristics and heuristic ideas. One
of them, namely the line segment heuristic, plays a special role since it is
the only method in this thesis that constructs lines instead of choosing them
from a set of possible lines. This approach will soon be subject of a project
work at the Georg-August University of Göttingen.

List of Symbols

Public transportation network:
PTN = (S,E) . public transportation network
S . set of stations
E . set of direct rides
te . driving time of edge e

Passengers demand:
R . set of origin-destination pairs
wst . number of customers traveling from s to t

Line Planning:
l . line
E(l) .set of edges belonging to line l
S(l) . set of stations belonging to line l
L . line concept without frequencies
(L, f) . line concept with frequencies
L . line pool
fl . frequency of line l
f(e) . frequency of edge e
fmin

e , fmax
e . minimum, maximum frequency of edge e

Cl . cost of line l
L(s) . set of lines passing through station s

Change&go-network:
GCG = (V , E) .Change&go-network
V . set of nodes
VCG . set of station-line-pair-nodes
VOD . set of in/out-nodes
E . set of edges
Echange . set of changing edges
E l .set of driving edges of line l

115

116 CHAPTER 7. CONCLUSIONS

Ego . set of driving edges
EOD . set of in/out-edges
E(L) . edge set of GCG constructed of the lines of L
ce . cost of edge e
ceOD

. cost of an in/out-edge
θ .node-arc-incidence matrix of GCG

B .budget
(x̄, ȳi) .trivial solution of (LPMTi), i ∈ {1, . . . , 4}
Ti . minimal budget such that (x̄, ȳi) is feasible
x̄(L) . solution of (LPMT(L))

Set of numbers:
Z .set of integer numbers
R .set of real numbers
B . {0, 1}
N . set of non-negative integer numbers

List of Figures

2.1 The network with the main stations of long-distance trains in Ger-

many. [Rai] . 20

3.1 Difference between the objectives ”maximize direct travelers” and

”minimize transfers”. 23
3.2 Solution ”maximize direct traveler”. 24
3.3 Solution ”minimize transfers”. 24
3.4 Construction of the line planning problem in the proof of Theorem

3.8. 28
3.5 The public transportation network of Example 3.11. 31
3.6 The change&go graph of Example 3.11. 31
3.7 The shrunken line-change-network of Figure 3.6 in the special case:

”Customers only count transfers”. 32
3.8 Efficient solutions of bicriteria optimization problem. 38
3.9 Two alternative formulations for the same integer set proposed in

Example 3.11. 43
3.10 P3 is a better formulation of the integer set of Example 3.11 than

P1 and P2, but not ideal. 47
3.11 P3 is the ideal formulation of the integer set of Example 3.11. . . . 48
3.12 The change&go graph of Example 3.11. 49
3.13 path combination: alternative A. 50
3.14 path combination: alternative B. 51
3.15 Schematical summary of the results of Section 3.4. 53
3.16 Block diagonal matrix structure, (a) with coupling constraints, (b)

with coupling variables, and (c) with coupling constraints and vari-

ables. Only the shaded regions may contain non-zero elements. . . 54
3.17 Line pool of Example 3.45. 59

4.1 Joining lines in the line segment heuristic. 75
4.2 CPU times of different heuristics. 77
4.3 Objective values of different heuristics. 77

117

118 LIST OF FIGURES

5.1 Communication between restricted master and subproblems. . . . 85
5.2 Graphical presentation of Table 5.4. 101

6.1 PTN of Example 6.2. 105
6.2 The Branch & Bound tree after two iterations. 110
6.3 The complete Branch & Bound tree (LPMT1). 111
6.4 The complete Branch & Bound tree (LPMT3). 112

List of Tables

2.1 Instances for different line pool sizes 19

3.1 The line pool of example 3.5. 23
3.2 Instances for different line pool sizes 30
3.3 CPU times for the LP-relaxation of (LPMT1) for different line pool

sizes and origin-destination sets. ”‘M”’ denotes out of memory. . . 56
3.4 CPU times for the LP-relaxation of the four formulations using

XpressMP, ”M” denotes out of memory) 56
3.5 Minimal budgets such that trivial solution is optimal solution of

the LP-relaxation of the different formulations of the (LPMT), see

Lemma 3.44. CPU times in seconds. 58

4.1 Solutions of the cover greedy algorithms for different line pool sizes 68
4.2 Solutions of the list greedy algorithms for different line pool sizes . 69
4.3 Delete OD-heuristics for different line pool sizes 72
4.4 Delete path-heuristics for different line pool sizes 72

5.1 Characteristics of the Master programs of (LPMT1). 95
5.2 Possible masters for the different formulations 95
5.3 CPU times of the LP-relaxation of (LPMT1) using Dantzig-Wolfe

approach with different Masters. Instances are explained in Table

3.2. M denotes ”out of memory”. 99
5.4 CPU times of the LP-relaxation of (LPMT1) and (LPMT3) us-

ing Dantzig-Wolfe approach with (Master4) and (Master2), respec-

tively, for different line pool sizes. Instances are explained in Table

3.2. M denotes ”‘out of memory”’. 101

119

120 LIST OF TABLES

Bibliography

[Abr98] T. Abrahamsson, Estimation of origin-destination matrices using
traffic count - a literature survey., Technical report Interim Re-
port IR98-021, International Institute for Applied System Analy-
sis, Laxenburg, Austria, 1998.

[BGP04] R. Borndörfer, M. Grötschel, and M.E. Pfetsch, Models for line
planning in public transport, ZIP-Report 04-10, Konrad-Zuse-
Zentrum für Informationstechnik Berlin, 2004.

[BKZ96] M.R. Bussieck, P. Kreuzer, and U.T. Zimmermann, Optimal lines
for railway systems, European Journal of Operational Research
96 (1996), no. 1, 54–63.

[BLL03] M.R. Bussieck, T. Lindner, and M.E. Luebbecke, A fast algo-
rithm for near cost optimal line plans, Tech. Report 2003/43,
Technische Universität Berlin, 2003.

[BLL04] M.R. Bussieck, T. Lindner, and M.E. Lübbecke, A fast algorithm
for near cost optimal line plans, mathematical methods of oper-
ational research 59 (2004), no. 2, 205–220.

[Bus98] M.R. Bussieck, Optimal lines in public transport, Ph.D. thesis,
Technische Universität Braunschweig, 1998.

[BZ97] M.R. Bussieck and U.T. Zimmermann, Schlußbericht - Opti-
male Linienführung und Routenplanung in Verkehrssystemen
(Schienenverkehr), 1997.

[Car94] M. Carey, A model and strategy for train pathing with choice
of lines, platforms, and routes, Tranportation Res. Part B 28
(1994), no. 5, 333–353.

[Cla94] M.T. Claessens, De kost-lijnvoering, Master’s thesis, University
of Amsterdam, 1994.

121

122 BIBLIOGRAPHY

[CvDZ98] M.T. Claessens, N.M. van Dijk, and P.J. Zwaneveld, Cost opti-
mal allocation of rail passenger lines, European Journal on Op-
erational Research 110 (1998), no. 3, 474–489.

[Die78] H. Dienst, Linienplanung im spurgeführten Personenverkehr mit
Hilfe eines heuristischen Verfahrens, Ph.D. thesis, Technische
Universität Braunschweig, 1978.

[DW60] G.P. Dantzig and P. Wolfe, Decomposition principle for linear
programs, Operations Research 8 (1960), 101–111.

[Ehr00] M. Ehrgott, Multiple criteria optimization, Lecture Notes in Eco-
nomics and Mathematical Systems, vol. 491, Springer, Berlin,
2000.

[FW81] P.G. Furth and N.H.M. Wilson, Setting frequencies on bus
routes: Theory and practice, Transportation Research Record
818 (1981), 1–7.

[Goo04] J.-W. Goossens, Models and algorithms for railsway line planning
problems, Ph.D. thesis, University of Maastricht, 2004.

[GvHK02] J.-W. Goossens, C.P.M. van Hoesel, and L.G. Kroon, On solv-
ing multi-type line planning problems, Tech. Report RM/02/009,
University of Maastricht, 2002, METEOR Research Memoran-
dum.

[GvHK04] J.-W. Goossens, S. van Hoesel, and L.G. Kroon, A branch-and-
cut approach for solving railway line-planning problems., Trans-
portation Science 38 (2004), no. 3, 379–393.

[HC83] Y.Y. Haimes and V. Chankong, Multiobjective decision making
— theory and methodology, North Holland, New York, 1983.

[Hen89] H. Hensen, Entwicklung eines interaktiven Programmsystems zur
Linienplanung im ÖPNV, Master’s thesis, Technische Universität
Berlin, 1989.

[HK00] H.W. Hamacher and K. Klamroth, Linear and network opti-
mization problems - lineare und netzwerk optimierungsprobleme,
Vieweg Verlag, 2000, Bilingual Lecture Notes.

[Kli00] H. Klingele, Verfahren zur Optimierung eines Linienkonzeptes
der Deutschen Bahn AG, Master’s thesis, Universität Karlsruhe,
2000.

BIBLIOGRAPHY 123

[Kre94] P. Kreuzer, Linienoptimierung im schienengebundenen Person-
enverkehr, Master’s thesis, Technische Universität Braunschweig,
1994.

[Las70] L.S. Lasdon, Optimization theory for large systems, The Macmil-
lan Company, New York, 1970.

[LS67] W. Lampkin and PD Saalmans, The design of routes, service
frequencies and schedules for a municipal bus undertaking, Op-
erations Research Quarterly 18 (1967), no. 4, 375–397.

[Min86] M. Minoux, Mathematical programming, theory and algorithms,
John Wiley & Sons, 1986.

[MUP84] B.R. Marwah, F.S. Umrigar, and S.B. Patnaik, Optimal design
of bus routes and frequencies for ahmedabad, Transportation Re-
search Record 994 (1984), 41–47.

[New79] G.F. Newell, Some issues relating to the optimal design of bus
routes, Transportation Science 13 (1979), no. 1, 20–35.

[NW88] G.L. Nemhauser and L.A. Wolsey, Integer and combinatorial pro-
gramming, John Wiley & Sons, 1988.

[Olt94] C. Oltrogge, Linienplanung für mehrstufige Bedienungssysteme
im öffentlichen Personenverkehr, Ph.D. thesis, Technische Uni-
versität Braunschweig, 1994.

[Pat25] A. Patz, Die richtige Auswahl von Verkehrslinien bei großen
Straßenbahnnetzen, Verkehrstechnik 50/51 (1925).

[PK03] M. Peeters and L.G. Kroon, Circulation of railway rolling stock:
A branch-and-price approach., Technical report, Erasmus Re-
search Institute of Management (ERIM), Erasmus University
Rotterdam, The Netherlands, 2003.

[PRE95] U. Pape, Y. Reinecke, and Reinecke E., Line network plan-
ning, computer-aided transit scheduling ed., vol. 430, pp. 1–7,
Springer, 1995.

[Qua03] C.B. Quack, Bus line planning, Master’s thesis, University of
Delft, 2003.

[Rai] DB German Railway, http://www.bahn.de.

124 BIBLIOGRAPHY

[RR92] Y. Reinecke and E. Reinecke, Entwurf und Impelmentierung eines
Linienplaungssystems für den Busverkehr im ÖPNV, Master’s
thesis, Technische Universität Berlin, 1992.

[Sch93] A. Schrijver, Minimum circulation of railway stock, CWI
Quaterly 3 (1993), 205–217.

[Sch01a] A. Schöbel, Optimization models for traffic plan-
ning, lecture notes, 2001, http://www.num.math.uni-
goettingen.de/schoebel/vorlesung/node1.html.

[Sch01b] M. Schmidt, Modelle zur Linienoptimierung im Zugverkehr unter
Berücksichtigung der Nachfrage, Master’s thesis, Universität
Kaiserslautern, 2001.

[Sch03] A. Schöbel, Customer-oriented optimization in public transporta-
tion, 2003, habilitation thesis, Technische Universtät Kaiser-
slautern.

[Sim80] C. Simonis, Omnibusnetze zur Erschließung von Verdich-
tungsräumen und deren Randzonen, Bundesminister für Verkehr
(1980).

[Sim81a] , Die nachfrageorientierte Optimierung von Omnibuslin-
ien im Stadtbereich durch Verknüpfung von Teilstrecken nach un-
terschiedlichen Modellansätzen, Ph.D. thesis, Institut für Stadt-
bauwesen, RWTH Aachen, 1981.

[Sim81b] , Optimierung von omnibuslinien, Berichte Stadt - Region
- Land, Institut für Stadtbauwesen, RWTH Aachen, 1981.

[Son77] H. Sonntag, Linienplanung im öffentlichen Personennahverkehr,
Ph.D. thesis, Technische Universität Berlin, 1977.

[Son79] H. Sonntag, Ein heuristisches Verfahren zum Entwurf nach-
frageorientierter Linienführung im öffentlichen Personen-
nahverkehr, Z. Oper. Res. Ser. A-B 23 (1979), B15–B31.

[SS03] A. Schöbel and S. Scholl, Planung von Linien mit minimalen
Umsteigevorgängen, Proceedings of the GOR-workshop on ”Op-
timierung im öffentlichen Nahverkehr” (D. Mattfeld, ed.), 2003,
http://server3.winforms.phil.tu-bs.de/gor/tagung34/, pp. 69–89.

[SS04a] , Line planning with minimal transfers, NAM Bericht 72,
Georg-August Universität Göttingen, 2004.

BIBLIOGRAPHY 125

[SS04b] , Planning lines with minimal transfers - a dantzig-wolfe
approach, Proceedings of TRISTAN V - The Fifth Triennial Sym-
posium on Transportation Analysis, Le Gosier, Guadeloupe, 13-
18 June, 2004.

[Völ01] M. Völker, Busliniennetze optimal gestalten - Ein multi-
kriterieller Algorithmus zur rechnergestützten Planung, Der
Nahverkehr 10 (2001).

[Weg74] H. Wegel, Fahrplangestaltung für taktbetriebene
Nahverkehrsnetze, Ph.D. thesis, Technische Universität Braun-
schweig, 1974.

[Wol98] L.A. Wolsey, Integer programming, John Wiley & Sons, 1998.

[ZBKW97] U.T. Zimmermann, M.R. Bussieck, M. Krista, and K.-D. Wie-
gand, Linienoptimierung - Modellierung und praktischer Einsatz,
pp. 595–607, Hoffmann, K.-H. and Jaeger, W. and Lohmann, Th.
and Schunck, H., 1997.

[ZCvD96] M.T. Zwaneveld, M.T. Claessens, and N.M. van Dijk, A new
method to determine the cost optimal allocation of passenger
lines, Defence or Attack: Proceedings 2nd TRAIL Phd Congress
1996, part 2, TRAIL Research School, 1996.

126 BIBLIOGRAPHY

Wissenschaftlicher Werdegang

06/1994 Abitur am Elisabeth-Gymnasium Mannheim

10/1994-06/2001 Studium der Mathematik mit Anwendungsfach Physik an der
Universität Kaiserslautern

06/1997 Vordiplom im Studiengang Mathematik

09/1997-07/1998 Erasmus-Stipendium an der Universidad de Sevilla, Spanien

06/2001 Diplom in Mathematik an der Universität Kaiserslautern

10/2001-09/2004 Stipendium des Graduiertenkollegs ”Mathematik und Praxis”
an der Technischen Universität Kaiserslautern

seit 10/2004 Wissenschaftliche Mitarbeiterin am ”Institut für numerische und
angewandte Mathematik” (NAM) der Georg-August Universität
Göttingen

03/2005 Einreichung der Dissertation

07/2005 Disputation

127

