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Abstract

We consider preconditioned regularized Newton methods tailored to the efficient
solution of nonlinear large-scale exponentially ill-posed problems.
In the first part of this thesis we investigate convergence and convergence rates of the
iteratively regularized Gauss-Newton method under general source conditions both
for an a-priori stopping rule and the discrepancy principle. The source condition
determines the smoothness of the true solution of the given problem in an abstract
setting. Dealing with large-scale ill-posed problems it is in general not realistic to
assume that the regularized Newton equations can be solved exactly in each Newton
step. Therefore, our convergence analysis includes the practically relevant case that
the regularized Newton equations are solved only approximately and the Newton
updates are computed by using these approximations.
In a second part of this thesis we analyze the complexity of the iteratively regularized
Gauss-Newton method assuming that the regularized Newton equations are solved
by the conjugate gradient method. This analysis includes both mildly and severely
ill-posed problems. As a measure of the complexity we count the number of operator
evaluations of the Fréchet derivative and its adjoint at some given vectors. Following
a common practice for linear ill-posed problems, we express the total complexity of
the iteratively regularized Gauss-Newton method in terms of the noise level of the
given data.
To reduce the total complexity of these regularized Newton methods we consider
spectral preconditioners to accelerate the convergence speed of the inner conjugate
gradient iterations. We extend our complexity analysis to these preconditioned reg-
ularized Newton methods. This investigation gives us the possibility to compare
the total complexity of non preconditioned regularized Newton methods and pre-
conditioned ones. In particular we show the superiority of the latter ones in the
case of exponentially ill-posed problems.
Finally, in a third part we discuss the implementation of a preconditioned iter-
atively regularized Gauss-Newton methods exploiting the close connection of the
conjugate gradient method and Lanczos’ method as well as the fast decay of the
eigenvalues corresponding to the linearized operators in the regularized Newton
equations. More precisely, we determine by Lanczos’ method approximations to
some of the extremal eigenvalues. These are used to construct spectral precondi-
tioners for the following Newton steps. Developing updating techniques to keep the
preconditioner efficient while performing Newton’s method the total complexity can
be significantly reduced compared to the non preconditioned iteratively regularized
Gauss-Newton method. Finally, we illustrate in numerical examples from inverse
scattering theory the efficiency of the preconditioned regularized Newton methods
compared to other regularized Newton methods.
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Chapter 0

Introduction

Inverse problems occur in many branches of science and mathematics. Usually
these problems involve the determination of some model parameters from observed
data, as opposed to the problems arising from physical situations where the model
parameters or material properties are known. The latter problems are in general
well-posed. The mathematical term well-posed problem stems from a definition given
by Hadamard [28]. He called a problem well-posed, if

a) a solution exists,

b) the solution is unique,

c) the solution depends continuously on the data, in some reasonable topology.

Problems that are not well-posed in the sense of Hadamard are termed ill-posed.
Inverse problems are typically ill-posed. Of the three conditions for a well-posed
problem the condition of stability is most often violated and has our primary inter-
est. This is motivated by the fact that in all applications the data will be measured
and therefore perturbed by noise. Typically, inverse problems are classified as lin-
ear or nonlinear. Classical examples of linear inverse problems are computerized
tomography [67] and heat conduction [16, Chapter 1].

An inherently more difficult family are nonlinear inverse problems. Nonlinear in-
verse problems appear in a variety of fields such as scattering theory [11] and
impedance tomography. During the last decade a variety of problem specific math-
ematical methods has been developed for solving a given individual ill-posed prob-
lem. For example, for the solution of time harmonic acoustic inverse scattering
problems quite a number of methods have been developed such as the Kirsch-Kress
method [48, 49, 50], the Factorization method [46, 47, 27] and the Point-source
method [72]. Naturally, the development of such problem specific solution ap-
proaches often requires a lot of time and a deep understanding of the mathematical
and physical aspects.
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12 CHAPTER 0. INTRODUCTION

Unfortunately, a portability of problem specific solution methods to other problems
is often either impossible or a difficult task. For example, although the methods
mentioned above exist already for about ten years or even longer, to our knowledge a
satisfactory realization of these methods for time harmonic electromagnetic inverse
scattering problems is still open. Moreover, besides the classical and well known
inverse problems due to evolving innovative processes in engineering and business
more and more new nonlinear problems arise. Hence, although problem specific
methods for nonlinear inverse problems have their advantages, efficient algorithms
for solving inverse problems in their general formulation as nonlinear operator equa-
tions have proven to become necessary.

It is the topic of this work to develop and analyze a regularized

Newton method designed for efficiently solving large scale non-

linear ill-posed problems, in particular nonlinear exponentially

ill-posed problems.

Newton’s method is one of the most powerful techniques for solving nonlinear equa-
tions. Its widespread applications in all areas of mathematics make it one of the
most important and best known procedures in this science. Usually it is the first
choice to try for solving some given nonlinear equation. Many other good meth-
ods designed to solve nonlinear equations often turn out to be variants of Newton’s
method attempting to preserve its convergence properties without its disadvantages.
A motivation of Newton’s method is given by the following elementary construction:

We consider the nonlinear equation f(x) = 0, where f : R → R is a contin-
uously differentiable function. Let xn be an approximation to some root x∗

of f and y(x) := f(xn)+f
′(xn)(x−xn) the tangent on f through (xn, f(xn)).

If f ′(xn) 6= 0, then y has exactly one point of intersection with the x-axis,
which we examine as new approximation to x∗. Proceeding in this way,
which is illustrated in Figure 1, we obtain the algorithm

xn+1 := xn − [f ′(xn)]
−1f(xn), n = 0, 1, 2, . . . .

This idea can be generalized to operator equations

F (x) = y, (1)

where F : D(F ) → Y is a nonlinear injective Fréchet differentiable mapping between
its domain D(F ) ⊂ X into Y . Throughout this work X and Y are real Hilbert
spaces. Substituting F by its linear approximation in each Newton step the least
squares problem

‖F ′[xn]h+ F (xn) − y‖2
Y = min

h∈X
! (2)
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Figure 1: An illustration of Newton’s method

needs to be solved. F ′[xn] denotes the Fréchet derivative of F at xn and the Newton
update is given by h = xn+1 − xn. This generalized approach is well-known as
Gauss-Newton method. If the operator equation (1) is well posed many different
local convergence proofs of the Gauss-Newton method have been established to show
convergence of quadratic order under some natural conditions on the operator F .

In the case where (1) is ill-posed it is important to study the situation where the
right hand side y in (1) is replaced by noisy data yδ satisfying

‖y − yδ‖Y ≤ δ

for a known noise level δ > 0. In this case a straightforward implementation of the
Gauss-Newton method usually fails and does not lead to a good reconstruction of the
solution after several Newton steps. One reason for the failure of the Gauss-Newton
approach in this situation is the ill-posedness of the least-squares problem (2),
which is inherited from the original operator equation (1). Thus, to perform one
Newton step some sort of regularization has to be employed when solving (2). This
additional regularization usually complicates the investigation of local convergence
of Newton’s method. Moreover, different kinds of regularization methods for the
linearized equation generate different kinds of regularized Newton methods and each
of these methods requires its own convergence analysis. During the last fifteen years
many of these methods have been proposed, but often no completely satisfactory
convergence proofs could be established so far since often assumptions are made,
which could only be proven for a few examples. In Section 2.1 we will discuss some
examples of regularized Newton methods.
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In this work we consider a regularized Gauss-Newton method where instead of (2),
the regularized least-squares problem

‖F ′[xδn]h+ F (xδn) − yδ‖2
Y + γn‖h+ xδn − x0‖2

X = min
h∈X

! (3)

is solved in each Newton step. Here γn > 0 denotes a regularization parameter. This
iterative regularization method can be interpreted as a common Newton method,
where in each Newton step Tikhonov regularization with initial guess xδn − x0 is
applied to the linearized equation. The problem (3) is well posed, in particular
there exists a uniquely defined minimizer h† ∈ X of (3). Moreover, if γn is small we
expect that the solution of (3) is a stable approximation to the solution of (2). For-
mulating additional assumptions on the sequence (γn)n∈N0

this algorithm is called
iteratively regularized Gauss-Newton method (IRGNM) and was originally suggested
by Bakushinskii [5]. We are going to contribute to the convergence analysis of this
method.

When speaking of convergence of iterative regularization methods for ill-posed prob-
lems we have to distinguish two different types of convergence. On the one hand, for
known exact data y we must ensure that our iterates converge to the true solution
of (1). On the other hand if the right hand side of (1) is given by noisy mea-
surements yδ we have to combine the iterative regularization method with some
data-dependent stopping criterion. The most well-known is Morozov’s discrepancy
principle [65]. It states that one should not try to solve the operator equation more
accurately than the data noise error. This ensures a stopping of the algorithm be-
fore the iterates start to deteriorate. Now a natural requirement is convergence of
the final iterates to the true solution x† of (1) when the noise level δ tends to zero.
In this case we are also interested in the convergence rate expressed in terms of the
noise level δ of the available data. Unfortunately, it is well known that this conver-
gence can be arbitrarily slow unless the true solution x† satisfies some smoothness
condition. In an abstract setting these smoothness conditions are expressed by
so-called source conditions given by

x0 − x† = f(F ′[x†]∗F ′[x†])w, w ∈ X .

Here ‖w‖ is assumed to be ”small” and in a general setting introduced by Mathé
and Pereverzev [61] the function f : [0, ‖F ′[x†]‖2] → [0,∞) is an increasing and
continuous function satisfying f(0) = 0. So far mainly Hölder source conditions
(see (1.13)) and logarithmic source conditions (see (1.14)) have been discussed in
the literature on nonlinear inverse problems and optimal rates of convergence of
the IRGNM have been established for both of these types of source conditions
(see [9, 37]). In this thesis we will give a proof for optimal rates of convergence under
general source conditions for both an a-priori stopping criterion (see Theorem 2.4
and Corollary 2.6) and the discrepancy principle (see Theorem 2.7).
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Furthermore, our particular interest is in large-scale problems, where the opera-
tor F usually represents a partial differential or integral equation in R3. Under
this condition finding the solution of (3) is a complex task and a straightforward
implementation of the IRGNM involving the construction of the derivative matrices
representing the Frechét derivatives F ′[xδn], n = 0, 1, 2, . . . is usually not realizable
or at least not realizable in an adequate time period. This is due to several reasons.
Setting up the derivative matrix incorporates the evaluation of F ′[xδn]ϕj for all basis
functions ϕj spanning the approximating subspace of X . For large scale problems
the time required by this process is not acceptable. Furthermore, often the number
of basis functions ϕj is so large that the derivative matrix would not fit into the fast
memory of a workstation and even if we had a decomposition of the matrix such
that it would fit into the memory, usage of this matrix would be inefficient.

Therefore, we are restricted to iterative solution methods for solving (3) which just
require a ”black box” to evaluate F ′[xδn]h and F ′[xδn]

∗h̃ for some given vectors h ∈ X
and h̃ ∈ Y . Since the least-squares problem (3) can be equivalently reformulated
by the linear equation

(γnI + F ′[xδn]
∗F ′[xδn])hn = F ′[xδn]

∗(yδ − F (xδn)) + γn(x0 − xδn), (4)

with the self-adjoint and strictly coercive operator γnI + F ′[xδn]
∗F ′[xδn], a natural

choice to solve this problem is the conjugate gradient method (CG-method) coupled
with an adequate stopping criterion. This method has become the most widespread
way of solving systems of this kind. Moreover, it is possible to construct various
efficient preconditioner to speed up its convergence rate (see Section 5.2).
Unfortunately, it is well known that a large condition number of the operator is an
indicator of slow convergence of the CG-method (see Theorem 4.3). Since for con-
vergence of the IRGNM it is necessary that the regularization parameter γn tends
to zero, the condition number of the operator in (4), namely γnI + F ′[xδn]

∗F ′[xδn]
explodes when n tends to infinity. Actually, by numerical experience the conver-
gence speed of the CG-method for the problems at hand usually deteriorates, and
a large number of steps is required until we obtain a reasonable approximation happ

n

to the true solution h†n of (4). Hence, it is our goal to investigate the accuracy
of the final iterates of the IRGNM when the Newton updates are only computed
approximately.

Besides the accuracy of an iterative method its efficiency is an important feature to
investigate, especially in the situation of large scale problems. For the IRGNM the
main complexity consists in finding in each Newton step the solution of (4). One
step of the IRGNM where the linear system is solved by the conjugate gradient
method usually requires many evaluations of F ′[xδn]h and F ′[xδn]

∗h̃ until some stop-
ping criterion is satisfied. For quite a number of nonlinear inverse problems it can be
shown that these evaluations are equivalent to finding the solution of a well-posed
integral or differential equation. We will illustrate these correspondences by exam-
ples arising in inverse scattering discussed in Chapter 7. For large-scale problems
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the corresponding discrete linear systems often involve more than a thousand un-
knowns. Hence, to perform one step in the CG-algorithm, high-dimensional linear
systems need to be set up and solved, which can be rather time consuming. As a
consequence we expect that under these conditions already performing one Newton
step is a complex task, in particular when the regularization parameter is small.

To summarize the discussion above we are interested in three aspects, which are of
particular importance in the investigation of large-scale inverse problems.

a) Accuracy: Assume that the systems (4) cannot be solved exactly in each
Newton step. Is it possible to formulate reasonable conditions on the addi-
tional error ‖happ

n − h†n‖ such that convergence rates of optimal order for the
final iterates of the IRGNM can still be established?

b) Complexity: Assume that we measure the total complexity of the IRGNM
by counting the total number of operator evaluations of F ′[xδn]h and F ′[xδn]

∗h̃
for some given vectors h ∈ X and h̃ ∈ Y and F (xδn). Is it possible to give
an upper bound on the total number of operator evaluations until some data-
dependent stopping-criterion terminates the IRGNM?

c) Acceleration: Assume that the linear systems (4) are solved by the CG-
method in each Newton step. Is it possible to construct preconditioners sig-
nificantly reducing the number of CG-steps to compute happ

n ? Moreover, can
we show superiority of an accelerated IRGNM when compared with a standard
IRGNM?

All three questions will be answered in this thesis. Note that when we speak about
the standard IRGNM throughout this thesis we consider the IRGNM with inner
CG-iteration.

Before we give a detailed overview on the topics discussed in the following chapters,
let us take a closer look at the main ideas to accelerate the IRGNM, since this point
has not been considered here so far.

To achieve a speed up of the IRGNM a significant reduction of the total number of
operator evaluations of F ′[xδn]

∗h̃ and F ′[xδn]
∗h̃ is necessary. Therefore, when solving

the linear systems (4) by the CG-method a reduction of the number of CG-steps
until some stopping criterion is satisfied needs to be realized. It is well known that
this aim can be achieved by preconditioning techniques.

While for well-posed problems acceleration of iterative solution methods for linear
systems by appropriate preconditioning is well-studied, the design and analysis of
preconditioners for ill-posed problems is not so well understood. Since the eigen-
value distribution of the operators in ill-posed problems play an important role
and is usually known beforehand, this knowledge can be exploited to construct so-
called spectral preconditioners especially appropriate for large-scale exponentially
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ill-posed problems (see Section 5.2). For example, when linear inverse problems are
solved by the CG-method applied to the normal equation, preconditioning tech-
niques based on the eigenvalue distribution of the corresponding linear operator
have been proven to be successful [32, 66]. In this case the well known regularizing
properties of the CG-method have been exploited. Besides preconditioners based
on spectral information Egger & Neubauer constructed preconditioners exploiting
the smoothing properties of the operators arising in ill-posed problems [15] yielding
a significant reduction of the total complexity.

Based on the article by Hohage [40] our interest in this thesis is devoted to the
analysis and improvement of a ”frozen” version of the IRGNM where incremental
spectral preconditioners are constructed within Newton’s method to accelerate the
convergence speed of the inner CG-iterations. Similar to the first idea just described
above we precondition the original linear system by manipulating the eigenvalue
distribution of the operator γnI + F ′[xδn]

∗F ′[xδn] to achieve improved convergence
rates in the inner CG-iterations of the IRGNM. Note that we formally deal with
well-posed linear systems given by (4). Still, if the regularization parameter γn is
small these systems will be ill-conditioned.
Let us briefly review the idea of the preconditioned IRGNM as it was suggested
in [40] such that we are in a position to explain our improvements. Assuming
that the eigenvalues of the compact operator F ′[xδn]

∗F ′[xδn] have an exponential
decay, the linear operator γnI + F ′[xδn]

∗F ′[xδn] has a cluster of eigenvalues in a
neighborhood of γn, whereas only a few eigenvalues are far away from this limit
point. Solving the arising linear systems (4) by the CG-method we can exploit its
close connection to Lanczos’ method, which computes Ritz values and Ritz vectors
approximating eigenpairs of F ′[xδn]

∗F ′[xδn]. In particular, Lanczos’ method has a
tendency to approximate those eigenvalues with their corresponding eigenvectors,
which are not in a neighborhood of γn. Since these eigenvalues are well separated
usually the approximations are of high quality.
Assume we have exact knowledge of the kn largest eigenvalues λ1 ≥ . . . ≥ λkn

of F ′[xδn]
∗F ′[xδn] with their corresponding eigenvectors ϕj, j = 1, . . . , kn. To reduce

the complexity for the inner CG-iterations in the following Newton steps we set up
a spectral preconditioner defined by

Mnx := γnx+

kn
∑

j=1

λj 〈x, ϕj〉ϕj (5)

and solve instead of (4) the mathematically equivalent linear systems

M−1
s (γsI + F ′[x∗]

∗F ′[x∗])hs = M−1
s

(

F ′[x∗]
∗(yδ − F (xδs)) + γn(x0 − xδs)

)

, (6)

where x∗ := xδn is kept fixed and s > n. Note that the kn known largest eigenvalues
of γsI + F ′[x∗]

∗F ′[x∗] are shifted by the preconditioner Ms to one, whereas the
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rest of the spectrum is amplified by the factor 1/γs (see Theorem 4.6). Hence,
the standard error estimate for the CG-method (see Theorem 4.3) indicates an
improved convergence rate of the CG-method applied to (6) when compared with
the non-preconditioned case. In [40] it was shown that this idea leads to a significant
reduction of the total complexity when applied to nonlinear exponentially ill-posed
problems. Moreover, the final iterates of this frozen IRGNM and the standard one
were comparable for the examples presented.

Several reasons yielding an undesirable increase of the total complexity of the frozen
IRGNM, have not been considered in [40]. We just mention here two reasons, further
ones are pointed out in Section 6.1:� Lanczos’ method has approximated just a few of the largest eigenvalues,� the linear operator F ′[xδn]

∗F ′[xδn] has multiple eigenvalues.

Since it is well known that Lanczos’ method approximates at most one of each
multiple eigenvalue (see Theorem 3.10) it is clear that a preconditioner given by Mn

is unrealistic in practice and serves therefore only as a motivation.
Even more important to ensure efficiency of the preconditioner Mn it is essential
to investigate the behavior of the eigenvalues of the preconditioned operator given
only approximations to the eigenpairs. We will show in Chapter 5 that the be-
havior of the eigenvalues is rather sensitive to errors in the eigenelements used to
construct Mn, in particular if the targeted eigenvalues are small or clustered. Un-
fortunately, the widest part of the spectrum of γnI + F ′[xδn]

∗F ′[xδn] satisfies this
condition, in particular if the regularization parameter is small. As a consequence
one has to be rather careful which approximations computed by Lanczos’ method
are chosen. To this end we use a-posteriori bounds to select approximations of high
quality (see Theorem 3.14). Still, confirmed by the theory and supported by nu-
merical examples preconditioners of the form (5) have their limits if the eigenvalues
are too small compared with the errors in the approximations.

To improve the algorithm suggested in [40] we propose to update the precondi-
tioner while performing the frozen IRGNM. Obviously, further spectral informa-
tion of F ′[x∗]

∗F ′[x∗] is required to make the preconditioner more efficient. To
this end, we apply Lanczos’ method after having solved the preconditioned equa-
tion (6). This yields approximations to eigenpairs of the preconditioned oper-
ator M−1

s (γsI + F ′[x∗]
∗F ′[x∗]). By elementary computations these approxima-

tions can be used to compute approximations to eigenpairs of F ′[x∗]
∗F ′[x∗] (see

Lemma 6.2). Adding this additional spectral information to the preconditioner
reduces the total complexity of the frozen IRGNM significantly once again. Be-
sides this idea we have developed another procedure to update the preconditioner,
which is based on the approximation properties of the preconditioner to the opera-
tor γsI + F ′[x∗]

∗F ′[x∗]. Both algorithms are presented in detail in Chapter 6.
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Finally, the work at hand is organized as follows:

It is roughly divided into three parts. Chapters 1 and 2 deal with the theoretical
proof of convergence and convergence rates of optimal order for the IRGNM. The
fundamentals of the CG-method and Lanczos’ method are described in Chapter 3,
which will be used to analyze the complexity of the IRGNM and its preconditioned
version in Chapter 4. The last part is dedicated to the derivation of the precondi-
tioned IRGNM and numerical examples. These topics can be found in Chapters 5, 6
and 7. More precisely:

In Chapter 1 we review the basic concepts of the theory of linear regularization
methods for ill-posed problem. In particular we recall the concepts of source sets de-
fined by general index functions to investigate the best possible accuracy to recover
the solution of a linear ill-posed problem given only noisy data yδ. This analysis
leads to the definition of optimal rates of convergence for ill-posed problems (see
Definition 1.6). Subsequently, we show that for linear ill-posed problems regular-
ization methods with a-priori parameter choice rule can be constructed, which yield
to optimal rates of convergence (see Theorem 1.11). In particular the link between
the qualification of a regularization method and the index function determining the
source set is explained and used to prove this assertion. Finally we consider some
type of IRGNM in combination with the discrepancy principle when applied to a
linear ill-posed problem. In addition we prove optimal rates of convergence for this
regularization method (see Section 1.3). This proof serves as illustration for the
main ideas for the inherently more difficult nonlinear case.

Chapter 2 is dedicated to the analysis of the IRGNM applied to some general
nonlinear ill-posed operator equation in Hilbert spaces. The smoothness of the
true solution is expressed by a source condition defined by some general index
function. Optimal rates of convergence under these assumptions will be proven for
both an a-priori stopping rule and the discrepancy principle (see Corollary 2.6 and
Theorem 2.7). The proof includes the important case that (3) cannot be solved
exactly in each Newton step. Furthermore, we formulate reasonable conditions on
the difference ‖happ

n −h†n‖ (see (2.24) and (2.32)) such that convergence and optimal
rates of convergence for the IRGNM are not destroyed by this additional error. It
can be shown that these conditions can be satisfied if (3) is solved by the CG-
method coupled with an adequate stopping criterion (see Theorem 4.4). Besides
the IRGNM in Section 2.1 other iterative regularization methods, which have been
suggested in the literature are reviewed and briefly discussed.

In Chapter 3 we develop the fundamentals for both a theoretical complexity analy-
sis with inner CG-iteration and an efficient realization of the IRGNM. While writing
this thesis it has turned out that none of the textbooks at hand presenting the CG-
method and Lanczos’ method had an illustration, which fitted into our framework.
To this end, we reformulated the CG-method in a general Hilbert space setting for an
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arbitrary inner product and some bounded linear operator, which is self-adjoint and
strictly coercive with respect to this inner product. Our formulation allows an easy
incorporation of a preconditioner into the algorithm. Moreover, we show in a short
and precise way the connection of Lanczos’ and the CG-method (see Section 3.5).
Sections 3.6 and 3.7 are devoted to present error bounds for the approximations
computed by Lanczos’ method. To determine computable a-posteriori bounds we
use the relation of Lanczos’ method to the Rayleigh-Ritz method. A purely the-
oretical error bound shedding light on convergence rates of Lanczos’ method is
discussed in Theorem 3.15. The result formulated there is known in the literature
as Kaniel-Paige convergence theory for Lanczos’ method.

Chapter 4 deals with the investigation of the complexity of the IRGNM and its
preconditioned version. Moreover, the complexity analysis presented includes both
mildly and exponentially ill-posed problems. We exploit the close connection be-
tween the iteration error of the CG-method and polynomials (see (4.4)) to derive
convergence rates for the CG-method. In particular, we consider polynomials tai-
lored for eigenvalue distributions corresponding to ill-posed problems leading to
improved convergence rates (see Theorem 4.13). Splitting the spectrum into the
eigenvalues, which lie in a neighborhood of γn and the rest, we will prove upper
bounds on the total number of CG-steps, which are necessary to satisfy some rea-
sonable stopping criterion. These upper bounds depend for the most part on the
degree of ill-posedness of the original problem and the Newton step (see Theo-
rem 4.19). Finally, a simple summation over all Newton steps required to reach the
stopping criterion for the outer Newton iteration yields to the total complexity of
the IRGNM and its frozen version. Moreover, by results of Chapter 2 the stopping
index of the IRGNM can be expressed in terms of the noise level δ. As a consequence
we can express the total complexity of the IRGNM in terms of δ (see Theorems 4.20
and 4.21). The complexity analysis confirms quantitatively the superiority of the
preconditioned IRGNM when compared with a standard IRGNM.

In Chapter 5 we switch to the practically relevant case of discrete systems. Our
major interest in this chapter is the investigation of the efficiency of preconditioners
of the form (5), since they are especially adequate for large-scale ill-posed problems
(see Section 5.2). To this end, we carry out a first order analysis to sniff out the de-
pendency of the eigenvalues on the preconditioned operator given only approximate
eigenelements for constructing a spectral preconditioner. This analysis motivates
the definition of a condition number for the targeted eigenvalues. Furthermore, an
upper bound on this condition number is computed (see Definition 5.5 and Corol-
lary 5.7) implying that preconditioners of the form (5) are extremely sensitive to
errors in approximations to small and clustered eigenvalues. In Section 5.4 we
interpret this result for the problem at hand.

In Chapter 6 we derive a realization of the preconditioned IRGNM. To this end
we have summarized in Section 6.1 the key points, which need to be considered for
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an implementation. All simplifying assumptions for a theoretical analysis of the
algorithm are not taken into account any more. Hence, a subsequent discussion
is put up where additional difficulties arising in practice and suggestions for their
solutions are presented. Moreover, in Section 6.2 we present an iterated Lanczos’
method to construct incremental spectral preconditioners of the form (5) signifi-
cantly reducing the complexity required for solving the linear systems (4). More
precisely, two different types of iterated Lanczos’ methods are studied (see Algo-
rithm 6.5 and 6.6). Finally we incorporate these methods into the frozen IRGNM
(see Algorithm 6.8) eliminating the drawbacks of the algorithm suggested in [40].

Numerical examples confirming the superiority of the Algorithm are presented in
Chapter 7. In particular we consider inverse inhomogeneous medium scattering
problems for time-harmonic acoustic and electromagnetic waves in three space di-
mensions. The problem is to determine the refractive index of an inhomogeneity
from far-field measurements. In this chapter we restrict ourselves to a presentation
of the main features, which are necessary for an application of our algorithms. In
particular we point out how these inverse problems can be described by an operator
equation (1) and how the Fréchet derivatives and their adjoints at a point h ∈ X
and h̃ ∈ Y , that is F ′[xδn]h and F ′[xδn]

∗h̃ can be evaluated without setting up the
matrix representing the Fréchet derivative.

Finally, we discuss our results and conclude this thesis with an outlook in Chap-

ter 8.
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Chapter 1

Linear inverse problems under

general source conditions

To construct a stable approximation to the solution of an ill-posed problem given
only noisy data many different regularization methods have been established.
Whereas for several regularization methods for linear ill-posed problems optimal
rates of convergence under general source conditions have been proven, so far such
optimal convergence rates for regularization methods for nonlinear ill-posed prob-
lems have not been shown. Of particular interest for nonlinear problems are iterative
regularization methods of Newton type, as considered in the introduction. Since in
each step of such a method a linearized equation is solved, an analysis requires a
deep knowledge of regularization for linear problems.

To this end we will review in this chapter the main results of the linear theory. Our
exposition mainly follows the articles by Mathé and Pereverzev [61] and Hohage
[39]. In particular we will formulate the main definitions and results concerning
linear regularization methods under general source conditions.

The chapter is organized as follows: In Section 1.1 we describe and motivate the
important definition of optimality. Section 1.2 deals with linear regularization meth-
ods, in particular the interplay between their qualification and the index function
determining the source set. Moreover, motivated by the IRGNM for nonlinear
ill-posed problems we will discuss in Section 1.3 a corresponding iterative regular-
ization method for approximating the solution of a linear ill-posed problem where
we stop the iteration by the discrepancy principle. Optimal rates of convergence
of this method will be proven. This method together with the proofs serves as
an illustration of the inherently more difficult nonlinear case presented in the next
chapter.

23
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1.1 Optimality

We consider in this chapter a linear, ill-posed operator equation

Ax = y, y ∈ R(A), (1.1)

where the bounded operator A : X → Y acts between Hilbert spaces X and Y and
R(A) is not closed. Naturally, in applications the right hand side y of (1.1) is given
by measured data and is perturbed by noise. So, we assume that instead of y only
noisy data yδ ∈ Y satisfying

‖yδ − y‖ ≤ δ (1.2)

are available. The nonnegative noise level δ is assumed to be known. Notice that
in general yδ /∈ R(A).

It is well known that equation (1.1) has a unique solution x† ∈ X , which has minimal
norm among all solutions of (1.1). x† is given by x† = A†y where A† denotes the
Moore-Penrose generalized inverse of A.

Since (1.1) is ill-posed the generalized inverse A† is unbounded. Due to our assump-
tion that instead of the exact right hand side y only noisy data yδ are available,
in general A†yδ is not a good approximation to x†. So, in order to obtain a sta-
ble approximation to x†, the unbounded operator A† has to be approximated by a
continuous operator. Any (possibly nonlinear) numerical method to approximately
recover x† from noisy data yδ is described by an arbitrary mapping R : Y → X .
We consider here numerical methods with the following regularizing properties:

Definition 1.1 Let A : X → Y be a bounded linear operator between the Hilbert
spaces X and Y, α0 ∈ (0,∞] and y ∈ D(A†). The family {Rα} of continuous (not
necessarily linear) operators

Rα : Y → X
together with some parameter choice rule α : R+ × Y → (0, α0) satisfying

lim
δ→0

sup{α(δ, yδ) : yδ ∈ Y , ‖yδ − y‖ ≤ δ} = 0 (1.3)

is called a regularization method for A if

lim
δ→0

sup{‖Rα(δ,yδ)y
δ −A†y‖ : yδ ∈ Y , ‖yδ − y‖ ≤ δ} = 0 (1.4)

holds. If α depends only on the noise level δ, we call it an a-priori parameter choice
rule, otherwise an a-posteriori parameter choice rule.

Naturally, we want to investigate the behavior of the error of the approximate
solution Ryδ := Rα(δ,yδ)y

δ to (1.1) obtained by a regularization method (Rα, α) for



1.1. OPTIMALITY 25

given observations yδ as the noise level δ tends to 0. To this end we define the worst
case error over a class M ⊂ X of problem instances by

err(M,R, δ) := sup
{

‖Ryδ − x†‖ : x† ∈ M, ‖Ax† − yδ‖ ≤ δ
}

and the best possible accuracy by minimizing over all numerical methods, i.e.

err(M, δ) := inf
R:Y→X

err(M,R, δ). (1.5)

Unfortunately, it is well known that if M = X the error err(M, δ) may converge to 0
arbitrarily slow for δ → 0. (cf. for example [16, Proposition 3.11, Remark 3.12]).
Convergence rates in terms of δ can thus be established only on subsets of X .

Throughout this chapter we are interested in the asymptotic behavior of err(M, δ)
as δ → 0 when the class of problem instances Mf (ρ) ⊂ X is given by

Mf(ρ) := {x ∈ X : x = f(A∗A)w, ‖w‖ ≤ ρ}. (1.6)

Mf (ρ) is called a source set and f : [0, ‖A‖2] → [0,∞) is an index function.

Definition 1.2 A function f : [0, ‖A‖2] → [0,∞) is called an index function, if it
is increasing, continuous and satisfies f(0) = 0.

In the case where the subset M ⊂ X is given by (1.6) it can be shown (cf. [58, 63])
that the infimum in (1.5) is actually attained and that

err(Mf(ρ), δ) = sup{‖x‖ : x ∈ Mf(ρ), ‖Ax‖ ≤ δ}. (1.7)

Furthermore, it is known (see Engl & Hanke & Neubauer [16] for linear and
Bakushinskii & Kokurin [7] for nonlinear inverse problems) that a so-called source
condition x† ∈Mf (ρ), that is

x† = f(A∗A)w, ‖w‖ ≤ ρ, (1.8)

is also almost necessary to prove rates of convergence. As the operator A is usu-
ally smoothing conditions in the form of (1.8) can often be interpreted as abstract
smoothness conditions for some given index function f (see for example [16, 75]).
The behavior of f near 0 determines how much smoothness of x† is required com-
pared to the smoothing properties of A∗A.

In many cases there exists an explicit formula for the right hand side of (1.7) (see for
example Ivanov & Korolyuk [43]). Following Tautenhahn [81] to derive a formula
for the right hand side of (1.7) we have to impose a further condition on the index
function f .
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Assumption 1.3 Let f ∈ C[0, ‖A‖2] be a strictly monotonically increasing index
function for which the function Φ : [0, f(‖A‖2)2] → [0, ‖A‖2f(‖A‖2)2] defined by

Φ(t) := t(f · f)−1(t) (1.9)

is convex and twice differentiable.

Under this assumption the following stability result holds true.

Lemma 1.4 Assume that the index function f satisfies Assumption 1.3 and that
x ∈Mf (ρ). Then x satisfies the stability estimate

‖x‖2 ≤ ρ2Φ−1

(‖Ax‖2

ρ2

)

= ρ2f 2

(

u−1

(‖Ax‖
ρ

))

, (1.10)

where the function u is defined by

u(λ) :=
√
λf(λ). (1.11)

Consequently,

sup{‖x‖ : x ∈Mf(ρ), ‖Ax‖ ≤ δ} ≤ ρf(u−1(δ/ρ)),

for δ ≤ ρ‖A‖f(‖A‖2).

Proof: Due to the assumptions on f and Φ the function Φ is invertible and an
application of Jensen’s inequality gives us the estimate in (1.10) (see Mair [59,
Theorem 2.10]). The equality in (1.10) is a consequence of the identity Φ−1(t2) =
f 2(u−1(t)), which follows from

Φ(f 2(u−1(t))) = f 2(ξ)(f · f)−1(f 2(ξ)) = f 2(ξ)ξ = [u(ξ)]2 = t2

with ξ = u−1(t).
�

An application of Lemma 1.4 now yields the following result:

Proposition 1.5 Assume that the index function f satisfies Assumption 1.3, and
let Φ̃ : [0, f(‖A‖2)2] → [0, ‖A‖2f(‖A‖2)2] be the largest convex function satisfy-
ing (1.9) for all t ∈ {f(λ)2 : λ ∈ σ(A∗A) ∪ {0}}. Then

sup{‖x‖ : x ∈ Mf(ρ), ‖Ax‖ ≤ δ} = ρ

√

Φ̃−1(δ2/ρ2) (1.12)

for δ ≤ ρ‖A‖f(‖A‖2), and

sup{‖x‖ : x ∈Mf (ρ), ‖Ax‖ ≤ δ} = ρf(‖A‖2)

for δ > ρ‖A‖f(‖A‖2).
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Proof: See Hohage [39, Proposition 2].
�

Proposition 1.5 together with (1.7) answers the question, what the best possible
accuracy over all numerical methods to recover x† is as the noise level δ tends to 0
provided that Assumption 1.3 holds. Motivated by this discussion we recall the
following definition (see Hohage [39, Definition 3]).

Definition 1.6 Let (Rα, α) be a regularization method for (1.1), and let Assump-
tion 1.3 be satisfied. Convergence on the source sets Mf(ρ) is said to be� optimal if

err(Mf (ρ), Rα, δ) ≤ ρf(u−1(δ/ρ)),� asymptotically optimal if

err(Mf(ρ), Rα, δ) = ρf(u−1(δ/ρ))(1 + o(1)), δ → 0,� of optimal order if there is a constant C ≥ 1 such that

err(Mf (ρ), Rα, δ) ≤ Cρf(u−1(δ/ρ))

for δ/ρ sufficiently small.

So far two classes of index functions have been discussed with major interest in the
literature. The first class leading to Hölder type source conditions is given by

f(t) := tν , 0 < ν ≤ 1. (1.13)

So-called logarithmic source conditions are described by the functions

f(t) :=

{

(− ln t)−p, 0 < t ≤ exp(−1),
0, t = 0,

p > 0. (1.14)

The former conditions are usually appropriate for mildly ill-posed problems, i.e.
finitely smoothing operators A whereas the latter conditions (where the scaling
condition ‖A‖2 ≤ exp(−1) must be imposed) lead to natural smoothness conditions
in terms of Sobolev spaces for a number of exponentially ill-posed problems. A
generalization of the latter functions were discussed by Mathé & Pereverzev [61].
For Hölder type source conditions it can be shown by direct computations that the
corresponding functions Φ defined by (1.9) are convex and twice differentiable. For
logarithmic source conditions a proof of these properties can be found in [59].

Another class of index functions, which have been considered by Hähner and Ho-
hage [29], are given by

f(t) :=

{

exp
(

−1
2
(− ln t)θ

)

, 0 < t ≤ exp(−1),
0, t = 0,

0 < θ < 1. (1.15)
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The corresponding source conditions are stronger than logarithmic, but weaker
than Hölder source conditions. The functions Φ defined in (1.9) and their second
derivatives in this case are given by

Φ(t) = t exp
(

−(− ln t)1/θ)
)

, 0 < t ≤ exp(−1),

Φ′′(t) = exp
(

(− ln t)1/θ
)

(

(− ln t)1/θ−2

θt

)(

1 − ln t+
(− ln t)1/θ − 1

θ

)

.

It is obvious that (1.15) defines an index function and that Φ′′(t) > 0 for 0 < θ < 1
and 0 < t < exp(−1).
But, to the author’s knowledge so far there exist only examples where source condi-
tions given by the index functions (1.13) and (1.14) could be interpreted as abstract
smoothness conditions.

1.2 Linear regularization methods

We now consider a class of regularization methods based on spectral theory for self-
adjoint linear operators. More precisely, we analyze regularization methods (Rα, α)
of the form

Rαy
δ := gα(A

∗A)A∗yδ (1.16)

with some functions gα ∈ C[0, ‖A‖2] depending on some regularization parame-
ter α > 0. (1.16) has to be understood in the sense of the functional calculus. For
an introduction to spectral theory for selfadjoint operators we refer to [16] and [36].
The function gα is also called a filter. Corresponding to gα we define the function

rα(t) := 1 − tgα(t), t ∈ [0, ‖A‖2]. (1.17)

Now we will study the connection between the qualification of a regularization
method specified by the function gα and properties of an index function f . To this
end we recall a definition given by Mathé and Pereverzev [61].

Definition 1.7 A family {gα}, 0 < α ≤ ‖A‖2 is called regularization, if there are
constants Cr and Cg for which

sup
0<t≤‖A‖2

|rα(t)| ≤ Cr, 0 < α ≤ ‖A‖2, (1.18)

and

sup
0<t≤‖A‖2

√
t|gα(t)| ≤

Cg√
α
, 0 < α ≤ ‖A‖2. (1.19)

The regularization is said to have qualification ξ, if

sup
0<t≤‖A‖2

|rα(t)|ξ(t) ≤ Crξ(α), 0 < α ≤ ‖A‖2,

for an increasing function ξ : (0, ‖A‖2) → R+.
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In the following theorem we show the connection between Definition 1.1 and Def-
inition 1.7. The assertion can be also found for example in [16]. To shorten the
notation we denote the reconstructions for exact and noisy data by xα := Rαy and
xδα := Rαy

δ. Hence, the reconstruction error for exact data is given by

x† − xα = (I − gα(A
∗A)A∗A)x† = rα(A

∗A)x†. (1.20)

Theorem 1.8 Assume that the family {gα} is a regularization, which additionally
satisfies

lim
α→0

rα(t) =

{

0, t > 0,
1, t = 0.

(1.21)

Then the operators Rα defined by (1.16) converge pointwise to A† on D(A†) as
α→ 0. If α is a parameter choice rule satisfying

α(δ, yδ) → 0, and δ/
√

α(δ, yδ) → 0 as δ → 0, (1.22)

then (Rα, α) is a regularization method.

Proof: Let y ∈ D(A†). Using (1.20) and condition (1.18), it follows by an applica-
tion of the functional calculus that

lim
α→0

rα(A
∗A)x† = r0(A

∗A)x†,

where r0 denotes the limit function defined by the right hand side of (1.21). Since r0
is real valued and r2

0 = r0, the operator r0(A
∗A) is an orthogonal projection. More-

over, R(r0(A
∗A)) ⊂ N(A∗A) since tr0(t) = 0 for all t. Hence,

‖r0(A∗A)x†‖2 =
〈

r0(A
∗A)x†, x†

〉

= 0 as x† ∈ N(A)⊥ = N(A∗A)⊥.

This yields
lim
α→0

‖Rαy − A†y‖2 = lim
α→0

‖rα(A∗A)x†‖2 = 0. (1.23)

Now, by the isometry of the functional calculus and (1.19) we obtain for all z ∈ Y

‖Rαz‖ = ‖A∗gα(AA∗)z‖ = ‖(AA∗)1/2gα(AA
∗)z‖ ≤ ‖

√
tgα(t)‖∞‖z‖ ≤ Cg√

α
‖z‖.

We now split the total error into the approximation and the data noise error,

‖x† − xδα‖ ≤ ‖x† − xα‖ + ‖xα − xδα‖.

Due to the first assumption in (1.22) and (1.23) we observe that the reconstruction
error ‖x† − xα‖ → 0 as δ → 0. The data noise error

‖xα − xδα‖ = ‖Rα(y − yδ)‖ ≤ Cg
δ√
α
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tends to zero by the second assumption in (1.22).
�

In a classical setting the qualification p ∈ [0,∞] of a regularization {gα} is defined
by the inequality

sup
0<t≤‖A‖2

tq|rα(t)| ≤ Cqα
q, for every 0 ≤ q ≤ p,

and some constant Cq > 0. In this case, we call this classical qualification of order
p. That is classical qualifications are special cases of the general Definition 1.7 by
using polynomials of prescribed degree.

For example, Tikhonov regularization given by the functions

gα(t) =
1

α + t

has qualification ξ(t) = t in the sense of Definition 1.7, since

|rα(t)|t =
αt

α + t
≤ α.

In the classical sense Tikhonov regularization has qualification order 1 and one
can show that this is the maximal qualification order of Tikhonov regularization.
Following [61] we now turn to study the connection between the qualification ξ of
a regularization and an index function f .

Definition 1.9 The qualification ξ covers an index function f , if there is a constant
c > 0 such that

c
ξ(α)

f(α)
≤ inf

α≤t≤‖A‖2
ξ(t)

f(t)
, 0 < α ≤ ‖A‖2.

Theorem 1.11 below illuminates the correspondence between the qualification of a
regularization method and an index function f representing the smoothing proper-
ties of the operator A∗A. The next lemma serves as a preparation.

Lemma 1.10 Let f be a non-decreasing index function and let {gα} be a regular-
ization with qualification ξ that covers f . Then

sup
0<t≤‖A‖2

|rα(t)|f(t) ≤ Cr
c
f(α), 0 < α ≤ ‖A‖2.

In particular, for Tikhonov regularization we have that Cr = 1.

Proof: See [61, Proposition 3].
�
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Theorem 1.11 Let f be an index function which satisfies Assumption 1.3 and
x† ∈ Mf (ρ). If the regularization parameter α is chosen to satisfy u(α) = δ/ρ,
where u is given by (1.11), and the regularization {gα} covers f with constant c,
then the convergence ‖xδα − x†‖ → 0 is of optimal order as δ/ρ tends to 0.

Proof: By splitting the error into the approximation and the data noise error we
can estimate using (1.8), (1.18), (1.19), (1.20) and Lemma 1.10

‖x† − xδα‖ ≤ ‖rα(A∗A)f(A∗A)w‖ + ‖gα(A∗A)A∗(y − yδ)‖
≤ ρ sup

0<t≤‖A‖2
|rα(t)| f(t) + δ sup

0<t≤‖A‖2

∣

∣

∣

√
tgα(t)

∣

∣

∣

≤ ρ
Cr
c
f(α) + δ

Cg√
α

= ρ

(

Cr
c

+ Cg

)

f(α).

Since α = u−1 (δ/ρ), the assertion follows.
�

Theorem 1.11 shows that for a source set (1.6) defined by an arbitrary index func-
tion f satisfying Assumption 1.3 regularization methods with a-priori parameter
choice rule can be constructed leading to convergence of optimal order. In the next
section we will show that convergence of optimal order can also be obtained if we
use the discrepancy principle to determine the regularization parameter.
We want to close this section with a corollary, which we will need later in the chapter
followed.

Corollary 1.12 Assume that {gα} has qualification t 7→
√
tf(t) for an index func-

tion f : [0, ‖A‖2] → [0,∞). Then {gα} has qualification t 7→ f(t).

Proof: Since {gα} has qualification t 7→
√
tf(t) the estimate

sup
0<t≤‖A‖2|

|rα(t)|
√
tf(t) ≤ Cr

√
αf(α), 0 < α ≤ ‖A‖2,

holds. The equality √
αf(α)

f(α)
= inf

α≤t≤‖A‖2

√
tf(t)

f(t)

shows that the mapping t 7→
√
tf(t) covers f with constant c = 1. An application

of Lemma 1.10 now yields

sup
0<t≤‖A‖2

|rα(t)|f(t) ≤ Crf(α), 0 < α ≤ ‖A‖2,

which proves the assertion.
�
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1.3 Discrepancy principle for linear problems

Before we analyze convergence rates of the IRGNM for nonlinear ill-posed problems
in chapter 2, we close this chapter by studying a corresponding iterative regular-
ization method for the special case of the linear ill-posed operator equation (1.1)
where the right hand side y is replaced by noisy data yδ satisfying (1.2). We as-
sume that the true solution of (1.1) satisfies a source condition, that is x† ∈Mf (ρ)
(see (1.6)) for a given index function f and a given bound ρ > 0. Motivated
by a regularized Newton method as presented in the introduction we consider the
Tikhonov-regularized solution of (1.1) defined by

xδn+1 = (γnI + A∗A)−1A∗yδ. (1.24)

The iterates (1.24) correspond to the iterates of the IRGNM applied to (1.1) with
initial guess x0 = 0. Here (γn) is a fixed sequence satisfying

lim
n→∞

γn = 0 and 1 ≤ γn
γn+1

≤ γ (1.25)

for some γ > 1.
Dealing with ill-posed problems the choice of some data-dependent stopping rule is
an important issue. On the one hand the iteration should not stop too early. In
this case a better reconstruction out of noisy data yδ can be computed. On the
other hand the stopping index should not be too large, since typically the iterations
deteriorate quite rapidly. We consider as stopping rule the well-known Morozov
discrepancy principle, i.e. we stop the iteration at the first index N , for which the
residual ‖AxδN − yδ‖ satisfies

‖AxδN − yδ‖ ≤ τδ < ‖Axδn − yδ‖, 0 ≤ n < N, (1.26)

for a fixed parameter τ > 1. In the last years also Lepskij-type stopping rules have
been considered (see [8]).
Our aim is to show that in the linear case the discrepancy principle yields optimal
rates of convergence for a certain class of index functions. This result was originally
published in [62]. We will prove it here in a different way based on Assumption
1.3 and Lemma 1.4, that is for a class of index functions that guarantees inequality
(1.10). Our intention is to illustrate in the linear case the main idea to prove
convergence rates of the IRGNM in the nonlinear case, which will be treated in the
next chapter.

To prove optimal rates of convergence we first have to formulate some additional
assumptions on the index function f . To shorten the notation we make the defini-
tions

gn(λ) :=
1

γn + λ
, and rn(λ) := 1 − λgn(λ). (1.27)
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Note that xδn+1 = gn(A
∗A)A∗yδ. So gn denotes the filter corresponding to Tikhonov

regularization. To formulate our convergence result for general source conditions as
presented in Sections 1.1 and 1.2, we assume that the regularization additionally
satisfies the inequality

sup
0<λ≤‖F ′[x†]‖2

|rn(λ)|
√
λf(λ) ≤ cf

√
γnf(γn), n ∈ N0, (1.28a)

that is it has the qualification t 7→
√
tf(t). We further assume that

f(γλ)

f(λ)
≤ Cf for all λ ∈ (0, ‖A‖2/γ]. (1.28b)

The class of index function determined by (1.28) and (1.28b) corresponds to the
index function class Fcf ,Cf

defined in [61]. Note, as in the proof of Theorem 1.11
with the help of (1.16), (1.20) and (1.8) we can decompose the total error x† − xδn
into the approximation error eapp

n+1 and the data noise error enoi
n+1, more precisely

x† − xδn = eapp
n+1 + enoi

n+1,

where

eapp
n+1 := rn(A

∗A)f(A∗A)w, (1.29a)

enoi
n+1 := gn(A

∗A)A∗(yδ − y). (1.29b)

We now state the main theorem establishing optimal rates of convergence for the
final iterates xδN produced by the sequence (1.24), where the stopping index N is
determined by the discrepancy principle. A similar result can be found in [62].

Theorem 1.13 Assume that Ax† = y, x† ∈Mf (ρ), and that (1.2), (1.25), (1.28a),
(1.28b) and Assumption 1.3 hold. Let xδn be defined by (1.24), and let N ≥ 1 be
determined by the discrepancy principle (1.26). (N ≥ 1 implies that γ0 must be
sufficiently large.) Then

‖xδN − x†‖ ≤ Cρf

(

u−1

(

δ

ρ

))

for δ/ρ ≤ ‖A‖, i.e. the convergence ‖xδN − x†‖ → 0 as the noise level δ tends to 0
is of optimal order in the sense of Definition 1.6.

Proof: It is our goal to prove for the error components eapp
n+1 and enoi

n+1 the predicted
behavior as δ/ρ→ 0 separately. To prove this behavior for eapp

n+1 the observation

rn(A
∗A)x† = f(A∗A)rn(A

∗A)w ∈Mf (ρ)
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is crucial, since it implies that eapp
n+1 satisfies a source condition. Hence, we can apply

inequality (1.10) to obtain

‖eapp
n+1‖ ≤ ρf

(

u−1

(‖Aeapp
n+1‖
ρ

))

. (1.30)

By (1.29b) and the definition of r we have the estimate

‖Aenoi
n+1 − (yδ − y)‖ = ‖Agn(A∗A)A∗(yδ − y) − (yδ − y)‖

= ‖rn(AA∗)(yδ − y)‖ ≤ δ,

which in the case N = n + 1 leads to

‖Aeapp
N ‖ ≤ ‖yδ − AxδN‖ + ‖AxδN − yδ + Aeapp

N ‖
= ‖yδ − AxδN‖ + ‖AgN−1(A

∗A)A∗yδ − yδ + A(I −A∗AgN−1(A
∗A))x†‖

= ‖yδ − AxδN‖ + ‖AgN−1(A
∗A)A∗yδ − yδ + y −AgN−1(A

∗A))A∗y‖
= ‖yδ − AxδN‖ + ‖Aenoi

N − (yδ − y)‖
≤ ‖yδ − AxδN‖ + δ ≤ (τ + 1)δ,

where we have used (1.29a), (1.29b), (1.24) and (1.26). Hence, inserting this into
(1.30) it follows by an application of the inequality

f

(

u−1

(

t
δ

ρ

))

≤ tf

(

u−1

(

δ

ρ

))

, t ≥ 1, (1.31)

which is due to the concavity of f ◦ u−1, that

‖eapp
N ‖ ≤ ρf

(

u−1

(

(τ + 1)δ

ρ

))

≤ (τ + 1)f

(

u−1

(

δ

ρ

))

. (1.32)

We continue by estimating ‖enoi
N ‖. Since, by (1.2) and (1.29b)

‖enoi
N ‖ ≤ ‖gN−1(A

∗A)A∗‖δ = ‖(γN−1I + A∗A)−1A∗‖δ ≤ δ

2
√
γN−1

,

in order to prove the assertion we need to show that

δ√
γN−1

≤ Cρf

(

u−1

(

δ

ρ

))

with a constant C > 0. Using the triangle inequality and (1.26) it follows

‖Aeapp
N−1‖ ≥ ‖yδ −AxδN−1‖ − ‖Aenoi

N−1 − (yδ − y)‖
> τδ − δ = (τ − 1)δ.
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Therefore, (1.25), (1.29a) and assumptions (1.28a) and (1.28b) imply

δ <
‖Aeapp

N−1‖
(τ − 1)

=
‖(A∗A)1/2rN−2(A

∗A)f(A∗A)w‖
(τ − 1)

≤ cf
(τ − 1)

u(γN−2)ρ ≤
cfCfγ

(τ − 1)
u(γN−1)ρ, (1.33)

which yields

u−1

((

τ − 1

cfCfγ

)(

δ

ρ

))

≤ γN−1. (1.34)

Therefore,

δ√
γN−1

= ρ

(

cfCfγ

τ − 1

) u
(

u−1
((

τ−1
cfCfγ

)(

δ
ρ

)))

√
γN−1

= ρ

(

cfCfγ

τ − 1

)

√

√

√

√

u−1
((

τ−1
cfCfγ

)(

δ
ρ

))

γN−1
f

(

u−1

((

τ − 1

cfCfγ

)(

δ

ρ

)))

≤ ρ

(

cfCfγ

τ − 1

)

f

(

u−1

(

max

{

τ − 1

cfCfγ
, 1

}(

δ

ρ

)))

≤ ρ

(

cfCfγ

τ − 1

)

max

{

τ − 1

cfCfγ
, 1

}

f

(

u−1

(

δ

ρ

))

= max

{

1,
cfCfγ

τ − 1

}

ρf

(

u−1

(

δ

ρ

))

.

In the second line we have used the definition of u (see (1.11)), in the third line
inequality (1.34) and the monotonicity of f ◦ u−1, and in the fourth line inequality
(1.31). Altogether we have proved

‖xδN − x†‖ ≤
(

τ + 1 +
1

2
max

{

1,
cfCfγ

τ − 1

})

ρf

(

u−1

(

δ

ρ

))

,

which shows the assertion.
�

Remark 1.14 The assertion of Theorem 1.13 is not restricted to Tikhonov regular-
ization. The result remains true for any regularization {gα} satisfying ‖rα‖∞ ≤ 1,
since we can always split the total error into the approximation error and the data
noise error.
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We will discuss the main points of the proof of Theorem 1.13 at the beginning of
Section 2.3 since it includes the main ideas to treat the nonlinear case, which is
inherently more difficult.

We can conclude from inequality (1.33) an upper bound for the total number of
steps until the stopping criterion is satisfied given noisy data yδ with noise level
δ > 0.

Corollary 1.15 Let the assumptions of Theorem 1.13 hold. If δ > 0 and the
regularization parameters γn are chosen by

γn = γ0γ
−n, n = 0, 1, 2, . . . ,

then the stopping index is finite and we have N = O(− ln(u−1(δ/ρ))), δ/ρ → 0.
The function u is given by (1.11).

Proof: From inequality (1.33) we conclude

δ

ρ
≤ Cu(γN−1) (1.35)

with some constant C > 0 and for δ/ρ > 0. Hence, the stopping index is finite with

N = O

(

− ln

(

u−1

(

δ

ρ

)))

for the choice γn = γ0γ
−n.

�



Chapter 2

Convergence analysis of an

inexact iteratively regularized

Gauss-Newton method under

general source conditions

In Chapter 1 we presented some of the main results of the classical theory for
linear ill-posed problems dealing with error estimates for approximate solutions for
a certain data noise level δ > 0. In particular we have reviewed the convergence of
linear regularization methods under source conditions with general index functions
as studied in a series of articles starting with the work of Mathé & Pereverzev [61].
From this point of view the theory dealing with linear ill-posed problems is rather
complete.

For nonlinear ill-posed problems iterative regularization methods have been estab-
lished to construct a stable approximation to the true solution given only noisy
data. In the past a lot of iterative regularization methods have been investigated
under either Hölder source conditions or logarithmic source conditions. For these
source conditions often convergence rate results could be shown. But so far no
convergence rate results have been proven for these methods under general source
conditions, that is the source sets are determined by an index function.

It is the topic of this chapter to obtain convergence and convergence rate results
for the iteratively regularized Gauss-Newton method (IRGNM) under such general
source conditions where the stopping index is determined by the discrepancy prin-
ciple. Moreover, we will prove under these conditions and for an a-priori stopping
rule convergence rates of optimal order. Furthermore, our proof involves the realis-
tic assumption that in each Newton step the linearized equation cannot be solved
exactly, an important issue which has also not been considered so far. The approx-
imate solution of the linearized equation will be the topic of the following chapters
of this thesis.

37
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This chapter is organized as follows: in Section 2.1 we give a precise description
of the abstract mathematical setting suited for this topic. Moreover, we give a
short outlook and characterization of some other methods to solve nonlinear ill-
posed problems. The Sections 2.2 and 2.3 deal with the rather technical proof of
convergence and convergence rates for the IRGNM. In Section 2.3 we will show
that the discrepancy principle leads to order optimal rates of convergence under
the usual conditions concerning the finite qualification of Tikhonov regularization.
This result can be interpreted as generalization of Theorem 1.13.

2.1 Iterative regularization methods for nonlin-

ear ill-posed problems

Let us consider a nonlinear, ill-posed operator equation

F (x) = y, (2.1)

where the operator F : D(F ) → Y is injective and continuously Fréchet differ-
entiable on its domain D(F ) ⊂ X . We assume that there exists an x† ∈ D(F )
with

F (x†) = y (2.2)

and that only noisy data yδ ∈ Y are available satisfying

‖yδ − y‖ ≤ δ (2.3)

with known noise level δ > 0.

Definition 2.1 An iterative method xδn+1 := Φ(xδn, . . . , x
δ
1, x0, y

δ) together with a
stopping rule N = N(δ, yδ) is called an iterative regularization method for F if for
all x† ∈ D(F ), all yδ satisfying (2.3), and all initial guesses x0 sufficiently close to
x† the following conditions hold:

a) xδn is well defined for n = 1, . . . , N and N <∞ for δ > 0.

b) For exact data (δ = 0) either N <∞ and xδN = x† or N = ∞ and

‖xn − x†‖ → 0, n→ ∞.

c) The following regularization property holds:

sup
‖yδ−y‖≤δ

‖xδN − x†‖ → 0, δ → 0.
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As in the linear case for a given arbitrary iterative method Φ together with a
stopping rule, convergence of ‖xδN − x†‖ → 0 as the noise level δ → 0 may be
arbitrarily slow unless a source condition is satisfied. For nonlinear problems these
conditions have the form

x0 − x† = f(F ′[x†]∗F ′[x†])w, (2.4)

where f : [0, ‖F ′[x†]‖2] → [0,∞) is again considered to be an index function, and
w ∈ X is ’small’, i.e. ‖w‖ ≤ ρ for a ρ > 0. Analogous to the linear case, F ′[x†]
is usually smoothing and (2.4) can be often interpreted as an abstract smoothness
condition (see for example [37, 44]).

We want to investigate the behavior of the error, which is committed by approxi-
mating the solution of (2.1) by a given iterative regularization method given noisy
data yδ as the noise level δ tends to 0. To this end by a similar approach as in the
linear case we define the worst case error

err(Nf(ρ), (Φ, N), δ, x0) := sup
{

‖xδN(δ,yδ)−x†‖ :x0−x† ∈Nf (ρ), ‖F (x†)−yδ‖ ≤ δ
}

,

where the source set is given by

Nf(ρ) :=
{

x0 − x ∈ X : x0 − x = f(F ′[x†]∗F ′[x†])w, ‖w‖ ≤ ρ
}

.

Unfortunately, in the nonlinear case no explicit characterization of the best possible
accuracy is known in general. However, since for a linear problem the best possible
accuracy is given by (1.12), we cannot expect better accuracies for nonlinear prob-
lems as it should subsume the linear case. Hence, when speaking of convergence of
optimal order for an iterative regularization method for a nonlinear ill-posed prob-
lem this concept is understood as in the linear case. In [5] the necessity of the source
condition (2.4) to obtain certain rates of convergence has been discussed even for
nonlinear problems.

Corresponding to the iterative method (1.24) for a linear ill-posed problem also
for nonlinear ill-posed problems the choice of some data-dependent stopping rule is
an important issue, in particular for iterative regularization methods. Convergence
results for some iterative regularization methods have been established for both
a-priori and a-posteriori stopping rules (see Hohage [38] and Kaltenbacher [44]).
Therefore, we also consider both an a-priori and an a-posteriori stopping criterion.
In the a-priori case we stop the iteration at the first index N for which the condition

η
√
γNf(γN) < δ ≤ η

√
γnf(γn), 0 ≤ n < N, (2.5a)

is satisfied. Here η is a sufficiently small constant. As a-posteriori stopping rule
we consider again Morozov’s discrepancy principle, i.e. we stop the iteration at the
first index N , for which the residual ‖F (xδN) − yδ‖ satisfies

‖F (xδN) − yδ‖ ≤ τδ < ‖F (xδn) − yδ‖, 0 ≤ n < N, (2.5b)
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for a fixed parameter τ > 1. Note that the a-priori stopping criterion (2.5a) in
general is not realistic since usually the index function f is unknown.

Before we characterize the IRGNM, let us briefly recall some other examples of
regularization methods for solving nonlinear ill-posed problems.

A straightforward generalization of linear Tikhonov regularization leads to the min-
imization problem

‖F (x) − yδ‖2 + γT ikh‖x− x0‖2 = min!

over x ∈ D(F ). Here γT ikh > 0 denotes the regularization parameter and x0 is
some initial guess for x†. Neubauer [68] has proved convergence of optimal order
for nonlinear Tikhonov regularization under a Lipschitz-condition on the Fréchet
derivative of F and Hölder source conditions for ν ∈ [1/2, 1]. Details of this method
can be found in [16, chapter 10].

One can also apply Landweber iteration to a nonlinear, ill-posed problem. The
iterations are defined by the formula

xδn+1 := xδn + µF ′[xδn]
∗ (yδ − F (xδn)

)

,

where µ is a scaling parameter that has to be chosen such that ‖F ′[x]‖ ≤ 1/µ for
all x in a neighborhood of x†. In [33] Hanke, Neubauer & Scherzer have proved
that Landweber iteration together with the discrepancy principle as stopping rule
is an iterative regularization method under certain conditions. It is well known that
the convergence of Landweber iteration is very slow. However, Egger & Neubauer
[15] have shown that the number of steps Landweber iteration requires to match
an appropriate stopping criterion can be significantly reduced by considering the
modified Landweber iteration

xδn+1 := xδn + L−2sF ′[xδn]
∗ (yδ − F (xδn)

)

,

where L is a densely defined, unbounded, self-adjoint, and strictly positive operator
in X . By choosing s ≤ 0 the operator L−2s acts as a preconditioner for the smooth-
ing operator F ′[xδn]

∗ yielding a significant reduction in the number of iterations
needed to satisfy the stopping criterion.

To iteratively compute an approximation to x† it is also popular to apply Newton’s
method to the nonlinear equation F (x) = yδ, i.e. to replace the nonlinear operator
equation in the n-th step by the linearized equation

F ′[xδn]hn = yδ − F (xδn), n = 0, 1, 2, . . . , (2.6)

where hn denotes the update hn = xδn+1−xδn. Since in general the linearized equation
inherits the ill-posedness of the equation F (x) = y, some sort of regularization has to
be employed. In principle any regularization method for linear ill-posed problems
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can be used to compute a stable solution to the linearized equation. Tikhonov
regularization with regularization parameter γn > 0 leads to the iteration formula

xδn+1 = xδn +
(

γnI + F ′[xδn]
∗F ′[xδn]

)−1
F ′[xδn]

∗ (yδ − F (xδn)
)

. (2.7)

This method is known as the Levenberg-Marquardt algorithm. For a detailed anal-
ysis of this algorithm we refer to Hanke [30].

An alternative approach is to apply an iterative method such as Landweber iter-
ation, ν-method or CGNE directly to (2.6) and use the regularizing properties of
such methods with early stopping (see Bakushinskii [6], Kaltenbacher [45], Rieder
[74, 76], Hanke [31]). Choosing for example CGNE means that in each Newton step
the normal equation

F ′[xδn]
∗F ′[xδn]hn = F ′[xδn]

∗(yδ − F (xδn))

is solved using the conjugate gradient method with an appropriate stopping rule.
This exploits the well known regularizing properties of the conjugate gradient
method (see [16, chapter 7]). This algorithm is called Newton-CG method.

However, for linear regularization methods the number of inner iterations typically
grows exponentially with the Newton step. For the Newton-CG method no conver-
gence rate results are available so far for weak source conditions (e.g. logarithmic
and Hölder with small ν), and experimentally one often observes a slow-down of
the convergence after some good progress in the initial phase.

Another class of iterative regularization methods, which we will consider in the
rest of this chapter, is given by applying Tikhonov regularization with initial guess
x0 − xδn to the Newton equation (2.6). This idea leads for n = 0, 1, 2, . . . to the
regularized equations

(γnI + F ′[xδn]
∗F ′[xδn])hn = F ′[xδn]

∗(yδ − F (xδn)) + γn(x0 − xδn), (2.8)

where γn is the regularization parameter. This algorithm is called iteratively reg-
ularized Gauss-Newton method (IRGNM) and was first studied by Bakushinskii
[5]. In our case (γn) is a fixed sequence satisfying (1.25). As mentioned above, we
consider the iteration in combination with the stopping rule (2.5a) or (2.5b). For
both stopping criteria we will establish convergence of optimal order under general
source conditions.

2.2 Convergence of the IRGNM with a-priori stop-

ping rule

So far the convergence of the IRGNM has been studied under Hölder type source
conditions (1.13) (see Bakushinskii [5] and Kaltenbacher, Neubauer & Scherzer
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[9]) and logarithmic source conditions (1.14) (see Hohage [37]). Prior to [61] the
IRGNM under general source conditions has been investigated by Deuflhard, Engl
& Scherzer [14], but no rates of convergence as the noise level δ tends to 0 have
been established.

Moreover, up to the present convergence proofs for the iteratively regularized Gauss-
Newton method have assumed that the linear equations (2.8) are solved exactly in
each Newton step (see [5, 9, 37]). For large scale problems this is unrealistic. One
usually computes just an approximation

happ
n ≈ (γnI + F ′[xδn]

∗F ′[xδn])
−1
(

F ′[xδn]
∗(yδ − F (xδn)) + γn(x0 − xδn)

)

(2.9)

in each Newton step. It is our goal to formulate conditions under which this addi-
tional error does not impair the rate of convergence.

We will show in section 4.2 that the conjugate gradient method applied to (2.8)
satisfies the assumptions of our convergence analysis for an appropriate stopping
criterion. The CG-method has been shown to be an efficient choice for large scale,
exponentially ill-posed problems, especially in combination with a preconditioner
(see [40]), but in principle our convergence analysis applies to any iterative method.

To prove convergence and convergence rate results for the IRGNM the index func-
tion f and the operator F have to satisfy additional requirements formulated in the
following. To this end recall the definition (1.27) of the functions gn and rn, n ∈ N0.
To shorten the notation we make the definitions

A := F ′[x†] and An := F ′[xδn].

As in the linear we assume that the index function f satisfies the additional as-
sumptions (1.28a) and (1.28b) and furthermore, w.l.o.g. that

f(λ) ≤ 1 for all λ ∈ (0, ‖A‖2]. (2.10a)

Moreover, we assume that the scaling condition ‖A‖2 ≤ 1 is satisfied and that the
initial regularization parameter satisfies γ0 ≤ ‖A‖2. For example, for logarithmic
source conditions usually the condition ‖A‖2 ≤ 1/ exp(−1) must be imposed. An
application of Corollary 1.12 shows that (1.28a) implies

sup
0<λ≤‖F ′[x†]‖2

|rn(λ)|f(λ) ≤ cff(γn), n ∈ N0. (2.10b)

We will discuss the classes of index functions defined in (1.13) and (1.14) at the end
of this chapter.
As in [9, 37, 44] our analysis relies heavily on a local factorization of the operator
F . We assume that for all x̄, x ∈ B(x†, E) := {x : ‖x − x†‖ ≤ E}, E > 0, there
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exist linear operators R(x̄, x) ∈ L(Y ,Y) and Q(x̄, x) ∈ L(X ,Y) such that

F ′[x̄] = R(x̄, x)F ′[x] +Q(x̄, x) (2.11a)

‖I −R(x̄, x)‖ ≤ CR (2.11b)

‖Q(x̄, x)‖ ≤ CQ‖F ′[x†](x̄− x)‖ (2.11c)

for all x̄, x ∈ B(x†, E).

By xδn+1 we denote the computed new iterate and by xδ,exc
n+1 the new iterate for the

exact update, i.e.
xδn+1 = xδn + happ

n , xδ,exc
n+1 = xδn + hn. (2.12)

Hence, the computed new iterate can be written as

xδn+1 = xδn + happ
n = xδ,exc

n+1 + (happ
n − hn).

A straightforward computation shows that the total error en := xδn − x† for the
iteratively regularized Gauss-Newton method can be decomposed into

eapp
n+1 := rn(A

∗A)f(A∗A)w, (2.13a)

enoi
n+1 := gn(A

∗
nAn)A

∗
n(y

δ − y), (2.13b)

enl
n+1 := (rn(A

∗
nAn) − rn(A

∗A)) f(A∗A)w, (2.13c)

etayn+1 := gn(A
∗
nAn)A

∗
n(F (x†) − F (xδn) + Anen), (2.13d)

elsn+1 := happ
n − hn. (2.13e)

Here eapp
n is the linear approximation error, enoi

n is the propagated data noise error,
etayn involves the Taylor remainder, enl

n describes the nonlinearity effect that An 6= A
in general and elsn is the error caused by the approximate solution of the linear
system.
In the following lemma we prove important estimates for the error components
(2.13a)–(2.13d) and for their images under A. These estimates are already implicitly
contained in [9] for the special case f(t) = tν .

Lemma 2.2 Assume that (1.28), (2.2), (2.3), (2.4), (2.10) – (2.12) and ‖en‖ ≤ E
hold. Then the following estimates hold for the error components defined above

‖eapp
n+1‖ ≤ cff(γn)ρ (2.14a)

‖enoi
n+1‖ ≤ 1

2
√
γn
δ (2.14b)

‖enl
n+1‖ ≤ CR

‖Aeapp
n+1‖√
γn

+
3cf
2
CQ

‖Aen‖√
γn

f(γn)ρ (2.14c)

‖etayn+1‖ ≤ 1

2
√
γn

(

2CR +
3

2
CQ‖en‖

)

‖Aen‖ (2.14d)
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and for their images under A

‖Aeapp
n+1‖ ≤ cf

√
γnf(γn)ρ (2.15a)

‖Aenoi
n+1‖ ≤

(

CR + 1 + CQ
‖Aen‖
2
√
γn

)

δ (2.15b)

‖Aenl
n+1‖ ≤

[

2CR‖Aeapp
n+1‖ + CQ‖eapp

n+1‖‖Aen‖ +
‖Aeapp

n+1‖
2
√
γn

CQ‖Aen‖
]

·(CR + 1) + CQ‖Aen‖‖enl
n+1‖ (2.15c)

‖Aetayn+1‖ ≤
(

CR + 1 + CQ
‖Aen‖
2
√
γn

)(

2CR +
3

2
‖en‖CQ

)

‖Aen‖. (2.15d)

Proof: (2.14a) follows from (2.10b) and the isometry of the functional calcu-
lus. The proof of (2.15a) is analogous and uses (1.28a) and the identity ‖Az‖ =
‖(A∗A)1/2z‖, which holds for all z ∈ X .
The proofs of the other estimates formulated in the lemma are rather lengthy, but
the calculations are straightforward. We will make frequent use of the conditions
(2.11) postulated on the nonlinear operator F . To shorten the notation we define
the operators T := (γnI + A∗A) and Tn := (γnI + A∗nAn). Note that the operator
T corresponds to the filter function gn defined above. Now recall the important
estimates

‖T−1
n A∗n‖ ≤ 1

2
√
γn
, ‖AnT−1

n ‖ ≤ 1

2
√
γn
, (2.16)

‖T−1
n ‖ ≤ 1

γn
, ‖AnT−1

n A∗n‖ ≤ 1. (2.17)

Then (2.14b) follows directly from (2.16), and (2.15b) is a consequence of

‖Aenoi
n+1‖ ≤ ‖R(x†, xδn)AnT

−1
n A∗n(y

δ − y)‖ + ‖Q(x†, xδn)T
−1
n A∗n(y

δ − y)‖

≤
(

(CR + 1) + CQ
‖Aen‖
2
√
γn

)

δ,

where we have used (2.11). For the following note the important equality

eapp
n+1 = γnT

−1f(A∗A)w.
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To show (2.14c) we estimate

‖enl
n+1‖ = ‖γnT−1

n (A∗A− A∗nAn)T
−1f(A∗A)w‖

= ‖γnT−1
n [A∗n(R(x†, xδn)

∗ − R(xδn, x
†))A

+Q(x†, xδn)
∗A−A∗nQ(xδn, x

†)]T−1f(A∗A)w‖
≤ ‖T−1

n A∗n‖‖R(x†, xδn)
∗ − R(xδn, x

†)‖‖γnAT−1f(A∗A)w‖
+‖γnT−1

n Q(x†, xδn)
∗AT−1f(A∗A)w‖

+‖γnT−1
n A∗nQ(xδn, x

†)T−1f(A∗A)w‖
≤ 1

2
√
γn

2CR‖Aeapp
n+1‖ +

1

γn
CQ‖Aen‖‖Aeapp

n+1‖

+
1

2
√
γn
CQ‖Aen‖‖eapp

n+1‖

≤ CR
‖Aeapp

n+1‖√
γn

+
3cf
2
CQ

‖Aen‖√
γn

f(γn)ρ.

(2.15c) follows from

‖Aenl
n+1‖ = ‖γnAT−1

n (A∗A−A∗nAn)T
−1f(A∗A)w‖

≤ ‖γnR(x†, xδn)AnT
−1
n (A∗A− A∗nAn)T

−1f(A∗A)w‖
+‖γnQ(x†, xδn)T

−1
n (A∗A− A∗nAn)T

−1f(A∗A)w‖
≤ ‖γnR(x†, xδn)AnT

−1
n [A∗n(R(x†, xδn)

∗ − R(xδn, x
†))A

+Q(x†, xδn)
∗A− A∗nQ(xδn, x

†)]T−1f(A∗A)w‖ + CQ‖Aen‖‖enl
n+1‖

≤ (CR + 1)

[

2CR‖Aeapp
n+1‖ +

‖Aeapp
n+1‖

2
√
γn

CQ‖Aen‖ + CQ‖Aen‖‖eapp
n+1‖

]

+CQ‖Aen‖‖enl
n+1‖.

To show (2.14d) we estimate

∥

∥

∥

∥

∫ 1

0

(

An − F ′[x† + ten]
)

en dt

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ 1

0

(

R(xδn, x
†)A+Q(xδn, x

†)

− R(x† + ten, x
†)A−Q(x† + ten, x

†)
)

en dt
∥

∥

≤
∫ 1

0

∥

∥

(

R(xδn, x
†) − R(x† + ten, x

†)
)

Aen
∥

∥ dt

+

∫ 1

0

∥

∥

(

Q(xδn, x
†) −Q(x† + ten, x

†)
)

en
∥

∥ dt

≤
(

2CR +
3

2
CQ‖en‖

)

‖Aen‖.

This and (2.16) proves (2.14d).
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(2.15d) follows from

‖Aetayn+1‖ = ‖AT−1
n A∗n(F (x†) − F (xδn) + Anen)‖

≤ ‖(R(x†, xδn))AnT
−1
n A∗n(F (x†) − F (xδn) + Anen)‖

+‖Q(x†, xδn)T
−1
n A∗n(F (x†) − F (xδn) + Anen)‖

≤
(

CR + 1 + CQ
‖Aen‖
2
√
γn

)(

2CR +
3

2
CQ‖en‖

)

‖Aen‖.

�

Lemma 2.3 Assume that (1.28), (2.2), (2.3), (2.4), (2.10) – (2.12), (2.5b) and
‖en‖ ≤ E are satisfied for 0 ≤ n < N and for some sufficiently large τ > 1. Then
the inequalities

‖en+1‖ ≤ ‖elsn+1‖ + (cf + CRcf)ρf(γn) +
c

CQ

‖Aen‖√
γn

, (2.18)

‖Aen+1‖ ≤ ‖Aelsn+1‖ + a‖Aeapp
n+1‖ + b‖Aen‖ +

c√
γn

‖Aen‖2, (2.19)

a‖Aeapp
n+1‖ ≤ ‖Aelsn+1‖ + ‖Aen+1‖ + b‖Aen‖ +

c√
γn

‖Aen‖2 (2.20)

with constants

a := 1 + 2CR(CR + 1), a := 1 − 2CR(CR + 1),

b := (CR + 1)

(

1 + CR + 1
2
ECQ

τ − 1
+

(

2CR +
3

2
ECQ

)

+ CQ
3cf
2
ρ

)

+ CQCRcfρ,

c := CQ

(

1 + CR + 1
2
ECQ

2(τ − 1)
+

3cf
2
CQρ+

1

2

(

2CR +
3

2
ECQ

))

hold. (Note that a > 0 if CR is sufficiently small.) In the case where we replace the
discrepancy principle (2.5b) by the a-priori stopping rule (2.5a) the inequalities

‖en+1‖ ≤ âf(γn) + b̂
‖Aen‖√
γn

, (2.21)

‖Aen+1‖ ≤ ‖Aelsn+1‖ + ã
√
γnf(γn) + b̃‖Aen‖ +

c̃√
γn

‖Aen‖2 (2.22)

are satisfied where the constants â, b̂, ã, b̃ and c̃ are given by

â := cfρ+
1

2
η + CRcfρ, b̂ :=

3cf
2
CQρ+

1

2

(

2CR +
3

2
CQE

)

,

ã := cfρ+ (CR + 1)(η + 2CRcfρ),

b̃ :=
CQ
2
η + (CR + 1)

(

2CR +
3

2
ECQ + CQ

3cf
2
ρ

)

+ CQCRcfρ,

c̃ := CQ

(

3cf
2
CQρ+ CR +

3

2
ECQ

)

.
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Proof: Notice that from (2.11) and (2.5b) we obtain

τδ ≤ ‖F (xδn) − F (x†) + y − yδ‖

≤
∥

∥

∥

∥

∫ 1

0

F ′[x† + ten]en dt

∥

∥

∥

∥

+ δ

=

∥

∥

∥

∥

∫ 1

0

(

R(x† + ten, x
†)A+Q(x† + ten, x

†)
)

en dt

∥

∥

∥

∥

+ δ

≤
(

CR + 1 +
1

2
‖en‖CQ

)

‖Aen‖ + δ

and thus

δ ≤ 1

τ − 1

(

CR + 1 +
1

2
ECQ

)

‖Aen‖. (2.23)

Then the sum of the estimates (2.14) together with (2.23) leads to inequality (2.18),
where we have also used (2.10a). Analogously the sum of the estimates (2.15)
together with the estimates (2.14) and (2.23) leads to inequality (2.19). By an
application of (2.5a) as above the sum of the estimates (2.14) and (2.15) yields
(2.21) and (2.22). To show (2.20) we use the equality

Aeapp
n+1 + Aenl

n+1 = Aen+1 −Aenoi
n+1 −Aetayn+1 − Aelsn+1.

Writing

Aenl
n+1 = γnR(x†, xδn)AnT

−1
n

[

A∗n(R(x†, xδn)
∗ − R(xδn, x

†))A
]

T−1f(A∗A)w

+γnR(x†, xδn)AnT
−1
n

[

Q(x†, xδn)
∗A−A∗nQ(xδn, x

†)
]

T−1f(A∗A)w

+Q(x†, xδn)e
nl
n+1

we get

Aeapp
n+1 + γnR(x†, xδn)AnT

−1
n

[

A∗n(R(x†, xδn)
∗ −R(xδn, x

†))A
]

T−1f(A∗A)w

= −γnR(x†, xδn)AnT
−1
n

[

Q(x†, xδn)
∗A− A∗nQ(xδn, x

†)
]

T−1f(A∗A)w

−Q(x†, xδn)e
nl
n+1 + Aen+1 −Aenoi

n+1 −Aetayn+1 − Aelsn+1.

Now the assertion follows by estimating, and by using the second triangle inequality
on the left hand side.

�

With these lemmas we can prove the following convergence result. A similar result
has been shown in [14] for the special case Cls = 0 and under a different nonlinearity
condition on the operator F .
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Proposition 2.4 Let (1.28), (2.2), (2.3), (2.4), (2.10) and (2.11) hold. Assume
that the error elsn+1 and its image F ′[xδn]e

ls
n+1 satisfy

‖elsn+1‖ ≤ Clsf(γn), 0 ≤ n < N, (2.24a)

‖F ′[xδn]elsn+1‖ ≤ Cls
√
γnf(γn), 0 ≤ n < N, (2.24b)

and that CR, CQ, Cls, γ, 1/γ0 and ρ are sufficiently small. Then there exists E > 0
such that the inexact Gauss-Newton iterates xδn, 0 ≤ n ≤ N , given by (2.12) are
well defined for every x0 ∈ D(F ) satisfying

‖x0 − x†‖ ≤ E (2.25)

if the stopping index N = N(δ, yδ) is determined by either (2.5a) or (2.5b). More-
over,

‖xδn − x†‖ = O(f(γn)) for 1 ≤ n ≤ N (2.26)

and for exact data, that is δ = 0, either N < ∞ and xδN = x† or N = ∞ and
‖xδn − x†‖ → 0, n→ ∞. Conditions specifying ”sufficiently small” are given in the
proof.

Proof: We will use an induction argument to prove for θn and Ci
θ, i = 1, 2, defined

by

θn :=
‖Aen‖
u(γn)

, Ci
θ := max

{

θ0,
2ai

1 − bi +
√

(1 − bi)2 − 4aici

}

with constants

a1 :=
√
γCf(ã+ (CR + 1)Cls),

b1 :=
√
γCf(b̃+ CQCls),

c1 :=
√
γCf c̃,

a2 :=
√
γCf(cfρa + Cls(CR + 1)),

b2 :=
√
γCf(b+ CQCls),

c2 :=
√
γCfc

that for 0 ≤ n ≤ N the estimates

θn ≤ Ci
θ, i = 1, 2, (2.27a)

‖en‖ ≤ E. (2.27b)

hold true. The case i = 1 corresponds to the case where the stopping criterion is
determined by (2.5a), the case i = 2 where the iteration is stopped by (2.5b).
Notice that (2.27b) implies xδn ∈ B(x†, E). Hence, if (2.27) is true for some n ∈
{0, 1, . . . , N − 1}, the estimate (2.19) or (2.22) holds. From (2.24a) and (2.24b)
using (2.11) and (2.10a) we get

‖Aelsn+1‖ ≤ ‖R(x†, xδn)F
′[xδn]e

ls
n+1‖ + ‖Q(x†, xδn)‖‖elsn+1‖

≤ (CR + 1)Cls
√
γnf(γn) + CQCls‖Aen‖. (2.28)
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From (1.25) and (1.28b) the estimates

√
γn√
γn+1

≤ √
γ and

f(γn)

f(γn+1)
≤ f(γγn+1)

f(γn+1)
≤ Cf

follow, yielding
√
γnf(γn)√

γn+1f(γn+1)
≤ √

γCf ,

‖Aen‖√
γn+1f(γn+1)

=

√
γnf(γn)√

γn+1f(γn+1)

‖Aen‖√
γnf(γn)

≤ √
γCfθn,

‖Aen‖2

√
γn
√
γn+1f(γn+1)

≤
√
γnf(γn)√

γn+1f(γn+1)

‖Aen‖2

γnf(γn)2
≤ √

γCfθ
2
n.

Using these estimates together with (2.10a), (2.15a) and (2.28) we derive from (2.19)
and (2.22) the recursive estimates

θn+1 ≤ ai + biθn + ciθ
2
n, i = 1, 2.

Let for i = 1, 2 ti1 and ti2 be the solutions to ai + bit+ cit
2 = t, i.e.

ti1 =
2ai

1 − bi +
√

(1 − bi)2 − 4aici
, ti2 =

1 − bi +
√

(1 − bi)2 − 4aici
2ci

,

and assume that the constants CR, CQ, Cls, γ, 1/γ0 and ρ are sufficiently small such
that the smallness conditions

bi + 2
√
aici < 1 (2.29a)

θ0 ≤ 1 − bi +
√

(1 − bi)2 − 4aici
2ci

(2.29b)

hold. Now we can show (2.27a) for both i = 1 and i = 2. For n = 0 (2.27a) is true
by the definition of Cθ and (2.27b) by virtue of (2.25). Assume that (2.27) is true
for n = k, k < N . Then the assumptions of Lemma 2.3 are satisfied, and therefore
the estimate

θk+1 ≤ ai + biθk + cθ2
k

is true. By virtue of assumption (2.29a) we have ti1, t
i
2 ∈ R and ti1 < ti2. By the

induction hypothesis (2.27a) either 0 ≤ θk ≤ ti1 or ti1 < θk ≤ θ0. In the first case,
the non-negativity of ai, bi, and ci implies

θk+1 ≤ ai + biθk + ciθ
2
k ≤ a + bti1 + ci(t

i
1)

2 = ti1,

and in the second case we use assumption (2.29b) and the fact that

ai + (bi − 1)t+ cit
2 ≤ 0, ti1 ≤ t ≤ ti2,
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to show that
θk+1 ≤ ai + biθk + ciθ

2
k ≤ θk ≤ θ0.

Thus, in both cases (2.27a) is true for n = k + 1 and i = 1, 2.

To prove (2.27b) consider first the case i = 1. The estimate (2.21) together with
(2.27a) yields

‖en+1‖ ≤
(

âf(γn) + b̂
‖Aen‖
u(γn)

)

f(γn) ≤ (â+ b̂C1
θ )f(γn), 0 ≤ n < N.

Hence, under the additional smallness assumption

â+ b̂C1
θ ≤ E (2.29c)

(2.27b) holds in the case i = 1. In the case i = 2 we replace the latter smallness
assumption (2.29c) by

Cls + (cf + CRcf )ρ+
c

CQ
C2
θ ≤ E. (2.29d)

Using (2.18), assumptions (2.24a) and (2.29d), and the induction hypothesis we get
for 0 ≤ n < N the estimate

‖en+1‖ ≤ (Cls + (cf + CRcf)ρ)f(γn) +
c

CQ

‖Aen‖f(γn)√
γnf(γn)

≤ Ef(γn). (2.30)

This proves (2.27b) in the case i = 2.

Hence, if the stopping index is determined by (2.5a) or by (2.5b) the iterates xδn,
0 ≤ n ≤ N are well defined. Furthermore, note that both constants â + b̂C1

θ and
Cls + (cf + CRcf )ρ + cCθ/CQ do not depend on δ or yδ. This proves (2.26) and
shows convergence for the noise-free case δ = 0, since γn ց 0, n → ∞, that is
either N <∞ and xδN = x† or N = ∞ and ‖xδn − x†‖ → 0, n→ ∞.

�

Proposition 2.4 gives us a possibility to compute an upper bound for the total
number of steps until the stopping criterion is satisfied if only noisy data are given.

Corollary 2.5 Let the assumptions of Proposition 2.4 hold. If δ > 0 and the
regularization parameters γn are chosen by

γn = γ0γ
−n, n = 0, 1, 2, . . . ,

then the stopping index is finite. If the iteration is stopped by either (2.5a) or (2.5b)
we have N = O(− ln(u−1(δ))), δ → 0. The function u is given by (1.11).
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Proof: Let us first consider the case where we stop the iteration by (2.5b). An
application of (2.23) and (2.27) yields

δ ≤
(

1 + CR + E
2
CQ

τ − 1

)

‖AeN−1‖
u(γN−1)

u(γN−1) ≤
(

1 + CR + E
2
CQ

τ − 1

)

C2
θu(γN−1) (2.31)

for δ > 0. Hence, the stopping index is finite with N = O(− ln(u−1(δ))) for the
choice γn = γ0γ

−n. In the case of (2.5a) we have the estimate

δ ≤ η
√
γN−1fγN−1 = ηu(γ0γ

−N+1).

Thus, N = O(− ln(u−1(δ))).
�

We are now in a position to prove convergence rates of optimal order for the IRGNM
under general source conditions where the stopping criterion is determined by the
a-priori choice (2.5a).

Corollary 2.6 Let the assumptions of Proposition 2.4 hold and assume that the
stopping index of the IRGNM is determined by (2.5a). Then the optimal convergence
rate

‖xδN − x†‖ = O(f(u−1(δ))), δ → 0,

holds true.

Proof: The stopping criterion (2.5a) implies that ηu(γN) < δ, that is γN =
O(u−1(δ)), δ → 0. Inserting this into (2.26) the assertion follows.

�

As mentioned above, usually the index function f is unknown and therefore the
a-priori stopping criterion (2.5a) is in practice not realizable. Therefore, it is our
goal in the section followed to establish convergence rates of optimal order for the
IRGNM in combination with the discrepancy principle.

2.3 Convergence of the IRGNM for the discrep-

ancy principle

Before we dicuss the proof to establish convergence rates of optimal order of the
IRGNM in combination with (2.5b) we want to illustrate its main ideas. To this
end recall the proof of Theorem 1.13. We want to emphasize the main points of it
and dicuss its relation to the nonlinear case.

To prove the convergence rate of the approximation error eapp
N we showed that the

error behavior of Aeapp
N could be expressed in terms of δ. Combining this result with

inequality (1.10) yielded the predicted convergence rate. In the nonlinear case we
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will proceed analogously. As expected, it will turn out that in this situation it is a
technical task to find an expression for Aeapp

N in terms of δ. The inequalities (2.19)
and (2.20) will play an essential role for this task. Subsequently, it will be proven
that the remaining error components (2.14b) – (2.14d) behave like O(δ/

√
γN−1),

which is already clear for enoi
N due to (2.14b). Moreover, the behavior O(δ/

√
γN−1)

already occurred in the proof of Theorem 1.13 and in the nonlinear case it can be
shown similar to the linear case that it implies convergence of optimal oder. Finally
we are left with elsN , the error we commit by not solving the linear systems (2.8)
exactly. We will formulate reasonable assumptions for this error incorporating the
inequalities (2.24) guaranteeing optimal rates of convergence.
Concluding, we want to point out that the proof of the linear case presented above
includes all the important ideas of the nonlinear case, which is inherently more
technical.

Since we assume in this section that the index function f is unknown, we replace
the error bounds (2.24) on elsn+1 by the strongest possible bounds

‖elsn+1‖ ≤ Cls
√
γn, 0 ≤ n < N, (2.32a)

‖F ′[xδn]elsn+1‖ ≤ Clsγn, 0 ≤ n < N, (2.32b)

considering that f satisfies (1.28a) and that the classical qualification order of
Tikhonov regularization is 1.

The following main result of this chapter shows that optimal rates of convergence
are achieved by the IRGNM where the source condition is given by an index function
and the iteration is stopped by the discrepancy principle.

Theorem 2.7 Let the assumptions of Proposition 2.4 hold and let f satisfy As-
sumption 1.3. Assume furthermore that the inequalities (2.32) and the smallness
conditions

qγ < 1 (2.33a)

a

1 − qγ
+ q

(

1 +
‖A‖2

γ0

)

+
(‖A‖2 + γ0)

‖Ae0‖
(CR + 1)Cls

1 − γq
< 2 (2.33b)

are satisfied. Here the constant q is defined by q := CQCls+b+CQE with the notation
of Lemma 2.3. Then the final iterates xδN satisfy the order optimal estimate

‖xδN − x†‖ = O(f(u−1(δ))), δ → 0, (2.34)

if the stopping index N is determined by (2.5b).

Proof: Dealing only with the discrepancy principle (2.5b) we do not need to distin-
guish two different cases in this proof. Therefore, with the notation of Proposition
2.4 we use throughout this proof the definition Cθ := C2

θ .
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Due to (2.32b) we get as in (2.28) the estimate

‖Aelsn+1‖ ≤ (CR + 1)Clsγn + CQCls‖Aen‖.

Then by (2.19) and (2.27a)

‖Aen+1‖ ≤ (CR + 1)Clsγn + a‖Aeapp
n+1‖ + (CQCls + b+ cCθ)‖Aen‖

holds. Since (2.29d) implies cCθ ≤ CQE and hence CQCls + b+ cCθ ≤ q, it follows
by induction that

‖Aen+1‖ ≤ (CR + 1)Cls

n
∑

k=0

qn−kγk + a
n
∑

k=0

‖Aeapp
k+1‖qn−k + ‖Ae0‖qn+1.

The inequality

rk(λ) =

(

γk
γk + λ

)

≤
(

γk
γk+1

)(

γk+1

γk+1 + λ

)

≤ γrk+1(λ), λ ≥ 0,

together with the isometry of the functional calculus implies that

‖Aeapp
k+1‖ = ‖Ark+1(A

∗A)f(A∗A)w‖
≤ γ‖Ark+2(A

∗A)f(A∗A)w‖ = γ‖Aeapp
k+2‖. (2.35)

Analogously the inequality

√
λ ≤

(

γn + ‖A‖2

γn

)(

γn
γn + λ

)√
λ ≤

(

1 +
‖A‖2

γ0

)

γn
√
λrn(λ), 0 ≤ λ ≤ ‖A‖2,

implies that

‖Ae0‖ ≤
(

1 +
‖A‖2

γ0

)

γn‖Aeapp
n+1‖.

Using assumption (2.33a) we obtain

n
∑

k=0

qn−k‖Aeapp
k+1‖ ≤

n
∑

k=0

qn−kγn−k‖Aeapp
n+1‖ ≤ 1

1 − qγ
‖Aeapp

n+1‖.

Combining the last inequalities, we have shown that

‖Aen+1‖ ≤ (CR + 1)Cls

n
∑

k=0

qn−kγk +

(

a

1 − qγ
+ q

(

1 +
‖A‖2

γ0

))

‖Aeapp
n+1‖. (2.36)
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Now it follows from (2.20), (2.27a), (2.28) and (2.32b), assumption (2.29d) and
(2.33a), q < 1 (because γ > 1), a+a = 2 and the last inequality for n = N −2 that

‖AeN‖ ≥ a‖Aeapp
N ‖ − (b+ CQCls)‖AeN−1‖ −

c√
γN−1

‖AeN−1‖2

−(CR + 1)ClsγN−1

≥ a‖Aeapp
N ‖ − (b+ CQCls + cCθ)‖AeN−1‖ − (CR + 1)ClsγN−1

≥ a‖Aeapp
N ‖ − q

(

a

1 − qγ
+ q

(

1 +
‖A‖2

γ0

))

γ‖Aeapp
N ‖

−(CR + 1)Cls

(

q

N−2
∑

k=0

qN−2−kγk + γN−1

)

≥
(

a− qγa

1 − qγ
− q2γ

(

1 +
‖A‖2

γ0

))

‖Aeapp
N ‖

−(CR + 1)Cls

N−1
∑

k=0

qN−1−kγk

=

(

2 − a

1 − qγ
− q2γ

(

1 +
‖A‖2

γ0

))

‖Aeapp
N ‖ (2.37)

−(CR + 1)Cls

N−1
∑

k=0

qN−1−kγk.

Furthermore, as above the inequality
√
λrN−1(λ) ≥

√
λ
(

γN−1

γ0+‖A‖2

)

for 0 ≤ λ ≤ ‖A‖2

implies

‖Aeapp
N ‖ ≥ γN−1

‖A‖2 + γ0

‖Ae0‖. (2.38)

From (2.5b) we get

τδ ≥ ‖F (xδN) − F (x†) + y − yδ‖

≥
∥

∥

∥

∥

∫ 1

0

F ′[x† + teN ]eN dt

∥

∥

∥

∥

− δ

=

∥

∥

∥

∥

∫ 1

0

(

R(x† + teN , x
†)A+Q(x† + teN , x

†)
)

eN dt

∥

∥

∥

∥

− δ

≥
(

1 − CR − 1

2
ECQ

)

‖AeN‖ − δ,

and thus

δ ≥ 1 − CR − E
2
CQ

τ + 1
‖AeN‖. (2.39)

It follows from the condition (2.33a), γ > 1, and the definition of b that

1 > q = CQCls + b+ CQE > CR +
E

2
CQ. (2.40)
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Using the inequality γk/γN−1 ≤ γN−1−k we get

γkq
N−1−k ≤ γN−1(γq)

N−1−k

and thus
N−1
∑

k=0

qN−1−kγk ≤ γN−1

N−1
∑

k=0

(γq)N−1−k ≤ γN−1

1 − γq
. (2.41)

Then we can estimate using (2.37), (2.39), (2.41) and assumption (2.33b)

δ ≥ 1 − CR − E
2
CQ

τ + 1

[(

2 − a

1 − qγ
− q2γ

(

1 +
‖A‖2

γ0

))

‖Aeapp
N ‖

− (CR + 1)ClsγN−1
1

1 − γq

]

.

This, (2.38) and (2.40) imply

C1γN−1 ≤ δ, (2.42)

C2‖Aeapp
N ‖ ≤ C3γN−1 + δ, (2.43)

with the constants

C1 :=

(

1 − q

τ + 1

)[(

2 − a

1 − qγ
− q

(

1 +
‖A‖2

γ0

)) ‖Ae0‖
‖A‖2 + γ0

− (CR + 1)Cls

1 − γq

]

,

C2 :=

(

1 − q

τ + 1

)(

2 − a

1 − qγ
− q2γ

(

1 +
‖A‖2

γ0

))

,

C3 :=

(

1 − q

τ + 1

)

(CR + 1)Cls

1 − γq
,

independent of δ and yδ. (2.33b) implies C1 > 0 and C2 > 0, and so using (2.42)
and (2.43) we conclude

‖Aeapp
N ‖ ≤ C4δ with C4 :=

(

C3

C1
+ 1

C2

)

. (2.44)

Now we can apply Lemma 1.4 with w replaced by C−1
4 rN−1(A

∗A)w and (2.44) to
obtain

C4

ρ

∥

∥

∥

∥

(

ρ

C4

)

eapp
N

∥

∥

∥

∥

≤ C4f

(

u−1

((

ρ

C4

)(‖Aeapp
N ‖
ρ

)))

≤ C4f
(

u−1 (δ)
)

.

From (2.31) we have that

δ ≤ C5u(γN−1), where C5 :=

(

1 + CR + E
2
CQ

τ − 1

)

Cθ.
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To obtain an estimate for
√
γN−1 in terms of δ we estimate

√
γN−1 = C5

√
γN−1

δ
u

(

u−1

(

δ

C5

))

≤ C5

C1

√

√

√

√

u−1
(

δ
C5

)

γN−1
f

(

u−1

(

max

{

1,
1

C5

}

δ

))

≤ C5

C1

max

{

1,
1

C5

}

f
(

u−1 (δ)
)

.

In the second line we have used the definition of u, (2.42) and the monotonicity of
f ◦ u−1, and in the last line the inequality f(u−1(tδ)) ≤ tf(u−1(δ), t ≥ 1, which
follows from concavity of f ◦u−1 (see Assumption 1.3). Then from the last estimate
and assumption (2.32a) we obtain that

‖elsN‖ ≤ Cls

C1

max {1, C5} f
(

u−1(δ)
)

.

Now it remains to be shown that the error components in (2.14b) – (2.14d) are
of order O(f(u−1(δ))). To estimate the right hand side of (2.14c) and (2.14d) we
combine (2.35), (2.36) again for the case n = N − 2, (2.41), (2.42) and (2.43) to
conclude ‖AeN−1‖ = O(δ). Then an application of ‖eN‖ ≤ E, (2.44) and (2.10a)
together with the last result shows that ‖enl

N‖ and ‖etayN ‖ are of order O
(

δ/
√
γN−1

)

.
For ‖enoi

N ‖ this already follows from (2.14b). Now applying a similar idea as above,
we have

δ√
γN−1

≤ max{1, C5}f
(

u−1(δ)
)

.

So, altogether we have proven

‖eN‖ = ‖xδN − x†‖ = O(f(u−1(δ))), δ → 0.

�

It is worthwhile to note that the convergence theorems of the IRGNM given here
comprise the results formulated in [9] and [37], where the additional error term
elsn was not considered and the theorems were formulated for either Hölder source
conditions or logarithmic source conditions. To get the results stated there one has
to check that the conditions (1.28) are satisfied for the functions defined in (1.13)
and (1.14). The proofs for this can be found in [9] and [37].

Corollary 2.8 Let the assumptions of Theorem 2.7 be satisfied.

a) If the source condition is defined via (1.13), then the stopping index of the
IRGNM satisfies N = O(− ln(δ2/(1+2ν))) and the optimal convergence rate

‖xδN − x†‖ = O(δ2ν/(2ν+1)), δ → 0,

holds true.
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b) If the source condition is defined via (1.14), then the stopping index of the
IRGNM satisfies N = O(− ln(δ)) and the optimal convergence rate

‖xδN − x†‖ = O((− ln(δ))−p), δ → 0,

holds true.

Proof: Consider first the case where the index function is given by (1.13). Then the
function u is given by u(t) = t1/2+ν , hence u−1(t) = t2/(1+2ν). Now using Corollary
2.5 we conclude

N = O(− ln(u−1(δ))) = O(− ln(δ2/(1+2ν))), δ → 0,

and Theorem 2.7 yields

‖xδN − x†‖ = O(f(δ2/(1+2ν))) = O(δ2ν/(1+2ν)), δ → 0.

In the case where f is given by (1.14) we make use of f(u−1(t)) = f(t)(1 + o(1))
if t→ 0 (see [59]). Hence,

(− ln(u−1(δ)))−p = (− ln(δ))−p(1 + o(1)), δ → 0.

So, by Corollary 2.5

N = O
([

(− ln(u−1(δ)))−p
]p)

= O (− ln(δ)) , δ → 0,

and by Theorem 2.7

‖xδN − x†‖ = O((− ln(u−1(δ)))−p) = O((− ln(δ))−p), δ → 0.

�

2.4 Remarks on the nonlinearity conditions

Unfortunately, for many interesting examples the nonlinearity conditions (2.11)
could not be proven so far. In particular for the inverse scattering problems consid-
ered in Chapter 7 these conditions are an open problem. This is the main reason
why the local convergence proof of the IRGNM presented in this chapter is not
satisfactory and still open for these examples.

Therefore, in the following we want to take a closer look at the the nonlinearity
conditions (2.11). To this end we assume that x, x̄ ∈ B(x†, E). First note that
if x = x̄ the conditions (2.11) are obviously satisfied with R = I and Q = 0 for any
constants CR and CQ. Hence, in the following we can assume that x 6= x̄ and for
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simplicity that the corresponding Fréchet derivatives F ′[x̄] and F ′[x] are compact
operators with singular systems

{(σj ; vj, uj) : j ∈ N} ⊂ (0,∞) × X × Y ,
{(σ̃j ; ṽj, ũj) : j ∈ N} ⊂ (0,∞) × X × Y .

That is, for each ϕ ∈ X we have the representations

F ′[x̄]ϕ =
∞
∑

j=1

σj 〈ϕ, vj〉X uj,

F ′[x]ϕ =

∞
∑

j=1

σ̃j 〈ϕ, ṽj〉X ũj.

Without loss of generality we can assume that the singular values are in nonincreas-
ing order. To shorten the notation we set R := R(x̄, x) and Q := Q(x̄, x) and define
for some threshold integer m ∈ N and for all ψ ∈ Y and ϕ ∈ X the linear operators

R1ψ :=

∞
∑

j=1

σ̃j

m
∑

i=1

1

σ i
〈ψ, ui〉Y 〈vi, ṽj〉X ũj,

R2ψ :=
∞
∑

j=m+1

〈ψ, ũj〉Y ũj,

Q1ϕ :=

∞
∑

j=1

σ̃j

〈 ∞
∑

k=m+1

〈ϕ, vk〉 vk, ṽj
〉

X

ũj,

Q2ϕ :=

∞
∑

j=1

σj 〈ϕ, vj〉X
∞
∑

k=m+1

〈uj, ũk〉Y ũk,

and

R := R1 +R2, (2.45)

Q := Q1 −Q2. (2.46)

We first show that the operators R and Q are constructed such that (2.11a) is
satisfied. To this end we compute

R2F
′[x̄]ϕ =

∞
∑

j=1

σj 〈ϕ, vj〉X R2uj

=
∞
∑

j=1

σj 〈ϕ, vj〉X
∞
∑

k=m+1

〈uj , ũk〉Y ũk

= Q2ϕ.
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Hence, we have

RF ′[x̄] +Q = R1F
′[x̄] +R2F

′[x̄] +Q1 −Q2 = R1F
′[x̄] +Q1.

Now using the equalities

R1uℓ =

{
∑∞

j=1
σ̃j

σℓ
〈vℓ, ṽj〉X ũj, ℓ = 1, . . . , m,

0 i > m,

Q1vℓ =

{

0, ℓ = 1, . . . , m,
∑∞

j=1 σ̃j 〈vℓ, ṽj〉X ũj ℓ > m,

we have for all ϕ ∈ X the equality

(R1F
′[x̄] +Q1)ϕ

= R1

∞
∑

ℓ=1

σℓ 〈ϕ, vℓ〉X uℓ +Q1

∞
∑

ℓ=1

〈ϕ, vℓ〉X vℓ

=
m
∑

ℓ=1

σℓ 〈ϕ, vℓ〉X
∞
∑

j=1

σ̃j
σℓ

〈vℓ, ṽj〉X ũj +
∞
∑

ℓ=m+1

〈ϕ, vℓ〉X
∞
∑

j=1

σ̃j 〈vℓ, ṽj〉X ũj

=
∞
∑

j=1

σ̃j

(〈

m
∑

ℓ=1

〈ϕ, vℓ〉X vℓ, ṽj
〉

X

+

〈 ∞
∑

ℓ=m+1

〈ϕ, vℓ〉X vℓ, ṽj
〉

X

)

ũj

=
∞
∑

j=1

σ̃j 〈ϕ, ṽj〉X ũj

= F ′[x]ϕ.

Therefore, for the operators R and Q defined through (2.45) and (2.46) condi-
tion (2.11a) is satisfied.

For the following discussion we assume that the Fréchet derivatives F ′[x] and F ′[x̄]
belong to the class of so-called Hilbert-Schmidt operators, that is

∞
∑

j=1

σ2
j <∞ and

∞
∑

j=1

σ̃2
j <∞. (2.47)

Naturally, condition (2.47) does not include each mildly ill-posed problem. On the
other hand (2.47) is satisfied for exponentially ill-posed problems, which have our
main interest.

Proposition 2.9 Assume that (2.47) is satisfied. Then the linear operators R
and Q defined through (2.45) and (2.46) are bounded.
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Proof: It follows by a direct computation that

‖R1ψ‖2 ≤
( ∞
∑

j=1

σ̃2
j

)(

m
∑

i=1

1

σ2
i

)

‖ψ‖2, ‖R2‖ ≤ 1,

‖Q1ϕ‖2 ≤
( ∞
∑

j=1

σ̃2
j

)

‖ϕ‖2, ‖Q2‖ ≤ ‖F ′[x̄]‖.

These estimates show the boundedness of Ri and Qi, i = 1, 2. Hence, the linear
operators R and Q are bounded by their definition (2.45) and (2.46).

�

It is our intention to give some heuristic arguments that the threshold parameter m
can possibly be chosen in such a way that the conditions (2.11b) and (2.11c) are
satisfied. To this end we proof explicit bounds for ‖I−R‖ and ‖Q‖ in the next two
theorems.

Theorem 2.10 Assume that (2.47) is satisfied and that ψ ∈ R(F ′[x]). Then we
have the estimate

‖Rψ − ψ‖Y ≤







(

m
∑

j=1

∥

∥

∥

∥

σ̃j
σj

〈vj , ṽj〉X uj − ũj

∥

∥

∥

∥

2

Y

)1/2

+
σ̃1

σm





m
∑

j=1

(

m
∑

i=1,i6=j

∣

∣〈vi, ṽj〉X
∣

∣

)2




1/2

+
1

σm





∞
∑

j=m+1

σ̃2
j

(

m
∑

i=1

∣

∣〈vi, ṽj〉X
∣

∣

)2




1/2










‖ψ‖Y . (2.48)

Proof: Since ψ ∈ R(F ′[x]) we can represent it through ψ =
∑∞

j=1 〈ψ, ũj〉Y ũj. Now
using the definition of R and the triangle inequality we can estimate

‖Rψ − ψ‖Y =

∥

∥

∥

∥

∥

∞
∑

j=1

σ̃j

m
∑

i=1

1

σ i
〈ψ, ui〉Y 〈vi, ṽj〉X ũj −

m
∑

j=1

〈ψ, ũj〉Y ũj
∥

∥

∥

∥

∥

Y

≤
∥

∥

∥

∥

∥

m
∑

j=1

〈

ψ,
σ̃j
σj

〈vj , ṽj〉X uj − ũj

〉

Y
ũj

∥

∥

∥

∥

∥

Y

+

∥

∥

∥

∥

∥

m
∑

j=1

σ̃j

m
∑

i=1,i6=j

1

σi
〈ψ, ui〉Y 〈vi, ṽj〉X ũj

∥

∥

∥

∥

∥

Y

+

∥

∥

∥

∥

∥

∞
∑

j=m+1

σ̃j

m
∑

i=1

1

σ i
〈ψ, ui〉Y 〈vi, ṽj〉X ũj

∥

∥

∥

∥

∥

Y

. (2.49)
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The first term on the right hand side of (2.49) can be estimated by

∥

∥

∥

∥

∥

m
∑

j=1

〈

ψ,
σ̃j
σj

〈vj , ṽj〉X uj − ũj

〉

Y
ũj

∥

∥

∥

∥

∥

Y

≤
(

m
∑

j=1

∣

∣

∣

∣

〈

ψ,
σ̃j
σj

〈vj, ṽj〉X uj − ũj

〉

Y

∣

∣

∣

∣

2
)1/2

≤
(

m
∑

j=1

∥

∥

∥

∥

σ̃j
σj

〈vj, ṽj〉X uj − ũj

∥

∥

∥

∥

2

Y

)1/2

‖ψ‖Y ,

and the second term on the right hand side of (2.49) by

∥

∥

∥

∥

∥

m
∑

j=1

σ̃j

m
∑

i=1,i6=j

1

σi
〈ψ, ui〉Y 〈vi, ṽj〉X ũj

∥

∥

∥

∥

∥

Y

≤





m
∑

j=1

(

m
∑

i=1,i6=j

σ̃j
σi

〈ψ, ui〉Y 〈vi, ṽj〉X

)2




1/2

≤ σ̃1

σm





m
∑

j=1

(

m
∑

i=1,i6=j

∣

∣〈vi, ṽj〉X
∣

∣

)2




1/2

‖ψ‖Y .

Finally, we can estimate the last term on the right hand side of (2.49) by

∥

∥

∥

∥

∥

∞
∑

j=m+1

σ̃j

m
∑

i=1

1

σ i
〈ψ, ui〉Y 〈vi, ṽj〉X ũj

∥

∥

∥

∥

∥

Y

≤





∞
∑

j=m+1

(

m
∑

i=1

σ̃j
σi

〈ψ, ui〉Y 〈vi, ṽj〉X

)2




1/2

≤ 1

σm





∞
∑

j=m+1

σ̃2
j

(

m
∑

i=1

∣

∣〈vi, ṽj〉X
∣

∣

)2




1/2

‖ψ‖Y .

Hence, altogether we have proven (2.48).
�

Theorem 2.11 Assume that (2.47) is satisfied. Then we have the estimate

‖Qϕ‖Y ≤





{

m
∑

j=1

σ̃2
j

( ∞
∑

k=m+1

| 〈vk, ṽj〉X |2
)

+
∞
∑

j=m+1

σ̃2
j

}1/2







m
∑

j=1

σ2
j

( ∞
∑

k=m+1

〈uj, ũk〉Y

)2

+

∞
∑

j=m+1

σ2
j







1/2





‖ϕ‖X . (2.50)

Proof: Obviously, by the definition (2.46) of Q for all ϕ ∈ X the inequality

‖Qϕ‖Y ≤ ‖Q1ϕ‖Y + ‖Q2ϕ‖Y .
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holds. Then we can estimate

‖Q1ϕ‖2
Y =

∥

∥

∥

∥

∥

∞
∑

j=1

σ̃j

〈 ∞
∑

k=m+1

〈ϕ, vk〉X vk, ṽj
〉

X

ũj

∥

∥

∥

∥

∥

2

Y

≤
m
∑

j=1

σ̃2
j

( ∞
∑

k=m+1

〈ϕ, vk〉X 〈vk, ṽj〉X

)2

+

∞
∑

j=m+1

σ̃2
j

( ∞
∑

k=m+1

〈ϕ, vk〉X 〈vk, ṽj〉X

)2

. (2.51)

The first term on the right hand side of (2.51) can be estimated by

m
∑

j=1

σ̃2
j

( ∞
∑

k=m+1

〈ϕ, vk〉X 〈vk, ṽj〉X

)2

≤
m
∑

j=1

σ̃2
j

( ∞
∑

k=m+1

| 〈vk, ṽj〉 |2X

)

‖ϕ‖2
X , (2.52)

and the second term by

∞
∑

j=m+1

σ̃2
j

( ∞
∑

k=m+1

〈ϕ, vk〉X 〈vk, ṽj〉X

)2

≤
( ∞
∑

j=m+1

σ̃2
j

)

‖ϕ‖2
X . (2.53)

Similar, we can estimate ‖Q2ϕ‖ by

‖Q2ϕ‖2
Y ≤

m
∑

j=1

σ2
j | 〈ϕ, vj〉X |2

( ∞
∑

k=m+1

〈uj, ũk〉Y

)2

+
∞
∑

j=m+1

σ2
j | 〈ϕ, vj〉X |2

( ∞
∑

k=m+1

〈uj, ũk〉Y

)2

≤







m
∑

j=1

σ2
j

( ∞
∑

k=m+1

〈uj, ũk〉Y

)2

+

∞
∑

j=m+1

σ2
j







‖ϕ‖2
X . (2.54)

The sum of the estimates (2.52), (2.53) and (2.54) yields (2.50).

�

In the following we want to establish a connection between the conditions (2.11b)
and (2.11c) and the inequalities (2.48) and (2.50). To this end we give heuristic
arguments that if x, x̄ lie in a small neighborhood of x† possibly ‖R− I‖ and ‖Q‖
are so small such that (2.11b) and (2.11c) could be satisfied.

By inequality (2.48) to ensure that ‖R−I‖ is small it is required that the threshold
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parameter m can be chosen such that the terms

∥

∥

∥

∥

σ̃j
σj

〈vj, ṽj〉uj − ũj

∥

∥

∥

∥

Y
, j = 1, . . . , m, (2.55a)

∣

∣〈vi, ṽj〉X
∣

∣ , i, j = 1, . . . , m, i 6= j, (2.55b)

| 〈vi, ṽj〉X |, i = 1, . . . , m, j = m+ 1, m+ 2, . . . , (2.55c)
∞
∑

j=m+1

σ̃2
j (2.55d)

are sufficiently small. But this in fact could be satisfied since the singular values and
singular vectors of a linear operator depend continuously on small perturbations.
Hence, if the distance ‖x− x̄‖ is sufficiently small and we interpret F ′[x̄] as a small
perturbation of F ′[x], then by continuity arguments the threshold parameter m can
possibly be chosen such that the terms (2.55a) – (2.55d) are sufficiently small such
that (2.11b) holds.
To argue that ‖Q‖ is sufficiently small such that (2.11c) is possibly satisfied using
inequality (2.50) we need to take care about the terms

| 〈vk, ṽj〉X |, j = 1, . . . , m, k = m+ 1, m+ 2, . . . , (2.56a)

〈uj, ũk〉Y , j = 1, . . . , m, k = m+ 1, m+ 2, . . . , (2.56b)
∞
∑

j=m+1

σ2
j (2.56c)

and (2.55d). Using again continuity arguments the threshold parameter m can
possibly be chosen such that the terms (2.56c) – (2.56a) are sufficiently small such
that (2.11c) holds.

Note that our discussion does not prove the nonlinearity conditions (2.11), since
for some given nonlinear ill-posed problem it is open if in general the threshold
integer m can be chosen such that the terms (2.55a) – (2.55d) and (2.56a) – (2.56c)
can be simultaneously sufficiently small for x, x̄ in a sufficiently small neighborhood
of x†. Furthermore, naturally the choice of m depends on x and x̄.
However, our discussion sheds some light on the nonlinearity conditions from the
direction where the linear operators are represented by their singular value decom-
position. It possibly serves as a further step to either prove these conditions in a
general way or it maybe gives some hints to disprove these conditions for a certain
given problem.
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Chapter 3

Conjugate gradient and Lanczos’

method

The main complexity of the IRGNM consists in solving the linearized and regular-
ized linear systems (2.8). In applications the operators F , F ′[x] and F ′[x]∗ occuring
in these equations usually represent operators corresponding to some differential
or integral equation. For small-scale problems it has often been pointed out that
setting up the matrix representing the operators F ′[x] and F ′[x]∗ is an appropri-
ate way of realizing the IRGNM. Throughout this work we are concerned with the
development of an efficient numerical solver for large-scale problems, where the
computation of the system matrix is inefficient for several reasons already discussed
in the introduction. Besides the numerical aspects our aim is to establish a com-
plexity analysis of the IRGNM where the linear systems are solved by the conjugate
gradient method. This analysis shall include certain types of preconditioners.
The goal of this chapter is to summarize the known foundations for an efficient
implementation of the IRGNM, that is an efficient numerical solver for the linear
systems (2.8). Moreover, the tools designed in this chapter are fundamental for an
analysis of the complexity and an efficient realization of the IRGNM discussed in
the following chapters.

3.1 Introduction and notation

The conjugate gradient method (CG-method) has become the most widespread
way of solving symmetric positive definite linear algebraic systems since it was first
presented by Hestenes and Stiefel [35]. Since the operator γnI + F ′[xδn]

∗F ′[xδn] is
bounded self-adjoint and strictly coercive with respect to the inner product 〈 · , · 〉X ,
the CG-method is a natural choice to solve the linear systems (2.8). Moreover, it is
well known that efficient preconditioners can be constructed to speed up the con-
vergence of the CG-method. As in the last chapters, (X , 〈 · , · 〉X ) and

(

Y , 〈 · , · 〉Y
)

denote real Hilbert spaces with inner products 〈 · , · 〉X and 〈 · , · 〉Y .

65
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About fifty years ago superlinear convergence of the CG-method was already proved
by Hayes [34] (see also Winther [85]). Closely related to the CG-method is Lanc-
zos’ method originally introduced in [55]. This method deals with the problem
of approximating extremal eigenvalues and corresponding eigenvectors. It can be
interpreted as a generalization of the Rayleigh quotient iteration. The quality of
the approximations strongly depends on the eigenvalue distribution of the linear
operator. Both methods will be introduced and explained in this chapter.

Although the CG-method as well as Lanczos’ method are described in nearly ev-
ery modern textbook on numerical linear algebra it turns out to be necessary to
introduce both methods once again in this work. The reasons are the following:� Usually the CG-method described in textbooks is restricted to finite dimen-

sional linear systems with respect to the Euclidean inner product in Rn. Both
assumptions are too restrictive for our goals.� To our purposes it is sufficient to have a short and precise description of the
connection of the CG-method and Lanczos’ method.� The latter point needs to include the case when the CG-method is precondi-
tioned.

Hence, although there are many textbooks and articles concerning with the CG-
method and Lanczos’ method, no description was suited for the problem at hand.
The main goal of this chapter is to introduce these algorithms in a way suitable to
the rest of this work.

Our introduction of the CG-method and Lanczos’ method is based on the textbooks
of Axelsson [2], Demmel [12], Golub & van Loan [24], Saad [77], van der Vorst [84],
Engl, Hanke & Neubauer [16], and Rieder [75].

To shorten the notation we define the operator

Gn :=

(

F ′[xδn]√
γnI

)

∈ L(X ,Y × X ), xδn ∈ D(F ), (3.1)

and the right hand side vector gδn :=
(

yδ − F (xδn),
√
γnbn

)T
. The choice bn = x0−xδn

corresponds to the IRGNM and bn = 0 to the Levenberg-Marquardt algorithm.
Furthermore, we assume that the linear and bounded operator F ′[xδn]

∗F ′[xδn] : X →
X , which is self-adjoint with respect to 〈 · , · 〉X is compact. The nonnegative eigen-
values λj, j ∈ N, are enumerated in nonincreasing order with multiplicity, and the
corresponding orthonormal eigenvectors are denoted by ϕj.
Then, by virtue of (2.7) resp. (2.8) we need to solve in each step of these algorithms
the normal equation

G∗nGnhn = G∗ng
δ
n, n = 0, 1, 2, . . . (3.2)
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with the bounded and strictly coercive operator G∗nGn : X → X . By the Theorem
of Lax-Milgram (see Kress [52, Theorem 13.26]) the operator G∗nGn has a bounded
inverse with

‖(G∗nGn)
−1‖ ≤ 1/γn. (3.3)

Still, for a derivation of the CG-method the exact form of the linear system we
are concerned with is not important. To formulate our results in a more general
setting, we skip the index and replace the operator G∗nGn by a bounded and strictly
coercive operator G : X → X which is self-adjoint with respect to some other inner
product ( · , · ) on X , i.e. we consider the linear operator equation

Gh = g (3.4)

with right hand side g ∈ X . The uniquely determined solution of (3.4) is denoted
by h†.

3.2 The standard conjugate gradient method

The standard form of the CG-method can be seen as a method to find the minimizer
of the functional

J(h) =
1

2
(r, G−1r), (3.5)

where the residual r is defined by r := g−Gh. Obviously, the minimizer of J is the
solution h† = G−1g, since G−1 is also bounded strictly coercive and self-adjoint with
respect to the inner product ( · , · ). To find the minimizer of J , the CG-method
starts with an initial guess h0 to the minimizer h† and constructs at each stage a
new search direction pk, which will be conjugately orthogonal to the previous search
directions, that is:

Definition 3.1 Two vectors p, q ∈ X \ {0} are said to be conjugately orthogonal
(with respect to G), if (p,Gq) = 0.

Then the method computes the local minimizer along this search direction pk, i.e.
given hk−1, the approximation to the solution h† at stage k − 1, we compute αk
such that

J(hk−1 + αkp
k), −∞ < αk <∞,

is minimized by αk and then let

hk := hk−1 + αkp
k (3.6)

be the new approximation.

Let rk := g −Ghk. To compute αk consider the function

m(α) := J(hk−1 + αpk) − J(hk−1).
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Rewriting m as

m(α) =
1

2
(g −G(hk−1 + αpk), G−1(g −G(hk−1 + αpk)))

−1

2
(g −Ghk−1, G−1(g −Ghk−1))

=
1

2
(rk−1 − αGpk, h† − hk−1 − αpk) − 1

2
(rk−1, h† − hk−1)

=
1

2
α2(pk, Gpk) − α(rk−1, pk),

we see that it is quadratic in α and takes its smallest value when

(rk−1, pk) − α(pk, Gpk) = 0,

i.e. in each stage of the iteration we determine

αk =
(rk−1, pk)

(pk, Gpk)
(3.7)

provided that pk 6= 0. The equality

rk = g −Ghk = g −Ghk−1 − αkGp
k = rk−1 − αkGp

k (3.8)

yields
(rk, pk) = (rk−1, pk) − αk(p

k, Gpk) = 0, (3.9)

that is the search direction is orthogonal to the new residual. Now, for the next
iteration step a new search direction is required, which will be computed under the
side condition

(pk+1, Gpj) = 0, 1 ≤ j ≤ k, (3.10)

that is the search directions become mutually conjugate orthogonal with respect
to G and the inner product ( · , · ). This still holds for many sets of search directions.
So we restrict ourselves to the following requirement.

Let the vectors pj, 1 ≤ j ≤ k, satisfy (3.10) and assume furthermore that

(rk, pj) = 0, 1 ≤ j ≤ k, (3.11)

where k ≥ 1. Now, by (3.8)

(rk+1, pj) = (rk, pj) − αk+1(Gp
k+1, pj),

and so using (3.10) and (3.11) together with (rk+1, pk+1) = 0 we see that

(rk+1, pj) = 0, 1 ≤ j ≤ k + 1. (3.12)
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Hence, by induction, it follows that when the search directions are conjugately or-
thogonal, the residuals become orthogonal to the previous search directions. As
we shall see, this property implies that the method computes the best approxi-
mation hk = hk−1 + p of all vectors p ∈ span{p1, . . . , pk}. It remains, therefore, to
compute the search directions in an efficient way to make them mutually conjugately
orthogonal with respect to G. To this end, let

pk+1 = rk + βkp
k, k = 1, 2, . . . , (3.13)

where initially p1 = r0 and β1, β2, . . . need to be determined. The relation (3.10)
directly yields

βk = −(rk, Gpk)

(pk, Gpk)
. (3.14)

Now it is left to show that pk+1 given by (3.13) satisfies (3.10). We will prove
this property and summarize many other important features of the CG-algorithm
defined by (3.6), (3.7), (3.8), (3.13) and (3.14) in the following theorem.

Theorem 3.2 Let the linear operator G : X → X be bounded self-adjoint and
strictly coercive with respect to the inner product ( · , · ). Let h0 ∈ X be an arbitrary
vector, r0 = g − Gh0, p1 = r0 and assume that rk 6= 0 for all k = 0, . . . , m. Then
the iterates

hk = hk−1 + αkp
k,

rk = rk−1 − αkGp
k

pk+1 = rk + βkp
k,

where αk is computed by (3.7) and βk by (3.14), are well defined for all k =
1, . . . , m+ 1 and the following assertions hold true:

a) The following orthogonality properties hold for m ≥ 1:

(rm, pj) = 0, 1 ≤ j ≤ m, (3.15a)

(rm, rj) = 0, 0 ≤ j ≤ m− 1, (3.15b)

(pm+1, Gpj) = 0, 1 ≤ j ≤ m. (3.15c)

b) For all k = 1, . . . , m we have:

span{r0, . . . , rk−1} = span{p1, . . . , pk} = span{r0, Gr0, . . . , Gk−1r0}. (3.16)

c)
hk ∈ h0 + Kk(G, r

0), k = 1, . . . , m

where Kk(G, r
0) denotes the Krylov subspace

Kk(G, r
0) := span{r0, Gr0, . . . , Gk−1r0}.
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d)
inf

u∈Sk(G,r0)
(r0 + u,G−1(r0 + u)) = (rk, G−1rk),

where Sk(G, r0) := span{Gr0, G2r0, . . . , Gkr0}.

e) If the inner product is given by (u, v) := 〈u, v〉X , then the conjugate gradient
method satisfies

〈

ek, Gek
〉

X = inf
v∈Kk(G,r0)

〈

e0 + v,G(e0 + v)
〉

X .

Here ek := h† − hk denotes the iteration error.

f) If the inner product is given by (u, v) := 〈u,Gv〉X , then the conjugate gradient
method gives the best least square residual solution, that is

‖rk‖2
X = inf

v∈Kk(G,r0)

〈

r0 +Gv, r0 +Gv
〉

X .

Proof: To prove that the iterates are well defined for k = 1, . . . , m + 1 assume
that pk+1 = 0 for some k ≤ m, and let k be the smallest number such that this
condition is satisfied. By (3.13) we have

0 = (rk, pk) = −βk(pk, pk).

By the choice of k, βk = 0, implying rk = 0 due to (3.13), which contradicts the
assumption rk 6= 0, k = 0, . . . , m.

Assertion a) and b) are proven by induction. So, let m = 1. Then (3.15a) is a
consequence of (3.9) and (3.15b) follows from the definition p1 = r0. Using the
definition of βk and (3.13) we conclude

(pk+1, Gpk) = (rk, Gpk) + βk(p
k, Gpk) = 0, k = 1, . . . , m. (3.17)

Let the orthogonality relations now be satisfied for some n ∈ {1, . . . , m}. The
equality

(rn+1, pj) = (rn, pj) − αk(p
n+1, Gpj) = 0, 1 ≤ j ≤ n,

together with (3.9) proves (3.15a). (3.15b) follows from

(rn+1, rj) = (rn+1, pj+1) − βj(r
n+1, pj) = 0, 1 ≤ j ≤ n,

and (rn+1, r0) = (rn+1, p1) = 0. To show (3.15c) we combine (3.17) and

(pn+2, Gpj) = (rn+1, Gpj)−βn+1(p
n+1, Gpj) =

1

αj
(rn+1, rj−1 − rj) = 0, 1 ≤ j ≤ n,

which is true by the induction assumption.
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Assertion b) is clear for k = 1. Now using the induction assumption and (3.13) we
have pk ∈ span{r0, . . . , rk−1}. Then the linear independence of the vectors p1, . . . , pk

and r0, . . . , rk−1, which follows from (3.15b) resp. (3.15c), yields

span{r0, . . . , rk−1} = span{p1, . . . , pk}, k = 1, . . .m.

To show the other equality again by the induction assumption it follows that

pk−1 ∈ span{r0, . . . , rk−2} = span{r0, Gr0, . . . , Gk−2r0}

and so by (3.8) rk−1 = rk−2 − αk−1Gp
k−1 ∈ span{r0, Gr0, . . . , Gk−1r0}, that is

span{r0, . . . , rk−1} ⊂ {r0, Gr0, . . . , Gk−1r0}.

Again by the linear independence of r0, . . . , rk−1 we obtain the latter equality
in (3.16).

Assertion c) follows by induction from the equality

hk = hk−1 + αkp
k = hk−2 + αk−1p

k−1 + αkp
k = . . . = h0 +

k
∑

j=1

αjp
j .

together with (3.16).

To prove d) note that (3.15b) together with (3.16) yields

(rk, u) = 0 for all u ∈ span{r0, Gr0, . . . , Gk−1r0}.

Hence, we see that (rk, G−1Grj) = (rk, G−1u) = 0 for all u ∈ Sk(G, r0). Let-
ting uk := rk − r0, this can be written in the form

(r0 + uk, G−1u) = 0 for all u ∈ Sk(G, r0).

This orthogonality property shows that (r0 + u,G−1(r0 + u)) is smallest among
all u ∈ Sk(G, r0), if and only if u = uk. To see this, note that for any other u = uk+ũ
with ũ ∈ Sk, we have

(r0 + u,G−1(r0 + u)) = (r0 + uk + ũ, G−1(r0 + uk + ũ))

= (r0 + uk, G−1(r0 + uk)) + (ũ, G−1ũ)

≥ (r0 + uk, G−1(r0 + uk)).

That is, rk = r0 + uk is the minimizer of the functional J(h) = (r, G−1r) on the
subspace Sk(G, r0).
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Assertion e) follows from the computation
〈

rk, G−1rk
〉

X = inf
u∈Sk(G,r0)

〈

r0 + u,G−1(r0 + u)
〉

X

= inf
u∈Sk(G,r0)

〈

g −Gh0 + u, h† − h0 +G−1u
〉

X

= inf
u∈Sk(G,r0)

〈

g −Gh0 + u,G−1G(h† − h0 +G−1u)
〉

X

= inf
u∈Sk(G,r0)

〈

h† − h0 +G−1u,G(h† − h0 +G−1u)
〉

X

= inf
v∈Kk(G,r0)

〈

h† − h0 + v,G(h† − h0 + v)
〉

X

= inf
v∈Kk(G,r0)

〈

e0 + v,G(e0 + v)
〉

X

and
〈

rk, G−1rk
〉

X =
〈

G−1(g −Ghk), G(h† − hk
〉

X =
〈

ek, Gek
〉

.

The proof of f) is analogous to the proof of e).
�

It is left to investigate the important situation pk+1 = 0 for some k, since αk is
not defined in this case. As in the beginning of the proof of the last theorem this
assumption yields rk = 0 and so 0 = g −Ghk, that is hk = h† is the exact solution
of (3.4). Hence, a zero search direction can be produced only after the solution of
(3.4) has already been found, at which stage we stop the iteration.

Altogether we can conclude that the CG-iterates are well defined until the true
solution h† has been found. If this is the case, the algorithm produces a zero search
direction pk, which implies that the residual vanishes.

In the computationally relevant case dim(X ) <∞, the particular choice of β1, β2, . . .
making the set of search directions conjugately orthogonal, the algorithm must
stop with m ≤ dim(X ), because we can generate at most dim(X ) such mutually
orthogonal vectors. Hence, the CG-method can be considered as a direct solution
method. This holds at least in the absence of rounding errors, which usually lead
to a loss in the orthogonality of the residual vectors. We will discuss this handicap
in Chapter 6.

However, usually m is a large number or in the case when we deal for theoretical
purposes with an infinite dimensional Hilbert space X , generally hj 6= 0 for all j ∈ N.
Accordingly, we define the ultimate termination index

sup{j ∈ N : Ghj − g 6= 0}.
But primarily we are interested in the case where the residual rj is sufficiently small
after a few steps. Then the method is used as an iterative method, coupled with
some stopping criterion.
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3.3 Preconditioned conjugate gradient method

We will show in Section 4.1 that the speed of convergence of the CG-method strongly
depends on the eigenvalue distribution of the operator G. So, to improve conver-
gence rates of the CG-method, one possible way is to manipulate the eigenvalue
distribution of the operator G. This, for instance, can be done by multiplying the
operator equation (3.4) from the left by a boundedly invertible operator M . More
precisely, the operator M should satisfy the following conditions:� M ∈ L(X ,X ) and M is self-adjoint.� M ≈ G, i.e. M should be a good approximation to G.� The storage requirements for M should be acceptable.� The system Mz = c must be efficiently solvable.

We call such an operator M a preconditioner for G.

Assuming that a preconditioner M for G is available, instead of solving the linear
system (3.4) we replace it by the mathematically equivalent system

M−1Gh = M−1g. (3.18)

Obviously, in general the operator M−1G is not self-adjoint with respect to ( · , · ).
But since we have formulated the CG-method for an arbitrary inner product on X
we have freedom in the choice of this inner product. So we can choose it suitable
for the preconditioned equation (3.18), that is we define the inner product via the
preconditioner M :

Lemma 3.3 Assume that M : X → X is a linear bounded strictly coercive and
self-adjoint operator with respect to ( · , · ).

a) The mapping
(x, y)M := (x,My) (3.19)

defines an inner product on X .

b) The linear operator M−1G is selfadjoint and strictly coercive with respect
to ( · , · )M .

Proof: Both assertions follow by a straightforward computation.
�

Note that the residuals rk are replaced in the preconditioned CG-method by the
so-called pseudo residuals

zk = M−1rk. (3.20)
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This statement is to be interpreted as solving the system Mzk = rk if no explicit
formula for M−1 is available. This underlines the last requirement for a precon-
ditioner formulated above, since system (3.18) should be more efficiently solvable
than system (3.4). By Theorem 3.2e) assuming that G is self-adjoint with respect
to 〈 · , · 〉X we have that

〈

e0 + v,G(e0 + v)
〉

X

is minimized over the Krylov subspace Kk(G, r
0). In the preconditioned case this

Krylov subspace is replaced by K(M−1G, z0). With a good choice of the precondi-
tioner, this Krylov subspace may generate vectors to minimize this functional much
faster than for the unpreconditioned subspace. To formulate this result more pre-
cisely we define Πk to be the set of all polynomials with degree at most k. With Π1

k

we denote the set of polynomials p ∈ Πk satisfying p(0) = 1. The following theorem
holds:

Theorem 3.4 The k-th residual and the k-th iterate of the preconditioned CG-
method satisfy

hk = h0 + qk−1(M
−1G)z0, (3.21)

ek = pk(M
−1G)e0, (3.22)

zk = pk(M
−1G)z0, (3.23)

where qk ∈ Πk−1 and pk ∈ Π1
k is given by pk(t) = 1 − tqk−1(t). If the inner product

is given by (3.19), then the preconditioned CG-method satisfies

〈

ek, Gek
〉

X = inf
v∈Kk(M−1G,z0)

〈

e0 + v,G(e0 + v)
〉

X . (3.24)

Recall that ek := h† − hk denotes the iteration error.

Proof: (3.21) follows from Theorem 3.2c) and (3.20). The computations

ek = h† − h0 + qk−1(M
−1G)M−1G(h† − h0) = pk(M

−1G)e0,

zk = M−1Gek = pk(M
−1G)M−1Ge0 = pk(M

−1G)z0

prove (3.22) and (3.23). Using assertion d) of Theorem 3.2 we have

(zk, (M−1G)−1zk)M = inf
u∈Sk(M−1G,z0)

(z0 + u,G−1M(z0 + u))M

= inf
u∈Sk(M−1G,z0)

〈

r0 +Mu,G−1(r0 +Mu)
〉

X

= inf
u∈Sk(M−1G,z0)

〈

e0 +G−1Mu,G(e0 +G−1Mu)
〉

X

= inf
u∈Kk(M−1G,z0)

〈

e0 + v,G(e0 + v)
〉

X .
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Since the functional J from (3.5) with the inner product (3.19) takes the form

J(h) =
1

2
(z, (M−1G)−1z)M

=
1

2

〈

M−1r,MG−1MM−1r
〉

X

=
1

2

〈

r, G−1r
〉

X ,

where r = g − Gh and z = M−1r, we see that the preconditioned CG-method
minimizes the functional, 〈r, G−1r〉X which coincides with the functional of Theo-
rem 3.2e). This proves (3.24).

�

Unfortunately, it is in general not an easy task to construct an efficient precondi-
tioner, since often detailed knowledge about the operator G needs to be at hand.
We will discuss this topic in more detail in Chapters 4, 5 and 6.

3.4 Computational considerations

Various identities allow a number of different formulations of the CG-algorithm.
For example, the residuals can be computed directly by rk = g − Ghk instead of
using the recursion (3.8). Of course, we are interested in an efficient formulation of
the CG-method.

Therefore, instead of computing αk and βk by (3.7) and (3.14), these formulas
should be replaced by

αk =
(rk−1, rk−1)

(pk, Gpk)
and βk =

(rk, rk)

(rk−1, rk−1)
,

which are more stable and follow from (3.8) and (3.13) together with (3.15a). More-
over, in our case we are interested in a formulation of the CG-method suited for
our problem at hand. We need to solve in each Newton step the normal equa-
tion G∗nGnhn = G∗ng

δ
n, where the inner product is given by ( · , · ) = 〈 · , · 〉X . Hence,

the formulas for αk and βk take the form

αk =

〈

rk−1, rk−1
〉

X
〈pk, G∗nGnpk〉X

=
‖rk−1‖2

X
‖Gnpk‖2

X×Y
, βk =

〈

rk, rk
〉

X
〈rk−1, rk−1〉X

.

Introducing auxiliary vectors

d0 := gδn, dk := dk−1 − αkGnp
k, k = 1, 2, . . . , (3.25)

we can show by induction that

G∗nd
k = G∗nd

k−1 − αkG
∗
nGnp

k = rk−1 − αkG
∗
nGnp

k = rk.

Finally, the CG-iteration applied to the system (3.2) can be coded as follows:
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Algorithm 3.5 (Conjugate Gradient Algorithm)

h0
n = 0; d0 = gδn; r0 = G∗nd

0; p1 = r0; k = 0;

while ‖rk‖X > εC(γn, k)

k = k + 1;

qk = Gnp
k;

αk = ‖rk−1‖2
X /‖qk‖2

X×Y ;

hkn = hk−1
n + αkp

k;

dk = dk−1 − αkq
k;

rk = G∗nd
k;

βk = ‖rk‖2
X /‖rk−1‖2

X ;

pk+1 = rk + βkp
k.

Alternatively, we consider the preconditioned normal equation

M−1
n G∗nGnhn = M−1

n G∗ng
δ
n, (3.26)

where Mn denotes a preconditioner for the operator G∗nGn. In this case the choice
for the inner product is (x, y)Mn := 〈x,Mny〉X and the coefficients αk and βk can
be efficiently computed by

αk =
(zk−1, zk−1)Mn

(pk,M−1
n G∗nGn)Mn

=

〈

zk−1, rk−1
〉

X
〈Gnpk, Gnpk〉X×Y

=

〈

zk−1, rk−1
〉

X
‖Gnpk‖2

X×Y
,

βk =
(zk, zk)Mn

(zk−1, zk−1)Mn

=

〈

zk, rk
〉

X
〈zk−1, rk−1〉X

.

The preconditioned CG-method applied to (3.26) takes the form:

Algorithm 3.6 (Preconditioned conjugate gradient algorithm)

h0
n = 0; d0 = gδn; r0 = G∗nd

0; p1 = z0 = M−1
n r0; k = 0;

while ‖rk‖X > εC(γn, k)

k = k + 1;

qk = Gnp
k;

αk =
〈

rk−1, zk−1
〉

X /‖qk‖2
X×Y ;

hkn = hk−1
n + αkp

k;

dk = dk−1 − αkq
k;

rk = G∗nd
k;

zk = M−1
n rk;
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βk =
〈

rk, zk
〉

X /
〈

rk−1, zk−1
〉

X ;

pk+1 = zk + βkp
k.

Although the operator equations (3.2) and (3.26) are formally well posed, in prac-
tice the iterates of the CG-method start to deteriorate after some CG-steps, in
particular for ”small” regularization parameters γn. The main reasons are the ten-
dency towards increasing round-off error and loss of orthogonality of the residual
vectors in the method (see [71, Chapter 13]). On the other hand, one frequently
has a sufficiently accurate solution after a small number of steps. Therefore, the
stopping criterion ‖rk‖X > εC(γn, k) possibly stops the iteration after a relatively
small number of steps, if ε and C(γn, k) are chosen in a proper way. Moreover, for
our class of problems it can be observed that in the steps before the iterates start
to deteriorate there is no significant upgrade in the iterates. Since any CG-step
involves the evaluation of F ′[x] and F ′[x]∗ to some given vectors it is possible to
significantly reduce the total complexity of the IRGNM by the choice of a proper
termination criterion.

Note that we have formulated Algorithms 3.5 and 3.6 with initial guess h0
n = 0.

This is due to the fact that in general we do not have any information on an
approximation to the minimizer of (3.5) beforehand. Naturally, if an initial guess
is available it is recommended to use it. This possibly also reduces the number of
steps until the stopping criterion is satisfied.

3.5 Lanczos’ method

In this section we discuss Lanczos’ method, which is an iterative method for approx-
imating some of the eigenvalues and eigenvectors of a linear operator. The method’s
idea is to approximate this operator by a ”small” matrix representing the operator
on a low-dimensional Krylov subspace. Now, the eigenvalues of this matrix can be
interpreted as approximations to the eigenvalues of the linear operator. The corre-
sponding eigenvectors of the matrix can be used to compute approximations to the
eigenvectors of the operator. Lanczos’ method is closely related to the CG-method,
and we restrict ourselves here to a formulation of this method which is based on
quantities occurring in the CG-method. Moreover, for our purposes it turns out to
be necessary to generalize some of the results that are presented in the books of
Demmel [12], Golub & van Loan [24], Axelsson [2], Saad [77] and Fischer [17] for
the finite dimensional case.

For the rest of this chapter we restrict ourselves to a description of Lanczos method
when applied to the preconditioned linear system (3.26). The case for the system
(3.2) is a special case of (3.26) with Mn = I. Then the inner product ( · , · )Mn

simplifies to 〈 · , · 〉X and instead of considering the pseudo-residuals zk we have to
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consider the residuals rk. To shorten the notation we skip for the rest of the chapter
the index n and use the notation

‖x‖XM
:=
√

(x, x)M .

With XM we denote the Hilbert space X equipped with the inner product ( · , · )M .

One important property of the CG-method is the construction of an orthogonal
basis of the Krylov subspace Kk(M

−1G∗G, z0). Lanczos’ method takes advantage
of this basis by approximating the operator M−1G∗G on this subspace. This ap-
proximation can be used to compute approximations to some of the eigenvalues
and corresponding eigenvectors of M−1G∗G. We start the description of Lanczos’
method suited for the system (3.26) with the following two lemmas.

Lemma 3.7 Let {uj : j ∈ N} be a set of vectors in a Hilbert space X which
are orthonormal with respect to some inner product ( · , · ) on X . Then the linear
operator

Uk : R
k → X ,

(ξ1, . . . , ξk) 7→
k
∑

j=1

ξjuj

is bounded and isometric. Here we consider Rk equipped with the Euclidean inner
product. Furthermore, the linear operator

U : l2(N) → X ,

ξ 7→
∞
∑

j=1

ξjuj, ξ = (ξj) ∈ l2(N),

is bounded and isometric. The adjoint operators are given by

U∗k : u 7→ ((u, u1), . . . , (u, uk)),

U∗ : u 7→ ((u, u1), (u, u2), . . .).

Moreover, the equality U∗kUk = IRk holds.

Proof: It is clear that Uk and U are linear and that ‖Uk‖ ≤ 1 and ‖U‖ ≤ 1. The
isometry of Uk follows from the computation

(Ukξ, Ukξ) =

(

k
∑

j=1

ξjuj,
k
∑

j=1

ξjuj

)

=
k
∑

j=1

ξ2
j = (ξ, ξ)l2(k).
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To show that U∗k is the adjoint operator we compute

(u, Ukξ) =

(

u,

k
∑

j=1

ξjuj

)

=

k
∑

j=1

ξj(u, uj) = (U∗ku, ξ)l2(k).

Analogously we can prove the properties of U . To show that U∗kUk = IRk we
compute

U∗kUkξ =
k
∑

j=1

ξjU
∗
kuj = ξ,

which is true for all ξ ∈ Rk.
�

With the help of Lemma 3.7 we now define isometric mappings constructed out of
quantities occuring in the CG-algorithm.

Corollary 3.8 Let z̃j := zj/‖zj‖XM
, j = 0, . . . , k − 1 and q̃j := qj/‖qj‖X×Y , j =

1, . . . , k, where zj and qj are determined by Algorithm 3.6. The linear operators
Zk : Rk → XM and Qk : Rk → X ×Y given by

Zkξ :=
k−1
∑

j=0

ξj z̃
j , ξ = (ξ0, . . . , ξk−1) ∈ R

k,

Qkη :=
k
∑

j=1

ηj q̃
j, η = (η1, . . . , ηk) ∈ R

k

are isometric and the adjoint operator of Zk is given by

Z∗k : z 7→ ((z, z̃0)M , . . . , (z, z̃
k−1)M)T .

Moreover, Z∗kZk = IRk .

Proof: By the definition of z̃j and (3.15b) the set {z̃j : j = 0, . . . , k − 1} is an
orthonormal system in XM . Moreover, using (3.15c) and the relation qj = Gpj we
compute for i 6= ℓ

〈

qi, qℓ
〉

X×Y =
〈

pi, G∗Gpℓ
〉

X = 0.

Hence, the set {q̃j : j = 1, . . . , k} is an orthonormal system in X×Y . The assertions
now follow from Lemma 3.7.

�

It is our aim to derive formulas which show that the linear operator M−1G∗G can
be approximately represented on the subspace span{z̃0, . . . , z̃k−1} by a symmetric
and positive definite tridiagonal matrix. Several formulas used in the following arise
from Algorithm 3.6.
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Multiplying the identity zj = pj+1 − βjp
j from the left by ‖zj‖−1

XM
G and using the

equalities

‖qj+1‖X×Y
‖zj‖XM

=
‖qj+1‖X×Y
〈rj, zj〉1/2X

=
1

√
αj+1

,

‖qj‖X×Y
‖zj‖XM

=
〈rj−1, zj−1〉1/2X√

αj

1

〈rj, zj〉1/2X
=

1
√

αjβj
,

yields for all j = 1, . . . , k − 1

Gz̃j =
1

‖zj‖XM

G(pj+1 − βjp
j) =

1

‖zj‖XM

(qj+1 − βjq
j)

=
1

‖zj‖XM

(‖qj+1‖X×Y q̃j+1 − βj‖qj‖X×Y q̃j)

=
1

√
αj+1

q̃j+1 −
√

βj
αj
q̃j. (3.27)

For k = 0 we have

Gz̃0 =
1

‖z0‖XM

Gp1 =
‖q1‖

〈r0, z0〉1/2
q̃1 =

1√
α1
q̃1. (3.28)

Analogously, the identity αjq
j = dj−1−dj multiplied from the left by (‖qj‖X×Yαj)−1G∗

together with the equalities

‖zj−1‖XM

‖qj‖X×Yαj
=

〈rj−1, zj−1〉1/2X
‖qj‖X×Yαj

=
1

√
αj
,

‖zj‖XM

‖qj‖X×Yαj
=

〈rj, zj〉1/2X
‖qj‖X×Yαj

〈rj−1, zj−1〉1/2X
〈rj−1, zj−1〉1/2X

=

√

βj
αj
,

yields for all j = 1, . . . , k

M−1G∗q̃j =
1

‖qj‖X×Yαj
M−1G∗(dj−1 − dj) =

1

‖qj‖X×Yαj
(zj−1 − zj)

=
1

‖qj‖αj
(

‖zj−1‖XM
z̃j−1 − ‖zj‖XM

z̃j
)

=
1

√
αj
z̃j−1 −

√

βj
αj
z̃j . (3.29)

Putting (3.27), (3.28) and (3.29) together, we have proven the formulas

M−1G∗Gz̃0 =
1

α1
z̃0 −

√
β1

α1
z̃1, (3.30a)

M−1G∗Gz̃j = −
√

βj

αj
z̃j−1 +

(

1

αj+1

+
βj
αj

)

z̃j −
√

βj+1

αj+1

z̃j+1, (3.30b)
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which hold for all j = 1, . . . , k − 1. Using the definition

Tk :=





















1
α1

−
√
β1

α1

−
√
β1

α1

1
α2

+ β1

α1
−
√
β2

α2

. . .
. . .

. . .
. . .

. . . −
√
βk−1

αk−1

−
√
βk−1

αk−1

1
αk

+ βk−1

αk−1





















(3.31)

we can express (3.30) in matrix notation by

M−1G∗GZk = ZkTk −
(

0, . . . , 0,

√
βk
αk

z̃k
)

. (3.32)

Multiplying equation (3.32) with Z∗k from the left yields

Z∗kM
−1G∗GZk = Tk, (3.33)

which shows that Tk is positive definite. Now, let us denote by θ1 ≥ . . . ≥ θk > 0
and v1, . . . , vk the eigenvalues with corresponding eigenvectors of the symmetric and
positive definite matrix Tk ∈ Rk×k. Then it follows from (3.33) that the equation

Z∗kM
−1G∗GZkvj = θjvj , j = 1, . . . , k

holds. Moreover, in the case when zk = 0, that is the preconditioned CG-method
terminates with the exact solution of (3.26), we have

M−1G∗GZkvj = θjZkvj , j = 1, . . . , k,

that is θ1 ≥ . . . ≥ θk are exact eigenvalues and Zkv1, . . . , Zkvk are corresponding
eigenvectors of M−1G∗G.

However, the assumption zk = 0 is not realistic. As already mentioned, we use the
CG-method as an iterative method coupled with some stopping criterion. Hence,
in the expected case zk 6= 0 we need a justification to interpret the values θ1 ≥
. . . ≥ θk and vectors Zkv1, . . . , Zkvk as approximations to some eigenvalues with
corresponding eigenvectors of M−1G∗G. This will be the topic of the next section.
Moreover, we will prove that these approximations can be considered as optimal in
the sense that they satisfy a minimization problem.

Remark 3.9 There is a close connection between the CG-method and orthogonal
polynomials (see for example [17]). With the help of Theorems 3.2 and 3.4 it can
be shown that the mapping

(p, q)π :=
(

p(M−1G∗G)z0), q(M−1G∗G)z0)
)

M
. (3.34)
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defines an inner product on Π =
⋃

m∈N0
Πm and that the polynomials pk arising in

Theorem 3.4 are orthogonal with respect to this inner product, that is (pi, pj)π =
0 if i 6= j. The matrices Tk derived above just collect the three-term recurrence
coefficients of the orthogonal polynomial pk, k = 1, 2, . . ., given by (3.23).

As a consequence of Remark 3.9 together with properties of orthogonal polynomials
the following theorem can be proven.

Theorem 3.10 Let us denote the eigenvalues of the operator M−1G∗G, which is
self-adjoint with respect to ( · , · )M , by µ̃1 ≥ µ̃2 ≥ . . . and by θ

(k)
j , j = 1, . . . , k,

the eigenvalues of the matrices Tk, k = 1, 2, . . .. Then the following assertions hold
true:

a) The eigenvalues of Tk are all real, simple and

inf
s∈N

µ̃s < θ
(k)
1 < θ

(k)
2 < . . . < θ

(k)
k < µ̃1.

In particular, if M = I we have that

γn < θ
(k)
1 < θ

(k)
2 < . . . < θ

(k)
k < γn + λ1,

where γn denotes the regularization parameter and λ1 the largest eigenvalue
of the compact operator F ′[xδn]

∗F ′[xδn] (see Section 3.1).

b) The eigenvalues of Tk and Tk+1 separate each other, i.e.

θ
(k+1)
1 < θ

(k)
1 < θ

(k+1)
2 < . . . < θ

(k)
k < θ

(k+1)
k+1 .

c) The polynomial pk defined through (3.23) is given by

pk(t) = Πk
j=1(1 − t/θ

(k)
j ).

Proof: See [17, Chapter 2] and [80].
�

Note that a direct consequence of Theorem 3.10 is that Lanczos’ method approx-
imates at most one of a multiple eigenvalue with a corresponding eigenvector. In
our case this is an important drawback for the construction of a preconditioner
(see Chapter 6). On the other hand, if there are multiple eigenvalues we expect
faster convergence of the CG-method, since this method performs at most one step
for a multiple eigenvalue. Hence, Theorem 3.10 indicates that there is a corre-
spondence between the eigenvalue distribution and the convergence behavior of the
CG-method.
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3.6 The Rayleigh-Ritz Method

Instead of considering the special operator Zk defined by the pseudo residuals of the
preconditioned CG-method as in the last section, we generalize this idea. Therefore
assume that {uj : j ∈ N} is an orthonormal system in XM . We now approximate
eigenvalues of M−1G∗G on the subspace span{u1, . . . , uk} ⊂ XM . To this end
recall the isometric operator Uk defined in Lemma 3.7, which we consider here as
a mapping from Rk to XM and the operator U : l2(N) → XM . To formulate the
Rayleigh-Rith method in infinite dimensions we furthermore introduce the shift
operator Jk : l2(N) → l2(N) given by

Jkξ = (0, . . . , 0, ξ1, ξ2, . . .), ξ = (ξj) ∈ l2(N),

where the first k entries of the vector are zero, and its adjoint operator

J∗kξ = (ξk+1, ξk+2, . . .), ξ = (ξj) ∈ l2(N).

Moreover, we define Vk := UJ∗k and ξ̃ to be the first k components of ξ ∈ l2(N),
that is ξ̃ := (ξ1, . . . , ξk). Now consider the operator (Uk, Vk) : l2(N) → XM ,

(Uk, Vk)ξ := Ukξ̃ + Vkξ.

Obviously the equality (Uk, Vk) = U is satisfied. To shorten the notation we de-
fine G̃ := M−1G∗G and consider the partitioning

U∗G̃U =

(

U∗k G̃Uk U∗k G̃Vk
V ∗k G̃Uk V ∗k G̃Vk

)

. (3.35)

Notice that Sk := U∗k G̃Uk is represented by the matrix

Sk = [(ui, G̃uj)XM
]1≤i,j≤k ∈ R

k×k. (3.36)

It is clear that for k = 1,

S1 = U∗1 G̃U1

is just the Rayleigh quotient of G̃ with respect to u1 and the inner product ( · , · )XM
.

So for k > 1, Sk is a natural generalization of the Rayleigh quotient. The Rayleigh-
Ritz procedure consists in approximating the eigenvalues of G̃ by the eigenvalues
of Sk.

Definition 3.11 The eigenvalues θ1 ≥ . . . ≥ θk of the symmetric matrix Sk are
called Ritz values. Let v1, . . . , vk ∈ Rk denote the corresponding orthonormal eigen-
vectors. The orthonormal vectors Ukv1, . . . , Ukvk ∈ XM are called Ritz vectors.
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The proceeding above is motivated by the assumption that the vectors u1, . . . , uk are
known. Then Sk is a natural approximation of G̃ on the subspace span{u1, . . . , uk}.
Therefore the Ritz values and vectors are the natural approximations from the
known part of the operator. The following theorem even states that they are optimal
in a certain sense:

Theorem 3.12 The following optimality result holds:

min
S∈Rk×k

‖G̃Uk − UkS‖XM←Rk = ‖G̃Uk − UkSk‖XM←Rk . (3.37)

Furthermore, we have the equality

‖G̃Uk − UkSk‖XM←Rk = ‖V ∗k G̃Uk‖l2(N). (3.38)

Proof: Let S = Sk +B where B ∈ R
k×k. Then we can estimate

‖(G̃Uk − UkS)ξ‖2
XM

= (G̃Ukξ − UkSkξ − UkBξ, G̃Ukξ − UkSkξ − UkBξ)XM

= ‖(G̃Uk − UkSk)ξ‖2
XM

−2(G̃Ukξ − UkSkξ, UkBξ)XM
+ ‖UkBξ‖2

XM

= ‖(G̃Uk − UkSk)ξ‖2
XM

−2((U∗k G̃Uk − Sk)ξ, Bξ)Rk + ‖UkBξ‖2
XM

≥ ‖(G̃Uk − UkSk)ξ‖2
XM
,

which holds for all ξ ∈ R
k. This proves (3.37). Using the isometry of U , the

equation V ∗k Uk = J∗kU
∗Uk = 0 and (3.38) we can conclude for all ξ ∈ Rk

‖(G̃Uk − UkSk)ξ‖XM
= ‖(U∗G̃Uk − U∗UkSk)ξ‖l2(N)

=

∥

∥

∥

∥

[(

U∗k G̃Uk
V ∗k G̃Uk

)

−
(

Sk
0

)]

ξ

∥

∥

∥

∥

l2(N)

=

∥

∥

∥

∥

[(

Sk
V ∗k G̃Uk

)

−
(

Sk
0

)]

ξ

∥

∥

∥

∥

l2(N)

= ‖V ∗k G̃Ukξ‖l2(N).

�

Corollary 3.13 Let θ1 ≥ . . . ≥ θk be the eigenvalues of Sk and v1, . . . , vk the
corresponding orthonormal eigenvectors. We define Λ = diag(θ1, . . . , θk) and V =
(v1, . . . , vk). Then we have the equality

min
S∈Rk×k

‖G̃Uk − UkS‖XM←Rk = ‖G̃UkV − UkV Λ‖XM←Rk = ‖V ∗k G̃Uk‖l2(N).
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Proof: To proof the corollary by formulas (3.37) and (3.38) we only have to
show that ‖G̃Uk − UkSk‖XM←Rk = ‖G̃UkV − UkV Λ‖XM←Rk . By the assumption
we have V TSkV = Λ, and since V TV = IRk we have

‖G̃Uk − UkSk‖XM←Rk = ‖G̃Uk − UkV ΛV T‖XM←Rk

= ‖G̃UkV − UkV Λ‖XM←Rk .

This proves the assertion.
�

Theorem 3.12 and Corollary 3.13 justify the use of Ritz values and Ritz vectors as
approximations to the eigenvalues and eigenvectors.

Lanczos’ method is a particular case of the Rayleigh-Ritz method, where the op-
erator Uk is given by Zk. Naturally, the matrix Sk ∈ Rk×k coincides in this case
with Tk ∈ R

k×k defined in (3.31) and it is easy to compute all the quantities of
Theorem 3.12 and Corollary 3.13. This is because there are good algorithms for
finding eigenvalues and eigenvectors of the symmetric tridiagonal matrix Tk and be-
cause the residual norm is simply ‖V ∗k G̃Uk‖l2(N) =

√
βk/αk, which is a consequence

of formula (3.32) and the nonnegativity of
√
βk/αk. Let us summarize these simpli-

fied error bounds on the approximate eigenvalues and eigenvectors in the following
theorem.

Theorem 3.14 Assume that Sk and Uk are determined by Lanczos’ method, that
is Sk = Tk and Uk = Zk. Let Tk = V ΛV T be the eigendecomposition of Tk,
where V = (v1, . . . , vk) is orthogonal and Λ = diag(θ1, . . . , θk). Then the follow-
ing statements hold true:

a) There are k eigenvalues µ̃1, . . . , µ̃k of G̃ (not necessarily the largest k) such
that

|θi − µ̃i| ≤
√
βk
αk

, i = 1, . . . , k.

b)

‖G̃(Zkvi) − (Zkvi)θi‖XM
=

√
βk
αk

|vi(k)|, (3.39)

where vi(k) is the k-th (bottom) entry of vi.

Proof: Recall the partitioning (3.35) with the operator Uk replaced by Zk and the
corresponding operator Vk. The eigenvalues of the linear operator

T̂ :=

(

Z∗kG̃Zk 0

0 V ∗k G̃Vk

)
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include θ1 ≥ . . . ≥ θk. Since

‖T̂ − U∗G̃U‖l2(N) =

∥

∥

∥

∥

(

0 Z∗kG̃Vk
V ∗k G̃Uk 0

)∥

∥

∥

∥

l2(N)

= ‖V ∗k G̃Zk‖l2(N),

by Weyl’s Theorem (see [36, Theorem 32.6]), it follows that the eigenvalues of T̂
and U∗G̃U differ at most by ‖V ∗k G̃Zk‖l2(N). But the eigenvalues of U∗G̃U and G̃ are
the same. This together with (3.32) shows a). b) is also a consequence of (3.32).

�

Further estimates for the Rayleigh-Ritz method can be found for example in [51].

3.7 Kaniel-Paige Convergence Theory

In the previous section, we obtained computable a-posteriori error estimates for the
Ritz values and Ritz vectors computed by Lanczos’ method. But so far we know
nothing about the rate of convergence. There is another error bound, due to Kaniel-
Paige and Saad, that sheds light on this aspect. This error bound depends on the
angle between the first normalized residual vector z̃0 and the desired eigenvectors,
the Ritz values, and the desired eigenvalues. In other words, it depends on quantities
unknown during the computation, so it is of no practical use. But it shows that
if z̃0 is nearly orthogonal to the desired eigenvector, or if the desired eigenvalue is
nearly multiple, then we can expect slow convergence.

To formulate this error bound we introduce Chebysheff polynomials of the first kind
of degree j defined by

cj(x) :=

{

cos(j arccosx), −1 ≤ x ≤ 1,
1
2

[

(

x+
√
x2 − 1

)j
+
(

x−
√
x2 − 1

)j
]

, |x| > 1.
(3.40)

Theorem 3.15 Let us denote the eigenvalues of the bounded operator G̃ = M−1G∗G,
which is self-adjoint and strictly coercive with respect to ( · , · )M , by µ̃1 ≥ µ̃2 ≥
. . . > µ̃r ≥ . . . and the corresponding orthonormal eigenvectors by ϕ̃1, ϕ̃2, . . ..
Let θ1 > . . . > θk be the eigenvalues of Tk given by (3.31), then

µ̃1 ≥ θ1 ≥ µ̃1 − (µ̃1 − µ̃)
tan(χ1)

2

(ck−1(1 + 2ρ1))2
,

where

cos(χ1) = |(z̃0, ϕ̃1)M |, µ̃ = inf
s∈N

µ̃s and ρ1 =
µ̃1 − µ̃2

µ̃2 − µ̃
.
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Proof: Recall formula (3.23). Hence, each vector z̃j can be written as z̃j =
pj(M

−1G∗G)z̃0, where pj is a polynomial of degree j, j = 0, . . . , k−1. Since θ1 is the
largest eigenvalue of Tk, this together with the definition G̃ = M−1G∗G and (3.33)
yields

θ1 = max
ξ 6=0

(ξ, Tkξ)l2(k)
(ξ, ξ)l2(k)

= max
ξ 6=0

(Zkξ, G̃Zkξ)M
(Zkξ, Zkξ)M

= max
p∈Πk−1

(p(G̃)z̃0, G̃p(G̃)z̃0)M

(p(G̃)z̃0, p(G̃)z̃0)M
.

By Courant’s Minimum-Maximum principle (see [36, Theorem 32.4]) it follows
that θ1 ≤ µ̃1. To establish the other bound on θ1, we write z̃0 =

∑∞
i=1(z̃

0, ϕ̃i)M ϕ̃i
and obtain for p ∈ Πk−1

(p(G̃)z̃0, G̃p(G̃)z̃0)M

(p(G̃)z̃0, p(G̃)z̃0)M
=

∑∞
i=1(z̃

0, ϕ̃i)
2
Mp(µ̃i)

2µ̃i
∑∞

i=1(z̃
0, ϕ̃i)2

Mp(µ̃i)
2

≥ µ̃1(z̃
0, ϕ̃1)

2
Mp(µ̃1)

2 + µ̃
∑∞

i=2(z̃
0, ϕ̃i)

2
Mp(µ̃i)

2

(z̃0, ϕ̃1)
2
Mp(µ̃1)2 +

∑∞
i=2(z̃

0, ϕ̃i)
2
Mp(µ̃i)

2

=
µ̃1((z̃

0, ϕ̃1)
2p(µ̃1)

2 +
∑∞

i=2(z̃
0, ϕ̃i)

2
Mp(µ̃i)

2)

(z̃0, ϕ̃1)2
Mp(µ̃1)2 +

∑∞
i=2(z̃

0, ϕ̃i)2
Mp(µ̃i)

2

− µ̃1

∑∞
i=2(z̃

0, ϕ̃i)
2
Mp(µ̃i)

2 − µ̃
∑∞

i=2(z̃
0, ϕ̃i)

2
Mp(µ̃i)

2

(z̃0, ϕ̃1)
2
Mp(µ̃1)2 +

∑∞
i=2(z̃

0, ϕ̃i)
2
Mp(µ̃i)

2

= µ̃1 − (µ̃1 − µ̃)

∑∞
i=2(z̃

0, ϕ̃i)
2
Mp(µ̃i)

2

(z̃0, ϕ̃1)2
Mp(µ̃1)2 +

∑∞
i=2(z̃

0, ϕ̃i)Mp(µ̃i)2
.

We can derive a sharp bound by choosing

p(x) := ck−1

(

−1 + 2
x− µ̃

µ̃2 − µ̃

)

.

The argument to ck−1 is constructed to map the interval [µ̃, µ̃2] to [−1, 1]. Since
the Chebysheff polynomial ck−1 satisfies |ck−1(x)| ≤ 1 for all x ∈ [−1, 1] and grows
rapidly outside of this interval, it follows that p(x) is large at µ̃1 and small at all
the other eigenvalues. More precisely, the estimate

0 ≤ µ̃i − µ̃

µ̃2 − µ̃
≤ 1, i = 2, 3, . . .

leads to

|p(µ̃i)| =

∣

∣

∣

∣

ck−1

(

−1 + 2
µ̃i − µ̃

µ̃2 − µ̃

)∣

∣

∣

∣

≤ 1, i = 2, 3, . . . ,

and the identity

1 + 2
µ̃1 − µ̃2

µ̃2 − µ̃
= −1 + 2

µ̃1 − µ̃

µ̃2 − µ̃

yields
p(µ̃1) = ck−1(1 + 2ρ1).
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Now using 1 = (z̃0, z̃0)M =
∑∞

i=1(z̃
0, ϕ̃i)

2 by Parseval’s equality, we can estimate
the quotient of the inequality above by

∑∞
i=2(z̃

0, ϕ̃i)
2
Mp(µ̃i)

2

(z̃0, ϕ̃1)2
Mp(µ̃1)2 +

∑∞
i=2(z̃

0, ϕ̃i)2
Mp(µ̃i)

2

≤ (z̃0, ϕ̃1)
2
M +

∑∞
i=2(z̃

0, ϕ̃i)
2
Mp(µ̃i)

2 − (z̃0, ϕ̃1)
2
M

(z̃0, ϕ̃1)2
Mp(µ̃1)2

≤ 1 − (z̃0, ϕ̃1)
2
M

(z̃0, ϕ̃1)2
M

1

(ck−1(1 + 2ρ1))2
=

(tanχ1)
2

(ck−1(1 + 2ρ1))2
.

�

Note that in practice the vector z̃0 is determined by Algorithm 3.6 and depends
on the given right hand side. In the case where z̃0 = ϕ̃1, Theorem 3.15 shows
that the corresponding Ritz Value θ1 is the exact largest eigenvalue of G̃. Due to
Theorem 3.10 the CG-method terminates in this case after only one step. This
corresponds to our discussion in Section 3.5. On the other hand, if ρ1 is ”small” we
expect slow convergence and therefore approximations of low quality.



Chapter 4

Complexity analysis of a

preconditioned Newton method

For large-scale problems in three space dimensions usually the complexity of an
iterative numerical reconstruction method depends for the most part on the number
of evaluations of the operators F (xδn) and its Fréchet derivative F ′[xδn] and the
adjoint F ′[xδn]

∗ at some given vectors. For example, for the IRGNM with inner CG-
iteration the construction of the right hand side in the n-th Newton step involves
the evaluation of F (xδn). Furthermore, usually several evaluations of F ′[xδn] and
its adjoint F ′[xδn]

∗ at given vectors generated in the CG-algorithm are required to
compute an approximation to the solution of the linearized and regularized equation.

For the IRGNM with inner CG-iteration a complexity analysis has not been done
so far. It is the goal of this chapter to contribute to such a complexity analysis
both for mildly and for exponentially ill-posed problems. In particular, our aim is
to give an upper bound for the total complexity of this algorithm in terms of the
noise level δ > 0. As measure for the complexity we will count the total number
of operator evaluations. This corresponds to results formulated in [16, Chapter 7],
where linear ill-posed problems are solved by the CG-method applied to the normal
equation using the regularizing properties of this method.

Moreover, we suggest a preconditioned version of the IRGNM, that is we construct
a preconditioner for the inner CG-iteration, which accelerates the speed of con-
vergence leading to a significant reduction of the number of operator evaluations.
Finally, we compare the complexity of the standard IRGNM to its preconditioned
version.

89
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4.1 Standard error estimate for the conjugate gra-

dient method

Recall that we use the CG-method as an iterative method for solving the linear
systems (2.8). In the following we want to establish convergence rates of this CG-
iteration and determine the number of CG-steps required to reach a desired error
level. We will find out that both topics are closely related. For a more detailed
convergence rate analysis of the CG-method for linear operators in Hilbert spaces
we refer to [4].

Throughout this chapter we denote the true solution of (2.8) by h†n. Recall that
the iterates of Algorithm 3.5 and 3.6 respectively are given by hkn, k = 0, 1, 2, . . ..
The iteration error in the k-th step of the CG-method we denote throughout this
chapter by ek := h† − hkn. The rate of convergence of the iteration error ‖ek‖G∗

nGn

is measured by the average convergence factor

(‖ek‖G∗
nGn

‖e0‖G∗
nGn

)1/k

,

where

‖x‖G∗
nGn :=

√

〈x,G∗nGnx〉X , x ∈ X ,
defines the G∗nGn–norm on X , which is actually a norm due to Lemma 3.3 and
since G∗nGn is bounded and strictly coercive for all n ∈ N0. To prove convergence
rates we make use of the close connection between the k-th iteration error of the
CG-method and certain polynomials. Recall that due to (3.22) the iteration error ek

of the CG-method, is related to the initial error by

ek = pk(M
−1
n G∗nGn)e

0, (4.1)

where pk belongs to Π1
k, the set of polynomials of degree k such that pk(0) = 1.

Furthermore, since by Theorem 3.4 for any v ∈ Kk(M
−1
n G∗nGn, z

0) there exist poly-
nomials q̃k−1 ∈ Πk−1 and p̃k = 1 − tq̃(t) ∈ Π1

k such that

e0 + v = e0 + q̃k−1(M
−1
n G∗nGn)M

−1
n G∗nGne

0 = p̃k(M
−1
n G∗nGn)e

0,

an application of (3.24) shows that the polynomial defined by (4.1) is optimal in
the sense that it satisfies

‖ek‖G∗
nGn = min

p∈Π1

k

‖p(M−1
n G∗nGn)e

0‖G∗
nGn . (4.2)

Equation (4.2) implies monotone convergence of ‖ek‖G∗
nGn. Moreover, it can be used

to derive various upper bounds on the rate of convergence and for the number of
iterations required to reach a desired relative error level.
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To this end, let {ϕ̃j : j ∈ N} be a set of orthonormal eigenvectors of M−1
n G∗nGn with

corresponding eigenvalues µ̃j, j ∈ N, with respect to ( · , · )Mn
. Then, the identity

e0 =

∞
∑

i=1

(

e0, ϕ̃i
)

Mn
ϕ̃i,

and (4.1) yields

ek =

∞
∑

i=1

(

e0, ϕ̃i
)

Mn
pk(µ̃i)ϕ̃i.

Using the nonnegativity of the eigenvalues, we find

‖ek‖G∗
nGn =

〈 ∞
∑

i=1

(

e0, ϕ̃i
)

Mn
pk(µ̃i)ϕ̃i,MnM

−1
n G∗nGn

∞
∑

i=1

(

e0, ϕ̃i
)

Mn
pk(µ̃i)ϕ̃i

〉1/2

X

=

( ∞
∑

i=1

(

e0, ϕ̃i
)

Mn
pk(µ̃i)ϕ̃i,

∞
∑

i=1

(

e0, ϕ̃i
)

Mn
µ̃ipk(µ̃i)ϕ̃i

)1/2

Mn

=

( ∞
∑

i=1

µ̃i(pk(µ̃i))
2
∣

∣

∣

(

e0, ϕ̃i
)

Mn

∣

∣

∣

2
)1/2

≤ max
i∈N

|pk(µ̃i)|
( ∞
∑

i=1

µ̃i

∣

∣

∣

(

e0, ϕ̃i
)

Mn

∣

∣

∣

2
)1/2

= max
i∈N

|pk(µ̃i)|‖e0‖G∗
nGn . (4.3)

Due to the minimization property (4.2), it follows from (4.3) that

‖ek‖G∗
nGn ≤ min

p∈Π1

k

max
i∈N

|p(µ̃i)|‖e0‖G∗
nGn. (4.4)

This inequality reduces the problem to estimate the error of the CG-iteration to
the construction of polynomials which make this bound small. Actually, the bound
is sharp in the sense that there exists an initial guess for which the bound will be
attained at every step (see Greenbaum [26]). The standard convergence rate of
the CG-method, which we will prove in the following, can be derived from (4.4)
using Chebysheff polynomials of the first kind defined by (3.40). In the following
two lemmas we prove fundamental results on the Chebysheff polynomials that are
important for our convergence rate analysis of the CG-method.

Lemma 4.1 Let 0 < a < b and c̃j be the normalized Chebysheff polynomial of the
first kind of degree j, more precisely

c̃j(t) :=
cj(x(t))

cj(x(0))
where x(t) := 1 − 2(t− a)

b− a
, (4.5)
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and cj is defined in (3.40). Then we have the estimate

‖c̃j‖∞,[a,b] ≤
1

cj(x(0))
≤ 2κ(a, b)j

1 + κ(a, b)2j
, (4.6)

where κ(a, b) is defined by

κ(a, b) :=

√
b−√

a√
b+

√
a
. (4.7)

Proof: Note, the mapping x defined in (4.5) maps the interval [a, b] to [−1, 1] and
satisfies x(0) = b+a

b−a > 1. Now, rewriting cj for |x| > 1 as

cj(x) =
1

2

[

(

x+
√
x2 − 1

)j

+
(

x−
√
x2 − 1

)j
]

=
1 + (x+

√
x2 − 1)2j

2(x+
√
x2 − 1)j

and using the fact that ‖cj‖∞,[−1,1] ≤ 1 we get

‖c̃j‖∞,[a,b] ≤ 1

cj(x(0))
=







2
(√

b+
√
a√

b−√a

)j

1 +
(√

b+
√
a√

b−√a

)2j







(√
b−√a√
b+
√
a

)2j

(√
b−√a√
b+
√
a

)2j

=
2κ(a, b)j

1 + κ(a, b)2j
.

�

Notice that the normalized Chebysheff polynomials satisfy c̃j ∈ Π1
j . Hence, they

can be used to derive upper bounds in inequality (4.4). The next lemma implies
that they can be used to determine the number of CG-steps until some relative
error level is reached.

Lemma 4.2 Let 0 < a < b and 0 < ε ≤ 1. Then

2κ(a, b)j

1 + κ(a, b)2j
≤ ε,

if j ≥ j(ε, a, b), where

j(ε, a, b) :=

⌈

ln

(

1

ε
+

√

1

ε2
− 1

)

/ ln
(

κ(a, b)−1
)

⌉

. (4.8)

Here, ⌈x⌉ denotes the smallest integer not less than x. In particular the inequal-
ity ‖c̃j‖∞,[a,b] ≤ ε is satisfied.
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Proof: Notice that the function fε(t) := εt/(1 + ε2t), 0 < ε ≤ 1, t ≥ 0, is
monotonically decreasing, since for all t ≥ 0 we have

f ′ε(t) =
(ln ε)εt(1 − ε2t)

(1 + ε2t)2
≤ 0.

From this together with 0 < κ(a, b) < 1 it follows that

2κ(a, b)j

1 + κ(a, b)2j
≤ 2κ(a, b)j(ε,a,b)

1 + κ(a, b)2j(ε,a,b)

≤
2
(

1
ε

+
√

1
ε2
− 1
)

1 +
(

1
ε

+
√

1
ε2
− 1
)2

=
2

(

1
ε
−
√

1
ε2
− 1
)

+
(

1
ε

+
√

1
ε2
− 1
)

= ε.

Then the assertion ‖c̃j‖∞,[a,b] ≤ ε follows from (4.6).
�

We formulate the most well known convergence estimate for the CG-method in the
following theorem.

Theorem 4.3 The iteration error ej of the preconditioned CG-method satisfies for
all j ∈ N0

‖ej‖G∗
nGn ≤ 2

(

√

cond(M−1
n G∗nGn) − 1

√

cond(M−1
n G∗nGn) + 1

)j

‖e0‖G∗
nGn . (4.9)

Proof: Let us assume that µ∗ := maxi∈N µ̃i and let µ∗ := infi∈N µ̃i. By Lemma 3.3
the operator M−1

n G∗nGn is strictly coercive, in particular there exits an ε > 0 such
that µ∗ ≥ ε > 0. By a combination of inequality (4.4) and Lemma 4.1 we have

‖ej‖G∗
nGn ≤ max

i∈N

|c̃j(µ̃i)|‖e0‖G∗
nGn ≤ 2

(√
µ∗ −√

µ∗√
µ∗ +

√
µ∗

)j

‖e0‖G∗
nGn

= 2





√

µ∗

µ∗
− 1

√

µ∗

µ∗
+ 1





j

‖e0‖G∗
nGn

= 2

(

√

cond(M−1
n G∗nGn) − 1

√

cond(M−1
n G∗nGn) + 1

)j

‖e0‖G∗
nGn.

�
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Estimate (4.9) implies fast convergence for small condition numbers of M−1
n G∗nGn.

On the other hand, if the condition number is large we expect slow convergence
since

√

cond(M−1
n G∗nGn) − 1

√

cond(M−1
n G∗nGn) + 1

≈ 1.

We give an interpretation of this result for our problem for the case Mn = I. Here
the condition number is given by

cond(G∗nGn) =
γn + λ1

γn
= 1 +

λ1

γn
.

Obviously, the condition number explodes as γn ց 0. This indicates that solving a
linear system (2.8) after several Newton steps requires a lot more CG-steps than in
the first steps of the IRGNM. This behavior is supported by according observations
in numerical examples. Usually, in applications where some general linear system
is given, estimate (4.9) is the best one can expect. If no further information of
the operator of the linear system is known, one can for example compute a good
approximation to the condition number by the power method or Lanczos’ method
to get an idea of the expected convergence rate.
However, estimate (4.9) is not sufficient to predict about the convergence behavior
of the CG-method, since not only the bounds of the spectrum of the operator
play a role in the convergence behavior, but also the entire eigenvalue distribution.
In our situation we can take advantage of this dependency, since we even have a
quantitative a-priori knowledge of the distribution of the eigenvalues, since for ill-
posed problems the rate of decay of the eigenvalues is of particular interest. It is
even used to classify the problem. We will discuss this topic in detail in Section 4.5.

For the rest of this chapter we pursue five main goals:

a) We formulate two different stopping criteria for the CG-method while per-
forming the IRGNM. The first criterion shows that it is possible to satisfy
the inequalities (2.24) and (2.32). The second one we use in practice for our
computations.

b) We construct a preconditioner converting the eigenvalue distribution of G∗nGn

such that cond(M−1
n G∗nGn) ≈ 1, that is we can expect fast convergence of the

inner CG-iteration in each Newton step.

c) We suggest a model algorithm based on the IRGNM that involves a precon-
ditioner in several Newton steps.

d) We derive an improvement of estimate (4.9). This will be done by choosing a
polynomial which is tailored to the eigenvalue distribution of linear operators
occurring in ill-posed problems.
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e) We analyze the complexity of the IRGNM and the model algorithm and com-
pare them. As measurement for the complexity we count the number of
operator evaluations of F (x) and of F ′[x] and F ′[x]∗ at some given vectors.

4.2 Stopping criteria

We now want to show that it is possible to formulate a stopping criterion for the
CG-method that guarantees that the conditions (2.24) resp. (2.32) are satisfied in
each Newton step. This result shows that at least from a theoretical point of view
the assumptions of Proposition 2.4 and of Theorem 2.7 concerning the error elsn
defined in (2.13) and its image under F ′[xδn] can be satisfied.

Theorem 4.4 For Algorithm 3.5 with C(γn, k) := γnf(γn) applied to (3.2), where f
is determined by the source condition (2.4), the resulting stopping criterion to iterate
until

‖rk‖ ≤ εγnf(γn) (4.10)

is met after a finite number Jn of steps, and the update happ
n := hJn

n (cf. (2.9))
satisfies the estimates

‖h†n − hJn
n ‖X ≤ εf(γn),

‖Gn(h
†
n − hJn

n )‖X×Y ≤ ε
√
γnf(γn),

where h†n denotes the true solution of (3.2). In particular (2.24) and (2.32) hold.

Proof: It follows from standard convergence theory of the CG-method as pre-
sented in Section 4.1 that limk→∞ h

k
n = h†n and limk→∞ r

k = 0. So the stopping
criterion (4.10) is met after a finite number Jn of steps.

Note that due to (4.10) Algorithm 3.5 terminates if ‖rk‖X ≤ εγnf(γn). Recall
from (3.3) that the norm of G∗nGn is bounded by ‖(G∗nGn)

−1‖ ≤ γ−1
n . Hence, we

conclude

‖h†n − hJn
n ‖X ≤ ‖(G∗nGn)

−1‖‖G∗nGn(h
†
n − hJn

n )‖X
≤ γ−1

n ‖G∗n(gδn −Gnh
Jn

n )‖X
= εf(γn).

This proves (2.24a) with the constant Cls = ε. Since (G∗n)
†G∗n is the orthogonal

projection onto R(Gn) and

‖G†n‖ = ‖(G∗nGn)
−1G∗n‖ = ‖(G∗nGn)

−1(G∗nGn)
1/2‖ = ‖(G∗nGn)

−1/2‖ ≤ γ−1/2
n ,

we can estimate

‖Gn(h
†
n − hJn

n )‖X×Y = ‖(G∗n)†G∗nGn(h
†
n − hJn

n )‖X×Y
≤ ‖(G∗n)†‖‖G∗nGn(h

†
n − hJn

n )‖X
≤ ε

√
γnf(γn).
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The estimate (2.24b) with the constant Cls given by ε now follows from the inequal-
ity

‖F ′[xδn]x‖2
Y ≤ ‖Gnx‖2

X×Y ,

which holds for all x ∈ X . The estimates (2.32a) and (2.32b) follow by choos-
ing f(γn) =

√
γn (see the discussion before Theorem 2.7).

�

In particular, note that for the choice C(γn, k) := γ
3/2
n in Algorithm 3.5 the resulting

stopping criterion does not require knowledge of the source condition.
In practice we will use a related stopping criterion yielding some relative error
estimate, which is essential for the complexity analysis.

Theorem 4.5 Let Mn be a preconditioner for G∗nGn. For Algorithms 3.5 and 3.6
with C(γn, k) := γn‖hkn‖X the resulting stopping criterion to iterate until

‖rk‖X ≤ εγn‖hkn‖X , (4.11)

is met after a finite number Jn of steps and we have the relative error estimate

‖hJn
n − h†n‖X ≤

(

ε

1 − ε

)

‖h†n‖X . (4.12)

Proof: By the same arguments as in the proof of Theorem 4.4 the stopping index Jn
is finite. Due to the choice of the stopping criterion (4.11) we have the estimate

‖rJn‖X ≤ εγn‖hJn
n ‖X ,

which together with (3.3) yields

‖h†n − hJn

n ‖X ≤ ‖(G∗nGn)
−1‖‖G∗nGn(h

†
n − hJn

n )‖X ≤ ε‖hJn

n ‖X . (4.13)

By an application of the triangle inequality we have

‖hJn

n ‖X ≤ ‖h†n‖X + ‖hJn

n − h†n‖X ≤ ‖h†n‖X + ε‖hJn

n ‖X ,

that is (1 − ε)‖hJn
n ‖X ≤ ‖h†n‖X . This in combination with (4.13) proves (4.12).

�

4.3 Definition of a preconditioner

Designing an efficient preconditioner for a linear system is not an easy task in
general. Some textbooks claim that ”Constructing preconditioners is more an art
than a science” (see for example [64] and [77]). We will discuss this topic in more
detail in Chapter 5.
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The following consideration serves as a motivation for the preconditioner defined
below. Using the CG-method as solver for the linear systems (2.8) Lanczos’ method
provides good approximations to some of the eigenvalues and eigenvectors of the
linear operator. Moreover, this method tends to approximate the outliers in the
spectrum of the operator very well, while eigenvalues in the bulk of the spectrum are
typically harder to approximate (see Kuijlaars [53]). For simplicity we assume in the
following that we have exact knowledge of the kn ∈ N largest eigenvalues µ1 ≥ . . . ≥
µkn with corresponding eigenvectors ϕ1, . . . , ϕkn of G∗nGn. We use this information
to define a preconditioner Mn ∈ L(X ,X ) given by

Mnx := γnx+
kn
∑

j=1

(

µj
ζ

− γn

)

〈x, ϕj〉X ϕj , (4.14)

which is designed such that the known outliers µ1 ≥ . . . ≥ µkn are mapped to
some value ζ > 0. Note that we have assumed that kn ∈ N, that is at least
one eigenpair is known. Naturally, in the case where we do not have any spectral
information we define Mn = I. Hence, if nothing else is said we always assume
in the following kn > 0 when we use Mn. Recall that the eigenvalues µj of G∗nGn

satisfy µj = γn + λj , j ∈ N, and that the corresponding set {ϕj : j ∈ N} of
orthonormal eigenvectors is a complete orthonormal system in X (see Section 3.1).

The preconditioner Mn belongs to the class of so-called spectral preconditioners
(see Section 5.2). In general a lot of spectral data of G∗nGn will be necessary for
such a preconditioner to be efficient in the sense that it reduces the number of CG-
steps until the stopping criterion is reached significantly. Moreover, in practice it
is more realistic to assume that we only have approximations to the spectral data
available. Still, the theoretical discussion in this chapter serves as motivation for
the realization in Chapter 6. Let us summarize the main properties of Mn:

Theorem 4.6 The operator Mn defined by (4.14) has the following properties:

a) Mn ∈ L(X ,X ) is strictly coercive and self-adjoint with respect to 〈 · , · 〉X and
its inverse is given by

M−1
n x =

1

γn
x+

kn
∑

j=1

(

ζ

µj
− 1

γn

)

〈x, ϕj〉X ϕj. (4.15)

b) M−1
n G∗nGn = G∗nGnM

−1
n .

c) The preconditioned operator is given by

M−1
n G∗nGnx = ζx+

∞
∑

j=kn+1

(

µj
γn

− ζ

)

〈x, ϕj〉X ϕj. (4.16)
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d) For the spectrum of the preconditioned operator M−1
n G∗nGn holds

σ(M−1
n G∗nGn) =

{

1 +
λs
γn

: s > kn

}

∪ {1, ζ}. (4.17)

e) The preconditioned operator M−1
n G∗nGn is self-adjoint and strictly coercive

with respect to ( · , · )Mn
.

Proof: By symmetry of the inner product 〈 · , · 〉X it follows that Mn is self-adjoint,
and the calculation

〈Mnx, x〉X = 〈γnx, x〉X +

kn
∑

j=1

(

µj
ζ

− γn

)

| 〈x, ϕj〉X |2

=

kn
∑

j=1

(

µj
ζ

)

| 〈x, ϕj〉 |2 + γn

∞
∑

j=kn+1

| 〈x, ϕj〉 |2

≥ min

{

µkn

ζ
, γn

}

‖x‖2
X ,

shows that Mn is strictly coercive. Finally, the computations

Mnϕs =

{ µj

ζ
ϕs, 1 ≤ s ≤ kn,

γnϕs, s > kn,
M−1

n ϕs =

{ ζ
µj
ϕs, 1 ≤ s ≤ kn,

γ−1
n ϕs, s > kn

(4.18)

prove a). b) follows by a straightforward computation and c) by

M−1
n G∗nGnϕs = µsM

−1
n ϕs =

{

ζϕs, 1 ≤ s ≤ kn,
γ−1
n µsϕs, s > kn

and comparison with the right hand side in (4.16). d) and e) are consequences of
c) and the definition of Mn.

�

Note that the preconditioner defined by (4.14) satisfies all requirements we postu-
lated in Section 3.3.� Mn ∈ L(X ,X ) and it is self-adjoint.� The approximation property of Mn depends on the number of known eigen-

values with corresponding eigenvectors. Naturally, Mn coincides with the
operator G∗nGn on the subspace span{ϕ1, . . . , ϕkn} ⊂ X . Since the eigenval-
ues of G∗nGn decay rapidly, we expect that on the orthogonal complement
span{ϕ1, . . . , ϕkn}⊥ Mn is a reasonable approximation to G∗nGn.� To store Mn it is sufficient to keep record of the eigenvalues and eigenvectors,
which is acceptable if kn is small.� Since we know an explicit inverse, the system Mnz = c is efficiently solvable.
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4.4 A model algorithm

In this section we derive a model algorithm to solve the operator equation (2.1) by
some kind of frozen IRGNM. When solving the operator equation (3.2) we can use
Lanczos’ method to compute approximations to some of the extremal eigenvalues
of G∗nGn with corresponding eigenvectors. Then we keep the operator fixed for a
few steps of the IRGNM by defining x∗ := xδn and

Gn,∗ :=

(

F ′[x∗]√
γnI

)

∈ L(X ,Y × X ). (4.19)

Using the approximations to the extremal eigenvalues and corresponding eigenvec-
tors determined by Lanczos’ method we set up the preconditioner (4.14). Instead
of (2.8) we now solve in several following Newton steps the linear systems

M−1
n G∗n,∗Gn,∗hn = M−1

n Gn,∗g
δ
n (4.20)

by Algorithm 3.6. A Newton method of this kind was suggested by Hohage [40],
and numerical examples illustrated a significant reduction of the total complex-
ity, whereas the final iterates were comparable with those of a standard IRGNM.
Unfortunately, no theoretical analysis of this algorithm has been performed. In
the following we will carry out such an analysis under the following simplifying
assumption.

Assumption 4.7 We assume that for all n ∈ N0 there exists a method L to com-
pute the exact kn ∈ N0 largest eigenvalues µ1 ≥ . . . ≥ µkn of the operator G∗nGn and
corresponding eigenvectors ϕ1, . . . , ϕkn using kn applications of F ′[xδn] and F ′[xδn]

∗.

Remark 4.8 Under the additional assumption that the largest eigenvalues of G∗nGn

satisfy µ1 > . . . > µkn, that is they are simple, and the right hand side of (3.2)
has a representation

∑kn

j=1 αjϕj such that αj 6= 0, j = 1, . . . , kn, indeed the CG-
method stops with the exact solution of (3.2) after exactly kn steps and Lanczos’
method determines the exact kn largest eigenvalues of G∗nGn with corresponding
eigenvectors.

Definition 4.9 By fup we denote an update criterion determining if the operator
Gn,∗ needs to be updated, which is equal to one if and only if the operator Gn,∗ needs
to be updated. The criterion fup depends on the Newton step, on the right hand
side gδn and the operator F .

We now formulate a model algorithm for a preconditioned IRGNM.

Algorithm 4.10

Compute F (x0);
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n = 0;

while
(∥

∥F (xδn) − yδ
∥

∥ ≥ τδ
)

if
(

fup(n, g
δ
n, F ) = 1

)

x∗ := xδn;

Solve Gnhn = gδn by Algorithm 3.5;

Compute eigenvalues µ1 ≥ . . . ≥ µkn with corresponding eigenvec-
tors ϕ1, . . . , ϕkn of G∗nGn by method L;

Set up preconditioner (4.14);

else

Solve M−1
n G∗n,∗Gn,∗hn = M−1

n Gn,∗g
δ
n by Algorithm 3.6;

xδn+1 = xδn + hn;

n = n+ 1;

Compute F (xδn);

Note that the update criterion fup has to balance the convergence speed in the
outer Newton iteration with the complexity needed in the inner CG-iterations.
Hence, the criterion fup has to satisfy some optimization problem, which maybe
depends on more variables than the variables we considered here. In [40], where the
algorithm above was originally presented, it was suggested to update the operator
whenever

√
n + 1 ∈ N. For the examples given in this article this criterion worked

efficiently. We will discuss this topic in more detail in Section 6.3.
Finally note that if no method L is available we set fup ≡ 0 and Mn = I. Then
Algorithm 4.10 simplifies to the standard IRGNM.

4.5 Uniform estimates on the number of inner

iterations

As a first step to determine the total complexity of the IRGNM and Algorithm 4.10
we now establish an improvement of the standard estimate (4.9) for the CG-method.
This estimate is based on the special decay behavior of the eigenvalues for ill-posed
problems.
To simplify the notation we assume for the following that the eigenvalues λj, j ∈ N,
of the compact operator F ′[xδn]

∗F ′[xδn] are simple. We will discuss in Remark 4.18
the case of multiple eigenvalues. In the following we consider two different types of
ill-posed problems (see [16, Chapter 2]).

i) For the first kind of ill-posed problems we assume that the eigenvalues
of F ′[xδn]

∗F ′[xδn] decay at a polynomial rate, that is there exist constants
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cp, Cp > 0 such that

cpj
−α ≤ λj ≤ Cpj

−α, α > 0. (4.21a)

An ill-posed problem satisfying (4.21a) belongs to the class of so called mildly
ill-posed problems.

ii) For the second kind of ill-posed problems we assume that the eigenvalues
of F ′[xδn]

∗F ′[xδn], decay at an exponential rate, that is there exist constants
ce, Ce > 0 such that

ce exp(−csjβ)) ≤ λj ≤ Ce exp(−csjβ)), cs, β > 0. (4.21b)

An ill-posed problem satisfying (4.21b) is also called exponentially ill-posed
and belongs to the class of so-called severely ill-posed problems.

To take advantage of this special eigenvalue distribution we start by giving a precise
mathematical definition of what we understand by outliers in the spectrum of G∗nGn

and M−1
n G∗nGn and the cluster of eigenvalues.

Definition 4.11 Throughout the rest of this chapter we denote by m > 1 some
threshold parameter.

Definition 4.12 By qn ∈ N0 we denote the number of ”large” eigenvalues of the
operator G∗nGn defined by

µqn > mγn ≥ µqn+1. (4.22)

We call the eigenvalues µ1 ≥ . . . ≥ µqn the outliers in the spectrum of G∗nGn. The
set of eigenvalues

σ(G∗nGn) \ {µ1, . . . , µqn},
which are in a neighborhood of the regularization parameter γn is called the cluster
of G∗nGn. In the case where Mn is given by (4.14) we substitute qn by qn + kn. The
number of ”large” eigenvalues of the operator M−1

n G∗nGn is defined by (cf. (4.17))

1 +
λqn
γn

> m ≥ 1 +
λqn+1

γn
. (4.23)

Analogous, the eigenvalues of M−1
n G∗nGn larger than the threshold parameter m are

called the outliers in the spectrum of M−1
n G∗nGn and set of eigenvalues

{µ̃ ∈ σ(M−1
n G∗nGn) : m ≥ µ̃}

the cluster.
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Note that it depends on the size of the eigenvalue ζ > 0 if it belongs to the outliers
or to the cluster of M−1

n G∗nGn. As we will see, this choice has some effect on the
convergence property of the CG-method.
We now prove an improvement of estimate (4.9) taking advantage of the a-priori
knowledge about the eigenvalue distribution (4.21). By virtue of inequality (4.4) we
consider polynomials that treat the outliers and the cluster of the operators G∗nGn

and M−1
n G∗nGn in a special way.

Theorem 4.13 We use the notation of Definition 4.12. Let Mn = I or Mn be
given by (4.14) and assume that ζ is in the cluster of M−1

n G∗nGn, that is ζ ∈ [1, m].
For both cases the estimate

‖eqn+j‖G∗
nGn ≤ 2κ(1, m)j

1 + κ(1, m)2j
‖e0‖G∗

nGn, (4.24)

holds true, where κ is given by (4.7). Hence, ‖eqn+j‖G∗
nGn/‖e0‖G∗

nGn ≤ ε for some
0 < ε ≤ 1 holds, if

j =

⌈

ln

(

1

ε
+

√

1

ε2
− 1

)

/ ln(κ(1, m)−1)

⌉

.

Proof: Consider first the case Mn = I. We define the polynomial Ψqn+j ∈ Πqn+j

by

Ψqn+j(t) :=
cj(x(t))

cj(x(0))
Πqn
s=1

(

1 − t

µs

)

where x(t) := 1 − 2(t− γn)

(m− 1)γn
,

(cf. (4.5)) where the eigenvalues µ1, . . . , µqn are determined by (4.22). Then the
polynomial Ψqn+j satisfies

Ψqn+j(0) = 1,

Ψqn+j(µk) = 0, k = 1, . . . , qn,

|Ψqn+j(µk)| ≤
∣

∣

∣

∣

cj(x(µk))

cj(x(0))

∣

∣

∣

∣

, k > qn.

Hence, Ψqn+j ∈ Π1
qn+j can be used to derive an upper bound in inequality (4.4).

Now Lemma 4.1 together with the definition of κ yields

‖eqn+j‖G∗
nGn ≤ max

k>qn

[∣

∣

∣

∣

cj(x(µk))

cj(x(0))

∣

∣

∣

∣

Πqn
s=1

(

1 − µk
µs

)]

‖e0‖G∗
nGn

≤ max
t∈[γn,mγn]

∣

∣

∣

∣

cj(x(t))

cj(x(0))

∣

∣

∣

∣

‖e0‖G∗
nGn

≤
(

2κ(γn, mγn)
j

1 + κ(γn, mγn)2j

)

‖e0‖G∗
nGn

=

(

2κ(1, m)j

1 + κ(1, m)2j

)

‖e0‖G∗
nGn.
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In the case where Mn is given by (4.14) we replace the polynomial Ψqn+j using the
substitution qn 7→ qn + kn by

Ψ̃qn+j(t) :=

(

cj(x(t))

cj(x(0))

)

Πqn
k=kn+1

(

1 − t

1 + λk

γn

)

, (4.25)

where x(t) := 1 − 2(t−1)
m−1

. Then Ψ̃qn+j ∈ Π1
qn+j and using (4.23) and ζ ∈ [1, m] we

have

Ψ̃qn+j(0) = 1,

|Ψ̃qn+j(ζ)| ≤ 1,

Ψ̃qn+j

(

1 +
λk
γn

)

= 0, k = kn + 1, . . . , qn,

∣

∣

∣

∣

Ψ̃qn+j

(

1 +
λk
γn

)∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

cj

(

x
(

1 + λk

γn

))

cj(x(0))

∣

∣

∣

∣

∣

∣

, k > qn.

Estimating as above the assertion follows. The proof on the number j follows along
the lines of Lemma 4.2.

�

Another approach to improve the standard estimate (4.9) is given by the so-called
”effective” condition number. Here the interplay between the approximation prop-
erties of the Ritz values computed by Lanczos’ method and the polynomials from
Theorem 3.10 c) is exploited to show that the convergence speed of the CG-method
increases if some Ritz value starts to converge to some extremal eigenvalue (see van
der Sluis & van der Vorst [83]).

Remark 4.14 In the case where ζ /∈ [1, m] the slightly worse estimate

‖eqn+j+1‖G∗
nGn ≤ 2κ(1, m)j

1 + κ(1, m)2j
‖e0‖G∗

nGn ,

can be proven by considering the polynomials Ψ̃qn+j+1 ∈ Π1
qn+j+1 defined through

Ψ̃qn+j+1(t) :=

(

cj(x(t))

cj(x(0))

)(

ζ − t

ζ

)

Πqn
k=kn+1

(

1 − t

1 + λk

γn

)

.

where x(t) := 1 − 2(t−1)
m−1

. Since ζ /∈ [1, m] the difficulty arises to ensure that

∣

∣

∣

∣

Ψ̃qn+j+1

(

1 +
λk
γn

)∣

∣

∣

∣

≤ 1 for all k > qn,
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yielding to the condition |ζ − (1 + λk/γn)| ≤ ζ for all k > qn. To this end one has
to impose the artificial condition

ζ ≥ 1

2

(

1 +
λqn+1

γn

)

. (4.26)

Usually the eigenvalue λqn+1 is unknown. Hence, it is unrealistic to determine ζ
such that (4.26) is satisfied. Moreover, if only approximations to the spectral data
are available the operator M−1

n G∗nGn does not have the eigenvalue ζ but many eigen-
values in a neighborhood of ζ. This usually leads to a larger number of CG-steps
required to reach a desired error level compared with the preconditioner where ζ ∈
[1, m].

So, for the following we restrict ourselves to the case ζ ∈ [1, m]. This assumption
also theoretically reduces the number of CG-steps by one. Recall that the residu-
als rj, j = 0, 1, 2, . . . of the CG-method satisfy rj = G∗nGne

j (see Section 3.2). The
next corollary shows the correspondence between the error in the residual and e0.

Corollary 4.15 We use the notation of Definition 4.12. The estimate

‖rqn+j‖X ≤ 2κ(1, m)j

1 + κ(1, m)2j

√
µ1‖e0‖G∗

nGn. (4.27)

holds true.

Proof: The equality rj = G∗nGne
j , j = 0, 1, 2, . . . together with the estimate

〈G∗nGnx,G
∗
nGnx〉X =

∞
∑

j=1

µj
〈

〈x, ϕj〉X ϕj , G∗nGnx
〉

X ≤ µ1 〈x,G∗nGnx〉X ,

which is true for all x ∈ X , and (4.24) yields

‖rqn+j‖2
X =

〈

G∗nGne
qn+j, G∗nGne

qn+j
〉

X
≤ µ1

〈

eqn+j , G∗nGne
qn+j

〉

X
= µ1‖eqn+j‖2

G∗
nGn

≤ µ1

(

2κ(1, m)j

1 + κ(1, m)2j

)2

‖e0‖2
G∗

nGn
.

This holds true in both cases Mn = I and Mn given by (4.14) by the definition
of qn.

�

After having established convergence rates, we now want to focus on the complexity
when solving (3.2) by the CG-method. Measuring the complexity by evaluations of
the operators F ′[xδn] and F ′[xδn]

∗ at some given vectors, we need to know the number
of steps until Algorithm 3.5 terminates. The following lemma gives an upper bound
for the CG-steps corresponding to the outliers in the spectrum.
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Lemma 4.16 We use the notation of Definition 4.12. Assume that the regular-
ization parameter is chosen by γn = γ0γ

−n and that Mn = I or Mn is given by
(4.14).

a) If the decay rate of the eigenvalues of G∗nGn is given by (4.21a), then for all
n ∈ N0 the following estimate holds:

qn ≤
⌈

(

Cpγ
n

(m− 1)γ0

)1/α
⌉

. (4.28)

b) If the decay rate of the eigenvalues of G∗nGn is given by (4.21b), then for all
n ∈ N the estimate

qn ≤
⌈

(

2

cs
max

{

ln γ,

∣

∣

∣

∣

ln

(

(m− 1)γ0

Ce

)∣

∣

∣

∣

})1/β

n1/β

⌉

(4.29)

holds true. For the case n = 0 we assume that m and γ0 are sufficiently large
such that (m− 1)γ0 ≥ Ce. Then the estimate

q0 ≤
⌈

(

1

cs
ln

(

(m− 1)γ0

Ce

))1/β
⌉

(4.30)

is satisfied.

Proof: To prove the assertions first note that (4.23) is equivalent to

µqn > mγn ≥ µqn+1. (4.31)

Hence, we can prove both cases Mn = I and Mn given by (4.14) at once, since (4.31)
is equivalent to (4.22) for the special case kn = 0.

Using the relation µj = γn + λj, j ∈ N, and (4.21a) together with (4.31) we have
the estimate

(m− 1)γn < λqn ≤ Cpq
−α
n , (4.32)

which yields for the choice γn = γ0γ
−n

qαn <
Cpγ

n

(m− 1)γ0
.

Now (4.28) follows since x ≤
(

⌈x⌉1/α
)α

for all x ≥ 0.

To show (4.29) we use the following inequality: Let a > 0, b ∈ R and n ∈ N. Then

−2nmax{a, |b|} ≤ −na + b, (4.33)
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which is a consequence of the estimate

−2nmax{a, |b|} ≤ −n(a + |b|) = −na− n|b| ≤ −na + b.

Using the inequalities (4.33) and (4.32) together with (4.21b) and the choice γn =
γ0γ

−n we can estimate for n ∈ N

Ce exp



−cs
(⌈

(

2

cs
max

{

ln γ,

∣

∣

∣

∣

ln

(

(m− 1)γ0

Ce

)∣

∣

∣

∣

})1/β

n1/β

⌉)β




≤ Ce exp

(

−2nmax

{

ln γ,

∣

∣

∣

∣

ln

(

(m− 1)γ0

Ce

)∣

∣

∣

∣

})

≤ Ce exp

(

−n ln γ + ln

(

(m− 1)γ0

Ce

))

= Ce exp

(

ln

(

(m− 1)γn
Ce

))

= (m− 1)γn

< λqn,

which proves (4.29). With the additional assumptions on m and γ0 (4.30) follows
by a similar computation, since

(m− 1)γ0

Ce
≥ 1.

�

After having established upper bounds for the number of CG-steps for the outliers
in the spectrum, we are now concerned with the number of steps concerning the
cluster.

Theorem 4.17 We use the notation of Definition 4.12. Assume that 0 < ε < 1/2.
If the Algorithms 3.5 and 3.6 are stopped by criterion (4.11), then the number of
CG-steps is bounded by

Jn ≤ qn + j (ε̃, 1, m) , (4.34)

where the function j is given by (4.8) and

ε̃ :=
γn
µ1

(

1 − 2ε

1 − ε

)

ε. (4.35)

Proof: By Theorem 4.5 the number Jn is finite. To prove the assertion we decom-
pose Jn into Jn = qn + jn.
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To show (4.34) we start with estimating the residual. Using (4.27), h0
n = 0 and

Lemma 4.1 we have for all j ∈ N0

‖rqn+j‖X ≤ √
µ1

(

2κ(1, m)j

1 + κ(1, m)2j

)

‖h†n‖G∗
nGn

≤ µ1

(

2κ(1, m)j

1 + κ(1, m)2j

)

‖h†n‖X . (4.36)

Due to (4.12) and an application of the second triangle inequality we have for the
final iterate

∣

∣

∣

∣

1 − ‖hJn
n ‖X

‖h†n‖X

∣

∣

∣

∣

≤ ε

1 − ε
.

This estimate in particular implies

1 − 2ε

1 − ε
≤ ‖hJn

n ‖X
‖h†n‖X

. (4.37)

Note that by the choice of ε we have 0 < ε̃ < 1. Now, for the choice j = j(ε̃, 1, m)
we can estimate using (4.36), (4.37) and Lemma 4.2

‖rqn+j(ε̃,1,m)‖X ≤ µ1

(

1 − ε

1 − 2ε

)(

2κ(1, m)j(ε̃,1,m)

1 + κ(1, m)2j(ε̃,1,m)

)

‖hJn

n ‖X ≤ εγn‖hJn

n ‖X .

Hence for this choice of j the stopping criterion (4.11) is satisfied. This proves the
estimate (4.34).

�

Remark 4.18 Actually, (4.34) also holds true if the linear operators G∗nGn

and M−1
n G∗nGn have multiple eigenvalues. To show this, first note that the proof

of (4.24) is based on estimate (4.4), which is true for multiple eigenvalues. Hence,
estimate (4.24) is also true in this case.
Lemma 4.16 in the presence of multiple eigenvalues is only true in the case Mn = I.
In this case we must define the number qn in Definition 4.12 by the number of
different eigenvalues of G∗nGn. Since the CG-method performs at most one step
for a multiple eigenvalue (see Theorem 3.10 and [12]), it is clear that even in the
presence of multiple eigenvalues the maximal number of CG-steps for the outliers
in the spectrum is given by qn. But the number qn of different outliers is bounded
by the bounds proven in Lemma 4.16.
In the case of the preconditioned operator M−1

n G∗nGn Lemma 4.16 is only true if the
eigenvalues µ1, . . . , µkn are simple.

We now state the main result of this section establishing an upper bound on the total
number of inner CG-steps of the IRGNM and the Levenberg-Marquardt algorithm,
respectively.
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Theorem 4.19 We use the notation of Definition 4.12. Let the regularization
parameter be chosen by γn = γ0γ

−n and 0 < ε < 1/2 and assume that in the case
where Mn is given by (4.14) the eigenvalues µ1, . . . , µkn are simple.

a) Let (4.21a) hold. In the case where Mn = I there exists a constant C ≥ 0
independent of n such that the total number Jn of steps to reach the stopping
criterion (4.11) is bounded by

Jn ≤
⌈

γn/α
⌉

+ ⌈Cn⌉ , n ∈ N0. (4.38)

In the case where Mn is given by (4.14) the total number Jn of steps to reach
the stopping criterion (4.11) is bounded by

Jn ≤
(⌈

γn/α
⌉

− kn
)

+
+ ⌈Cn⌉ , n ∈ N0. (4.39)

b) Let (4.21b) hold. In the case where Mn = I there exist constants C1, C ≥ 0
independent of n such that the total number Jn of steps to reach the stopping
criterion (4.11) is bounded by J0 ≤ ⌈C⌉ and

Jn ≤
⌈

C1n
1/β
⌉

+ ⌈Cn⌉ , n ∈ N. (4.40)

In the case where Mn is given by (4.14) the total number Jn of steps to reach
the stopping criterion (4.11) is bounded by

Jn ≤
(⌈

C1n
1/β
⌉

− kn
)

+
+ ⌈Cn⌉ , n ∈ N. (4.41)

Here (x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0.

Proof: From (4.34) it is obvious that we need an estimate for qn and j(ε̃, 1, m),
where ε̃ is given by (4.35). Consider first the case Mn = I, hence kn = 0. In the
case of (4.21a) we have due to (4.28) and the choice m = 1 + Cp

γ0

qn ≤
⌈

(

Cp
(m− 1)γn

)1/α
⌉

=
⌈

γn/α
⌉

,

which shows the first term on the right hand side of (4.38). By the choice m = 1+Ce

γ0

in the case of (4.21b) the estimate (4.30) simplifies to q0 = 0 and (4.29) simplifies
for all n ≥ 1 to

qn ≤
⌈

(

2

cs
max

{

ln γ,

∣

∣

∣

∣

ln

(

(m− 1)γ0

Ce

)∣

∣

∣

∣

})1/β

n1/β

⌉

=

⌈

(

2
ln γ

cs

)1/β

n1/β

⌉

.

This proves the first term on the right hand side of (4.40) with the constant C1 =
(2 ln γ/cs)

1/β . If Mn is given by (4.14) the first terms on the right hand side of
(4.39) and (4.41) follow by the substitution qn 7→ qn + kn (see Definition 4.12).
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Note, to show the second term on the right hand sides of (4.38) – (4.41) we need
to estimate j(ε̃, 1, m). First recall that 0 < ε̃ < 1 (see 4.35) for all n ∈ N∪ {0} and
for our choice of ε > 0. Then, by (4.8) we have for all n ∈ N

j (ε̃, 1, m) =

⌈

ln

(

1

ε̃
+

√

1

ε̃2
− 1

)

/ ln
(

κ (1, m)−1)

⌉

≤
⌈

ln

(

2

ε̃

)

/ ln
(

κ (1, m)−1)
⌉

=

⌈

ln

(

2

ε

(

1 − ε

1 − 2ε

)

(γn + λ1)

γn

)

/ ln
(

κ (1, m)−1)
⌉

≤
⌈(

ln

(

2

ε

(

1 − ε

1 − 2ε

)

(γ0 + λ1)

γ0

)

+ n ln γ

)

/ ln
(

κ (1, m)−1)
⌉

≤ ⌈Cn⌉ ,

with the constant

C =

(

ln

(

2

ε

(

1 − ε

1 − 2ε

)

(γ0 + λ1)

γ0

)

+ ln γ

)

/ ln
(

κ (1, m)−1) ,

where

κ(1, m)−1 =

√

1 + Ce

γ0
+ 1

√

1 + Ce

γ0
− 1

or κ(1, m)−1 =

√

1 + Cp

γ0
+ 1

√

1 + Cp

γ0
− 1

,

resp. if (4.21a) or (4.21b) hold. In both cases κ(1, m) is independent of n. In the
case where n = 0 we simply have the estimate j(ε̃, 1, m) ≤ C.

�

4.6 The total complexity

The efficiency of the IRGNM for large-scale problems depends on its total number
of inner CG-steps until the outer iteration is stopped by some stopping criterion.
In Chapter 2 we investigated an a-priori stopping criterion given by (2.5a) and the
discrepancy principle (2.5b). Moreover, in Corollary 2.5 it was shown that for a
known noise level δ > 0 for both stopping criteria the stopping index N = N(δ, yδ)
for the IRGNM is finite and satisfies

N = O(− ln(u−1(δ))) (4.42)

where the function u is given by (1.11). Since the essential cost to perform one step
of the IRGNM consists in iteratively solving the linear systems (2.8), we need to
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measure the complexity for solving such a system. We will restrict ourselves here
to Krylov subspace iterations. For large-scale problems the main cost to perform
one step of a Krylov subspace method method usually consists in the evaluation of
F ′[xδn] and F ′[xδn]

∗ at some given vector. Moreover, to set up the right hand side of
the system (2.8) we need to evaluate F (xδn). Therefore, we can compare different
types of regularized Newton methods by counting the total number of operator
evaluations until the stopping criterion (2.5a) or (2.5b) is satisfied.

Theorem 4.20 Let the assumptions of Corollary 2.5 hold except the inequalities
(2.24) and consider we measure the complexity of the IRGNM in terms of operator
evaluations. If the linear systems (2.8) are solved by Algorithm 3.5 coupled with
the stopping criterion (4.11), and if there exists a sufficiently small constant C̄ ≥ 0
such that the estimates

‖hJn

n ‖X ≤ C̄‖h†n‖X , n = 0, 1, . . . , N − 1, (4.43)

are satisfied, then the complexity of the IRGNM is bounded by

a)

O
(

(

u−1(δ)
)(− lnγ)/α

)

, δ → 0, (4.44)

in the case of (4.21a),

b)

O
(

(

− ln(u−1(δ))
)max{1+1/β,2}

)

, δ → 0. (4.45)

in the case of (4.21b).

Proof: Note that for the true solutions h†n, n = 0, 1, . . . , N − 1, of the linear
systems (2.8) obviously the inequalities (2.24) are satisfied. Hence, for the IRGNM
where the updates are given by the second term in (2.12) the estimate (2.26) is
true. Therefore, for n = 0, 1, . . . , N − 1 we have the estimate

‖h†n‖X = ‖xδn+1 − xδn‖X ≤ ‖xδn+1 − x†‖X + ‖xδn − x†‖ ≤ C̃f(γn),

which leads in combination with (4.43) to ‖hJn
n ‖X ≤ C̄C̃f(γn). Since Algorithm 3.5

is stopped by criterion (4.11), the final residual satisfies

‖rJn‖X ≤ γn‖hJn

n ‖X ≤ C̄C̃γnf(γn).

Hence, if the constant C̄ is sufficiently small the stopping criterion (4.10) is satisfied
and therefore the inequalities (2.24) are satisfied. In particular Corollary 2.5 and
therefore also (4.42) hold true.
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To compute an upper bound for the total number of CG-steps we use the esti-
mates (4.38) and (4.40). Consider first the case (4.21a). Then the total number of
CG-steps is bounded by

N−1
∑

n=0

Jn ≤
N−1
∑

n=0

(

⌈γn/α⌉ + ⌈Cn⌉
)

≤
⌈

γN/α − 1

γα − 1

⌉

+N + ⌈C⌉N(N − 1)

2
.

Thus, due to the evaluation of F ′[xδn] and F ′[xδn]
∗ at some given vector in each

CG-step as well as the evaluation of F (xδn) to set up the right hand side an upper
bound for the complexity of the IRGNM and is given by

2

(⌈

γN/α − 1

γα − 1

⌉

+ ⌈C⌉N(N − 1)

2

)

+ 2N = O(γN/α).

So, (4.44) is a consequence of

γ− ln(u−1(δ))/α =
(

γln(u−1(δ))
)−1/α

=
(

u−1(δ)
)(− ln γ)/α

(4.46)

together with (4.42). In the case of (4.21b) the total number of CG-steps is bounded
by

N−1
∑

n=0

Jn ≤
(

N−1
∑

n=1

⌈

C1n
1/β
⌉

+ ⌈Cn⌉
)

+ ⌈C⌉

≤ ⌈C̃1⌉⌈N1+1/β⌉ + ⌈C⌉N(N − 1)

2
+ ⌈C⌉ +N

with some constant C̃1. Analogously as in the case (4.21a), this together with (4.42)
proves (4.45).

�

Let us briefly discuss the assumption (4.43) implying (2.24) and therefore the valid-
ity of Corollary 2.5 which together with Theorem 4.19 are the key points to prove
the upper bounds (4.44) and (4.45). Naturally, for all n = 0, 1, . . . , N − 1 we have
the estimates ‖hJn

n ‖X ≤ C(n)‖h†n‖X with some constants C(n) depending on the
Newton step n. Unfortunately, we could not give a strict proof that these constants
can be uniformly bounded by some other constant. On the other hand, since γn
tends to zero we expect that the approximation quality of the the final iterates of
Algorithm 3.5 when coupled with stopping criterion (4.11) increases during New-
ton’s method. Therefore, it seems reasonable to assume that the constants C(n)
can be uniformly bounded.
However, we could also assume to terminate the inner CG-iterations by (4.10) to
avoid this heuristic argumentation. But since we used in practice (4.11) we decided
to prove Theorem 4.20 for this stopping criterion.
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To compare the IRGNM with Algorithm 4.10 it is necessary to determine a rea-
sonable update criterion fup. In [40] it was suggested to choose fup(n, g

δ
n, F ) = 1

if and only if
√
n + 1 ∈ N and fup(n, g

δ
n, F ) = 0 else. In the following theorem we

will prove for this update criterion that Algorithm 4.10 for exponentially ill-posed
problems is under certain conditions superior compared to the standard IRGNM
when the total complexity is measured by operator evaluations.

Note that for other update criteria similar results could be easily obtained.

Theorem 4.21 Assume that the stopping index of Algorithm 4.10 is determined
by (4.42) and that for n = 0, 1, . . . , N − 1 the eigenvalues of the operators G∗nGn

are simple and that there exists a constant Cm and a sufficiently large constant Cexp
such that the number of outliers of G∗nGn can be estimated by

qn ≥ Cmγ
n/α in the case of (4.21a), (4.47a)

qn ≥ Cexpn
1/β in the case of (4.21b). (4.47b)

Furthermore, let Assumption 4.7 hold in the sense that the method L determines
exactly the qn outliers and let the update criterion be given by

{

fup(n, g
δ
n, F ) = 1,

√
n+ 1 ∈ N,

fup(n, g
δ
n, F ) = 0, else.

Then, if the linear systems (2.8) are solved by Algorithm 3.5 in the case where Mn =
I and if the linear systems (4.20) are solved by Algorithm 3.6 in the case where Mn is
given by (4.14) coupled with the stopping criterion (4.11), measuring the complexity
of Algorithm 4.10 by operator evaluations, the total complexity of this algorithm is
bounded by

a)

O
(

(

u−1(δ)
)(− lnγ)/α

)

, δ → 0, (4.48)

in the case of (4.21a),

b)

O
(

(

− ln(u−1(δ))
)max{1/2+1/β,2}

)

, δ → 0. (4.49)

in the case of (4.21b).

Proof: Let us consider first the case of (4.21a). Following the lines of the proof
of Theorem 4.20 using (4.38), (4.39) and the update criterion the total number of
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CG-steps of Algorithm 4.10 is bounded by

N−1
∑

n=0

Jn ≤





N−1
∑

n=0,
√
n+1∈N

⌈

γn/α⌉ + ⌈Cn⌉
)





+





N−1
∑

k=1,
√
k∈N

(
√
k+1)2−2
∑

n=k

(⌈

γn/α
⌉

− qk−1

)

+
+ ⌈Cn⌉





≤
√
N
∑

n=0

⌈

γn
2/α
⌉

+ ⌈C̃⌉N(N − 1)

2

+





N−1
∑

k=1,
√
k∈N

(
√
k+1)2−2
∑

n=k

(⌈

γn/α
⌉

− Cmγ
(k−1)/α

)

+



 . (4.50)

It turns out that already the first term is of order O(γN/α), so the order of com-
plexity of the unpreconditioned IRGNM is not improved, since on the other hand
the complexity obviously does not increase under our assumptions. Hence, we ob-
tain (4.48) from (4.46). In the case of (4.21b) we estimate using (4.40) and (4.41)

N−1
∑

n=0

Jn ≤





N−1
∑

n=0,
√
n+1∈N

⌈C1n
1/β⌉ + ⌈C2n⌉





+





N−1
∑

k=1,
√
k∈N

(
√
k+1)2−2
∑

n=k

(⌈

C1n
1/β
⌉

− qk−1

)

+
+ ⌈Cn⌉





≤
√
N
∑

n=0

⌈C1n
2/β⌉ + ⌈C̃⌉N(N − 1)

2

+





N−1
∑

k=1,
√
k∈N

(
√
k+1)2−2
∑

n=k

(⌈

C1n
1/β
⌉

− Cexp(k − 1)1/β
)

+



 . (4.51)

Using (
√
k + 1)2 − 2 = k + 2

√
k − 1 and the assumtion that the constant Cexp is so

large such that Cexp ≥ C1 we obtain

C1(k + 2
√
k − 1)1/β) − Cexp(k − 1)1/β

≤ Cexp[(k + 2
√
k − 1)1/β) − (k − 1)1/β]

= O(k1/β−1/2).

Hence, we can estimate the second sum on the right hand side of (4.51) by

C̄

N−1
∑

k=1,
√
k∈N

k1/β−1/2 ≤ C̄NN1/β−1/2 = O(N1/β+1/2)
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with some constant C̄ > 0. Note that a better estimate could be obtained by
estimating with the help of an integral. But for our purposes this estimate is
sufficient which is due to the fact that the first term on the right hand side of (4.51)
can also be estimated by

√
N
∑

n=0

⌈C1n
2/β⌉ = O(N1/β+1/2),

that is both sums are of order O(N1/β+1/2). Following the lines of the proof of
Theorem 4.20 we finally obtain (4.49).

�

Comparing the results of Theorem 4.20 and Theorem 4.21 we obtain that in the
case of exponentially ill-posed problems Algorithm 4.10 is superior compared to the
standard IRGNM, that is the complexity is significantly reduced, if the assumptions
formulated above hold. This at least is true in the case where β ≤ 2/3. In the
numerical examples considered in Chapter 7 this condition is satisfied.

We do not want to hide that the assumptions of Theorem 4.21 are in practice not
realistic. Furthermore, we did not prove that (4.42) holds true for a frozen Newton
method and that the inequalities (4.47) are satisfied. On the other hand, since our
convergence analysis includes the case that the linearized equations do not need to
be solved exactly, we think that a convergence proof for a frozen Newton method
leading to similar results as the standard Newton method could be obtained by the
results formulated in this thesis.

Unfortunately, in Theorem 4.16 we only proved an upper bound for the number of
outliers. Naturally, to ensure efficiency of the preconditioner (4.14) sufficiently many
eigenvalues are required. This is expressed by the inequalities (4.47). We think that
by similar ideas as they were used in the proof of Theorem 4.16 such lower bounds
could also be obtained. Moreover, in practice we can choose in the steps where fup =
1 the parameter ε > 0 in the stopping criterion (4.11) so small that sufficiently many
Ritz pairs are determined. This heuristic justifies the inequalities (4.47).

Unfortunately, for the mildly ill-posed problems the results we obtained in Theo-
rems 4.20 and 4.21 are the same. The reason for this is the eigenvalue distribution of
the linearized operators. Still, although the asymptotic behavior of the complexity
of a standard IRGNM and Algorithm 4.10 are the same, estimate (4.50) shows that
also in this case the total complexity can possibly be reduced.

Note that this discussion serves as a model and motivation for a preconditioned
IRGNM. Actually, in numerical examples we can observe that the final iterates of
the standard IRGNM and the preconditioned IRGNM are comparable (see Chap-
ter 7). Moreover, although in practice often only a few approximations to the
eigenvalues and eigenvectors are known the number of CG-steps can be signifi-
cantly reduced. Furthermore, the developed methods presented in Chapter 6 are
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able to compute additional approximations to eigenvalues of G∗n,∗Gn,∗ and eigenvec-
tors when solving the preconditioned linear system (4.20). Hence, we can update
the preconditioner during Newton’s method.
A thorough analysis of the efficiency of the preconditioner (4.14) given only approx-
imations to the eigenvalues and eigenvectors is the main topic of the next chapter.



116 CHAPTER 4. COMPLEXITY ANALYSIS



Chapter 5

Sensitivity analysis for spectral

preconditioners

While for well-posed problems acceleration of iterative solution methods for lin-
ear systems is well-studied, the design and analysis of preconditioners for ill-posed
problems is not so well understood. Naturally, the linear systems (2.8) are formally
well-posed. On the other hand, if the regularization parameter γn is small the sys-
tems (2.8) will be ill-conditioned due to the ill-posed nature of the original linear
systems (2.6).

To this end, an analysis of the behavior of the preconditioned linear systems (4.20)
in the presence of inexact eigenpairs to construct Mn given by (4.14) seems to be
essential for the construction of efficient preconditioners. In particular we are inter-
ested in the behavior of the eigenvalues of the preconditioned operatorM−1

n G∗n,∗Gn,∗
given only approximations to the eigenpairs of G∗n,∗Gn,∗. This particular interest is
motivated by the complexity analysis of Chapter 4, since we can only assume that
computational cost is saved if the eigenvalues targeted by the preconditioner Mn

are shifted into a small neighborhood of ζ , which is not clear for inexact eigen-
pairs. Therefore, following the articles by Giraud & Gratton [22, 23] in this chapter
we carry out a first order analysis to investigate the dependency of these targeted
eigenvalues assuming that Mn is constructed by inexact eigenpairs.

In this chapter and the following we are interested in an implementation of the
IRGNM. Hence, we investigate the corresponding discretized version of this algo-
rithm. To this end, we start this chapter by discussing briefly how to convert the
continuous problem into a discrete one. Moreover, interested in an efficient realiza-
tion at the outset we are open for any kind of preconditioning technique. Because
in the literature many preconditioning techniques are discussed, we shortly recall
some of these different techniques to point out the convenience of preconditioners
of the form (4.14) in our situation. Subsequently we examine the behavior of the
spectrum of the preconditioned operator in the case where the preconditioner is
constructed only by approximations. This investigation illuminates important facts

117
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which need to be considered to ensure fast convergence of the CG-method.

5.1 Discretization

Throughout this and the following chapter we focus on an implementable version
of Algorithm 4.10. Therefore, we start by shortly giving the idea how to reach a
discretized version of the IRGNM. For a detailed description of this discretization
process we refer to [16, Chapter 9].

For a numerical realization of the IRGNM a discretization of the operator equa-
tions (3.2) and (3.26) respectively is required in each Newton step. This, for in-
stance, can be done by choosing finite dimensional subspaces XN ⊂ X and YS ⊂ Y
with bases

XN = span{ϕ1, . . . , ϕN} and YS = span{ψ1, . . . , ψS}.

Introducing projections QN : X → XN and PS : Y → YS, we approximate
vectors x ∈ X and y ∈ Y by their projections QNx ∈ XN and PSy ∈ YS,
and represent these vectors by their coordinate vectors x = (ξ1, . . . , ξN)T ∈ RN

and y = (η1, . . . , ηS)
T ∈ R

S with respect to the bases {ϕ1, . . . , ϕN} and {ψ1, . . . , ψS},

QNx =
N
∑

j=1

ξjϕj and PSy =
S
∑

j=1

ηjψj .

The linear operator F ′[xδn] can be approximated by the discrete operator PSF
′[xδn]QN .

Choosing suitable norms in the finite dimensional spaces measuring the smoothness
of x so as to be consistent with ‖x‖X and representing the discrete approximations
of the operators F ′[xδn] and F ′[xδn]

∗ by the matrices An ∈ RS×N and AT
n ∈ RN×S,

we end up with a finite dimensional approximation of the operator equation (3.2)
in standard form,

GT
nGnhn = GT

ng
δ
n. (5.1)

Here, corresponding to (3.1), we have defined

Gn :=

(

An√
γn I

)

∈ R
(N+S)×N .

The symmetric matrix GT
nGn has to be interpreted as a mapping from (RN , ‖ · ‖2)

to (RN , ‖ · ‖2), where ‖ · ‖2 denotes the Euclidean norm. Since the operator G∗nGn

is strictly coercive, for sufficiently large S,N ∈ N the matrix GT
nGn is positive

definite and the system (5.1) has a unique solution denoted by h†n. The IRGNM in
its discretized version can be formulated by
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Algorithm 5.1 (Discretized IRGNM)

Input: Initial guess x0;

n = 0, xδ0 := x0;

while
(∥

∥F(xδn) − yδ
∥

∥ ≥ τδ
)

Solve GT
nGnhn = GT

ng
δ
n;

xδn+1 := xδn + h†n;

n := n + 1;

Naturally, under our constraints the matrices An and AT
n are not available, we can

only evaluate Anx and AT
ny for given vectors x ∈ R

N and y ∈ R
S. Hence, in general

we can only compute an approximation happ
n to the true solution h†n of (5.1) by an

iterative method. To determine happ
n we apply Algorithm 3.5 coupled with a suitable

stopping criterion to the linear system (5.1) (see Section 4.2). A realization of this
algorithm just needs a ”black box” evaluating Anx and AT

ny. Following the idea
of Section 4.4, to speed up the IRGNM different kind of preconditioning techniques
may be successful. An efficient preconditioning technique usually depends on the
coefficient matrix as well as the iterative method used to solve the linear system.
In the next section we sum up some popular preconditioning techniques, which can
be found in the literature. Beforehand we introduce some notation. To formulate
a discrete frozen IRGNM we define corresponding to (4.19) the matrix

Gn,i :=

(

An√
γn+i I

)

∈ R
(N+S)×N , i ∈ N0. (5.2)

Note that in particular Gn,0 = Gn holds. Throughout this and the following chapter
we denote the nonnegative eigenvalues of the matrix AT

nAn by λj, j ∈ N, enumer-
ated in nonincreasing order with multiplicity and the corresponding orthonormal
eigenvectors by uj . The eigenvalues of GT

n,iGn,i are given by µj := γn+i+λj, j ∈ N.

5.2 Preconditioning techniques

Finding an efficient preconditioner for solving a given linear system is often viewed
as a combination of art and science. In general theoretical results are rare and
some methods work surprisingly well, often despite expectations. Note, at the
outset there are virtually no limits to available options for obtaining good precon-
ditioners. Often they are built from the original coefficient matrix. If this matrix
is available, its analyzation can yield information which can be used to set up an
efficient preconditioner. If it is not available the only choice to exploit information
are matrix-free iterative methods such as Lanczos’ or Arnoldi’s method.
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Since in the literature many preconditioning techniques have been discussed, we give
in this section a short overview on some of these methods. This discussion shall
illuminate why preconditioners of the form (4.14) under the constraints of large-
scale ill-posed problems are more promising compared to other preconditioning
techniques. For a more detailed introduction to preconditioning techniques we refer
to the textbooks of Saad [77, Chapter 10] and Fischer [17] and the articles by
Axelsson [1, 3].

Let us consider for the following the linear system

Ax = b (5.3)

with a symmetric and positive definite matrix A : R
d → R

d and a given right hand
side b ∈ Rd. Roughly speaking, a (left) preconditioner P is any form of implicit or
explicit modification of an original linear system which makes it ”easier” to solve
by a given iterative method, that is the resulting system

P−1Ax = P−1b

should require less iteration steps until the approximate solution satisfies some
(relative) error level than the original system (5.3). One general idea to define a
preconditioner is to perform some Incomplete LU (ILU) factorization of the origi-
nal matrix A, that is we compute a sparse lower triangular matrix L and a sparse
upper triangular matrix U such that the residual R := LU − A satisfies certain
constraints. A general algorithm for building incomplete LU factorizations can be
derived by performing Gaussian elimination and dropping some elements in prede-
termined nondiagonal positions. Different implementations of Gaussian elimination
lead to different ILU factorizations. Obviously, to perform Gaussian elimination the
coefficient matrix A must be available. Hence, under our constraints this precon-
ditioning technique is no option.
Another simple idea for finding an approximate inverse of the matrix A is to attempt
to find a matrix P, which minimizes the residual matrix I − AP with respect to
some norm on Rd×d. For example, one can define the functional

J(P) := ‖I −AP‖2
F ,

where the Frobenius norm ‖ · ‖F is defined by

‖A‖F :=

(

d
∑

j,k=1

|ajk|2
)1/2

.

A matrix P whose value J(P) is small would be a right-approximate inverse of A.
Analogously we can define a left-approximate inverse. With the notation I =
(e1, . . . , ed) and P = (p1, . . . ,pd) the functional J takes the form

J(P) =
d
∑

j=1

‖ej −Apj‖2
2. (5.4)
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Hence, to minimize the functional J there are two different ways to proceed, either
it can be minimized globally as a function of the matrix P, for instance by a
gradient-type method or the individual functions ‖ej − Apj‖2

2, j = 1, 2, . . . , d, can
be minimized. Both minimization processes involve in general many evaluations of
the matrix-vector product Ax. Therefore, under our assumptions the construction
of a preconditioner in this way would be far too complex.

Another class of preconditioning techniques is given by so-called polynomial pre-
conditioning. The basic idea is as follows: instead of solving the system (5.3) by
the CG-method, the CG-iteration is applied to

ψ(A)Ax = ψ(A)b. (5.5)

Here ψ is a suitably chosen polynomial of small degree. Moreover, it is required
that none of the zeros of ψ coincides with an eigenvalue of A. This guarantees that
the preconditioned system (5.5) is equivalent to (5.3). Polynomial preconditioning
goes back to the 1950s and it has been suggested in many different ways (see for
example [18, 25, 56] and the textbook of Fischer [17]). The standard approach
for the design of preconditioners is to choose the polynomial ψ such that ψ(A)A
is, in some sense, as close as possible to the identity matrix I. For instance, one
could attempt to minimize the Euclidean norm ‖I−ψ(A)A‖2. The solution of this
problem would require the knowledge of all eigenvalues of A. Therefore, one usually
substitutes for the spectrum of A an interval [a, b], a, b > 0, which is known to
contain all eigenvalues of A. This approach leads to the Chebysheff approximation
problem on [a, b], which can be rewritten in terms of the unit interval [−1, 1] (cf.
Lemma 4.1),

min
ψ∈Π1

k

max
t∈[−1,1]

|ψ(t)|.

In the case of ill-posed problems following the lines of the proof of Lemma 4.13
it is possible to construct suitable polynomials. Unfortunately, solving the linear
system (5.5) by the CG-algorithm involves a lot more evaluations of A to some given
vector compared with solving the original system (5.3). Hence, in our situation
polynomial preconditioning would increase the complexity drastically.

The last class of preconditioners we want to discuss are so-called spectral pre-
conditioners. To introduce spectral preconditioners let us denote the eigenvalues
of A by β1 ≥ . . . ≥ βd > 0 and the corresponding orthonormal eigenvectors
by w1, . . . ,wd. Spectral preconditioners can be split into two main families, de-
pending on their effect on the spectrum of A. They are referred to as coarse grid
preconditioners if they attempt only to shift a subset of the eigenvalues of A close
to some ζ > 0 (see [10, 21, 70]). The name of these preconditioners comes from
domain decomposition, where they were originally introduced. The second families
are called deflation preconditioners (see [21]). Here a subset of eigenvalues is at-
tempted to be moved to some ζ > 0. These preconditioners have been proven to
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be successful when there are a few isolated extremal eigenvalues (see for example
Mansfield [60] and Nicolaides [69]).

There exist many different types of spectral preconditioner, which often reduce to
the same expression if exact spectral information is used (see [23] for a number of
examples of such preconditioners). We restrict ourselves to discuss spectral precon-
ditioners corresponding to (4.14),

P = I +
kev
∑

j=1

(

βj
ζ

− 1

)

wjw
T
j , (5.6)

which belong to the class of deflation based preconditioners. Note that instead of
exact spectral information in applications often only approximate spectral infor-
mation is available to set up (5.6). It is the goal of the next section to study the
efficiency of the preconditioner (5.6) in the presence of inexact spectral information.

An amazing example for the efficiency of a spectral preconditioner is provided by
the atmosphere data assimilation area (see [19]). In this application, nonlinear
least-squares problems with more than 107 unknowns are solved day-to-day using
a Gauss-Newton approach with inner CG-iteration. Similar to our idea Lanczos’
method is exploited to extract approximate spectral information, which is used to
construct a deflation spectral preconditioner for the subsequent linear least-squares
problems.

5.3 Sensitivity analysis

To study the performance of the preconditioner (5.6) in the presence of inexact
spectral information we mainly follow the articles by Giraud & Gratton [22, 23].
To this end, we assume that the eigenvalues β1 ≥ . . . ≥ βkev and corresponding
orthonormal eigenvectors w1, . . . ,wkev used to construct P given by (5.6) are not
related to A, but to a nearby matrix A + tE, where t is a real parameter and the
symmetric matrix E ∈ Rd×d is normalized such that ‖E‖ = 1. It is the aim of this
section to carry out a first-order perturbation analysis, which shows the asymptotic
sensitivity of the eigenvalues of the preconditioned matrix for small enough values
of the parameter t.

For this purpose we denote by βi(t) the eigenvalues and by wi(t), i = 1, . . . , d, the
corresponding eigenvectors of A+ tE. To guarantee that the eigenvalues of A+ tE
are differentiable functions of t in a small neighborhood Uε(0) for some ε > 0, we
assume that A has only simple eigenvalues (see [24] and [79]). If the eigenvectors
are normalized using

wT
i (t)wi = 1, (5.7)

the eigenvectors are also differentiable functions of t in a neighborhood of t = 0.



5.3. SENSITIVITY ANALYSIS 123

The matrices W̃ ∈ Rd×d and Λ̃ ∈ Rd×d are defined by

W̃(t) := (w1(t), . . . ,wd(t)) and Λ̃(t) := diag(βi(t)).

Then, for sufficiently small t ∈ Uε(0) we have

(A + tE)W̃(t) = W̃(t)Λ̃(t)

and it holds W̃(0) = W, where W := (w1, . . . ,wd). A first order expansion of the
eigenvalues and eigenvectors in the direction E (see [24] and [79]) is given by

W̃(t) = W + t∆W + o(t), (5.8)

βi(t) = βi + t∆βi + o(t), (5.9)

where the i-th column of ∆W denoted by ∆wi, and ∆βi are given by

∆wi = W(¬i)(βiI − Bi)
−1W(¬i)TEwi, (5.10)

∆βi = wT
i Ewi. (5.11)

Here the diagonal matrix Bi ∈ Rd−1×d−1 is given by

Bi = diag(β1, . . . , βi−1, βi+1, . . . , βd).

and for any square matrix C ∈ Rd×d the matrix C(¬i) ∈ Rd×(d−1) denotes the
matrix whose columns are those of C except for the i-th.

As preparation to prove the main theorem of this section we formulate the following
lemma establishing some useful equalities.

Lemma 5.2 The following equalities hold:

wT
j ∆wi = (βi − βj)

−1wT
j Ewi, j 6= i, (5.12)

∆wT
j wi = (βj − βi)

−1wT
j E

Twi, j 6= i, (5.13)

wT
j ∆wj = ∆wT

j wj = 0. (5.14)

Proof: For j 6= i consider first the case j < i. Then we have

wT
j W(¬i) = (0, . . . , 0, 1, 0, . . . , 0),

where the 1 is at position j. Therefore,

wT
j ∆wi = wT

j W(¬i)(βiI −Bi)
−1W(¬i)TEwi

= (βi − βj)
−1(0, . . . , 0, 1, 0, . . . , 0)W(¬i)TEwi

= (βi − βj)
−1wT

j Ewi.



124 CHAPTER 5. SENSITIVITY ANALYSIS

In the case where i < j we have wT
j W(¬i) = (0, . . . , 0, 1, 0, . . . , 0), where the 1

is at position j − 1. Notice, in this case the (j − 1)-th entry on the diagonal
of the matrix Bi is βj and the (j − 1)-th column of W(¬i) is wj . So, with the
same computation as above (5.12) follows. Analogously we can prove (5.13). The
equation wT

j W(¬j) = 0 yields

wT
j ∆wj = wT

j W(¬j)(βjI −Bj)
−1W(¬j)TEwj = 0,

which proves (5.14).
�

Definition 5.3 The Hadamard product of two matrices A = (aij) ∈ Cm×n and
B = (bij) ∈ Cm×n is denoted by ◦,

A ◦ B := (aijbij) ∈ C
m×n.

Theorem 5.4 The preconditioner

P(t) := I +

kev
∑

j=1

(

βj(t)

ζ
− 1

)

wj(t)wj(t)
T

wj(t)Twj(t)

is such that the eigenvalues βpre
i (t)of the preconditioned matrix P(t)−1A ∈ Rd×d

satisfy
{

βpre
i (t) = ζ + βi (T) t+ o(t), i ≤ kev,
βpre
i (t) = βi + o(t), i > kev.

(5.15)

Here the matrix

T := (Y + J) ◦ R + (YT ◦ RT ) ∈ R
kev×kev

is defined by the matrices Y = (yℓs) ∈ R
kev×kev , J ∈ R

kev×kev and R ∈ R
kev×kev

given through

yℓℓ = 0, yℓs =
ζ − βs
βs − βℓ

√

βℓ
βs

for ℓ 6= s,

J = −diag(ζ/β1, . . . , ζ/βkev) and R = WT
kev

EWkev with Wkev := (w1, . . . ,wkev)
and βi(T) denotes the i-th eigenvalue of T such that |β1(T)| ≥ . . . ≥ |βkev(T)|.

Proof: It follows by a straightforward computation (cf. the proof of Theorem 4.6)
that the inverse of P(t) is given by

P(t)−1 = I +
kev
∑

j=1

(

ζ

βj(t)
− 1

)

wj(t)wj(t)
T

wj(t)Twj(t)
.
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Since the eigenvalues of an arbitrary d× d matrix coincide with the eigenvalues of
its transposed, the equality

(

P(t)−1A)
)T

= AT (P(t)−1)T = AP(t)−1

shows that the eigenvalues of P(t)−1A are those of AP(t)−1. Using the first order
expansion of the eigenvectors (5.8) together with (5.14) we obtain

wj(t)wj(t)
T = wjw

T
j + t

(

∆wjw
T
j + wT

j ∆wj

)

+ o(t), (5.16)

wj(t)
Twj(t) = 1 + o(t). (5.17)

Therefore, using a Taylor expansion of the function g(t) := ζ/t, that is

g(t+ h) − g(t) = − ζ

t2
h+O(h2),

we can expand the inverse of the preconditioner P(t)−1 in a small neighborhood
of t = 0 using (5.9), (5.16), (5.17) and (5.11) through

P(t)−1 = I +

kev
∑

j=1

(

ζ

βj
− t

ζ

β2
j

∆βj − 1

)

(

wjw
T
j + twj∆wT

j + t∆wjw
T
j

)

+ o(t)

= P(0)−1 + t∆(P−1) + o(t),

where the matrix ∆(P−1) is given by

∆(P−1) :=

kev
∑

j=1

[

(

ζ

βj
− 1

)

(

wj∆wT
j + ∆wjw

T
j

)

− ζ
wT
j Ewj

β2
j

wjw
T
j

]

.

Multiplying from the left by A yields

AP(t)−1 = AP(0)−1 + tA∆(P−1) + o(t),

with

A∆(P)−1 =

kev
∑

j=1

[

(

ζ

βj
− 1

)

(

Awj∆wT
j + A∆wjw

T
j

)

− ζ
wT
j Ewj

β2
j

Awjw
T
j

]

.

For i > kev the first-order approximation of the simple eigenvalues reads

βpre
i (t) = βi + twT

i A∆(P−1)wi + o(t) = βi + o(t), (5.18)

due to (5.14) and the orthogonality of W. For i ≤ kev, using general perturbation
results for matrices concerning multiple eigenvalues (see [54, Chapter 11]) the first
order approximation of the multiple eigenvalue ζ reads

βpre
i (t) = ζ + tβi(W

T
kev

A∆(P−1)Wkev) + o(t),
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where βi(W
T
kev

A∆(P−1)Wkev) denotes the i-th eigenvalue of WT
kev

A∆(P−1)Wkev

such that

|β1(W
T
kev

A∆(P−1)Wkev)| ≥ . . . ≥ |βkev(W
T
kev

A∆(P−1)Wkev)|.

Using the orthogonality of W and (5.14) the diagonal elements of

WT
kev

A∆(P−1)Wkev ∈ R
kev×kev

are determined by

(WT
kev

A∆(P−1)Wkev)ℓℓ = −ζw
T
ℓ Ewℓ

βℓ
, ℓ = 1, . . . , kev. (5.19)

For the (ℓ, s) off-diagonal element wT
ℓ A∆(P−1)ws using (5.12) and (5.13) we com-

pute

wT
ℓ

{

kev
∑

j=1

[

(

ζ

βj
− 1

)

(

Awj∆wT
j + A∆wjw

T
j

)

− ζ
wT
j Ewj

β2
j

Awjw
T
j

]}

ws

=

{

kev
∑

j=1

(

ζ

βj
− 1

)

wT
ℓ Awj∆wT

j

}

ws +

{

wT
ℓ

kev
∑

j=1

(

ζ

βj
− 1

)

Awj∆wT
j ws

}

−
kev
∑

j=1

ζ
wT
j Ewj

β2
j

wT
ℓ Awjw

T
j ws

=

(

ζ

βℓ
− 1

)

wT
ℓ Awℓ∆wT

ℓ ws +

(

ζ

βs
− 1

)

wT
ℓ A∆ws

=
t

βℓ − βs

(

ζ

βℓ
− 1

)

(

wT
ℓ Awℓw

T
ℓ E

Tws

)T
+

t

βs − βℓ

(

ζβℓ
βs

− βℓ

)

wT
ℓ Ews

=
1

βs − βℓ

[

βℓ
βs

(ζ − βs)w
T
ℓ Ews − (ζ − βℓ)w

T
ℓ E

Tws

]

t

=
ζ − βs
βs − βℓ

√

βℓ
βs

wT
ℓ Ews

√

βℓ
βs

+
ζ − βℓ
βℓ − βs

√

βs
βℓ

(

wT
s Ewℓ

)T

√

βℓ
βs

= yℓs(R)ℓs

√

βℓ
βs

+ ysℓ(R)sℓ

√

βℓ
βs
. (5.20)

Note that the matrices

D
−1/2
kev

WT
kev

A∆(P−1)WkevD
1/2
kev

and WT
kev

A∆(P−1)Wkev ,

where Dkev := diag(β1, . . . , βkev) have the same eigenvalues by similarity. Now, (5.19)
together with (5.20) yields

D
−1/2
kev

WT
kev

A∆(P−1)WkevD
1/2
kev

= (Y + J) ◦ R + (YT ◦ RT ),
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which proves the assertion.
�

To investigate the sensitivity of the multiple eigenvalue βpre
1 (0) = . . . = βpre

kev
(0)

of P (0)−1A, it is possible to define a condition number cond(βpre
i ) for these eigen-

values in the direction of E. Note that due to the multiplicity of βpre
i := βpre

i (0), i =
1, . . . , kev, at the outset it was not clear if the mappings βpre

i (t), i = 1, . . . , kev, are
differentiable in a small neighborhood of zero, which is now an obvious consequence
of (5.15). Considering this remark we give the following definition of a condition
number (see [73]), which in our case simplifies to the derivatives (βpre

i )′(0).

Definition 5.5 For i = 1, . . . , kev we define the condition number of the eigenval-
ues βpre

i of the preconditioned matrix P(0)−1A in the direction E by

cond(βpre
i ) := lim

u→0
sup

0<|t|<u

|βpre
i (t) − βpre

i (0)|
|t| . (5.21)

Remark 5.6 cond(βpre
i ) in our context is not the usual condition number of the

eigenvalue of a matrix as it is used in the literature (see [24, Chapter 7]), but the
condition number of the mapping βpre

i (t).

With the help of Theorem 5.4 it is possible to compute upper bounds for cond(βpre
i ).

Corollary 5.7 The condition number of the eigenvalue βpre
i , i = 1, . . . , kev, of the

preconditioned matrix P(0)−1A satisfies the estimate

cond(βpre
i ) ≤ 2‖Y‖ + ‖J‖. (5.22)

In the case where the approximations β1(t) ≥ . . . ≥ βkev(t) with corresponding
orthogonal vectors w1(t), . . . ,wkev(t) to the eigenpairs (βj ,wj) satisfying (5.7) are
known, for sufficiently small t we have for i = 1, . . . , kev the estimate

|βpre
i (t) − βpre

i | ≤ (2‖Y‖ + ‖J‖) ‖AW̃kev − W̃kev Λ̃kev‖. (5.23)

Proof: By (5.15) and (5.21) it follows that

cond(βpre
i ) =

∣

∣βi
(

(Y + J) ◦ R + (YT ◦ RT )
)∣

∣ , i = 1, . . . , kev.

Taking norms the submultiplicativity of the Euclidean norm with respect to the
Hadamard product (see [42]), the orthogonality of Wkev and ‖E‖ = 1 yield
for i = 1, . . . , kev

cond(βpre
i ) ≤

∥

∥(Y + J) ◦ R + YT ◦ RT
∥

∥

≤
(

‖Y + J‖ + ‖YT‖
)

‖R‖
≤ (2‖Y‖ + ‖J‖) ‖WT

kev
EWkev‖

≤ 2‖Y‖ + ‖J‖,
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which proves (5.22). If β1(t), . . . , βkev(t) and w1(t), . . . ,wkev(t) are known, these
approximations are exact eigenvalues with corresponding eigenvectors of the matrix

A − (AW̃kev − W̃kevΛ̃kev)W̃
T
kev
. (5.24)

Hence, in this case the matrix tE is explicitly known and given by

tE = −(AW̃kev − W̃kevΛ̃kev)W̃
T
kev
.

Using (5.15), the representation of tE and (5.17) we can estimate for sufficiently
small t

|βpre
i (t) − βpre

i | ≤ (2‖Y‖ + ‖J‖) ‖WT
kev
tEWkev‖

≤ (2‖Y‖ + ‖J‖) ‖AW̃kev − W̃kevΛ̃kev‖,

which proves (5.23).
�

Remark 5.8 Note that the estimate
∥

∥(Y + J) ◦ R + YT ◦ RT
∥

∥ ≤
(

‖Y + J‖ + ‖YT‖
)

‖R‖

is a worst case bound and may be pessimistic in the case where R has zero entries
corresponding to large entries in Y and J.

Remark 5.9 The theoretical study has been made assuming that all the eigenvalues
of A are simple. Actually, the results are still true if some of the βi for i > kev are
multiple, that is the eigenvalues which are not targeted by the preconditioner.

Due to inequality (5.22) small entries in Y and J imply a small condition number
of the eigenvalues βi, i = 1, . . . , kev. Hence, we expect that the preconditioned
matrix P(t)−1A has a cluster of eigenvalues in a neighborhood of ζ leading to a
reduction of the CG-steps. On the other hand, the preconditioner P(t) may be
unstable if

a) for a pair (s, ℓ) the ratio

ζ − βs
βs − βℓ

√

βℓ
βs

b) and/or for an s the ratio ζ/βs

is large. This instability may happen if the preconditioner P(t) targets small and/or
clustered eigenvalues of A and if the parameter ζ is chosen too far outside of the
spectrum of A. The consequences of these results for Algorithm 4.10 will be dis-
cussed in the next section. Before we want to illustrate the instabilities by an
example discussed in [78].
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Example 5.10 Consider for sufficiently small ε > 0 the symmetric and positive
definite matrices C := diag(1, 1, 2),

C′ := c′(ε)





1 + 3ε2 + ε3 ε− ε2 + ε3 −ε− ε2

ε− ε2 + ε3 1 + 3ε2 + ε3 ε+ ε2

−ε− ε2 ε+ ε2 2 + 2ε2 − 2ε3



 ,

C′′ := c′′(ε)





5 − 3ε+ 30ε2 − 20ε3 4ε+ 10ε2 + 10ε3 5ε(1 − ε)
4ε+ 10ε2 + 10ε3 5 + 3ε+ 45ε2 − 5ε3 10ε(1 − ε)

5ε(1 − ε) 5 + 3ε+ 45ε2 − 5ε3 10 + 25ε2 + 25ε3



 ,

where

c′(ε) =
1

1 + 2ε2
and c′′(ε) =

1

5(1 + 5ε2)
.

Both matrices C′ and C′′ differ from C by terms of order ε, and both have eigen-
values 1+ε, 1−ε and 2. But, the matrices of eigenvectors of C′ and C′′ normalized
such that the largest element in each column is 1 are





1 1 −ε
1 −1 ε
0 2ε 1



 and





1/2 1 ε
1 −1/2 2ε

−5ε/2 0 1



 .

No matter how small is ε, the eigenvectors of C′ and C′′ corresponding to the
eigenvalues 1 + ε and 1− ε differ by quantities of order 1. Hence, we cannot expect
the eigenvectors of nearby matrices to lie near one another when their corresponding
eigenvalues belong to clusters of poorly separated eigenvalues. The reason for this
is that both C′ and C′′ are near the matrix C, which has the double eigenvalue 1.
Since any vector in U := span{(1, 0, 0)T , (0, 1, 0)T} is an eigenvector of C, two
different perturbations will cause the plane U to coalesce into two different sets of
two distinct eigenvectors.

This discussion has impact on the number of CG-steps when solving the linear
system Cx = b when preconditioned with C′ or C′′. Note that for any right hand
side by Theorem 3.10 the original system is solved by the CG-method in at most two
steps with the exact solution. The matrices C′ and C′′ could have been constructed
by knowledge of inexact spectral data about C. In general for sufficiently small ε >
0 the matrices (C′)−1C and (C′′)−1C have three distinct eigenvalues. Then we
expect the CG-method to perform three steps to solve (C′)−1Cx = (C′)−1b for any
arbitrary right hand side b ∈ R3.

This example illustrates that spectral preconditioners constructed by approxima-
tions to poorly separated or multiple eigenvalues of the original matrix possibly
destroy convergence properties of the CG-method.
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5.4 The regularized and preconditioned Newton

equation

Let us consider the consequences of the results formulated in Section 5.3 to the
preconditioned and regularized linear systems (4.20) arising in a frozen IRGNM for
example given by Algorithm 4.10. To this end corresponding to (4.14) we define a
preconditioner by exact spectral data

Mexc
n = γnI +

kn
∑

j=1

(

µj
ζ

− γn

)

uju
T
j (5.25)

and a preconditioner which is only constructed by Ritz pairs (θ1,v1), . . . , (θkn ,vkn)
approximating eigenpairs of GT

nGn,

Miexc
n = γnI +

kn
∑

j=1

(

θj
ζ
− γn

)

vjv
T
j . (5.26)

Recall that vTi vj = δij . Using results of Section 5.3 we now investigate the regular-
ized and preconditioned linear system

(Miexc
n )−1GT

nGnhn = M−1
n GT

ng
δ
n (5.27)

with respect to the condition number of the multiple eigenvalue ζ of (Mexc
n )−1GT

nGn.
To this end let us define the matrices

Mout
n := I +

kn
∑

j=1

(

µj
ζ

− 1

)

uju
T
j ,

Mclu
n := I +

N
∑

j=kn+1

(γn − 1)uju
T
j .

The computation

Mclu
n Mout

n = I +

N
∑

j=kn+1

(γn − 1)uju
T
j +

kn
∑

j=1

(

µj
ζ

− 1

)

uju
T
j

=
kn
∑

j=1

(

µj
ζ

)

uju
T
j +

N
∑

j=1

γnuju
T
j −

kn
∑

j=1

γnuju
T
j

= γnI +
kn
∑

j=1

(

µj
ζ

− γn

)

uju
T
j

shows the factorization Mexc
n = Mclu

n Mout
n . Hence, Mexc

n can be written as a compo-
sition of a deflation preconditioner given by Mout

n and a coarse grid preconditioner
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given by Mclu
n . In particular, Mout

n is of the form (5.6). So, the results of Theo-
rem 5.4 and Corollary 5.7 can be applied to Mout

n if the corresponding eigenvalues
of GT

nGn are simple, what we assume in the following.

Corollary 5.11 Assume that ζ /∈ σ(GT
nGn). Then the matrix (Mout

n )−1GT
nGn has

the multiple eigenvalue ζ with multiplicity kn. Moreover,

cond(ζ) ≤ 2‖Y‖ + ‖J‖, (5.28)

where Y = (yℓs) ∈ Rkn×kn and J ∈ Rkn×kn

yℓℓ = 0, yℓs =
ζ − (γn + λs)

λs − λℓ

√

γn + λℓ
γn + λs

for ℓ 6= s,

J = −diag(ζ/(γn + λ1), . . . , ζ/(γn + λkn)).

Proof: The first assertion follows from the computation

(Mout
n )−1GT

nGn = γnI +

N
∑

j=1

λjuju
T
j +

kn
∑

j=1

(γn + λj)

(

ζ

µj
− 1

)

uju
T
j

=

kn
∑

j=1

ζuju
T
j +

N
∑

j=kn+1

(γn + λj)uju
T
j ,

and the assumption on ζ . The estimate (5.28) is a consequence of Corollary 5.7 and
Theorem 5.4.

�

To discuss the consequences of Corollary 5.11 first note that Mclu
n does not influ-

ence the multiple eigenvalue ζ and therefore not its condition number. We now
consider the two cases γn ≫ 0 corresponding to the starting phase and γn ≈ 0
corresponding to the final phase of the IRGNM. For sufficiently large S,N ∈ N we
can assume that the eigenvalues of AT

nAn satisfy (4.21) (see also Section 5.1). As a
consequence, picking up the idea of Definition 4.12 we distinguish the eigenvalues
of GT

nGn through

a) the well separated outliers γn + λ1 ≫ . . .≫ γn + λkn and

b) the cluster of eigenvalues {γn + λj : j > kn}.
Let us assume in the following that ζ > 0 is not too far outside the spectrum
of GT

nGn and note that due to (4.26) ζ cannot be chosen arbitrary small. Consider
first the case γn ≫ 0. Then by Corollary 5.11 ‖J‖ is small and therefore cond(ζ) is
small if

ζ − (γn + λs)

λs − λℓ

√

γn + λℓ
γn + λs

≈ ζ

λs − λℓ

√

γn + λℓ
γn + λs

, ℓ 6= s, (5.29)
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is small. Here we have assumed that γn + λs if far away from ζ , which seems to be
a reasonable assumption, as otherwise we would not have targeted this eigenvalue.
Moreover, we can conclude that if we just use Ritz pairs (θj,vj) corresponding to the
well separated outliers in the spectrum of GT

nGn to construct the preconditioner the
quantity (5.29) is small because the gaps |λs − λℓ|, s 6= ℓ, do not become arbitrary
small and the quotients (γn+λℓ)/(γn+λs) ≤ 1+λℓ/γn, s 6= ℓ, do not explode by the
assumption on γn. Hence, the preconditioned operator (Mout

n )−1GT
nGn has several

eigenvalues in a neighborhood of ζ . This usually leads to a significant reduction
on the number of CG-steps required to satisfy some stopping criterion. For exact
spectral information this was proven in Theorem 4.19.

Assume there exist multiple outliers in the spectrum of GT
nGn or some of the

outliers are not well separated. If we use Ritz pairs (θj ,vj) corresponding to these
outliers or Ritz pairs corresponding to eigenvalues in the cluster of GT

nGn the quan-
tity (5.29) explodes and we cannot exclude an instability. This possibly slows down
the convergence rate of the preconditioned CG-method although the regularization
parameter satisfies γn ≫ 0. On the other hand, in practice where Ritz pairs (θj,vj)
are computed by Lanczos’ method it is hard to decide if determined Ritz values cor-
respond to a multiple eigenvalue. To get an impression we refer to the Tables 7.1
and 7.3, where Ritz values from practical computations are plotted. As one can
observe the size of the small Ritz values is about 1e−12 and therefore the difference
is about 1e− 12. Hence, in practice it is impossible to decide if the corresponding
eigenvalues are multiple and if one of those Ritz values is just a bad approximation
or if the corresponding eigenvalues are simple.

In the case where γn ≈ 0 Theorem 4.19 implies that a lot of spectral information
is required for the preconditioner (5.26) to be efficient. Therefore, the index kn
needs to be chosen larger. Since due to (4.21) the eigenvalues decay rapidly the
intersection between the outliers and the cluster coalesces. Hence, ‖Y‖ and ‖J‖
possibly explodes if Ritz pairs corresponding to eigenvalues λj ≈ 0 are used to set up
the preconditioner. This can impair the convergence behavior of the preconditioned
CG-method.

In practice normally the approximation property of the Ritz pairs (θj ,vj) corre-
sponding to the largest eigenvalues and eigenvectors of GT

nGn are far better than
the approximations to eigenvalues in a neighborhood of γn. Hence, to ensure sta-
bility and good convergence rates of the preconditioned CG-method the precondi-
tioner Miexc

n should be set up only by Ritz pairs where θj is not in a small neigh-
borhood of γn. Unfortunately, in real computations it is hard to define a small
neighborhood of γn, in particular if γn is small. Again, as impression for this serve
the Tables 7.1 and 7.3. Choosing the neighborhood too large possibly means to lose
a lot of valuable information which could be used to construct an efficient precondi-
tioner, choosing it too small possibly leads to instabilities impairing the convergence
behavior.
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Anyways, we can combine estimate (5.23) and equality (3.39). For the construc-
tion of the preconditioner we will use only those Ritz pairs where the residual
‖(Miexc

n )−1GT
nGnvj − θjvj‖ is sufficiently small. As we can see from the Tables 7.1

and 7.3 for the outliers in the spectrum these residuals become actually rather small,
whereas for the Ritz values in a neighborhood of γn the approximation quality im-
pairs.

As a consequence of the discussion above we can conclude that in particular in the
case where the regularization parameter γn is small the linear system (5.27) has a
tendency to instabilities because of two main reasons:

a) Usually the approximations of Lanczos’ method to small and clustered eigen-
values are of poor quality.

b) Clustered and poorly separated eigenvalues targeted by the preconditioner
Miexc

n are very sensitive to errors in the approximations.

Unfortunately, the first reason amplifies the second. As indicated in the introduction
to this chapter although the systems (5.27) are formally well-posed for small γn the
linear systems are ill-conditioned, which has an effect on the construction of the
preconditioner. In this case it is recommended to use only approximations of high
quality for constructing the preconditioner. In this sense this chapter also serves as a
step into a better understanding for the design of preconditioners suited for ill-posed
problems, in particular for linear systems arising from Tikhonov regularization.

We want to close this chapter with a final remark: This discussion shall serve as a
warning to be careful with the selection of the Ritz values for the construction of the
preconditioner. Even if the Ritz values and therefore the corresponding eigenvalues
are rather small, in the numerical examples we considered preconditioning with
the spectral preconditioner Miexc

n worked quite well and usually led in practice to a
significant reduction of the total complexity (see for example Figure 7.4), once again
illustrating their adequateness for large-scale exponentially ill-posed problems. On
the other hand, the analysis in this chapter also shows limitations of preconditioners
of the form of Miexc

n .
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Chapter 6

A preconditioned Newton method

In order to obtain a stable approximation to the solution x† of the nonlinear ill-
posed operator equation (2.1) we derive in this chapter a numerical realization of
Algorithm 4.10. In particular our interest is dedicated to an efficient solver for large-
scale nonlinear ill-posed problems reducing significantly the total complexity when
compared to a standard IRGNM or Levenberg-Marquardt algorithm. Naturally,
the final iterates should be comparable. As in the last chapter, dealing with an
implementation we restrict ourselves to finite dimensional linear systems.

The realization of Algorithm 4.10 is based on the close connection of the CG-
method and Lanczos’ method as presented in Chapter 3. Its fundamental idea can
be summarized shortly as followed: We compute in each step of the IRGNM by the
CG-method an approximation to the solution of the occurring linear system (5.1)
until the stopping criterion (4.11) is satisfied. In some Newton steps we additionally
determine by Lanczos’ method approximations to eigenpairs of GT

nGn, which we
use to construct a preconditioner of the form (5.26) for the matrices GT

n,iGn,i in the
following Newton steps.

To analyze Algorithm 4.10 theoretically we had made simplifying assumptions such
as the knowledge of the largest eigenvalues with corresponding eigenvectors. Natu-
rally, for a realization we are not in a position to assume any simplifications. This
causes several consequences, which need to be incorporated into a numerical realiza-
tion to ensure fast convergence of the inner preconditioned CG-iterations. Hence, it
is one of the goals of this chapter to indicate to the difficulties arising in a realization
of Algorithm 4.10 and methods to deal with them.

6.1 Fundamentals

In this section we list the main aspects which need to be considered for an imple-
mentation of Algorithm 4.10 and their resulting consequences. Subsequently we will
present solutions to deal with them taking into account the theory presented so far

135
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in this thesis. Finally, the methods will be combined to a preconditioned Newton
method.

Let us start with the general framework and main difficulties for an implementation
of such an algorithm.

a) For all n ∈ N0 the matrices An and AT
n are unknown. Only a ”black box”

evaluating Anx and AT
ny for some given vectors x ∈ RN and y ∈ RS is

available.

b) Solving the linear system (5.1) is a complex task, in particular for small γn
(see Theorem 4.19). To reduce the complexity it is desirable to solve the
preconditioned system (5.27) instead. To this end we need to incorporate
into the IRGNM a cheap method to compute Ritz pairs of AT

nAn, for instance
Lanczos’ method.

c) Usually round-off errors cause loss of orthogonality in the residual vectors rj

and zj computed in Algorithm 3.5 or 3.6. This loss of orthogonality is closely
related to the convergence of the Ritz vectors.

d) To ensure efficiency of the preconditioner by Corollaries 5.7 and 5.11 it is
necessary that the approximations of the Ritz pairs used to set up the pre-
conditioner are of high quality.

e) Recall from Section 3.5 that after having performed k CG-steps we are able
to compute by Lanczos’ method approximations to k eigenpairs of GT

nGn.
Unfortunately, it remains open which eigenvalues of GT

nGn are approximated
(see Theorem 3.14). Moreover, because the approximations depend on gδn we
possibly do not even approximate the largest eigenvalue of GT

nGn and in the
presence of multiple or not well separated eigenvalues Theorem 3.15 indicates
that the convergence to this eigenvalue can be rather slow.

f) If the matrix GT
nGn has multiple large eigenvalues by Theorem 3.10 Lanc-

zos’ method approximates only one Ritz pair corresponding to this multiple
eigenvalue.

g) During Newton’s method the regularization parameter γn tends to zero
(see (1.25)). Hence, given a fixed number kev ∈ N0 of known eigenpairs
of AT

nAn we expect due to Theorem 4.19 that the number of CG-steps will
increase rapidly after a few Newton steps.

The conclusions of points a) – d) can be discussed straightforward. To handle the
consequences arising from e) – g) is more difficult and Section 6.2 is dedicated to
this topic.
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To a) As a consequence of remark a) an approximate solution of (5.1) and (5.27)
can only be obtained by matrix-free iterative methods. Therefore, for an
efficient implementation of such a method it is of basic importance that the
evaluations Anx and AT

ny can be efficiently implemented. Throughout this
thesis we consider the CG-method and its preconditioned version as iterative
methods to solve (5.1) and (5.27), since it is a natural choice for self-adjoint
and strictly coercive operators.

To b) We only want to justify that in our situation Lanczos’ method is the most
efficient way to determine spectral data of AT

nAn. To this end note that
the additional complexity we have to invest to determine spectral data needs
to be saved in the following Newton steps. At the outset several iterative
methods, for example the power method and the inverse Rayleigh iteration are
also possible choices to approximate eigenpairs. But usually these methods
require many iterations until the approximates are of high quality yielding
many evaluations of Anx and AT

ny causing too much complexity.

The close connection of the CG-method and Lanczos’ method avoids this
drawback. We have to solve the linear system (5.1) to compute an update for
Newton’s method anyway. Therefore, the additional complexity to determine
Ritz pairs by Lanczos’ method is negligible. Still, some additional complexity
has to be invested. In the Newton steps where spectral data is computed we
choose a sufficiently small ε > 0 in Algorithm 3.5 yielding approximations of
higher quality. Such a proceeding is recommended and usually profitable due
to the sensitivity analysis presented in Chapter 5.

To c) Recall from Section 3.5 that the Ritz values and Ritz vectors computed by
Lanczos’ method depend on the residuals rj and zj of the CG-method (see
Section 3.5). The residual vectors are orthogonal by construction (see The-
orem 3.2). Unfortunately, it is a well known fact that there is loss of or-
thogonality among the residuals rj and zj while performing the CG-method.
Moreover, it is crucial that orthogonality is well maintained until one of the
Ritz vectors starts to converge (see [71, Chapter 13]). Naturally, this loss of
orthogonality does not only destroy the convergence of the CG-method, but
also the approximation quality of the Ritz values and Ritz vectors. Several
reorthogonalization algorithms have been proposed in the literature to regain
orthogonality (see for example [12, Chapter 7]). In our implementation we
use a complete reorthogonalization scheme as proposed in [24], which is based
on Householder transformations.

Algorithm 6.1 (Complete reorthogonalization)

– Input: z0, . . . , zk, the set of vectors, which need to be reorthogonalized;

– Determine Householder matrix H0 such that H0z
0 = e1;
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– for j = 1, 2, . . .* w = Hj−1 · · ·H0z
j;* Determine Householder matrix Hj such that

Hjw = (w1, . . . ,wj , ‖zj‖2, 0 . . . , 0)T ;* zj := H0 · · ·Hjej ;

Note that in the CG-method the vectors zj , j = 0, 1, . . . , k, are computed
successively. Algorithm 6.1 avoids a rapid loss of convergence, but it does
not prevent it altogether. Thus, in addition it turned out to be necessary
to compute the angle between zj and the subspace span{z0, . . . , zj−1}. This
angle acts as an indicator of the loss of orthogonality. If the angle is too large
we stop the CG-algorithm.

To d) In order to ensure that the Ritz pairs used for setting up the preconditioner
are good approximations we choose a sufficiently small ε > 0 in the stopping
criterion of Algorithm 3.5. This leads to a large number of CG-steps implying
on the one hand a refinement of the Ritz pairs, but on the other hand an
increase of the complexity. Motivated by the discussion in Sections 5.3 and 5.4
we expect that additional accuracy in the Ritz pairs saves computational cost
in the following Newton steps which is supported by numerical examples.
Using Theorem 3.14 we can determine the quantities (3.39) indicating the
approximation quality of the Ritz pairs. Theorem 5.4 and Corollary 5.7 imply
to use only those Ritz pairs satisfying (3.39) for some given upper bound. We
will include this important fact into the algorithms presented in the next
section.

6.2 Iterated Lanczos’ method

This section is devoted to discuss the consequences of remarks e) – g). To sustain
efficiency of the spectral preconditioner for several successive Newton steps it is
important to take care of these points. Furthermore, they illustrate once more that
the assumptions formulated to prove the complexity result in Theorem 4.21 are in
practice too restrictive.

As noted in e), there are no strict results which eigenvalues are approximated by
Lanczos’ method. Since our theory is motivated by the fact that we have knowledge
of the largest eigenvalues, we need a justification that for our class of problems
Lanczos’ method tends to target these eigenvalues.
Indeed, usually Lanczos’ method approximates outliers in the spectrum of a given
matrix very well, while eigenvalues in the bulk of the spectrum are typically harder
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to approximate and are normally of poor quality. This behavior could be theo-
retically confirmed (see [53]) and is supported by numerical experience (see [12,
Chapter 7]). Moreover, usually the more isolated an eigenvalue is, the better the
approximation is. A convergence rate for the largest eigenvalue has been proven in
Theorem 3.15.

Dealing with ill-posed problems we can take advantage of this behavior of Lanczos’
method, in particular for exponentially ill-posed problems. Due to the rapid de-
cay behavior (4.21b) of the eigenvalues the spectrum of GT

nGn consists of a small
number of large eigenvalues and a cluster at γn. In the preconditioned case the
matrix (Mexc

n )−1GT
nGn has a similar eigenvalue distribution where the cluster is at

one. Recall that in the preconditioned case we always consider the inner product
which is implied by the preconditioner (see Lemma 3.3). Hence, we expect some of
the Ritz pairs to be high quality approximations to the largest eigenvalues and cor-
responding eigenvectors of GT

nGn and (Mexc
n )−1GT

nGn. Theorem 3.15 even implies
that the approximation quality to the largest eigenvalue increases rapidly with each
CG-step. Due to round-off errors we can assume that we will always approximate
the largest eigenvalue. But we cannot expect to get an approximation of high qual-
ity to each of the outliers. If this is the case not every outlier in the spectrum is
shifted into a neighborhood of ζ by the preconditioner, an undesirable effect usually
causing more CG-steps to solve the corresponding linear system. Lemma 6.2 which
follows below is the key to handle this situation.

We now discuss f). In the case where outliers in the spectrum of AT
nAn are multiple

eigenvalues or not well separated, by Theorem 3.10 Lanczos’ method will either
approximate only one of each of these multiple eigenvalues or the approximations
are poor caused for example by round-off errors. By Theorem 5.4, Corollary 5.7
and Example 5.10 usage of these approximations for preconditioning is in general
not recommended. Unfortunately, we cannot check while performing the algorithm
if we approximate a multiple eigenvalue. Thus, our only choice is to decide by
criterion (3.39) if we use these approximations. Therefore at most one of each
multiple eigenvalue is shifted into a neighborhood of ζ in the preconditioned case
and we expect that the preconditioned CG-method performs one step for each
multiple eigenvalue. Hence, in the case where several of the outliers in the spectrum
of AT

nAn are multiple eigenvalues the preconditioner does not reduce the complexity
significantly, an unpleasant effect. In this situation further spectral data is required.

To consider the consequences of remark g) assume we have exact knowledge of
the kev ∈ {1, . . . , N} largest eigenvalues of AT

nAn, where kev is fixed. Since γn
tends to zero by (4.39) and (4.41) we expect after a few Newton steps depending
on the number kev a rapid increase of the number of CG-steps required to solve the
preconditioned linear system (5.27).
To avoid an explosion of the total complexity to solve (2.1) a method to update the
preconditioner is necessary. The following observation shows such a way.
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Lemma 6.2 Let J ⊂ {1, . . . N}, J 6= ∅ and

Mexc
n := γnI +

∑

j∈J

(

µj
ζ

− γn

)

uju
T
j .

For i ∈ N0 we denote by ηj, j = 1, . . . , N , the eigenvalues of the preconditioned
matrix (Mexc

n+i)
−1GT

n,iGn,i with multiplicity and corresponding orthonormal eigen-
vectors ũj, where Gn,i is given by (5.2). Assume that ζ /∈ σ(GT

n,iGn,i).

a) ζ ∈ σ
(

(Mexc
n+i)

−1GT
n,iGn,i

)

has multiplicity #J .

b) Eigenvectors of GT
n,iGn,i are also eigenvectors of (Mexc

n+i)
−1GT

n,iGn,i.

c) If a pair (µℓ,uℓ) /∈ {(µj,uj) : j ∈ J} then there exists an index k ∈ N such
that µℓ = γn+iηk and uℓ = ũk.

Proof: Assertion a) follows by a similar computation as in the proof of Corol-
lary 5.11, assertion b) is clear. Assume now uℓ /∈ {uj : j ∈ J}. Note, by b) it
follows that there exists an index k ∈ N such that uℓ = ũk, then

ηkũk = (Mexc
n+i)

−1GT
n,iGn,iũk = (Mexc

n+i)
−1GT

n,iGn,iuℓ = µℓ(M
exc
n+i)

−1uℓ =
µℓ
γn+i

uℓ.

�

Remark 6.3 To construct the preconditioner Mexc
n we do not assume any more to

have knowledge of the largest eigenvalues but only of a subset.

An application of Lemma 6.2 yields an iterated Lanczos’ algorithm, which we exploit
to update the preconditioner while performing the IRGNM. To describe the idea of
this algorithm we assume that we have exact knowledge of some of the eigenvalues
of GT

nGn, but at most one of each multiple eigenvalue. This corresponds to the
situation where we have solved (5.1) by the CG-method and have computed by
Lanczos’ method approximations to the eigenpairs. Hence, using the notation of
Lemma 6.2 the set J is such that µj 6= µi, i, j ∈ J , i 6= j. The corresponding set of
eigenvalues we denote by

Ukn := {µj : j ∈ J}.
In particular we have Ukn 6= ∅. Naturally, our algorithm shall include the case of
multiple eigenvalues, although this may cause instabilities.
In the situation described above the preconditioned matrix (Mexc

n+i)
−1GT

n,iGn,i in
the (n+ i)-th Newton step followed has the eigenvalues Uukn ∪ {ζ} where

Uukn :=

{

µj
γn+i

: j ∈ {1, . . . , N} \ J
}

.
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In particular, we observe that not only the remaining unknown largest eigenvalues
which have not been found in the n-th Newton step, but also the small eigenvalues
of GT

nGn are amplified by the factor 1/γn+i. So, when solving in the (n + i)-th
Newton step the linear system

(Mexc
n+i)

−1GT
n,iGn,ihn+i = M−1

n+iG
T
n,ig

δ
n+i (6.1)

we expect Lanczos’ method to target the largest eigenvalues of (Mexc
n+i)

−1GT
n,iGn,i

given by a subset of Uukn. Therefore, not only the remaining large eigenvalues
of GT

nGn are possibly found, but also originally small eigenvalues which are now
large since they are amplified by the factor 1/γn+i. By Lemma 6.2 the corresponding
eigenvectors to these eigenvalues coincide with eigenvectors of AT

nAn and if µ ∈ Uukn
is an eigenvalue of (Mexc

n+i)
−1GT

n,iGn,i we can compute the corresponding eigenvalue
of AT

nAn by the formula
λk = γn+i (µ− 1) (6.2)

for some k ∈ {1, . . . , N}. Exploiting this proceeding we can detect further large and
multiple eigenvalues of AT

nAn, which have not been approximated in the previous
Newton steps. Before we can add these additional eigenvalues to the preconditioner
we have to make sure that the corresponding normalized eigenvectors u do not
satisfy

u ∈ span{uj : j ∈ J}.
Naturally, when solving the linear system (6.1) Lanczos’ method possibly approx-
imates the eigenvalue ζ ∈ σ

(

(Mexc
n+i)

−1GT
n,iGn,i

)

, which has multiplicity #J under
the assumption that ζ /∈ σ(GT

n,iGn,i). A corresponding eigenvector is given by
any u ∈ span{uj : j ∈ J}. When approximating ζ by Lanczos’ method due to the
multiplicity of ζ we expect that the approximation quality is poor. Moreover, if
some computed Ritz value already lies in a neighborhood of ζ we would not target
the corresponding eigenvalue in the next Newton steps and by the results formulated
in Chapter 5 it is strongly recommended to omit this Ritz pair. Note that given
only approximations for preconditioning we possibly determine some Ritz pairs cor-
responding to eigenvalues in a neighborhood of ζ . Concluding, before we can add u

together with its corresponding eigenvalue computed by (6.2) to the preconditioner
we must guarantee the orthogonality

u ⊥ span{uj : j ∈ J} (6.3)

and that the corresponding eigenvalue does not lie in a neighborhood of ζ .

So far we have illustrated the basic idea how to update the preconditioner assuming
we have exact spectral data. We now turn to the realistic situation where the
spectral data of AT

nAn is approximated by Ritz pairs.

Notation 6.4 Assume that in the n-th Newton step the Ritz pairs

{(θ(1)
j ,v

(1)
j ) : j ∈ J1},
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where J1 = {j1, . . . , jk} ⊂ {1, . . . , N}, J1 6= ∅, of AT
nAn have been determined and

in the following Newton steps we solve (6.1) with Mexc
n+i replaced by

Miexc
n+i = γn+i I +

∑

j∈J

(

γn+i + θ
(1)
j

ζ
− γn+i

)

v
(1)
j (v

(1)
j )T , i = 1, 2, . . . . (6.4)

Moreover, we assume that for some k ∈ N we determine in the (n + k)-th Newton
step Ritz pairs

{(θ(2)
j ,v

(2)
j ) : j ∈ J2}

of the matrix (Miexc
n+k)

−1GT
n,kGn,k, where J2 = {j̃1, . . . , j̃k̃} ⊂ {1, . . . , N} J2 6= ∅.

By V1 and V2 we denote the corresponding subspaces

V1 := span{v(1)
j : j ∈ J1} and V2 := span{v(2)

j : j ∈ J2}.

Dealing just with approximations in general there does neither exist a j̃n ∈ J2 such
that v

(2)

j̃n
⊥ V1 nor a j̃ñ ∈ J2 such that v

(2)

j̃ñ
∈ V1 is satisfied. If our approximations

are of high quality there will at least exist indices such that both relations will
be approximately satisfied. Indicated by (6.3) we need a criterion to test if a

vector v ∈ {v(2)
j : j ∈ J2} is approximately orthogonal on the subspace V1. We

denote this by

v ⊥≈ V1. (6.5)

There are several possibilities to formulate reasonable criterions. The first one,
which is easy to implement and works quite well in practice consists in checking
if θ

(2)
j ≫ 1 for some j ∈ J2. More precisely, we can distinguish three cases:

i) θ
(2)
j ≫ 1 and θ

(2)
j 6≈ ζ ,

ii) θ
(2)
j ≈ 1,

iii) θ
(2)
j ≈ ζ .

If i) is satisfied the Ritz value θ
(2)
j is not an approximation to an eigenvalue in

the cluster at one and the Ritz vector satisfies (6.5). Thus, we can add the Ritz
pair to our preconditioner if the approximation quality is acceptable which we can
check by (3.39). In the case of ii) Lanczos’ method has approximated an eigenvalue
in the cluster of the preconditioned operator usually yielding an approximation of
low quality. iii) indicates that the corresponding Ritz vector does not satisfy (6.5).
Naturally, if ii) or iii) is satisfied we do not use the corresponding Ritz pair for
updating the preconditioner.
A second possibility to check (6.5) is to compute for j ∈ J2 the angle αj between v

(2)
j

and V1. Again we can distinguish three cases:
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i) αj ≈ π/2,

ii) αj ≈ 0,

iii) αj ∈ (a, b) where 0 ≪ a < b≪ π/2.

If i) is satisfied we expect (6.5) to be satisfied. Testing with (3.39) and using (6.2)
we may add this Ritz pair to our preconditioner. In the case of ii) and iii) we
expect that (6.5) is not satisfied and therefore we do not add the Ritz pair to our
preconditioner. Naturally, we can combine both methods to check (6.5).

A third method to check (6.5) is to compute the numerical rank of the matri-

ces (v
(1)
j1
, . . . ,v

(1)
jk
,v) ∈ R

N×(k+1), v ∈ {v(2)
j : j ∈ J2}. This can be realized by

Householder transformations. For details we refer to [13, Chapter 3].

Now assume we have determined a subset V ⊂ {v(2)
j : j ∈ J2} such that (6.5)

is satisfied for all v ∈ V and V 6= ∅. Since only (6.5) holds, we can decompose
each v ∈ V into v = v′ + v′′, v′ 6= 0, v′′ 6= 0 with v′ ∈ V1 and v′′ ∈ V⊥1 . Thus,

a complete reorthogonalization of the total set of eigenvectors {v(1)
j1
, . . . ,v

(1)
jk
,v} is

recommended. Since the set of vectors {v(1)
j1
, . . . ,v

(1)
jk
} is an orthogonal basis of

of V1 it is a natural proceeding to reorthogonalize v against these vectors, which
can be done by Algorithm 6.1.

Naturally, the result of Algorithm 6.1 differs if we change the order of the vectors.
Therefore, we could also choose the order of the vectors by their approximation
quality. As an indicator for the quality we can again use (3.39). Such a proceed-
ing is justified by the fact that if the reorthogonalization process is started with
approximations of low quality these vectors deteriorate the approximation quality
of the remaining vectors. But numerical experience has shown that the first way
is usually sufficient. If there are several vectors v

(2)
1 , . . . ,v

(2)
k ∈ V which shall be

added to the preconditioner they should be ordered by the size of the Ritz values,
that is v

(2)
1 should correspond to the largest Ritz value, v

(2)
2 to the next smaller

Ritz value and so on. Due to Theorem 3.10 this can always be realized.

Moreover, in general Ritz vectors determined by GT
nGn, that is when no precondi-

tioner is applied, are far better approximations than those computed with a precon-
ditioner. In the preconditioned case we have observed that Ritz vectors computed
in former Newton steps are usually better approximations than those computed
several Newton steps later (see Chapter 7 for an example). Both experiences corre-
spond to Theorem 3.15 and to the observation that in the preconditioned case the
outliers in the spectrum are not so well separated and closer to the cluster than
in the non-preconditioned case. This observation again supports to reorthogonalize
the new Ritz vectors against the old ones.

We summarize these ideas in the following algorithm.
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Algorithm 6.5 (Iterated Lanczos algorithm I)

Input: Ω := {(θj ,vj) : j = 1, . . . , k}, approximations to eigenpairs of AT
nAn;

Solve (Miexc
n+i)

−1GT
n,iGn,ihn+i = (Miexc

n+i)
−1GT

n,ig
δ
n+i by Algorithm 3.6  h

app
n+i;

Compute Ritz pairs (θ
(2)
1 ,v

(2)
1 ), . . . , (θ

(2)

k̃
,v

(2)

k̃
) of (Miexc

n+i)
−1GT

n,iGn,i by Lanc-
zos’ method;

for each Ritz pair (θ
(2)
j ,v

(2)
j ) satisfying some approximation condition

k := k + 1;

if (6.5) is satisfied

θk := γn+i(θ
(2)
j − 1), vk := v

(2)
j ;

Ω := Ω ∪ {(θk,vk)};
k = k + 1;

Output: h
app
n+i and Ω, approximations to eigenpairs of AT

nAn;

We consider another method to update the preconditioner, which is slightly different
from the one discussed above and motivated by the following intention. Maybe it
is possible to use the new computed approximations in the (n+ i)-th Newton step
to the eigenpairs of AT

nAn to improve the approximation quality of the Ritz pairs
determined in former Newton steps. This method is based on the approximation
property of the preconditioner Miexc

n+i to the matrix GT
n,iGn,i. We consider only the

case ζ = 1. By Notation 6.4 we have

GT
n,iGn,i = γn+i I +

N
∑

j=1

λjuju
T
j ≈ γn+i I +

∑

j∈J1

θ
(1)
j v

(1)
j (v

(1)
j )T = Miexc

n+i.

Using (4.16) and assuming that (6.5) is satisfied for all v ∈ {v(2)
j : j ∈ J2} the

approximation

(Miexc
n+i)

−1GT
n,iGn,i ≈

∑

j∈J1

v
(1)
j (v

(1)
j )T +

∑

j∈J2

θ
(2)
j v

(2)
j (v

(2)
j )T + PU⊥, (6.6)

follows, where U denotes the subspace

U := span
{

v
(1)
j1
, . . . ,v

(1)
jk
,v

(2)

j̃1
, . . . ,v

(2)

j̃
k̃

}

.
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and PU⊥ the orthogonal projection on U⊥. Multiplying (6.6) from the left by Miexc
n+i

we have

GT
n,iGn,i ≈ Miexc

n+i

(

∑

j∈J1

v
(1)
j (v

(1)
j )T +

∑

j∈J2

θ
(2)
j v

(2)
j (v

(2)
j )T + PU⊥

)

≈ γn+i

∑

j∈J1

v
(1)
j (v

(1)
j )T +

∑

j∈J1

θ
(1)
j v

(1)
j (v

(1)
j )T

+
∑

j∈J2

γn+iθ
(2)
j v

(2)
j (v

(2)
j )T + γn+iPU⊥

≈ γn+i I +
∑

j∈J1

θ
(1)
j v

(1)
j (v

(1)
j )T +

∑

j∈J2

γn+i(θ
(2)
j − 1)v

(2)
j (v

(2)
j )T =: C. (6.7)

Now, the idea is the following. Since C approximates GT
n,iGn,i we assume that

the eigenpairs of C approximate eigenpairs of GT
n,iGn,i. Unfortunately, the ma-

trix C ∈ RN×N is high dimensional and an eigendecomposition would be rather
complex. Furthermore, by construction we expect that C is only a good approx-
imation to GT

n,iGn,i on the subspace U. On the other hand, our only attention
attracts to the eigenpairs on the subspace U.

To this end we compute via a QU-decomposition an orthonormal basis Q :=
(

q1, . . . ,qk+k̃
)

of the subspace U and determine the low dimensional matrix

B := QTCQ ∈ R
(k+k̃)×(k+k̃)

approximating QTGT
n,iGn,iQ. Note that the computation of B is realizable without

setting up the high dimensional matrix C.
Assume that λ̃1, . . . , λ̃k+k̃ are the eigenvalues and ṽ1, . . . , ṽk+k̃ the corresponding
orthonormal eigenvectors of B. Then we have

GT
n,iGn,iQṽj ≈ CQṽj = λ̃jQṽj , j = 1, . . . , k + k̃.

Thus, λ̃1, . . . , λ̃k+k̃ approximate the eigenvalues and Qṽ1, . . . ,Qṽk+k̃ the corre-
sponding eigenvectors of GT

n,iGn,i. For s ≥ n + i the update of the preconditioner
is given by

Ms := γsI +
k+k̃
∑

j=1

(λ̃j − γn+i)wjw
T
j , wj := Qṽj .

These considerations lead to the following algorithm.

Algorithm 6.6 (Iterated Lanczos algorithm II)

Input: Ω := {(θj ,vj) : j = 1, . . . , k}, approximations to eigenpairs of AT
nAn;

kold := k;
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Solve (Miexc
n+i)

−1GT
n,iGn,ihn+i = (Miexc

n+i)
−1GT

n,ig
δ
n+i by Algorithm 3.6  h

app
n+i;

Compute Ritz pairs (θ
(2)
1 ,v

(2)
1 ), . . . , (θ

(2)

k̃
,v

(2)

k̃
) of (Miexc

n+i)
−1GT

n,iGn,i by Lanc-
zos’ method;

U := {v1, . . . ,vk}, Θ := {θ1, . . . , θk};

for each Ritz pair (θ
(2)
j ,v

(2)
j ) satisfying some approximation condition

k := k + 1;

if (6.5) is satisfied

vk := v
(2)
j , θk := θ

(2)
j ;

U := U ∪ {vk}, Θ := Θ ∪ {θk};
k := k + 1;

k := k − 1;

Compute orthonormal basis Q := (q1, . . . ,qk) of span(U);

Determine B := QTCQ ∈ Rk×k where

C := γn+i I +

kold
∑

j=1

θjvjv
T
j +

k
∑

j=kold+1

γn+i(θj − 1)vjv
T
j ;

Compute eigenvalues λ̃1, . . . , λ̃k with corresponding eigenvectors ṽ1, . . . , ṽk
of B;

Output: h
app
n+i and Ω :=

{(

λ̃1 − γn+i,Qṽ1

)

, . . . ,
(

λ̃k − γn+i,Qṽk

)}

, approx-

imations to eigenpairs of AT
nAn;

Remark 6.7 The algorithm formulated above can be interpreted as the Rayleigh-
Ritz method we described in Section 3.6 applied to the matrix C. The matrix Sk
given by (3.36) corresponds to B. Hence, Theorem 3.12 and Corollary 3.13 hold

true justifying to interpret for j = 1, . . . , k the pairs
(

λ̃j ,Qṽj

)

as approximations

to eigenpairs of C. Since C ≈ GT
n,iGn,i the elements of Ω approximate eigenpairs

of AT
nAn.

The Algorithms 6.5 and 6.6 give us the possibility to determine further approx-
imations to eigenpairs of AT

nAn, which we use to make the preconditioner more
efficient during Newton’s method. It is only left to discuss the approximation
condition which the Ritz pairs should satisfy. To this end recall the notation of



6.3. A PRECONDITIONED FROZEN IRGNM 147

Theorem 3.14, that is using the pseudo-residuals zj , j = 0, 1, . . . , k̃ − 1, occurring
in Algorithm 3.6 we define z̃j := zj/‖zj‖Miexc

n
and the matrix

Zk̃ = (z̃0, . . . , z̃k̃−1) ∈ R
N×k̃.

If WΛWT is an eigendecomposition of the matrix Tk = ZT
k̃
(Miexc

n+i)
−1GT

n,iGn,iZk̃,

that is W = (w1, . . . ,wk̃) is orthogonal and Λ = diag(θ
(2)
1 , . . . , θ

(2)

k̃
) by (3.39) we

have

‖GT
n,iGn,i(Zk̃wi) − (Zk̃wi)θ

(2)
i ‖ =

√

βk̃
αk̃

|wi(k̃)|, i = 1, . . . , k̃, (6.8)

where wi(k̃) denotes the bottom entry of wi. Hence, to test the approximation
quality we choose some threshold parameter δ > 0 and select only those Ritz pairs
for which

√

βk̃/αk̃|wi(k̃)| < δ. The choice of the parameter δ as well as the decision
if (6.5) is satisfied are crucial for the success of the resulting preconditioner. It has
been often observed in numerical examples that if δ was chosen to sloppily usually
convergence of the CG-method was lost after already one or two updates of the
preconditioner.
Note that in the non-preconditioned case we select Ritz pairs by the same idea
replacing the pseudo-residuals by the residuals rj occurring in Algorithm 3.5.

6.3 A preconditioned frozen IRGNM

We are now in a position to formulate a numerical realization of Algorithm 4.10.
The algorithm links the interplay of a frozen Newton method as outer iteration with
the CG-method as inner iteration. Using Lanczos’ method and Algorithm 6.5 or 6.6
we have the possibility to build and update the preconditioner Miexc

n whenever it
seems to be necessary.
Before we describe the implementation details involving our experience, let us for-
mulate a model of such an algorithm illustrating the main idea.

Algorithm 6.8 (Preconditioned frozen IRGNM)

xδ0 := x0; (x0 is initial guess)

m := 0;

while (‖F(xδm) − yδ‖ ≥ τδ)

if fup(F, m, g
δ
m) = 1

n := m, i := 0; (just for notation)

Solve GT
mGmhm = GT

mgδm by CG-method;

Compute via Lanczos’ method Ritz pairs of AT
mAm;
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xδm+1 := xδm + hm;

else

i := i+ 1;

Construct preconditioner Miexc
n+i by available Ritz pairs of AT

mAm;

Solve (Miexc
n+i)

−1GT
n,iGn,ihn+i = (Miexc

n+i)
−1GT

n,ig
δ
n+i by CG-method;

Compute via Lanczos’ method Ritz pairs of (Miexc
n+i)

−1GT
n,iGn,i;

Determine out of the Ritz pairs of (Miexc
n+i)

−1GT
n,iGn,i Ritz pairs of

AT
mAm (see Lemma 6.2);

xδm+1 := xδm + hn+i;

m := m+ 1;

Remark 6.9 We have formulated this algorithm corresponding to the IRGNM.
Naturally, the same idea applies for the Levenberg-Marquardt algorithm or other
kind of Newton methods.

Algorithm 6.8 serves as a model. A straightforward implementation would not
yield a significant reduction of the total complexity when compared with the algo-
rithm presented in [40]. Before we will discuss implementation details below tuning
Algorithm 6.8 let us take a closer look at the choice of the update criterion fup.

The aim is to find a criterion fup such that the total complexity of Algorithm 6.8 is
minimized and the final iterate is comparable to the standard IRGNM. Hence, the
criterion fup needs to satisfy the following two contradicting conditions:

a) On the one hand it is advantageous to keep the matrix AT
mAm for several

Newton steps fixed. During these Newton steps we can collect a lot of spec-
tral data of AT

mAm making our preconditioner efficient yielding a significant
reduction of the total complexity.

b) On the other hand it is advantageous to change the matrix often. This usually
yields to better convergence rates in Newton’s method. Hence, Algorithm 6.8
stops earlier which also reduces the total complexity.

In other words, the function fup balances the convergence speed of the outer Newton
iteration with the complexity we need for the inner iterations. Therefore, an optimal
choice of fup depends at least on the operator F, the right hand side gδm, the
regularization parameter γn and the complexity required to solve the actual linear
system. This consideration indicates that an optimal choice of fup is unrealistic in
practice. Unfortunately, we were not able to determine a better choice than

{

fup = 1,
√
m+ 1 ∈ N,

fup = 0, else,
(6.9)
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which was originally suggested in [40]. Out of this reason we have formulated
Theorem 4.21 for this choice. Obviously, for other choices of fup we could easily
obtain similar results.

Implementation details:

For an efficient realization of Algorithm 6.8 several parameters need to be chosen
in a proper way with respect to the following key point:

For an efficient preconditioner Miexc
n Ritz pairs of high approxima-

tion quality are essential.

Recall that Lanczos’ method can only determine Ritz pairs of high approximation
quality if

a) the eigenvalue distribution is suitable and

b) a sufficiently ”large” number of CG-steps are performed.

That is, whenever candidates of Ritz pairs are determined which possibly be added
to the preconditioner these conditions need to be satisfied. To ensure a sufficiently
”large” number of CG-steps there are roughly three possibilities at hand:

i) Choose ε > 0 sufficiently small in Algorithms 3.5 and 3.6.

ii) Iterate the CG-iteration as long as
√
βk/αk > δ̃, where δ̃ is some suitable

threshold parameter. This criterion corresponds to (3.39) and ensures usually
some good approximations.

iii) Without any change of the stopping criterion the CG-method performs on its
own a sufficiently ”large” number of steps.

In our implementation we used all three possibilities. When no Ritz pairs for the
preconditioner need to be computed, we choose ε = 1/3. In the case where fup = 0
we use ε = 1e−9 ensuring a sufficiently large number of CG-steps. In the case where
an update of the preconditioner is planned we iterate as long as

√
βk/αk > 0.1. Both

criterions usually yield an acceptable extra complexity for a refinement of the Ritz
pairs which turns out to be profitable in the following Newton steps.
Naturally, when the eigenvalue distribution is suitable even in the case where ε =
1/3 Ritz pairs with high approximation quality can be determined, although an
update of the preconditioner is not planned. If this is the case without any extra
complexity an update of the preconditioner can be performed.

To distinguish these different cases is necessary to make the algorithm efficient,
since the additional effort spent on the computation on the refinement of Ritz pairs
needs to be saved in the following Newton steps.
When additional CG-steps for a refinement are made we do not update in these ad-
ditional CG-steps the approximate solution happ

m of the linear system. This avoids a
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loss of convergence in the outer Newton iteration, since for small ε or small
√
βk/αk,

that is a large number of CG-steps, the approximate solution happ
m possibly deteri-

orates rapidly due to the ill-posedness and the loss of orthogonality of the residual
vectors.

Even more important than the refinement of the Ritz pairs which can be realized by
performing additional CG-steps is the eigenvalue distribution. Only if it is suitable
we can expect that Lanczos’ method will deliver good approximations. Hence, we
need to incorporate into Algorithm 6.8 a criterion when possibly the next update
of the preconditioner should be realized and the extra complexity for a refinement
of the Ritz pairs seems profitable. Let us list two indicators:

i) A large number of CG-steps.

ii) If there are one or several Ritz values far away from the cluster after the
CG-method with ε = 1/3 has been stopped by (4.11).

In both cases the eigenvalue distribution seems to be suitable and a refinement
may be profitable. Note that in the non-preconditioned case both criterions are
obviously always satisfied.
Numerical experience has shown that usually several steps after a new precondi-
tioner has been constructed or an update of the preconditioner has been performed
the eigenvalue distribution is not suitable. Hence, if the number of CG-steps is not
too large we recommend to wait about four of five Newton steps until considering
about an update of the preconditioner. This often ensures a suitable eigenvalue
distribution.

Let us formulate a general warning. The parameters selecting Ritz pairs of high ap-
proximation quality should not be chosen too sloppily in practice. It has turned out
that a too sloppy choice yields inefficiency of the preconditioner after already one or
two updates, which is supported by the theory presented in Sections 5.3 and 5.4. As
a consequence the total complexity possibly explodes and Algorithm 6.8 is inferior
when compared with a standard IRGNM or, which is even worse, sometimes we can
even observe loss of convergence.

Besides ensuring the approximation quality of the Ritz pairs we need to decide when
an update of the preconditioner is necessary. We have realized this by an indicator
function. Since the regularization parameter γn tends to zero and therefore the
condition number of the corresponding original matrix differs significantly during
Newton’s method, we accept in the starting phase, middle phase and final phase
a different number of inner CG-iterations of the preconditioned system. That is,
given five integers n1, n2, n3, a1, a2 ∈ N we define a function

K(n) :=







n1, 0 ≤ n < a1,
n2, a1 ≤ n < a2,
n3, n ≥ a2.

(6.10)
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The numbers a1 and a2 determine the phases of Newton’s method, n1, n2 and n3

the number of accepted CG-steps. The number of accepted CG-steps should be so
large, that an update is not done too often. Usually after two or three updates the
approximation quality of the Ritz pairs is so weak that the preconditioner starts
losing its efficiency. This observation corresponds to the results of Chapter 5. In
this situation a further update of the preconditioner is useless and an update of the
operator restarting the update process of the preconditioner is necessary. Naturally,
we also do not perform an update of the preconditioner a few steps before we restart
the process, since the additional complexity spent on this update cannot be saved
any more.

Finally, let us discuss the choice of the parameter ζ > 0. To be more general
we have formulated the whole theory for some arbitrary ζ. Remark 4.14 already
indicated that the choice of ζ is not arbitrary and that the convergence speed of the
preconditioned CG-method depends on this choice. As expected if ζ is not in the
cluster of eigenvalues at one the matrix (Miexc

n+i)
−1GT

n,iGn,i has a second cluster point
of eigenvalues around ζ . Again, by Remark 4.14 this implies one additional CG-
step to solve the corresponding linear system. Numerical experience has shown that
usually not only one but several additional CG-steps are performed. On this account
it has turned out that ζ = 1 in general leads to the most significant reduction of
complexity.

6.4 A preconditioned IRGNM

Basically with respect to one issue Algorithm 6.8 is not satisfactory. The proof of
convergence and convergence rates for a frozen IRGNM is still open. In particular
for the complexity analysis a result comparable with Corollary 2.5 is desirable. If
such a result holds we have shown in Theorem 4.21 that for the special choice of fup

given by (6.9) the preconditioned frozen IRGNM theoretically leads to a significant
reduction of the total complexity when compared with a standard IRGNM. Replac-
ing fup in Theorem 4.21 by any other reasonable update function not significantly
influencing the convergence speed of the outer Newton iteration easily similar re-
sults can be obtained. Moreover, such a convergence analysis would also close the
gap in the proof of Theorem 4.21.

Hence, we would like to replace the preconditioned frozen IRGNM by a precondi-
tioned standard IRGNM. That is, picking up the idea of the preconditioned frozen
IRGNM a reformulation of Algorithm 6.8 as a standard IRGNM where in each step
of the Newton iteration an efficient spectral preconditioner is available describes
our goal. Formulating such an Algorithm is no problem.

Algorithm 6.10 (Preconditioned IRGNM)

xδ0 := x0; (x0 is initial guess)
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kn := 0; (number of Ritz pairs)

p ∈ N; (each p steps the operator is updated)

n = 0;

while
(∥

∥F(xδn) − yδ
∥

∥ ≥ τδ
)

if kn = 0 and nmod p = 0

Solve GT
nGnhn = GT

ng
δ
n by Algorithm 3.5;

Compute via Lanczos’ method Ritz pairs of of AT
nAn;

kn := number of Ritz pairs with good approximation quality;

else

Construct preconditioner Miexc
n by available Ritz pairs;

Solve (Miexc
n )−1GT

nGnhn = (Miexc
n )−1GT

ng
δ
n by Algorithm 3.6;

Compute via Lanczos’ method Ritz pairs of (Miexc
n )−1GT

nGn;

Determine out of the Ritz pairs of (Miexc
n )−1GT

nGn and the old kn
Ritz pairs approximations to eigenpairs of AT

nAn;

kn := number of determined approximations to eigenpairs of AT
nAn;

xδn+1 := xδn + happ
n ;

n := n + 1;

Whereas the formulation of a preconditioned standard IRGNM is straightforward,
an efficient realization seems to be a hard task and we were not able to implement
a satisfactory version of Algorithm 6.10. Moreover, the implementation we will
suggest below is usually far inferior when compared with Algorithm 6.8 with respect
to the complexity. The major problem arises at the command

”Determine out of the Ritz pairs of (Miexc
n )−1GT

nGn and the old kn Ritz
pairs approximations to eigenpairs of AT

nAn.”

Let us describe the main difficulties when replacing the ”fixed” operators Gn,i used
in the frozen IRGNM by the ”varying” operators Gn used in the algorithm above
(see Section 5.1 for the definition). To this end recall Notation 6.4 and assume
furthermore that as above Miexc

n is given by (6.4) and Mexc
n is given by

Mexc
n := γn I +

∑

j∈J1

λjuju
T
j ,

where the pairs (λj ,uj) are exact eigenpairs of AT
mAm, where the index m is fixed.

This corresponds to the situation where we have determined in the m-th Newton
step Ritz pairs of AT

mAm and use these Ritz pairs for preconditioning the opera-
tors GT

nGn, n > m, in the following Newton steps.
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Note that Lemma 6.2 does not hold true in this situation causing three problems.
Firstly, the effect of the preconditioner Mexc

n on the eigenvalues of GT
nGn is not clear.

Secondly, without having knowledge of the correspondence between the eigenpairs
of GT

nGn and (Mexc
n )−1GT

nGn a realization updating the preconditioner during New-
ton’s method is not realizable under the condition that we do not want to spend too
much complexity on it. Lanczos’ method computes approximations to eigenpairs
of (Mexc

n )−1GT
nGn, that is we solve the generalized eigenvalue problem

GT
nGnv = λMexc

n v. (6.11)

But for the construction of the spectral preconditioner eigenpairs of GT
nGn are

required. Thirdly, interpreting the eigenpairs used for constructing Mexc
n as inexact

spectral data of GT
nGn by the results of Chapter 5 Ritz pairs corresponding to small

and clustered eigenvalues should be only used rather carefully for constructing Mexc
n .

In practice where Mexc
n is replaced by Miexc

n the effects described above are usually
enforced.

However, having these difficulties in mind let us formulate a heuristic argument mo-
tivating a preconditioned standard IRGNM. From perturbation theory of symmetric
matrices it is well known that eigenpairs corresponding to well separated and simple
eigenvalues are stable against small perturbations. Dealing with ill-posed problems
all the occurring matrices GT

nGn possess the eigenvalue distribution (4.21). Hence,
if only Ritz pairs corresponding to some of the largest well separated and simple
eigenvalues are used for constructing Miexc

n , then we may assume that the approxi-
mation (6.7) also holds true for GT

nGn, that is

GT
nGn ≈ γn I +

∑

j∈J1

θ
(1)
j v

(1)
j (v

(1)
j )T +

∑

j∈J2

γn(θ
(2)
j − 1)v

(2)
j (v

(2)
j )T . (6.12)

In this situation the scalars occurring in the second sum of the right hand side
of (6.12) do not need to satisfy

γn(θ
(2)
j − 1) > 1, j ∈ J2,

any longer, which was the case in (6.7). For this reason we have to select those

vectors v ∈ {v(1)
j1
, . . . ,v

(1)
jk
,v

(2)

j̃1
, . . . ,v

(2)

j̃
k̃

}, which correspond to ”fixed” eigenpairs of

the matrices GT
nGn. This for instance can be realized by constructing the matrix















arccos
(

|(v(1)
1 )Tv

(2)
1 |
)

· · · arccos
(

|(v(1)
1 )Tv

(2)

j̃
k̃

|
)

...
...

...
...

arccos
(

|(v(1)
jk

)Tv
(2)
1 |
)

· · · arccos
(

|(v(1)
jk

)Tv
(2)

j̃
k̃

|
)















(6.13)



154 CHAPTER 6. A PRECONDITIONED NEWTON METHOD

measuring the angles between the ”old” and the ”new” computed approximations to
the eigenvectors. An approximation corresponding to a ”fixed” eigenpair should sat-
isfy that it is approximately orthogonal on all the other approximations. Using this
constraint we can formulate an Algorithm corresponding to Algorithm 6.6, where in
a first step the ”non fixed” eigenpairs are sorted out and subsequently the ”fixed”
eigenpairs are used to determine approximations to spectral data of AT

nAn, n > m.

Algorithm 6.11 (Sorting out Ritz pairs)

Input: (θ1
j1 ,v

1
j1), . . . , (θ

1
jk
,v1

jk
), (θ2

j̃1
,v2

j̃1
), . . . , (θ2

j̃
k̃

,v2
j̃
k̃

); (Ritz pairs)

U := ∅, Θ := ∅, ℓ := 1;

for k = j1, j2, . . . , jk (sorting out ”old” Ritz pairs)

if v
(1)
k ⊥≈ v

(2)
i for all i = j̃1, j̃2, . . . , j̃k̃

vℓ := v
(1)
k , θℓ := θ

(1)
k

U := U ∪ vℓ, Θ := Θ ∪ {θℓ};
ℓ := ℓ+ 1;

ℓold := ℓ− 1;

for i = j̃1, j̃2, . . . , j̃k̃ (sorting out ”new” Ritz pairs)

if vk ⊥≈ v
(2)
i for all k = 1, 2, . . . , ℓold

vℓ := v
(2)
k , θℓ := θ

(2)
k

U := U ∪ vℓ, Θ := Θ ∪ {θℓ};
ℓ := ℓ+ 1;

ℓ := ℓ− 1;

Compute orthonormal basis Q := (q1, . . . ,qℓ) of span{U};

Determine B := QTCQ ∈ Rℓ×ℓ where

C := γn I +

ℓold
∑

j=1

θjvjv
T
j +

ℓ
∑

j=ℓold+1

γn(θj − 1)vjv
T
j ;

Compute eigenvalues λ̃1, . . . , λ̃ℓ with corresponding eigenvectors ṽ1, . . . , ṽℓ
of B;

Output:
(

λ̃1 − γn,Qṽ1

)

, . . . ,
(

λ̃ℓ − γn,Qṽℓ

)

, approximations to eigenpairs

of AT
nAn;
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When solving a nonlinear inverse problem with Algorithm 6.10 in combination with
Algorithm 6.11 we need to decide numerically when two vectors are approximately
orthogonal. Choosing the corresponding threshold parameter too small, many ap-
proximations are sorted out yielding an inefficient preconditioner. If the threshold
parameter is chosen too sloppily, the eigenvalue distribution of the preconditioned
operator is often worse than the distribution of the original operator. Both facts
yield a significant increase of the complexity.

Motivated by the preconditioned frozen IRGNM we incorporated into Algorithm 6.10
the possibility to keep the operator fixed for several Newton steps. In our experi-
ments for different choices of p the results were similar (see Figure 7.21).

Finally, we do not have much hope that a preconditioned IRGNM in a way we
suggested it here can yield comparable results when compared with Algorithm 6.8
with respect to the complexity. Usually, when an update of the preconditioner is
performed, many eigenpairs are sorted out, whereas only a few a are left for setting
up the preconditioner, in particular if the regularization parameter γn is small. This
effect is demonstrated in a numerical example in Section 7.3. As a consequence
of this loss of information in the following Newton steps approximately as many
CG-steps are required as if no preconditioner is available. Moreover, usually the
eigenvalue distribution of the occurring preconditioned operators is not suitable for
Lanczos’ method to compute many approximations of high quality. So, to improve
the efficiency of Algorithm 6.10 in combination with Algorithm 6.11 in some way
the significant loss of Ritz pairs from step to step needs to be avoided which can
only be realized if the successive operators GT

nGn, n = 0, 1, 2, . . ., do not differ too
much, which seems to be a too strict assumption.
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Chapter 7

Numerical examples

An important class of inverse problems in practice are inverse scattering problems.
Scattering theory has attracted scientists and mathematicians over a hundred years.
It is concerned with the effect of an inhomogeneity on an incident particle or wave.
As inverse problem we consider here the problem of identifying a spatially varying
refractive index profile. We examine both, the acoustic scattering case and the
electromagnetic scattering case.

We use these two problems to illustrate the efficiency of Algorithm 6.8. To this end
we restrict ourselves to the derivation of an operator equation of the form (2.1) for
the inverse problem and the characterization of the Fréchet derivative. For details
on these topics we refer to [11], [40] and [41].

7.1 The inhomogeneous medium scattering prob-

lem

The mathematical modeling of the scattering of time-harmonic acoustic waves by
a penetrable inhomogeneous medium of compact support leads to the following
problem: Given an incident plane wave ui(x) := exp(−ik 〈x, d〉) with propagation
direction d ∈ Ω where Ω := {x ∈ R3 : |x| = 1}, the direct scattering problem for an
inhomogeneous medium is to find the total field u such that

∆u+ k2n(x)u = 0 in R
3, (7.1a)

ui + us = u in R
3, (7.1b)

lim
r→∞

(

∂us

∂r
− ikus

)

= 0. (7.1c)

Here r = |x|, n is the refractive index of the medium, us is the scattered field
and u = ui + us is the total field. (7.1c) is called Sommerfeld radiation condition,
which guarantees that the scattered wave is outgoing. Absorbing media are modeled

157
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by complex-valued refractive indices. We assume that ℜ(n) ≥ 0 and ℑ(n) ≥ 0
and n is constant and equal to 1 outside of the ball Bρ := {x ∈ R3 : |x| ≤ ρ} for
some ρ > 0, that is

n = 1 − a, supp(a) ⊂ Bρ. (7.2)

It can be shown that the scattering problem (7.1a) – (7.1c) has an equivalent for-
mulation as an integral equation of the second kind called the Lippmann-Schwinger
integral equation,

u(x) = ui(x) − k2

∫

Bρ

Φ(x, y)a(y)u(y) dy, x ∈ R
3, (7.3)

where

Φ(x, y) :=
1

4π

eik|x−y|

|x− y| , x 6= y, (7.4)

is the fundamental solution to the Helmholtz equation in R3 (see [11, Theorem 8.3]).
Hence, in order to establish existence and uniqueness of a solution to the scattering
problem (7.1a) – (7.1c) for all positive values of the wave number k, it is sufficient
to establish existence and uniqueness of a solution to the Lippmann-Schwinger
integral equation (7.3). The proof is based on the unique continuation principle for
solutions of the equation (7.1a) and Riesz-Fredholm theory. We just cite here the
main theorems. For details we again refer to [11].

Theorem 7.1 Let G be a domain in R3 and suppose u ∈ C2(G) is a solution of

∆u+ k2n(x)u = 0

in G such that n ∈ C(G) and u vanishes in a neighborhood of some x0 ∈ G. Then
u is identically zero in G.

Proof: See [11, Theorem 8.6].
�

Theorem 7.2 For each k > 0 there exists a unique solution to (7.1a) – (7.1c)
and the solution depends continuously with respect to the maximum norm on the
incident field ui.

Proof: See [11, Theorem 8.7].
�

We now turn to the inverse inhomogeneous scattering problem. The Sommerfeld
radiation condition (7.1c) implies the asymptotic behavior

us(x) =
eik|x|

|x| u∞(x̂) +O

(

1

|x2|

)

, |x| → ∞,
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where u∞ : Ω → C is called the far field pattern of the scattered wave us. u∞ is
given by E(au) where E denotes the linear operator

(Ev)(x̂) := − k2

4π

∫

R3

e−ik〈x̂,y〉v(y) dy (7.5)

for x̂ = x/|x| on the unit sphere Ω. We indicate the dependency of the far field
pattern on the direction d of the incident plane wave ui by writing u∞(x̂) = u∞(x̂; d)
and similarly us(x) = us(x; d) and u(x) = u(x; d).

Now we are in a position to formulate the inverse medium problem:

The inverse medium problem for acoustic waves is to determine n
from u∞(x̂; d) for all x̂, d ∈ Ω.

This problem is ill-posed in the sense of Hadamard [28] and is also nonlinear. The
reasons for these facts will be given below. The first and only issue that needs to
be addressed is uniqueness.

Theorem 7.3 The refractive index n is uniquely determined by the far field pat-
tern u∞(x̂; d) for all x̂, d ∈ Ω and a fixed wave number k.

Proof: See [11, Theorem 10.5].
�

To solve the inverse scattering problem we consider the operator

F : D(F ) ⊂ Hs
0(Bρ) → L2(Ω × Ω), s >

3

2
,

a 7→ u∞,

which maps a perturbation a = 1−n of the refractive index n to the corresponding
far field pattern u∞. Since we need a Hilbert space setting, we choose the domain
of definition D(F ) of F to be the set of all functions a in the Sobolev space Hs(Bρ)
with a < 1 and s > 3/2. To get an explicit representation of the operator F , we
once again take a look at the Lippmann-Schwinger equation (7.3). Introducing the
volume potential operator

(V ψ)(x) := κ2

∫

Bρ

Φ(x, y)ψ(y) dy,

a multiplication by a carries (7.3) over to the linear operator equation of the second
kind

(I + aV )au = aui. (7.6)
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So, given a refractive index n the far field pattern of the corresponding solution u
of the inhomogeneous medium problem is determined by

u∞( · ; d) = E(I + aV )−1aui( · ; d), d ∈ Ω. (7.7)

In other words, given only one incident wave ui( · ; d) the operator F to which we
apply Newton’s iteration to is defined through the right hand side of (7.7). Using
this representation, the analytic kernel of the operator E serves as indicator that
the inverse medium problem is exponentially ill-posed. Moreover, it can be also seen
that the operator F is nonlinear. To reformulate F as an operator for not only given
one incident plane wave but also for given all incident plane waves ui( · ; d), d ∈ Ω,
and for a detailed analysis of this operator, we refer to [40]. We cite here the main
results.

Theorem 7.4 The operator F has the following properties:

a) The operator F is Fréchet differentiable on its domain D(F ).

b) The Fréchet derivative F ′[x] is injective for all x ∈ D(F ).

c) The Fréchet derivative F ′[x] : Hs
0(Bρ) → L2(Ω×Ω), s > 3/2, is compact and

the singular values of F ′[x] satisfy

σj(F
′[x]) = O(exp(−cj1/4)), j → ∞,

for some c > 0.

Proof: See [40].
�

To avoid setting up the derivative matrix for F ′[aδn] and F ′[aδn]
∗ in each step of the

IRGNM, we compute the Fréchet derivative of F . Differentiating F in direction h
for fixed ui gives

(I + aV )v′h = hu (7.8)

since u = ui − V v. This yields u′∞ = E(I + aV )−1hu, that is

F ′[a]h = E(I + aV )−1hu. (7.9)

Now the advantage of solving the linearized equation (2.8) in each Newton step by
an iterative method – in our context by the CG-method – is evident. Instead of
setting up the derivative matrix, formula (7.9) shows that computing F ′[a]h involves
essentially the solution of (7.8) in a first step. In a second step the far field pattern
is determined by an application of the operator E defined in (7.5). Note that we
have to solve a similar problem for the evaluation of F ′[a]∗h̃. Moreover, to set up
the right hand side in each Newton step, equation (7.6) has to be solved. These
processes involve solving the Lippmann-Schwinger equation (7.3) in three space
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dimensions, which is rather time consuming and causes the main complexity in our
algorithm. This discussion justifies the argumentation in the proof of Theorem 4.20
for the total complexity of our algorithm.

For a fast numerical solution method of the Lippmann-Schwinger equation and for
the evaluations of F ′[a]h and F ′[a]∗h̃ to some given vectors h, h̃ we refer to [40]
and [82].
In practice many incident waves ui from different incident directions d are necessary
to get a good reconstruction of the refractive index. A heuristic argument for this
fact is the following: The far field pattern depends on the incident direction d of
the plane wave ui and the observation point x̂, that is a function of two variables,
whereas the unknown refractive index n naturally depends on three variables.

7.2 Electromagnetic waves in an inhomogeneous

medium

As a second example we consider the electromagnetic scattering problem of time-
harmonic electromagnetic waves in an inhomogeneous, non-magnetic, isotropic
medium without free charges in R3. By ε = ε(x) > 0 we denote the electric per-
mittivity, by σ = σ(x) the electric conductivity and by µ0 the constant magnetic
permeability. We assume that there exists a ρ > 0 such that ε(x) = ε0 and σ(x) = 0
for all x outside the ball Bρ, that is the inhomogeneity is supported inside Bρ. The
time dependence of the electric field E can be described by

E(x, t) = ℜ
(

E(x)e−iωt
)

,

where ω is the angular frequency and the vector field E : R3 → C3 satisfies the
differential equation

curl curl E − κ2(1 − a(x))E = 0 (7.10)

in R3 where the wave number κ is defined by κ2 = ε0µ0ω
2 and the refractive

index n = n(x) is given by

n(x) = 1 − a(x) =
1

ε0

(

ε(x) + i
σ(x)

ω

)

, x ∈ R
3,

where again supp(a) ⊂ Bρ. We can now formulate the corresponding direct scat-
tering problem: Given an incident field

Ei(x) := exp(−iκ 〈x, d〉)p (7.11)

with direction d ∈ Ω and polarization p ∈ C3 such that p · d = 0 and the refractive
index n ∈ C1,α(R3), 0 < α < 1, with supp(a) ⊂ Bρ, the scattering problem for
time harmonic electromagnetic waves for an inhomogeneous medium is to find the
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scattered field Es ∈ C2(R3,C3) such that the total field E := Ei + Es solves the
Maxwell equations (7.10) and the scattered field satisfies the Silver-Müller radiation
condition

lim
|x|→∞

(curl Es(x) × x− iκ|x|Es(x)) = 0 (7.12)

uniformly for all directions x̂ = x/|x| ∈ Ω.

As in the acoustic case it can be shown that this scattering problem has an equiv-
alent formulation as an integral equation. If E ∈ C2(R3,C3) is a solution to the
scattering problem (7.10) and (7.12) where the incident field is given by (7.11), then
it satisfies the (electromagnetic) Lippmann-Schwinger equation (see [11, Chapter 9])

E(x) = Ei(x) − κ2

∫

R3

Φ(x, y)a(y)E(y) dy

+grad

∫

R3

Φ(x, y)

〈

grad a(y)

1 − a(y)
, E(y)

〉

dy, x ∈ R
3, (7.13)

where Φ is given by (7.4). Vice versa, if the total field E satisfies (7.13), then E
solves the scattering problem. Moreover, the following theorem can be proven:

Theorem 7.5 The scattering problem (7.10) and (7.12) where the incident field is
given by (7.11) has a unique solution and the solution E depends continuously on
the incident field with respect to the maximum norm.

Proof: See [11, Theorem 9.5].
�

We now turn to the inverse electromagnetic inhomogeneous medium problem. As
in the acoustic case we assume that the data is given by the far field pattern E∞
of Es in the representation

Es(x; d, p) =
eiκ|x|

|x| E∞(x; d, p) +O

(

1

|x|2
)

, |x| → ∞. (7.14)

With the additional arguments d and p we indicate the dependency of E, Es and E∞
on the incident field Ei = Ei(x; d, p).

The inverse medium problem for electromagnetic waves is to de-

termine n from E∞(x̂; d, p) for all x̂, d ∈ Ω and p ∈ C3.

By similar reasons as in the acoustic case this problem is nonlinear and ill-posed.
Corresponding to Theorem 7.3 it can be shown that the refractive index n is
uniquely determined by the far field pattern E∞(x̂; d, p) for all x̂, d ∈ Ω, p ∈ C3.
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From the Lippmann-Schwinger equation (7.13) we obtain by a short computation
the formula

E∞(x̂; d, p) = −κ2

∫

Bρ

e−ik〈x̂,y〉

4π
a(y)E(y; d, p) dy

−iκx̂
∫

Bρ

e−iκ〈x̂,y〉

4π

〈

grad a(y)

1 − a(y)
, E(y; d, p)

〉

dy.

Since the far-field pattern is a tangential field, it can be rewritten as E∞ = Z(aE)
where Z : L2(Bρ)

3 → L2(Ω)3 denotes the far-field operator defined by

(Zu)(x̂) := −κ2x̂×
∫

Bρ

e−iκ〈x̂,y〉

4π
u(y) dy × x̂ (7.15)

(see [41]). To solve the inverse scattering problem we consider the operator

F : D(F ) ⊂ Hs
0(Bρ) → L2(Ω × Ω)3

a 7→ E∞,

where D(F ) := {a ∈ Hs(Bρ) : a < 1}. To ensure that a ∈ C1,α(Bρ) we let s > 5/2.
As in the acoustic case our goal is to reformulate the operator F with the help
of (7.13). Note that a multiplication of (7.13) with the function a and using aE as
new unknown as we did in the acoustic case does not work in the electromagnetic
case due to the third term on the right hand side. This term is also responsible for
worse mapping properties of the integral operator.

Following [41] we define the 4ρ-periodic functions f : R3 → C3 and k : R3 → C,

f(x) := χ(x)Ei(x), k(x) :=

{

κ2Φ(x, 0), |x| < 2ρ,
0, |x| ≥ 2ρ

for x ∈ G2ρ := {x ∈ R
3 : |xj| < 2ρ, j = 1, 2, 3} where χ : R

3 → R denotes a
smooth cut-off function satisfying χ(x) = 1 for x ∈ Bρ and supp(χ) ⊂ G2ρ. For the
construction of such a function χ we refer to [57, Theorem 2.15]. Introducing the
function

b(x) :=
grad a(x)

κ2(1 − a(x))
, x ∈ R

3,

which is well defined since ℜ(n(x)) > 0 for all x ∈ R3, it can be shown (see [41]) that
instead of solving (7.13) it is sufficient to solve the periodic Lippmann-Schwinger
equation

U(x)+

∫

G2ρ

k(x−y)a(y)U(y) dy+grad

∫

G2ρ

k(x−y) 〈b(y), U(y)〉 dy = f(x) (7.16)
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for all x ∈ G2ρ. The unique solution of this integral equation can be used to compute
a solution of (7.13). With the convolution operator K : L2(G2ρ) → L2(G2ρ),

(Kv)(x) :=

∫

G2ρ

k(x− y)v(y) dy, x ∈ G2ρ,

and its component-wise application K : L2(G2ρ)
3 → L2(G2ρ)

3 equation (7.16) takes
the form

U + K(aU) + grad K(〈b, U〉) = f in G2ρ. (7.17)

In this notation the operator F can expressed by

F (a) = Za(I + K(a ·) + grad K(〈b, · 〉))−1(χEi) in G2ρ.

With this formula it can be shown that F is Fréchet differentiable (see [41]). Dif-
ferentiating the periodic Lippmann-Schwinger equation (7.16) at a in the direction
h of the periodic version U = Ua of the electric field E gives

U ′a,h + K(aU ′a,h) + grad K

(〈

grad a

κ2(1 − a)
, U ′a,h

〉)

= Rah in G2ρ, (7.18)

with the right hand side

Rah = −K(hUa) − grad K

(

1

κ2

〈

grad h + h
grad a

1 − a
,
Ua

1 − a

〉)

.

Thus, the computation of U ′a,h can be done by solving the the periodic Lippmann-
Schwinger equation (7.16) with right hand side Rah. Now, by an application of the
product rule the Fréchet derivative is given by

F ′[a]h = Z(aU ′a,h + hUa,h).

Thus, to evaluate F ′[a]h we have to solve (7.17) in a first step and (7.18) in a
second step. Solving these equations is rather time consuming and causes the
main complexity of the IRGNM. Subsequently we have to apply the operator Z.
Similarly a formula for the evaluation of the adjoint operator F ′[a]∗g to some given
vector g can be derived. Again, these formulas are the fundamentals for a matrix-
free Newton method and the applicability of our algorithm derived in Chapter 6.

As in the acoustic case usually many incident waves are necessary for a good recon-
struction. This is due to the fact that the far-field pattern E∞ is a function of two
variables whereas the unknown refractive index is a function of three variables.
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7.3 Numerical results

For numerical examples we need a tool to construct synthetic data, that is refrac-
tive indices satisfying condition (7.2). We just consider here real valued refractive
indices. Complex valued refractive indices can be constructed by the same idea.
Using a smooth partition of the one (see [20, Chapter 3] for details) defined through
the function

H(t) :=
g(t)

G(t)
, t ∈ R,

where g ∈ C∞0 (R),

g(t) :=

{

e−1/(1−t2), |t| < 1,
0, |t| ≥ 1,

and G(t) :=

∞
∑

k=−∞
g(t− k),

it can be shown that the functions

fq,ε(x) := Π3
j=1H

(xj
ε

− qj

)

satisfy fq,ε ∈ C0(R
3), supp(fq,ε) = {x ∈ R3 : |xj− qjε| ≤ ε, j = 1, 2, 3} and we have

∑

q∈Z3

fq,ε(x) = 1

for all x ∈ R3. Hence, functions of the form of fq,ε are suitable to construct smooth
refractive indices. An example used in [40] and [41] is given by

a†1(x) :=
0.25(sin(5(x1 − 1)x2 + x3(x3 − 2)))

1.2 − cos(x1(x1 − 2) + (x2 − 0.5)x2(x2 + 1) + x3)

·H̃(−0.8(1.5x1 + x2 + x3 − 0.5))H̃(2.5(|x| − 0.55)), (7.19)

where

H̃(t) :=

∑∞
j=0 g(t− j)

G(t)
.

To compare our algorithms with the one presented in [40] we will use the refractive
index given by a†1 for the examples considered in the case of acoustic scattering. For
the electromagnetic case we consider the refractive index a†2 defined through

ã(x) := (2 + 0.2x2
1 + 0.1x2

2 + 0.8x2
3 − x1 − x2)

−1

·
[

0.8 sin(x1 + x2 + 0.5 + x2
1 + (x2

3 − 0.1))

− cos(x2
1 − 2x2

2 + x2
3 + 0.3) − cos(x1x2x3)

]

,

a†2(x) := ã(x)H̃(0.6x1 + 0.3x2 + 0.9x3)

H̃(−0.8(1.5x1 + x2) + 0.1x3)H̃(1.5(|x| − 0.3)). (7.20)
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Figure 7.1: Plot of the refractive index a†1

Figure 7.2: Plot of the refractive index a†2
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In the following we give a short description of the general framework used for the
numerical examples, our intention what we want to illustrate and some notation
used throughout this section.
First of all, in all the experiments with respect to the acoustic scattering problems
the regularization parameter was chosen by

γn = 2−n, n = 0, 1, 2, . . . .

This corresponds to (1.25) with γ0 = 1 and γ = 2. For the implementation of
the matrices representing the operators occurring in the inverse acoustic scatter-
ing problems we refer to [40], for the electromagnetic case to [41]. Moreover, for
the computations we used a C++-class library designed for iterative regulariza-
tion methods, which already included the implementation of these operators. This
library has been made available to us by Prof. Dr. Thorsten Hohage.
To test numerical algorithms for inverse problems synthetic data have to be pro-
duced. If these synthetic data are obtained by the same method that is used in
the algorithm for the inverse problem, one often obtains unrealistically good re-
sults, especially if the exact solution is chosen from the approximating subspace.
To this end precautions against inverse crimes have to be taken. This for instance
can be done by using a different ansatz and a different number of grid points for
producing the synthetic data. Furthermore, the exact solution should not be in the
finite-dimensional approximating subspace.
To avoid inverse crimes such precautions have been implemented into the C++-
class library at our disposal.

Recall that in our experiments we used (6.9) as update criterion and that for the
inner CG-iterations in the case where fup = 1 we chose (4.11) as stopping criterion
with ε = 1e − 9 and in the case where fup = 0 we chose ε = 1/3 (see imple-
mentation details in Section 6.3). To ensure a sufficiently large number of inner
CG-iterations when an update of the preconditioner seemed necessary we iterated
as long as

√
βk/αk > 0.1. Moreover, any iteration was stopped as soon as the

residual vectors started losing their orthogonality. The indicator function (6.10)
was given through

K(n) :=







5, 0 ≤ n < 25,
7, 25 ≤ n < 43,
9, n ≥ 43.

In our discussion of the numerical examples we want to focus on the two following
points:

a) The effectiveness of Algorithm 6.8 when compared with a standard IRGNM
and the algorithm presented in [40], which is basically given by Algorithm 4.10
and

b) a detailed description of the update process of the preconditioner.
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 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50

in
ne

r 
C

G
-s

te
ps

Newton step

3d acoustic, k=1, preconditioned frozen IRGNM

no update of preconditioner
update of preconditioner by iterated Lanczos alg. I

update of preconditioner by iterated Lanczos alg. II

Figure 7.4: The effect of preconditioning and updating on the inner CG-iterations



7.3. NUMERICAL RESULTS 169

As a first example we consider the inverse acoustic scattering problem presented in
Section 7.1 for the wavenumber k = 1. The refractive index is defined through (7.19).
To compare the different algorithms an early stopping by the discrepancy principle
had to be avoided. To this end we only used exact data in the first experiments.
To compute the reconstructions we used 50 incident waves.
Let us start by having a look at the total complexity of the different algorithms.
In Figure 7.3 for a standard IRGNM the number of CG-steps are plotted over the
Newton step. The progress of the line is as expected. Since the regularization
parameter decreases during the IRGNM the number of inner CG-iterations to solve
the linear systems increases. This behavior corresponds to the results formulated
in Theorem 4.19. After 50 Newton steps a total number of 922 CG-steps have been
performed.
Figure 7.4 shows the effect of preconditioning and updating on the inner CG-
iterations. The red line represents the algorithm presented in [40], the green dashed
line Algorithm 6.8 coupled with Algorithm 6.5 and the blue dashed line Algo-
rithm 6.8 coupled with Algorithm 6.6. The peaks in the curves occur whenever
an update of the operator has been performed, that is

√
n+ 1 ∈ N, since in these

Newton steps we chose ε = 10−9 to approximate eigenpairs for constructing a new
preconditioner. Note that the peaks lie above the curve plotted in Figure 7.3. If we
would have chosen ε = 1/3 the peaks would only differ a bit or would even coincide
with the number of CG-steps plotted in Figure 7.3.
Let us compare the different curves. As we can observe following the red line
between the Newton steps 25 – 36 and 36 – 49 the effectiveness of the original pre-
conditioner reduces. This is expected because of the reasons we discussed in point
g) in Section 6.1. Therefore, the number of inner CG-steps increases rapidly. The
green dashed line starts to differ significantly from the red line at Newton step 30,
that is when the original preconditioner starts losing its efficiency. Now the effect
of updating the preconditioner improving its efficiency starts. The peak at Newton
step 30 is explained by further inner CG-iterations in order to improve the approx-
imations. Subsequently the green dashed line proceeds significantly below the red
line. Hence, these additional CG-steps in the 30-th Newton step are profitable, since
the saved number of CG-steps in the following Newton steps is definitely larger. A
similar observation is true for the blue dashed line. In order to obtain better ap-
proximations additional CG-steps have been performed. This explains the peak. In
an analogous way the preconditioner has been updated between the Newton steps
36 – 49. As a consequence the green dashed line proceeds significantly under the
red line. The total number of inner CG-steps for the different algorithms is given
by � 922 for the standard IRGNM,� 554 for the preconditioned frozen IRGNM without updating the precondi-

tioner,



170 CHAPTER 7. NUMERICAL EXAMPLES� 348 for the preconditioned frozen IRGNM where the preconditioner is updated
by the iterated Lanczos algorithm I,� 377 for the preconditioned frozen IRGNM where the preconditioner is updated
by the iterated Lanczos algorithm II.

As we can see by the total number of CG-steps, in this example after 50 Newton
steps updating the preconditioner yields about a reduction of 35% of the CG-steps
when compared with the preconditioned frozen IRGNM without updating the pre-
conditioner, which was originally suggested in [40]. Furthermore, when compared
with a standard Newton method the total complexity could have been reduced to
about 1/3 of the original complexity.

To illustrate the dependency of the number of inner CG-steps on the update crite-
rion we also considered the functions

fup,1(n) =

{

1, n = 0, n = 33 and n = 43,
0, else

and

fup,2(n) =

{

1, n = 0
0, else.

Note that in the preconditioned frozen IRGNM with fup,2 no operator update is
performed, the function fup,1 was chosen arbitrarily without any mathematical mo-
tivation. In Figure 7.5 we have plotted the inner CG-steps for the preconditioned
frozen IRGNM coupled with the iterated Lanczos algorithm I and the update cri-
terions fup,1 and fup,2. The total number of inner CG-steps for these choices are
given by� 326 for the update criterion fup,1,� 293 for the update criterion fup,2.

Hence, for these choices additional complexity could have been saved. This shows
that when we keep the operator fixed for a long period of Newton steps additional
complexity can be saved. On the other hand we will illustrate in Figure 7.7 that
the reconstructions are not as satisfactory when compared with the update crite-
rion (6.9), that is additionally complexity needs to be spent to reach the approxi-
mation quality of this update criterion. These examples indicate that the update
criterion fup balances the convergence speed of the outer Newton iteration with the
number of inner CG-steps.

To illustrate the real valued refractive index given by (7.19) and its reconstructions
we plot them on slices through the sphere. This plotting technique is illustrated
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Figure 7.7: Reconstructions of the refractive index after 50 Newton steps, k = 1

in Figure 7.6. Figure 7.7 above shows the original refractive index and its recon-
structions determined by the different methods. In the first column we plotted the
refractive index on the slice z = 0.0, in the second column on z = 0.25 and in the
third column on z = −0.25. It can be seen that the differences between the final
reconstructions determined by the standard IRGNM and the preconditioned frozen
IRGNM with the update criterion (6.9) are negligible.

For the update criterions fup,1 and fup,2 the reconstructions are slightly worse. This
shows that for these update criterions the convergence speed of the outer Newton
iteration is slowed down. Hence, additional Newton steps are necessary to get
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comparable results with the other update criterions. Note that the reconstruction
for the update criterion fup,1 on the slice z = −0.25 is surprisingly good when
compared with the other algorithms.

Figure 7.8: Error plot, k = 1

In Figure 7.8 we have plotted the error for the reconstructions determined by the
different methods once again indicating the comparability of the final iterates of
the different methods.
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Figure 7.9: The effect of preconditioning and updating on the inner CG-iterations,
k = 2

For the wavenumber k = 2 we obtained similar results, which are illustrated in the
Figures 7.9, 7.10 and 7.11. The red line in Figure 7.9 again represents the algorithm
presented in [40], the green dashed line Algorithm 6.8 coupled with Algorithm 6.5
and the blue dashed line Algorithm 6.8 coupled with Algorithm 6.6. The corre-
sponding reconstructions and errors are shown in the Figures 7.10 and 7.11. Note
that in this case we already stopped the iteration after 45 steps, since due to round-
off errors and the ill-posedness the iterates started to deteriorate rapidly after that
number of steps. The total number of inner CG-steps for the different algorithms
is given by� 648 for the preconditioned frozen IRGNM without updating the precondi-

tioner,� 458 for the preconditioned frozen IRGNM where the preconditioner is updated
by the iterated Lanczos algorithm I,� 459 for the preconditioned frozen IRGNM where the preconditioner is updated
by the iterated Lanczos algorithm II.
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Figure 7.10: Reconstructions of the refractive index after 45 Newton steps, k = 2

Figure 7.11: Error plot, k = 2
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In further experiments, we tested the convergence of Algorithm 6.8 in combination
with Algorithms 6.5 and 6.6 for different noise levels δ > 0. The results are plotted
in the Figures 7.12, 7.13 and 7.14. Let us first have a closer look at the number of
inner CG-steps. It can be seen that just for the very small noise level δ = 0.0001
an update of the preconditioner is necessary at Newton step 31. In all the other
cases no update of the preconditioner is performed, since the discrepancy principle
stops the outer Newton iteration before the number of inner CG-steps exceeds the
threshold level given through the indicator function (6.10).
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Figure 7.12: Number of inner CG-iterations for noisy data
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Figure 7.13: Number of inner CG-iterations for noisy data

Figure 7.14 shows that for the small noise level δ = 0.0001 the reconstruction is
a good approximation to the true solution. As expected with an increase of the
noise level the main features of the scatterer are smoothed out and details get
lost, for example for the rather high noise level δ = 0.1 one cannot really identify
the scatterer any more. On the other hand a high noise level together with the
discrepancy principle enforces an early stopping of Algorithm 6.8. Naturally, this
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Figure 7.14: Reconstructions with different relative noise levels δ > 0

reduces the total complexity. We only plotted the reconstructions determined by
Algorithm 6.8 coupled with Algorithm 6.6, for Algorithm 6.5 the reconstructions
are identical.
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Figure 7.15: The effect of preconditioning in the electromagnetic scattering problem

In the case of the inverse electromagnetic scattering problem we only present ex-
periments with exact data. Experiments with noisy data would be similar to those
in the acoustic case. The regularization parameter in these experiments was chosen
by

γn = 0.01 · 2−n, n = 0, 1, 2, . . . .

To compute the reconstructions we used 100 incident waves. The indicator func-
tion (6.10) in these experiments was simply given by

K(n) := 10, n ≥ 0.

The reconstructions and the error plot are illustrated in Figures 7.16 and 7.17.
The inner CG-steps are plotted in Figure 7.15 above. It can be seen that in these
experiments Algorithm 6.8 in combination with Algorithm 6.6 and 6.5 is again
superior when compared with the algorithm where no update of the preconditioner
is performed. The total number of inner CG-steps for the different algorithms is
given by� 560 for the preconditioned frozen IRGNM without updating the precondi-

tioner,



7.3. NUMERICAL RESULTS 179� 496 for the preconditioned frozen IRGNM where the preconditioner is updated
by the iterated Lanczos algorithm I,� 507 for the preconditioned frozen IRGNM where the preconditioner is updated
by the iterated Lanczos algorithm II.

That is, in this example after 55 Newton steps updating the preconditioner yields
about a reduction of 10% of the inner CG-steps when compared with the precondi-
tioned frozen IRGNM without updating the preconditioner. That the updating of
the preconditioner is less efficient in this example when compared with the acoustic
scattering problem can be explained by the following two reasons.

As we can observe in Figure 7.15 the original preconditioner works until the 40-
th Newton step rather efficient. Hence, the complexity required for an update in
the Newton steps before the 40-th step could not have been saved in the following
Newton steps. To this end we chose the indicator function K in such a way that
the updating process starts when we can ensure to save the additional complexity
spent for the update. The other reason is that the update of the preconditioner
in this example does not lead to such a significant difference in the inner CG-
steps when compared with the acoustic scattering problem. This is possibly due
to the fact the the linear operators arising in this electromagnetic example have a
lot of degenerated eigenvalues. Such a property can influence the efficiency of the
preconditioner and can reduce the effect when it is updated. This corresponds to
the theory presented in Chapters 4, 5 and 6.

However, in all the examples we presented our preconditioning technique yielded
a significant reduction of the total complexity when compared with a standard
IRGNM and even when compared with the preconditioned frozen IRGNM presented
in [40]. Naturally, this also reduced the computational time significantly. Since
the reconstruction of the refraction index in the electromagnetic inverse scattering
problem for the wavenumber k = 1 on a fine grid took us about 12 hours up to a
whole day, even 10% reduction of the total complexity yielded a reduction of the
computational time for more than one hour or two (or even more).
Moreover, for larger wavenumbers k usually the computational time increases rapidly
for both the acoustic and the electromagnetic inverse scattering problem. This fact
makes it necessary to have adequate preconditioning available reducing the total
computational time such that these kind of problems are solvable by regularized
Newton methods in appropriate time periods.
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Figure 7.16: Reconstructions of the refractive index for the electromagnetic scat-
tering problem, k = 1

Figure 7.17: Error plot, k = 1
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Let us now turn to the illustration of the exact behavior of Algorithm 6.8 when
coupled with Algorithm 6.5. To this end we look at the approximations to the
eigenvalues determined by Lanczos’ method within the Newton steps 25 – 36 and
36 – 49. The values in the tables correspond to the inverse acoustic scattering
problem for the wavenumber k = 1. In the tables we use the following notation:� λ: Ritz value of non-preconditioned matrix� µ: Ritz value of preconditioned matrix� γn(µ− 1): see formula (6.2)� appr. qual.: right hand side of (6.8)

Step λ appr. qual. Step µ appr. qual. γn(µ− 1)

25 2.27632e-02 0.0 30 3.67725 3.70816e-14 4.98677e-09
1.28441e-03 0.0 2.57832 7.02890e-11 2.93983e-09
4.88432e-04 0.0 1.99764 3.89232e-07 1.85825e-09
3.01355e-04 0.0 1.96529 5.17614e-07 1.79799e-09
2.69159e-05 2.77020e-41 1.85129 1.22699e-05 1.58565e-09
2.61366e-05 6.78665e-41 1.73306 7.88985e-07 1.36543e-09
1.69453e-05 3.58730e-30 1.65290 1.12727e-06 1.21612e-09
3.99508e-06 2.71733e-30 *1.08626 5.11918e-04 1.60672e-10
3.87455e-06 3.95705e-19 *1.06015 6.91324e-03 1.12038e-10
5.16012e-07 5.97496e-19 *1.04872 7.92293e-04 9.07482e-11
5.10298e-07 1.94985e-18 *1.01191 4.50290e-03 2.21841e-11
3.34366e-07 2.80166e-16 *1.00000 3.41492e-05 —–
2.45728e-07 8.27110e-16 *0.91488 1.04662e-06 —–
2.00425e-07 3.46067e-15
1.96591e-07 6.64087e-13
2.93306e-08 7.17179e-13
2.52469e-08 4.22266e-10
5.34717e-09 6.18163e-10
4.23484e-09 4.71299e-10

*1.52702e-09 5.48059e-10

Table 7.1: Ritz values computed in the 25-th and 30-th Newton step

Table 7.1 shows the Ritz values computed in the 25-th and 30-th step of Algo-
rithm 6.8 together with their quantitative approximation quality given by the right
hand side of (6.8). In the second column of Table 7.1 the computed approxima-
tions to the eigenvalues of AT

25A25 are listed, the third column shows the computed
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values given by (6.8). The fifth column lists the approximations to the eigenvalues
of (Miexc

30 )−1GT
25,5G25,5, the sixth column again shows the approximation quality

given by (6.8) and the seventh column the computed approximations to the eigen-
values of AT

25A25 (see Section 5.1 and Lemma 6.2 for the notation).
First note that the more separated and further away from the cluster the eigenvalues
are, the better the approximations are. Moreover, since the eigenvalue distribution
in the preconditioned case is more uniformly than in the non-preconditioned case
and since the eigenvalues are not that well separated, in average the approximation
quality of the Ritz values in the non-preconditioned case is far better than in the
preconditioned case.
We mark the Ritz values, which were not used for constructing the preconditioner
with a ” * ” in front. To determine these Ritz values we use two criterions. On the
one hand the approximation quality should be acceptable. On the other hand the
computed Ritz value should be well separated from the cluster of eigenvalues.
Note that both criterions imply that we need to choose two parameters. With the
knowledge that the efficiency of the preconditioner depends sensitive on errors in
the approximations in particular for small and clustered eigenvalues (see Corol-
lary 5.11), we only choose eigenvalues which are at least 10% away from the cluster
and the approximation quality satisfies at least (see 6.8)

√
βk
αk

|wi(k)| ≤ 0.0001.

From the computed approximations in the 25-th step only one was not used for
setting up the preconditioner. It was sorted out not because of its approximation
property, but since it was assumed to lie in the cluster of eigenvalues. Since the
regularization parameter is given by

γ25 = 2−25 ≈ 2.98023e-08,

we have that γ25 + 1.52702e-09 ∈ [γ25, 1.1γ25], that is the computed approximation
is less than 10% away from the cluster at γ25 of GT

25G25.

In Figure 7.18 we have focused on the number of inner CG-steps of Algorithm 6.8
coupled with Algorithm 6.5 within the Newton steps 24 – 36. Following the red
line in Figure 7.18 it can be observed that the preconditioner constructed only by
spectral data computed in the 25-th step starts losing its efficiency from the 30-th
step on.
Hence, additional approximations to the spectral data are needed. The peak at
step 30 indicates that an update of the preconditioner has been performed in this
Newton step. As a consequence the green dashed line proceeds in the following
Newton steps significantly below the red line.
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Step µ appr. qual. Step µ appr. qual.

32 *1.32156 0.501434 33 *1.68998 0.0394335
*1.24305 0.863644 *1.35283 0.2066
*1.00019 0.0274566 *1.10437 0.976432

*0.715662 0.0439202 *1.00006 0.0381966
*0.665045 0.0297071

34 *2.38008 0.0110668 35 *3.76015 0.000183982
*1.96792 0.307096 *2.93652 0.00630761
*1.46107 0.245884 *1.67745 0.126451
*1.14774 0.918331 *1.45341 0.604292
*1.00003 0.0270733 *1.17871 0.78636
*0.6077 0.0323268 *1.00002 0.0133295

*0.538816 0.0161668

Table 7.2: Ritz values computed after an update of the preconditioner

After an update of the preconditioner has been performed, one usually has to per-
form several Newton steps until the next update is necessary and profitable. As an
indicator for this serves Table 7.2. It can be seen from this table that the approxi-
mations are of low quality. This behavior is supported by many numerical examples
we computed and the theoretical knowledge of Lanczos’ method. Naturally, to im-
prove the approximations we could artificially impose further inner CG-iterations.
But since the eigenvalue distribution for Lanczos’ method is not adequate many
additional CG-iterations would be necessary to determine approximations of high
quality. Usually there would be no chance to save this additional complexity in the
following Newton steps.

Hence, such a procedure would only increase the complexity of the actual Newton
step without having any hope to save this additional complexity in the following
Newton steps because of an improved preconditioner. Furthermore, we can also see
from Table 7.2 that since the regularization parameter decreases in a natural manner
more and more CG-steps are required to solve the linear systems (cf. Theorem 4.19).
This automatically leads to an improvement in the approximations. Hence, the
number of updates of the preconditioner needs to be balanced with the complexity
required for an update.

The behavior we just explained can also be observed within the Newton steps
36 – 48. Table 7.3 corresponds to Table 7.1 and shows the approximations to the
eigenvalues computed in the 36-th and 38-th Newton step. Indicated by Figure 7.19
the approximations to the eigenvalues computed in the 36-th Newton step were not
enough for an efficient preconditioner. To this end additional information was
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Step λ appr. qual. Step µ appr. qual. γn(µ− 1)

36 2.27837e-02 0.0 38 3.19664 2.96328e-08 1.59827e-11
1.28463e-03 0.0 2.25952 4.62865e-06 9.16422e-12
4.88529e-04 0.0 1.92191 3.19232e-05 6.70778e-12
3.01202e-04 0.0 1.70738 1.67861e-04 5.14687e-12
2.69246e-05 0.0 1.53378 1.47544e-04 3.88376e-12
2.61326e-05 0.0 *1.10793 1.75094e-03 —–
1.69333e-05 0.0 *1.0227 5.19410e-03 —–
3.99668e-06 0.0 *1.0 3.42611e-05 —–
3.87180e-06 0.0 *0.78284 3.30233e-05 —–
5.16173e-07 0.0
5.10301e-07 0.0
3.34475e-07 0.0
2.45606e-07 0.0
2.00343e-07 0.0
1.96624e-07 0.0
2.93269e-08 0.0
2.52438e-08 0.0
5.61789e-09 2.11131e-45
5.01608e-09 1.67902e-44
4.05941e-09 1.39805e-42
2.89864e-09 5.94092e-39
1.89332e-09 1.22114e-34
1.80280e-09 1.79692e-33
1.63027e-09 8.84960e-34
1.36847e-09 9.37498e-32
1.30099e-09 1.19886e-32
1.21294e-09 2.10932e-32
1.60645e-10 4.45360e-25
1.12678e-10 1.97599e-22
3.4298e-11 3.98918e-15
2.9916e-11 1.38529e-13
2.9304e-11 2.39465e-13
2.5220e-11 4.93997e-14
1.6928e-11 2.29909e-13
1.2381e-11 2.18788e-12
9.132e-12 1.29050e-12
5.826e-12 2.82929e-12
4.217e-12 1.60296e-12
2.207e-12 4.22321e-12

8.5e-14 2.53055e-13

Table 7.3: Ritz values computed in the 36-th and 38-th Newton step
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computed in the 38-th step and added to the preconditioner. Hence, the green
dashed line lies significantly below the red line.
Table 7.4 shows that the approximations in the following Newton steps are of low
quality. Note, in the 42-nd step one approximation is used for updating the precon-
ditioner, before in the 43-rd step a lot of additional approximations are determined.
In Table 7.5 we introduced a column named ”angle”. This column illustrates the
effect we described in Section 6.1 in point c). In this case the CG-iteration stopped
because of loss of orthogonality in the residual vectors. This is a typical behavior,
which can be observed and cannot be avoided.

Step µ appr. qual. st. µ appr. qual.

39 *1.82089 0.187555 40 *2.08548 0.343045
*1.42948 0.325559 *1.85745 0.0390014
*1.08067 0.925097 *1.21598 0.654463

*1 0.00695484 *1.12278 0.672576
*0.354917 0.054602 *1 0.00200436

*0.250638 0.0106955

41 *2.72602 0.00158443 42 4.44217 2.05333e-05
*2.41614 0.0222835 *2.91016 0.0170637
*1.45467 0.239468 *1.91554 0.129417
*1.29053 0.41377 *1.65201 0.609985
*1.15321 0.878018 *1.51993 0.49133

*1 0.00111933 *1.19495 0.607775
*0.175651 0.00580906 *1 0.000870562

*0.124562 0.00904441

Table 7.4: Ritz values computed after an update of the preconditioner

Finally, in the following Newton steps 44 and 45 only a few Ritz values are used for
updating the preconditioner making it more efficient.
Note that when we would have used all the approximations marked with a ” * ”
our numerical results with respect to the complexity would have been much worse.
This corresponds to the sensitivity results presented in Chapter 5, since the low
approximation quality of these Ritz pairs destroys the convergence rates of the
preconditioned CG-method. Moreover, one can also observe that sometimes even
convergence of the CG-algorithm gets lost. These numerical observations justify
the final remark of Chapter 5.

We have refrained from a detailed description of Algorithm 6.8 coupled with Algo-
rithm 6.6, since the observations are similar and do not improve the comprehension
for the algorithm.
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Step µ appr. qual. angle γn(µ− 1)

43 3.6889 8.39201e-09 —– 3.05692e-13
2.8327 5.2245e-07 —– 2.08354e-13

2.44073 0.00000316 —– 1.63792e-13
2.29505 0.00001184 —– 1.47230e-13
2.09111 0.00007509 —– 1.24045e-13

*1.99421 0.0051594 —– —–
*1.86095 0.030205 —– —–
*1.72785 0.0217048 —– —–
*1.42969 0.0898282 —– —–
*1.37498 0.203838 —– —–
*1.24207 0.0532351 1.5706 —–
*1.11697 0.0316343 1.5693 —–
*1.01169 0.0244099 1.5646 —–

*1.0 0.000117223 1.5029 —–
*0.0884446 8.54277e-08 1.1968 —–

Table 7.5: Eigenvalues computed in the 43-rd Newton step

Step µ appr. qual. Step µ appr. qual.

44 4.98798 0.000156811 45 7.23743 3.68018e-05
3.7315 0.00078983 6.39212 9.15147e-06

*3.10275 0.0484111 *5.19581 0.00145043
*2.95196 0.322901 *4.98565 0.00887455
*2.67928 0.300166 *4.45983 0.0171487
*2.30294 0.848033 *4.05674 0.0399935
*1.83687 0.183679 *3.21413 0.754341
*1.46772 0.194604 *2.68226 0.073008
*1.16662 0.111337 *2.12736 0.549818

*1.0 0.000300321 *1.95554 0.294801
*0.06151 0.0112634 *1.44196 0.110447

*1.23733 0.149149
*1.0 0.000107254

*0.0413965 0.00369196

Table 7.6: Eigenvalues computed after an update of the preconditioner
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Finally, as a last example let us consider Algorithm 6.10 coupled with Algorithm 6.11.
To understand the behavior of this algorithm we restrict ourselves to the two dimen-
sional inverse acoustic scattering problem for the wavenumber k = 1. Our intention
is to explain on this example where the difficulties of this algorithm arise and why
we do not have much hope that this algorithm can yield comparable results to the
preconditioned frozen IRGNM.
The refractive index in our experiments was defined through

a†(x) :=
sin(5(x− 1)y)

(1.2 − cos(x2 + y3))
H̃(−0.8(1.5x+ y − 0.5))H̃(2.5(|x| − 0.55))

and the regularization parameter was chosen by

γn = 0.01 · 2−n, n = 0, 1, 2, . . . .
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Figure 7.20: Inner CG-iterations for a standard IRGNM and Algorithm 6.8

As a reference for Algorithm 6.10 (preconditioned IRGNM) act the standard IRGNM
and Algorithm 6.8 for which the number of inner CG-steps are plotted in Fig-
ure 7.20. The behavior of these values corresponds to the three dimensional case.
To understand the inferiority of Algorithm 6.10 with respect to the complexity
when compared with Algorithm 6.8 let us first take a closer look at Figure 7.21.
Here we plotted for different update conditions, that is p = 2, 3, 4, 5, the behavior
of the number of inner CG-steps together with the number of Ritz pairs used for
constructing the preconditioner. The red line in the pictures on the right hand side
shows the number of Ritz pairs used in Algorithm 6.10 and the green dashed line
the number of Ritz pairs used in Algorithm 6.8. Two main reasons are responsible
for the inferiority of Algorithm 6.10:

a) When we neglect the steps where in Algorithm 6.8 the linear systems are
solved without a preconditioner, the number of Ritz pairs used for precondi-
tioning is in average much larger when compared to Algorithm 6.10.
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b) The approximation quality of the Ritz pairs used in Algorithm 6.10 is worse
when compared with Algorithm 6.8.

Note that reason a) cannot be fixed by making more inner CG-iterations, since the
loss of Ritz pairs is caused by changing the operator. For this reason it can be seen
in Figure 7.21 that for the final Newton steps the number of Ritz pairs starts to
oscillate yielding an increase in the number of inner CG-iterations.
To illustrate the operating mode of Algorithm 6.11 we plotted exemplarily the
matrix (6.13) in the case of n mod 2 at the Newton step 45. In Table 7.7 the
corresponding Ritz values used in Newton step 45 and those who are left used in
Newton step 46 for preconditioning are shown.
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(7.21)

As it can be seen in Figure 7.21 the loss of Ritz pairs in this situation is the most
drastically one for the examples we considered. Therefore we chose this example.
Let us have a closer look at the matrix (7.21). As threshold parameter in Algo-
rithm 6.11 we chose ε = 0.17. This corresponds to a deviance in the angle of
about 10° which already seems to be rather high with respect to the sensitivity
analysis of Chapter 5.
Note that the last six columns of (7.21) contain a value outside our threshold limit.
To this end six of the old Ritz values are sorted out by Algorithm 6.11 and only three
of the new computed Ritz values are selected for constructing a new preconditioner.
By Table 7.7 it can be seen that unfortunately the largest eigenvalues are sorted
out. Moreover, by the size of the new computed Ritz pairs in Newton step 46 it is
obvious that in the Newton step before also some of the largest eigenvalues were
thrown away. This loss of information according to the largest Ritz values is a
very undesirable effect leading to a significant increase on the number of inner CG-
iterations, which is illustrated in Figure 7.21. Hence, the change in the operator
seems to be so significant, that only a few Ritz pairs are ”fixed”, whereas the major
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Step λ Step µ appr. qual. λ
45 0.092241586369000 46 7.81901e05 0.0 0.13968e-03

0.003843801602560 2.20527e04 0.0 0.56733e-04
0.003386553274810 2.86609e03 0.0 0.39255e-05
0.000138375226890 2.17325 2.43705e-09 0.39393e-05
0.000056733886196 2.08264 7.48568e-08 0.51187e-06
0.000006531602490 1.96437 1.469e-07 0.49039e-06
0.000003925510064 *1.8253 1.08846e-07 —–
0.000001077174137 *1.42781 2.05453e-04 —–
0.000000490396280 *1.30236 1.29391e-03 —–
0.000000084430925 *1.23326 4.29812e-03 —–
0.000000083177444 *1.09129 3.59033e-02 —–
0.000000051602120 *1.06282 5.54218e-01 —–
0.000000005669668 *1.0247 6.17442e-01 —–
0.000000002908520 *1.00182 3.00278e-01 —–

—– *0.976278 3.01239e-01 —–
—– *0.931081 4.20695e-02 —–
—– *0.832238 9.61324e-04 —–
—– *0.575748 2.63934e-07 —–
—– *0.052883 1.94661e-06 —–
—– *0.000705631 6.96143e-06 —–
—– *0.000113012 4.80095e-05 —–

Table 7.7: Ritz values before and after an update of the preconditioner

part of the computed spectral information seems to be useless. Unfortunately, even
some of the largest Ritz values are affected by the change of the operator.
Concluding we can say, that the heuristic argument that the largest well separated
eigenvalues are ”fixed” though the operator changes fails in practice. Therefore,
Algorithm 6.10 cannot yield satisfactory results. Still, for this example this algo-
rithm was superior when compared with a standard IRGNM. Maybe it is possible in
future work to refine the selection of the Ritz pairs possibly yielding better results.
Moreover, one could also think of an improvement by combining Algorithms 6.8
and 6.11, where for example in a starting phase one applies Algorithm 6.11 and in a
final phase Algorithm 6.8. However, these ideas just try to combine the advantages
of both algorithms, but they do not overcome the problems mentioned above.

Finally, Figure 7.22 shows that the final iterate of Algorithm 6.10 is comparable to
the final iterates of Algorithm 6.8 and a standard IRGNM.
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Figure 7.22: Reconstructions of the refractive index after 50 Newton steps for
the standard IRGNM, the preconditioned frozen IRGNM and the preconditioned
IRGNM for different choices of p
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7.4 Conclusion

Concluding we can say that in average the preconditioned frozen IRGNM in com-
bination with the iterated Lanczos algorithm I was the most efficient one of the
considered algorithms. To update the preconditioner by the iterated Lanczos al-
gorithm II often yielded slightly inferior results when we compared the algorithms
by the total complexity. In the examples considered in this thesis and in many
more experiments we performed, these algorithms significantly reduced the total
complexity when compared with a standard IRGNM. Even when compared with
the algorithm presented in [40] these algorithms were usually superior. Hence, these
algorithms in fact are adequate for solving large-scale nonlinear ill-posed problems.
The significant reduction of computational time we obtained by these algorithms is
not negligible.

We do not want to hide that the success of the updating process of the precon-
ditioner depends on many parameters such as the function (6.10), which usually
need to be chosen a-priori. Unfortunately we were not able to implement a fully
automatic choice of these parameters. On the other hand, we could often observe
that a change of the parameters did not lead to totally different results.

To overcome the problems arising from the choice of a certain update criterion fup

and the choice of the different parameters we spent a lot of time trying to implement
a satisfactory version of Algorithm 6.10. Unfortunately, it finally turned out that
the approximation quality of the Ritz pairs determined by Lanczos’ method in such
an algorithm were not adequate for constructing efficient spectral preconditioners.
Moreover, we do not have much hope that a satisfactory version of such an algorithm
can be realized with techniques presented in this thesis. The considered spectral
preconditioners react too sensitive to errors in the eigenelements. Hence, maybe
other preconditioning techniques are more promising.
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Chapter 8

Conclusion and outlook

This final chapter is devoted to a reconsideration of the IRGNM with respect to
the three key points discussed in the introduction:

a) Accuracy,

b) Complexity,

c) Acceleration.

We claimed that the questions concerning these three aspects would be answered
in this thesis. Therefore, it is the goal of this last chapter to discuss in what sense
we have been able to answer these questions and what is still left open and should
possibly be targeted in future work.

Let us start with the accuracy. The main result of this thesis concerning this
topic has been to establish convergence and optimal rates of convergence for the
IRGNM under general source conditions for both an a-priori and an a-posteriori
stopping rule. Our results involve the practically important case that the linearized
equations are not solved exactly in each Newton step. Moreover, explicit bounds on
this additional error have been formulated and we could prove that when the arising
regularized linear systems are solved by the CG-method, a reasonable stopping
criterion could be posed such that the error bound is satisfied. In this sense we
were able to generalize not only the well-known convergence and convergence rate
results of the IRGNM with respect to the source condition, but also to carry over
these results to an inexact IRGNM.
This achievement is particularly important for large-scale problems where usually
only approximate solutions to the linear systems arising in Newton’s method can
be determined using iterative methods. From this point of view we answered the
question of accuracy.
Still, unfortunately the convergence proofs for the IRGNM we presented are based
on the nonlinearity conditions (2.11) which for many interesting problems are open.

195
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For example for the inverse scattering problems discussed in Chapter 7 these condi-
tions could not be proven so far and it is questionable if these conditions are at all
satisfied. Hence, the local convergence proof of the IRGNM for many applications
is not complete at this time and therefore not satisfactory so far. For examples for
which the nonlinearity conditions (2.11) could be proven we refer to [44].
However, even if the nonlinearity conditions (2.11) are possibly unrealistic for many
nonlinear ill-posed problems, the main idea of the convergence proof is the splitting
of the total error into several components which can be analyzed separately. The
nonlinearity conditions (2.11) are only one possibility to estimate the terms con-
cerned with the nonlinearity. For certain problems one possibly finds other ways to
handle these terms.

A further important assumption of the convergence proof which we think is worth-
while to be reconsidered is the smoothness assumption on the true solution which is
expressed by the source condition (2.4). Note that in particular because of this as-
sumption we have not proved that the IRGNM is an iterative regularization method
in the sense of Definition 2.1. Furthermore, in practice it is usually unknown if such
a condition is satisfied, since not only the true solution is not available, but also
one usually does not have exact knowledge of a function determining an appropriate
source set for the given problem. In this sense the source condition is an assump-
tion which cannot be verified a-priori in general. Hence, if only given a set of noisy
measurements it is a-priori not clear if the IRGNM reconstructs model parameters
which generated the measured data. On the other hand, if the measured data are
generated by some smooth parameters, then we have convergence and we know that
the final iterates computed by the IRGNM are optimal in the sense that optimal
rates of convergence are achieved.

The last drawback of the IRGNM we want to mention is the local character of
its convergence which is inherited from Newton’s method. On the one hand this
remark possibly seems trivial, on the other hand for realistic applications it is
important to keep it in mind, since for ill-posed problems it is usually a hard
task to determine a good initial guess ensuring convergence to the reconstruction
of the true solution. For example, if one considers the problem of reconstructing
the shape of some scatterers usually a-priori the number of scatterers is unknown.
Hence, before we can apply the IRGNM in a first step the number of scatterers
needs to be determined, and moreover, a good initial guess of their position is
essential for convergence. For inverse acoustic scattering problems sampling and
probe methods have been shown to be successful methods for these tasks. Some
of these methods do even work without knowledge of the boundary conditions.
Naturally the reconstructions one obtains are usually of lower quality than the ones
we can achieve with a Newton-type method.
Still, due to the local convergence behavior the IRGNM may have to be combined
with methods which are able to compute sufficiently good initial guesses. Given
some good initial guess, Newton-type methods usually yield stable and reasonably
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good reconstructions. Furthermore, one obtains a parametrized final iterate which
is often more suitably for further applications than a set of points determined by
sampling and probe methods. Still, the IRGNM can only be an efficient method
if either from the applications on its own or by other mathematical or heuristic
methods sufficiently good initial guesses are at hand.

To discuss which results we have achieved with respect to the complexity of the
IRGNM recall Theorems 4.20 and 4.21. The proofs of these theorems are based on
the fundamental upper bounds on the number of CG-steps in the n-th Newton step
shown in Theorem 4.19, which are a consequence of the stopping criterion (4.11) for
the CG-method. Since we were able to establish these upper bounds both for mildly
and exponentially ill-posed problems, we finally could express the total complexity
of the IRGNM and its preconditioned version in terms of the noise level δ > 0 by a
combination of Theorem 4.19 and Corollary 2.5.

Moreover, the upper bounds presented in Theorem 4.19 are flexible in the sense that
for any other stopping criterion than (2.5a) or (2.5b) for the outer Newton iteration
the total complexity of the IRGNM can easily be determined. One just has to sum
up the inner CG-steps in each Newton step until the stopping rule for Newton’s iter-
ation is reached. Moreover, the upper bounds in Theorem 4.19 have the advantage
that they just rely on (4.11), but not on the nonlinearity conditions (2.11).

Note that our complexity result also includes the case of linear ill-posed problems
when they are solved by the algorithm presented in Section 1.3, that is we have
proven an upper bound for the total complexity to determine algorithmically the
regularization parameter such that the discrepancy principle is satisfied. For linear
ill-posed problems this complexity can be significantly reduced when we combine
the algorithm presented in Section 1.3 with preconditioning techniques of Chapter 6.

We do not want to hide that there is a gap in our complexity result. To prove the
assertions for the standard IRGNM formulated in Theorem 4.20 we had to impose
the additional estimate (4.43). The gap is due to the fact that we could only show
that the estimates (2.24) and (2.32) are satisfied for the stopping criterion (4.10), but
not for the stopping criterion (4.11). Estimate (4.43) was the tool to conclude out
of (4.11) the validity of (4.10). Hence, an application of Corollary 2.5 was possible.
Although we gave some heuristic arguments that estimate (4.43) is reasonable, a
general proof for such an estimate is still missing. On the other hand, we only
wanted to prove Theorem 4.20 for the stopping criterion (4.11) since we used this
in practice. For the theory we could exchange (4.11) against (4.10). Then no
heuristic argumentation is necessary.

Recall that in order to obtain the the complexity results of Theorem 4.21 we formu-
lated many assumptions which seem to be unrealistic in practice. On the other hand,
Theorem 4.21 serves as a good motivation for the possible success of a precondi-
tioned frozen Newton method, that is a significant reduction of the total complexity
compared to a standard IRGNM.
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Moreover, having the numerical examples of Chapter 7 in mind many of the formu-
lated assumptions do not seem to be too digressive. In the examples we considered
the number of determined Ritz pairs appeared to be sufficiently large to justify for
example the estimate (4.47b). And since the final iterates throughout the algo-
rithms were comparable the application of Corollary 2.5 is legitimated. Moreover,
we think that the assertion of Corollary 2.5 could also be obtained theoretically for
a frozen Newton method.
We always had the hope that the result of Theorem 4.19 could be improved such
that the number of inner CG-iterations concerned with the cluster of eigenvalues
in a neighborhood of γn grows slower than linearly with the Newton step n. As a
consequence of such a result (4.45) and (4.49) could be significantly improved. Un-
fortunately this problem appeared to be harder than it seemed and the improvement
is desirable.
Concluding, we could not only show in numerical examples that the implementation
of the preconditioned frozen IRGNM was superior to a standard one, but we also
gave theoretical arguments to this end. Our considerations with respect to this topic
delivered the missing analysis of Algorithm 4.10 which was originally published
in [40].

Finally, let us recapitulate the results on acceleration techniques for the IRGNM.
Due to our discussion in Section 5.2 we once again want to emphasize that spectral
preconditioners of the form (5.6) are in particular adequate for the linear systems
arising in the IRGNM for large-scale problems in three space dimensions. Unfor-
tunately the sensitivity analysis shows limitations of these kind of preconditioners
we have to deal with. We have realized this by an application of the computable
a-posteriori error bounds from Lanczos’ method to obtain indicators for the approx-
imation quality of the Ritz pairs. These indicators are exploited to select the Ritz
pairs of high approximation quality to set up the spectral preconditioner.
After a careful consideration of the numerical examples in Chapter 7 the presented
preconditioning techniques work quite convincingly, since indeed the total complex-
ity of the standard IRGNM could be significantly reduced. Moreover, even when
compared with the preconditioned frozen IRGNM presented in [40] it has turned
out that the updating procedure we implemented once again yields a significant
reduction of the total complexity. In particular for the inverse acoustic scattering
problem in three space dimensions with the update technique of the preconditioner
the original complexity of the standard IRGNM could be reduced to about 1/3.

In summary Algorithm 6.8 coupled with Algorithm 6.5 has turned out to be the
most efficient among the algorithms we presented. We do not want to hide the fact
that an implementation of these algorithms as well as Algorithm 6.6 involves the
choice of many parameters, which can be seen as their major drawback, since we
were not able to realize a fully automatic choice of all the threshold parameters
arising in the different algorithms used for its realization. On the other hand, the
choice of these tuning parameters is not as important as the choice of the stopping
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index as they only influence the efficiency of the algorithm, but not the accuracy of
the final result. Moreover, in further numerical experiments we performed it could
be seen that the change of the parameters often yielded comparable results, as long
as the parameter choice took into account the sensitivity of the preconditioner with
respect to approximation quality of the Ritz pairs.
More crucial for an efficient implementation of Algorithm 6.8 is the choice of the
update criterion fup, that is a function balancing the convergence speed of the outer
Newton iteration and the total complexity. As already mentioned in Chapter 4
and Chapter 6 we think that an optimal choice of this function depends on many
variables usually unknown a-priori. On the other hand, given a certain large-scale
problem, which is computationally complex, it is surely recommended to think
about a reasonable choice of the update function. Otherwise the reduction of the
complexity in each step of a frozen Newton method possibly has to be paid by
an increase on the total number of Newton steps until some stopping criterion
terminates the outer Newton iteration. To this end in future work it would be
interesting to investigate the convergence of a frozen IRGNM, and furthermore if
a similar result as presented in Corollary 2.5 can be obtained for such a method.
Such a result could maybe give some hints on the choice of general update functions,
which is naturally not optimal for a certain problem but optimal in average.
For the inverse scattering problems we considered in this thesis we also tried different
update functions. Another natural choice for the update function with respect to
the complexity would be to perform an update of the operator if some upper bound
on the number of inner CG-iterations during the IRGNM is exceeded although the
the operator is preconditioned. Such a procedure is motivated by the observation
that after several updates usually the preconditioner starts losing its efficiency due
to increasing errors in the approximations to the eigenpairs. Often such criteria
yielded comparable or worse results than the criterion suggested in [40]. Finally,
the determination of a general update criterion is an open problem.

Note that the question for an update function would not arise if Algorithm 6.10
coupled with Algorithm 6.11 yielded comparable results to Algorithm 6.8. Un-
fortunately, in the way we have realized this algorithm this is not the case. The
difficulties arising in an implementation were already discussed in Chapter 6 and
Chapter 7 and we do not have much hope that the procedure sorting out the Ritz
pairs can be refined in such a way that the resulting preconditioners turn out to be
more efficient in general.
Hence, in our opinion maybe other preconditioning techniques can be more success-
ful. For example, instead of setting up a spectral preconditioner one could consider
preconditioning by projection, that is to solve the linear systems arising in the
IRGNM in a first step on the subspace defined by the known Ritz vectors. Under
the condition that enough and good approximations corresponding to the largest
eigenpairs are known and the weight of the components in the right hand side vec-
tor does not lie on the small eigenvalues we should obtain a good approximation
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to the solution of the original linear system. In a second step this approximation
could be refined by using it as initial guess for an iterative method. Naturally, this
serves just as an idea. There exist many other preconditioning techniques which
seem worthwhile to be attempted.

The last point we want to mention is that the convergence and complexity theory
we presented also includes the case of mildly ill-posed problems, although we did
not give an example for this case. This is simply due to the fact that we did not have
an interesting nonlinear large-scale mildly ill-posed example at hand. In particular
it would be interesting to investigate if Algorithm 6.8 works for mildly ill-posed
problems just as well as for exponentially ill-posed problems. This is not clear since
the eigenvalue distribution is not as well suited for Lanczos’ method in this case.
Hence, in future work Algorithm 6.8 should be applied to some mildly ill-posed
problems to find out if the presented preconditioning techniques are also successful
in this situation.
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