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Abstract

In acoustic and electromagnetic scattering various methods for the reconstruction of
the shape of an unknown object are examined. In particular, the multiwave range test
is developed based upon the range test in the acoustic case. This method reconstructs
the shape of the object from the data of many incident plane waves without the
need of knowing the boundary condition of the unknown object. Strong connections
between this method and other methods from shape reconstruction are presented.
With this method an alternative approach to the singular sources method is developed.
Further, the range test, based upon one incident plane wave, is carried over to the 3D
electromagnetic case. For all methods under consideration numerical examples for
the acoustic case (2D) and the electromagnetic case (3D) are presented.

We participated in the BMBF-funded project for the improvement of existing hand-
held mine detectors. Here, a full reconstructions of the metal parts of mines, under
small modifications of the metal detector, is tried. This has the aim of significantly re-
duce the false alarm rate. During this research a program were developed and imple-
mented, which simulates the setting in two-layered media using integral equations
in a fast and efficient way. Also it provides two different methods of reconstructing
the shape of the object. The Greens tensor for two-layered media were constructed
via an new approach and adapted to the situation at hand.

Zusammenfassung
Im Rahmen von akustischer und elektromagnetischer Streuung werden verschiedene
Verfahren zur Objektrekonstruktion untersucht. Insbesondere wird das neue Ver-
fahren Multiwave Range Test aus dem Range Test im akustischen Fall entwickelt und
dargestellt, welches aus mehreren einfallenden ebenen Wellen, ohne Kenntnis der
Randbedingung auf dem unbekannten Rand, eine Rekonstruktion des gesuchten Ob-
jektes erstellen kann. Es werden tiefgreifende Zusammenhänge dieser Methode mit
anderen Methoden der Objektrekonstruktion aufgezeigt. Dabei wird gezeigt und
nachgewiesen, dass der Multiwave Range Test zu einer alternativen Form der Meth-
ode singulärer Quellen weiterentwickelt werden kann. Weiterhin wird der auf einer
einfallenden Welle basierende Range Test in den elektromagnetischen Fall in drei Di-
mensionen übertragen. Für alle behandelten Methoden werden numerische Beispiele
in der Akustik (2D) sowie in der Elektromagnetik (3D) gezeigt.

Wir nahmen am BMBF-geförderten Projekt für die Verbesserung von bestehenden,
handgetragenen, Minensuchgeräten teil. Hierbei wird, unter leichter Modifikation
des Minensuchgerätes, eine volle Rekonstruktion der zu suchenden Metallteile ver-
sucht. Dieses hat zum Ziel, die Falschalarmrate signifikant zu verbessern. Im Rah-
men dieser Forschung wurde ein Programm entwickelt und implementiert, welches
die gegebenen Situationen in zwei-geschichteten Medien schnell und effizient mittels
Integralgleichungsmethoden simuliert, sowie mit zwei verschiedenen Variationen
auch Objektrekonstruktionen liefert. Der benötigte Green’sche Tensor für ein zwei-
geschichtetes Medium wurde über einen neuartigen Zugang der Situation angepasst.
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Chapter 1

Introduction

From a practical point of view, there is much interest in getting information about
the interior of objects or subjects with a minimum of disturbance and interaction
or even damaging the object or injuring the subject. The areas of interest are for
example medical imaging, geophysical exploration and nondestructive testing. In
particular, a goal would be to observe machines during their operation without the
need of dismantling or stopping the machine. The interest often lies in finding the
location and shape of inclusions or scatterers inside the domain of observation in a
fast way, which yield good reconstructions possibly without prior information. These
problems are covered by the scientific fields of acoustic or electromagnetic scattering.
In this thesis, the focus lies on methods for solving the direct and the ill-posed inverse
problem for problems from acoustic and electromagnetic scattering.

Main topics

In this work, the following two topics are presented.

• A new method called the multiwave range test is presented for the case of acous-
tic scattering. It is an extension of the range test originally developed for the
acoustic case that is carried over to the case of electromagnetic scattering. It
also leads to new views on existing methods and provides an alternative ap-
proach to the singular sources method.

• For the simulation of handheld mine detection a forward solver using integral
equation methods is developed and implemented. The use of integral equation
instead of the usual finite element methods (FEM) yields a reduction in com-
plexity, as the problem can be solved from calculations on the boundary of the
obstacle rather than the full three dimensional space.

Range test and multiwave range test

The range test that was introduced by Potthast, Sylvester and Kusiak (2003) [41] solves
the inverse problem of locating and reconstructing the shape of an unknown object
inside an observation area while using only the knowledge of one incident field
and the measurement of the scattered field in some predefined domain or sphere
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Chapter 1 Introduction

around the observation area. Originally it handles only one incident time-harmonic
wave in an acoustic setting which reconstructs a part of the scatterer, the so called
convex scattering support. This method is carried over to the case of electromagnetic
scattering. Furthermore, it is extended to a multiwave variant, i.e. it uses multiple
incident waves, which allows reconstructions of the full shape of the obstacle, cf. [40].

Both methods belong to the class of sampling methods, which have in common that
they are testing properties of the field or have other indicators to identify regions
which are inside or outside the unknown object. The class of sampling methods (cf.
[36]) contains, for example

• the linear sampling method from Colton and Kirsch (1996) [7],

• the factorisation method from Kirsch (1998) [18],

• the enclosure method from Ikehata (1999) [16],

• the singular sources method from Potthast (2000) [34],

• the no response test from Luke and Potthast (2002) [27].

Sampling methods are quick and powerful methods for the reconstruction of location
and shape of obstacles which are usually faster than the simulation of one forward
problem and which do not need the knowledge of the boundary condition. This
missing information is usually compensated by measurements for a large number of
different incident waves, but the range test and the no response test have been formu-
lated for scattering of one incident wave, i.e. they need much less data than the other
methods listed above, but their reconstructions are not as good as the methods using
more data.

Range test. Consider the scattering of time-harmonic acoustic or electromagnetic
waves by some, possibly multiply connected, scatterer D in Rm for m = 2, 3. An
acoustic incident wave ui gives rise to the scattered field us with far field pattern u∞.
In the electromagnetic case the incident electric field Ei gives rise to the scattered field
Es with nearfield Es|M on a measurement area M. Then, the basic idea of the range
test is to determine the maximal set onto which the scattered field may be analytically
extended. This is done via testing the solvability of the equations

S∞
∂G ϕ = u∞ or P1,∂Ga = Es|M ,

where S∞
∂G is the far field operator (2.23) and P1,∂G the near field evaluation oper-

ator (7.4) with densities ϕ, a on the boundary of some test domain G ⊃ D, in the
respective cases. The complement of this set is a subset of the unknown scatterer
D. Through testing with a fixed test shape for many different locations and taking
the intersections for all test domains, for which the above equation is solvable, a
reconstruction of the shape of the unknown obstacle is achieved. If the set of test
domains is generated through translations of one fixed test domain, the testing can
be done very efficiently. It should be pointed that this method does not deliver full

2
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Figure 1.1: Setup and idea of the range test (a) and the multiwave range test (b).
Shown is one test domain G containing the scatterer D. The arrows shows
the steps to be taken for the method.

reconstructions of the shape of scatterers, because from the knowledge of only one
wave and without knowing the boundary condition it is not possible to calculate
the full shape of an unknown scatterer D. The idea of the method is shown for the
acoustic case in a) of Figure 1.1. The electromagnetic case is analogous. Further, it
can be used to modify the potential method [19–21] leading to convergence results and
a better splitting of the parts of the method.

Multiwave range test. The range test is extended in the 2D case to a multiwave
variant, for which full reconstructions of the shape of D are possible. It is proven
that if the available data consists of the far field patterns u∞ for all directions d ∈
S := {x ∈ R2 : ‖x‖ = 1} of incident plane waves, the data uniquely determines the
unknown scatterer even if the boundary condition is not known (see [35]). The steps
for the extension to a multiwave version of the range test are as follows. Similar to
the range test one checks for the solvability of the equation above for each incident
plane wave with direction d ∈ S and for all points x in the region of observation M.
If the equation is solvable the resulting density is used to calculate a scattered field
us( · , d) via a single-layer operator (2.21) S∂G. Now, the mixed reciprocity relation
(Theorem 3.0.9) states that

us(x,−d) = c Φ∞(d, x) , d ∈ S, x ∈ M \ G ,

where Φ∞ is the far field pattern of a point source and c some constant. Then, the
far field pattern of a point source is calculated from the measured far field pattern

Φ∞(d, x) =
1
c

S∂G

(
(S∞

∂G)−1u∞( · ,−d)
)

(x) , d ∈ S, x ∈ M \ G .

Now, given the far field pattern Φ∞( · , x) for fixed x on the set S, the extensibility
of this field into the exterior of Rm \ G is tested in the same way as in the range
test for one wave above, i.e. the range test is repeated, but now applied to Φ∞( · , x)
as far field pattern. This method can, in principle, reconstruct the full shape of the

3



Chapter 1 Introduction

Figure 1.2: Common setting for mine detection with a handheld detector.

unknown obstacle. This is due to the fact that the scattered field Φs(x, x) of a point
source located in x becomes singular, and therefore also the corresponding density
blows up, when x approaches the boundary. The idea of the multiwave range test
is illustrated in b) of Figure 1.1. The method then can be extended to an alternative
approach of the singular sources method [34, 35] via using the density to evaluate the
scattered field outside of the obstacle.

Mine detection with handheld detectors

The detection of metallic objects from remote measurements is an important ap-
plication nowadays in, for example, nondestructive testing and detection of buried
metallic objects. In this thesis the focus is on detection of mines with handheld mine
detectors.

The research was done as part of the project “Metal detectors for Humanitarian Dem-
ining: Development potentials for data analysis and measurement techniques” which was
funded by the german federal ministry of education and research (BMBF). It is a
goal of the project to analyse possible improvements for handheld mine-detectors in
searching for anti-person mines. These mines cover large areas mainly due to the
increase of smaller asynchronous and civil conflicts. By the means of cheap hand-
held mine-detectors and better algorithms it is the hope to increase efficency of the
mine-detection process and the removal of the dangerous mines. Four different mod-
els are used to simulate the mine-detection process. The best model of the four is a
three-dimensional inverse electromagnetic scattering problem in a two-layered back-
ground medium with conducting obstacles. This setting is shown in Figure 1.2. An
aim was to develop a fast forward solver which was done with an integral equa-
tions approach. The inverse problem is to find the location, size and rough shape
of the unknown mine. The methods used was a simple gradient-free minimisation
algorithm known as Nelder-Mead simplex method and the range test, as described
above. Both methods are first steps taken towards more sophisticated methods which
have the potential to greatly improve the correct detection of mines.

4



For the simulation of a handheld mine detector the following setting is used. The
mine detector is simulated to be composed of an emitter and receiver loop which
are linked together in a static chassis. The emitter has roughly the form of a circle
and the receiver loop has the shape of a “double-D”. The handheld detector operates
in the air and tries to find metallic objects, i.e. mines, beneath the ground. The
environment can roughly be separated into two layers, the air and the earth. The
conductivity σ in the air is assumed to be negligible and in the earth σ is assumed to
have the approximately value of 0.05 A/Vm.

The mine detector scans through an roughly plane area M in a specific height
above the ground. For every position x ∈ M the emitter sends out the incident
electromagnetic field Ei, which is scattered by the buried objects. The scattered field
Es from the objects induces a voltage U inside the receiver loop.

The direct problem is solved with an integral equation approach which, due to the
two-layered medium, needs a dyadic Green’s tensor to correctly solve the problem.
There are several forms of the dyadic Green’s tensor in the literature, but here a new
version specifically adapted to the problem at hand is derivated and implemented. It
has the property that it allows complex and non-complex wave numbers and it uses
two layers. This allows a compact theory and gives a good overview of the scattering
problem itself. The results for the two-layered problem were published in [10].

Outline and abstract of the thesis

The thesis is split into three parts. The first part focuses on acoustic scattering in
two dimensions and the multiwave range test, the second part on electromagnetic
scattering and the simulation of the mine-detection problem, whereas the third part
is the appendix which summarises some basic mathematical and numerical tools that
are used throughout this work.

Acoustic scattering

The part of acoustic scattering is organised into four chapters. Chapter 2 introduces
a partial differential equation, namely the Helmholtz equation, which is used to
model the acoustic scattering problem. Furthermore it develops the basic properties
and tools for the direct and inverse problems under consideration. The boundary-
and radiation conditions are introduced. For the acoustic part the Dirichlet and
Neumann boundary conditions are used, which correspond to either sound-soft and
sound-hard boundary conditions. Section 2.2 covers the fundamental solution to the
Helmholtz equation and the surface potentials and operators used for the solution of
the boundary value problems.

Chapter 3 describes the direct acoustic scattering problem and its solution via an
integral equation approach. The direct problem is to calculate the scattered field us

and the far field pattern u∞ from the knowledge of the scatterer and the incident
field ui. In the two sections of the chapter uniqueness and existence are proven for

5



Chapter 1 Introduction

the scattering problems with either Dirichlet- or Neumann boundary conditions on
the obstacle. These proofs follow the literature.

Chapter 4 presents the inverse problem under consideration and four methods to
solve it. The inverse problem is to reconstruct the location, shape and properties of
the unknown scatterer from the knowledge of the incident field ui and the far field
pattern u∞. The first method introduced is the range test, which already is described
above. Furthermore, extensibility properties and convergence are proven.

The second method in Section 4.2 is a modified version of the potential method
of Kirsch and Kress (1986) (see [8], [19], [20] and [21]) with improved convergence
properties. The basic idea of the original potential method is first to reconstruct the
scattered field us from its far field pattern u∞ by fitting the far field pattern of some
single-layer potential on a test domain lying inside the unknown obstacle. Then,
using a known incident field ui it is possible to search for the unknown scatterer as
the zero set of the total field ui + us. To obtain convergence in [8] Colton and Kress
needed to combine the two steps into a nonlinear optimization procedure. With
the range test it is possible to modify the potential method to obtain a convergence
statement where the method is split into two separate steps - an ill-posed linear step
and a well-posed nonlinear step.

The third method in Section 4.3 the range test and the potential method are used
to construct the multiwave range test. The description of the method is stated above.
Furthermore, extensibility properties and convergence are proven.

The fourth method in Section 4.4 is an alternative approach to the singular sources
method which then uses the multiwave range test in the process. In its original versions
[34], [35] the singular sources method is based on the point source method ([37] and [38]).
Using the density calculated from the multiwave range test an approximation for the
scattered field Φs(z, z) of an incident point source Φ( · , z) in its source point z can be
calculated. Then the blow-up property

|Φs(z, z)| → ∞, z→ ∂D

can be used to find the unknown shape ∂D.
In Section 4.5 the relations between the methods are worked out in more detail.

The range test is the most simple approach, whereas the more complex potential method
may be based on the range test. Then, the multiwave range test can be understood to
be based on the range test and the potential method. Finally, the multiwave range test
can be extended to the singular sources method.

In Chapter 5 the numerical implementation is discussed and examples for all meth-
ods under consideration are presented. First, in Section 5.1 the forward solver is
discussed in its discretized version and an example for the calculated scattered field
is shown. Afterwards, as preparation for the reconstruction methods, the details of
choosing test domains and regularisation parameters is described. The four follow-
ing sections formulate the numerical implementation of the four methods discussed
in Chapter 4 and show numerical examples for every method.

6



Electromagnetic scattering

Analogously to the acoustic part, the part of electromagnetic scattering is organized
into five chapters. Chapter 6 introduces the setting and the tools. First, in Section 6.1
the time-harmonic Maxwell equations are described and the necessary physical mo-
tivated boundary-, transmission- and radiation conditions are summed up. Second,
Section 6.2 defines the fundamental solution and introduces the Green’s tensor to-
gether with some important properties. In Section 6.2.2 the Green’s tensor for the
two-layered medium is derivated. Again, analogous to the acoustic case, the surface
potentials and their properties are introduced in Section 6.2.3. For the application
of handheld mine detection the settings for the sources, the measurements and the
physical constants are described in Section 6.3.

In Chapter 7 the direct problem will be set up. The Four different problems are
considered, whereas their complexity is getting greater and the last, is the best model
under consideration to describe the situation of an handheld mine detection. These
four direct problems are different in their domain and background settings and are
summed up in the following list.

(HP) Homogeneous background medium with perfectly conducting obstacle.

(LP) Layered background medium with perfectly conducting obstacle.

(HT) Homogeneous background medium with a homogenous conducting obstacle.

(LT) Layered background medium with a homogeneous conducting obstacle.

To solve these four problems integral equation methods are used and the uniqueness
and existence is proven in the sections of the Chapter 7.

In Chapter 8 two inverse problems are stated and solved with the Nelder-Mead
simplex method(see for example [25]) and the range test respectiveley. Given a planar
measurement area which is “scanned” with an handheld mine detector gives induced
voltages for every point in the area (as stated above in “Mine detection with handheld
detectors”). From this data, both inverse problems state to find the location and
shape of the unknown obstacle lying in the earth (lower half space).

For using the Nelder-Mead simplex method the problem is first reformulated as an
optimisation problem in Section 8.1 and then the Nelder-Mead algorithm is stated
and explained in Section 8.2. In Section 8.3 the range test is reformulated in the
electromagnetic setting using nearfield data in the measurement area, the extensiblity
of the scattered field and convergence is proven. The theory is motivated from the
theory for the range test in the acoustic case.

Finally, Chapter 9 again covers the numerical implementation and results of the
direct and inverse problems under consideration. Section 9.1 describes the discretiza-
tion of the operators and of the Green’s tensor and giving rates of convergence for
the solver. A numerical example is chosen for the setting of the mine detection as if
induced voltages are measured with a handheld mine detector in a known measure-
ment grid. Then, using such simulated data, reconstructions with the Nelder-Mead
simplex method of location and rough shape of spheres and ellipses for all four

7



cases of direct problems, i.e. for all different background media and different forms
of obstacles, are shown in Section 9.2. The numerical examples for the range test in
Section 9.3 are shown as numerical proof of concept for obstacles in the setting of
homogeneous background media and with nearfield data of the electric field rather
than the induced voltages.

The Appendix gives a short introduction and brief summary of some used math-
ematical tools such as Riesz-Fredholm theory and Tikhonov regularisation. In Sec-
tion C.2 a fast Hankel transform is introduced which is used intensively in the calcu-
lations for the Green’s tensor.

Spaces and Notation

Some important spaces for this work are briefly summed up in this section. The
spaces of l-times continuously differentiable functions on D ∈ Rm are denoted by
Cl(D). The natural numbers with zero are denoted as N0 := N∪ {0}.

Throughout this work vectors will be denoted as follows. Considering the vectors
a = (a1, a2, a3) and b = (b1, b2, b3) in R3 or C3 the bilinear scalar product is given by

a · b := a1b1 + a2b2 + a3b3 ,

the conjugate complex of a is denoted as a and the euclidean norm is written as

|a| :=
√

a · a .

The supremum norm of functions defined on a set D ∈ R3 is notated as

‖ · ‖∞ = ‖ · ‖∞,D.

Let the partial derivatives be defined as

Dα f (x) :=
∂|α| f (x)

∂xα1
1 · · · ∂xαd

d
(1.1)

with a multi-index α.
Denote the spaces of l-times continously differentiable functions on a domain D ⊂

Rm as
Cl(D) := { f ∈ C(D) | Dα f ∈ C(D) for |α| ≤ l} . (1.2)

For simplicity C0(D) is denoted by C(D). The space of l-times Hölder continuous
functions analogously is given as

Cl,α(D) :=
{

f ∈ Cl(D) | Dα f ∈ C0,α(D)∀ |α| = l
}

. (1.3)
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Part I

Acoustic scattering
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This part deals with the description of the scattering of incident time-harmonic
acoustic waves on obstacles.

Chapter 2 focuses on the definition of the problem and some basics tools and
properties. The second Chapter (Chapter 3) deals with the direct problem, the third
is about the inverse problem (Chapter 4) and the fourth Chapter (Chapter 5) finally
will describe the numerical implementations of the direct and inverse problems on
chosen examples.
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Chapter 2

Setting and Tools

Here, the setting of the acoustic scattering under consideration is introduced. Fur-
ther, for later use in the direct and inverse problems, the needed mathematical tools
are developed. In Section 2.1 the Helmholtz equation is derivated, which solves the
time-harmonic acoustic scattering problem. Also in Section 2.1 the boundary- and
radiation conditions are introduced which complete the setting. Finally in Section 2.2
the fundamental solution and the surface potentials along some of their important
properties are developed.

2.1 Definition

In the Definition of the problem, the focus lies in the derivation of the Helmholtz
equation and its properties in the context of this work. To be able to properly de-
fine the scattering problem, also boundary conditions for the scatterer and radiation
condition for the scattered field are defined.

2.1.1 Helmholtz equation

The Helmholtz equation can be used to describe the static state of acoustic scattering
problems. The physicist Hermann Ludwig Ferdinand von Helmholtz (1821 - 1894) (see
Figure 2.1) gave his name for this equation for his contributions in acoustics and
electromagnetics.

For the physical motivation and derivation of the Helmholtz equation start with
examining the propagation of sound waves of small amplitude in a homogeneous
isotropic medium in Rm. The medium can be viewed as an inviscid fluid. Then,
define the velocity field v := v(x, t) the pressure p := p(x, t) the density ρ := ρ(x, t)
and the specific entropy S := S(x, t) of the fluid. The motion of the fluid is described
through Euler’s Equation

∂v
∂t

+ v · grad(v) +
1
ρ

grad(p) = 0, (2.1)

the equation of continuity
∂ρ

∂t
+ div(ρv) = 0, (2.2)

13
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Chapter 2 Setting and Tools

(a) Hermann Ludwig Ferdinand
von Helmholtz

(b) Leonhard Euler

Figure 2.1: Hermann Ludwig Ferdinand von Helmholtz (1821 - 1894) and Leonhard
Euler (1707 – 1783)

the state equation
p = f (ρ, S), (2.3)

with some function f depending on the nature of the fluid and finally with the
adiabatic hypothesis

∂S
∂t

+ v · grad(S) = 0 .

Euler’s Equation originate from Leonhard Euler (1707 – 1783), a Swiss mathematician
and physicist (see Figure 2.1). The equations correspond to the Navier-Stokes equations
with zero viscosity. The function f usually is given by the equation of state for ideal
gas

p = ρ(γ− 1)e ,

with γ the adiabatic index, and e the internal energy.
Further look a the static state of the fluid. Then, there is v0 = 0 and p0, ρ0, S0 are

constants. Assume that v, p, ρ and S are small perturbations of the static state, then
linearise the Euler equation (2.1) to

∂v
∂t

+
1
ρ0

grad(p) = 0 , (2.4)

the equation of continuity (2.2) to

∂ρ

∂t
+ ρ0 div(v) = 0 , (2.5)

and the state equation (2.3) to

∂p
∂t

=
∂ f
∂ρ

(ρ0, S0)
∂ρ

∂t
. (2.6)
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2.1 Definition

Plug (2.5) into (2.6) and derivate with respect to the time t, multiply (2.4) with the
Nabla-operator and merge the two resulting equations with eliminating the term
with ∂

∂t div v. Then, with the speed of sound defined as

c2
s :=

∂ f
∂ρ

(ρ0, S0) , (2.7)

this leads to the wave equation given as

1
c2

s

∂2p
∂t2 = ∆p . (2.8)

From the linearised Euler equation (2.4) it can be concluded that there exist a
velocity potential U (x, t) such that

v =
1
ρ0

gradU

and

p = −∂U
∂t

.

The velocity potential also satisfies the wave equation due to construction. For time
harmonic acoustic waves of frequency ω > 0 the potential has the form

U (x, t) = <
{

u(x)e−iωt
}

. (2.9)

Plug this into the wave equation (2.8), derive and define the positive wave number

κ :=
ω

cs
. (2.10)

Then the wave equation reduces to the reduced wave equation or Helmholtz equation

∆u + κ2u = 0.

This is summarised in the following Definition.

Definition 2.1.1 (Helmholtz equation). The Helmholtz equation with positive wave
number κ := ω

c is given by
∆u + κ2u = 0. (2.11)

2.1.2 Boundary condition

Here, for impenetrable scatterers consider cases where the scatterer is either sound-
soft or sound-hard which corresponds to either Dirichlet or Neumann boundary con-
ditions on the obstacle D. The boundary conditions are conditions to the total field

15
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Figure 2.2: Arnold Johannes Wilhelm Sommerfeld (1868 – 1951).

on the boundary, where the total field is the sum from incident and scattered field.
Then, the Dirichlet boundary condition is given by

u|∂D = 0, (2.12)

and the Neumann boundary condition is given by

∂u
∂ν

∣∣∣∣
∂D

= 0 . (2.13)

where ν denotes the unit outward normal vector to ∂D.

2.1.3 Radiation condition and far field pattern

To be physically correct and have finite energy at infinity, a radiation condition for
the solutions of the Helmholtz equations is necessary. For the Helmholtz equation
Arnold Sommerfeld (1868 – 1951) (see Figure 2.2) formulated the Sommerfeld radiation
condition [43]. Sommerfeld said in his own words:

The sources must be sources, and not energy sinks. Energy radiated
from the sources must dissipate in the infinite; energy shall not flow from
the infinite into the field singularities.

This corresponds to the term of outgoing waves.

Definition 2.1.2 (Sommerfeld radiation condition). A solution to the Helmholtz equa-
tion in Rm, m = 2, 3 whose domain of definition contains the exterior of some sphere
is called radiating if it satisfies the Sommerfeld radiation condition

lim
|x|→∞

|x|
m−1

2

(
∂

∂ |x| − iκ
)

u(x) = 0 (2.14)

uniformly in all directions x̂ = x
|x| .
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2.1 Definition

With the Sommerfeld radiation condition and Green’s formula (Theorem B.1.2) it
is now possible to formulate the far field pattern. The far field pattern resembles the
physical situation that far away from the source and obstacle the field does behave
like an outgoing spherical wave.

Theorem 2.1.3 (Far field pattern). Assume the bounded domain D ∈ Rm, m = 2, 3 is
the open complement of an unbounded domain of class C2 and let ν denote the unit normal
vector to the boundary ∂D directed into the exterior of D. Radiating solutions us ∈ C2(Rm \
D ∩ C(Rm \ D)) of the Helmholtz equation have the asymptotic behaviour of an outgoing
spherical wave

us(x) =
eiκx

|x|
m−1

2

{
u∞(x̂) +O

(
1
|x|

)}
, |x| → ∞, (2.15)

uniformly for all directions x̂ = x/ |x|. The function u∞ defined on the unit sphere S (or
unit circle), is known as far field pattern, which is given by

u∞(x̂) = γm

∫
∂D

{
us(y)

∂e−iκx̂ · y

∂ν(y)
− ∂us

∂ν
(y)e−iκx̂ · y

}
ds(y), x̂ ∈ S (2.16)

with the constant

γm :=


eiπ/4
√

8πκ
, m = 2

1
4π , m = 3.

(2.17)

Proof. See proof of Theorem 2.5 in [8].

A central lemma for this relationship and for the inverse problems at hand is
Rellich’s lemma which was named after the mathematician Franz Rellich (1906 – 1955).
A photograph of him is shown in Figure 2.3.

Lemma 2.1.4 (Rellich). Assume that the bounded set D is the open complement of an un-
bounded domain and let u ∈ C2(Rm \ D), m = 2, 3 be a solution to the Helmholtz equation
satisfying

lim
r→∞

∫
|x|=r
|u(x)|2 ds = 0. (2.18)

Then u = 0 in Rm \ D.

Proof. The proof is identical to the proof of Theorem 2.11 of [8].

There is a one-to-one correspondance between far field patterns and radiating so-
lutions of the Helmholtz equation, which is covered in the following theorem.

Theorem 2.1.5 (Radiating solution and far field pattern). Let the bounded set D be an
open complement of an unbounded domain and let u ∈ C2(Rm \ D) be a radiating solution
to the Helmholtz equation for which the far field pattern vanishes identically u∞ = 0. Then
u = 0 in Rm \ D.
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Figure 2.3: Franz Rellich (1906 – 1955).

Proof. From (2.15) deduce

lim
r→∞

∫
|x|=r
|u(x)|2 ds =

∫
S
|u∞(x̂)|2 ds +O

(
1
r

)
. (2.19)

The assumption u∞ = 0 on S implies that u satisfies the assumptions of Rellich’s
lemma (Lemma 2.1.4). Hence, apply Rellich’s Lemma to obtain u = 0 in Rm \ D,
which proves the theorem.

2.2 Solution tools

In this section the fundamental solution for the setting at hand are developed and
analysed. Further, the surface potentials following Huygens’ principle are intro-
duced, which form the basis of the solution theory.

2.2.1 Fundamental solution

In studying the solutions of the Helmholtz equation it is possible to write down
a radiating solution such that its superpositions can create any possible radiating
solution to the Helmholtz equation. Such solutions in general are called fundamental
solutions. With the aid of the fundamental solution of the Helmholtz equation many
properties for the solutions of the Helmholtz equation can be deduced.

Definition 2.2.1 (Fundamental solution - Helmholtz equation). The free-space funda-
mental solution of the Helmholtz equation is given by

Φ(x, y) :=


i
4 H(1)

0 (κ |x− y|) , in R2

1
4π

eiκ|x−y|

|x−y| , in R3
(2.20)
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Figure 2.4: Real part of the fundamental solution for the Helmholtz equation in 2D.

with H(1)
0 being the Hankel function of the first kind of order zero (see Section B.3).

Straightforward differentiation shows that the fundamental solution satisfies the
Helmholtz equation in Rm \ {y}. An example for the fundamental solution in 2D is
shown in Figure 2.4.

2.2.2 Surface potentials

In this section the single-layer and double-layer surface potentials are introduced,
which then are used to describe the direct problem later on. They use the fact that
superpositions of the fundamental solution can be used to create any solutions of
the underlying equation. Physically, they resemble Huygens principle , i.e. the idea
to distribute point sources on the surface which approximate the real scattered field
outside the obstacle. For given domains D ⊂ Rm with boundary ∂D of class C2 with
normal vector ν which is oriented in the exterior and given functions ϕ, ψ ∈ C(∂D),
the following operators can be defined. This notation is used throughout this work.
The representation follows [23, chapter 6], [8, chapter 3] and [35].

Definition 2.2.2 (Single layer operator). The single layer potential is defined as

u(x) :=
∫

∂D
Φ(x, y)ϕ(y) ds(y), x ∈ Rm \ ∂D. (2.21)

The corresponding boundary operator S∂D : C(∂D) 7→ C0,α(∂D) is defined as

(S∂D ϕ)(x) := 2
∫

∂D
Φ(x, y)ϕ(y) ds(y), x ∈ ∂D, (2.22)

and is called the single layer operator. The integral exists as improper integral.
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The corresponding far field operator of the single-layer operator is given by

(S∞
∂D ϕ)(x̂) := γm

∫
∂D

e−iκx̂ · y ϕ(y) ds(y), x̂ ∈ S, (2.23)

with the constant γm defined in (2.17).

Remark. The potential is a solution to the Helmholtz equation (Definition 2.1.1) and
satisfies the Sommerfeld radiation condition. Using Theorem 3.2 and 3.4 from [8] it
can be seen, that the single-layer operator is compact.

The term single-layer comes from the idea of distributing monopoles on the bound-
ary which can approximate the solution to the scattering problem.

Definition 2.2.3 (Double layer operator). The double layer potential is defined as

v(x) :=
∫

∂D

∂Φ(x, y)
∂ν(y)

ϕ(y) ds(y), x ∈ Rm \ ∂D. (2.24)

The corresponding boundary operator K∂D : C0,α(∂D) 7→ C0,α(∂D) is defined as

(K∂D ϕ)(x) := 2
∫

∂D

∂Φ(x, y)
∂ν(y)

ϕ(y) ds(y), x ∈ ∂D, (2.25)

and is called the double layer operator. The integral exists as improper integral.
In respect to the dual system 〈C(∂D), C(∂D)〉 defined by

〈ϕ, ψ〉 :=
∫

∂D
ϕψ ds, ϕ, ψ ∈ C(∂D) , (2.26)

using the L2 scalar product, the operator K′∂D : C0,α(∂D) 7→ C0,α(∂D) with

(K′∂Dψ)(x) := 2
∫

∂D

∂Φ(x, y)
∂ν(x)

ψ(y) ds(y), x ∈ ∂D , (2.27)

is the adjoint operator to the double layer operator. The integral exists as improper inte-
gral.

The normal derivative of the double layer operator T∂D : C1,α(∂D) 7→ C0,α(∂D) is given
by

(T∂D ϕ)(x) := 2
∂

∂ν(x)

∫
∂D

∂Φ(x, y)
∂ν(y)

ϕ(y) ds(y), x ∈ ∂D. (2.28)

The integral exists as improper integral.

Remark. The potential is a solution to the Helmholtz equation (Definition 2.1.1) and
satisfies the Sommerfeld radiation condition. Using Theorem 3.2 and 3.4 from [8] it
can be seen that the operator K is compact and that K′ and T are bounded operators.

The term double layer resembles the behaviour of the derivative of a monopole,
which behaves like a dipole with polarisation orthogonal to the tangential plane.
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The potentials have jumps on the boundary ∂D which are examined for continuous
densities in the following theorems. These jump relations help setting up boundary
integral equations which are equivalent to boundary value problems.

Theorem 2.2.4 (Jump relation single layer potential). The single-layer potential u with
density ϕ ∈ C(∂D) is continuous throughout Rm and on the boundary ∂D it has the values

u(x) =
∫

∂D
Φ(x, y)ϕ(y) ds(y), x ∈ ∂D

and
∂u±
∂ν

(x) =
∫

∂D

∂Φ(x, y)
∂ν(x)

ϕ(y) ds(y)∓ 1
2

ϕ(x), x ∈ ∂D

where
∂u±
∂ν

(x) := lim
h→+0

ν(x) · grad u(x± hν(x))

is to be understood in the sense of uniform convergence on ∂D and where the integrals exist
as improper integrals. For some constant C depending on ∂D the following inequality holds

‖u‖∞,Rm ≤ C‖ϕ‖∞,∂D.

Proof. The proof is part of the proof of Theorem 3.1 of [8].

Theorem 2.2.5 (Jump relation double layer potential). The double-layer potential v with
density ϕ ∈ C(∂D) can be continously extended from D to D and from Rm \ D to Rm \ D
with limiting values

v±(x) =
∫

∂D

∂Φ(x, y)
∂ν(y)

ϕ(y) ds(y)± 1
2

ϕ(x), x ∈ ∂D

where
v±(x) := lim

h→+0
v(x± hν(x))

and where the integral exist as improper integral.
For some constant C depending on ∂D the following inequalities hold

‖v‖∞,D ≤ C‖ϕ‖∞,∂D

‖v‖∞,Rm\D ≤ C‖ϕ‖∞,∂D .

Furthermore, the limit

lim
h→+0

{
∂v
∂ν

(x + hν(x))− ∂v
∂ν

(x− hν(x))
}

= 0, x ∈ ∂D

holds uniformly on ∂D.

Proof. The proof is part of the proof of Theorem 3.1 of [8].
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Chapter 3

Direct problem

In this work only time-harmonic plane waves and point sources are used in the di-
rect and inverse acoustic scattering problems under consideration. First, an acoustic
plane wave is defined.

Definition 3.0.6 (Acoustic plane wave). Consider the time-harmonic acoustic case as
in the derivation of the Helmholtz equation. A acoustic plane wave with direction of
propagation d in Rm where m = 2, 3 with frequency ω > 0 and wave number κ (2.10)
is given by

U (x, t) = ei(κx · d−ωt) .

Considering the splitting of space and time as in (2.9), then the space dependent part
is given by

u(x) = eiκx · d .

Let ui(x) be the space-dependent part of an incident time-harmonic acoustic plane
wave (3.0.6) in Rm. Consider an impenetrable obstacle D which is a bounded domain
in Rm and has a boundary ∂D which is of class C2. The incident field ui is scattered
at the obstacle D and this gives a scattered field us(x) that satisfies the Helmholtz
equation (Definition 2.1.1). The scattered field should satisfy physical conditions,
mainly its behaviour at infinity such that the total energy of the scattered wave is
finite which leads to the Sommerfeld radiation condition (Definition 2.1.2). The total
field is defined as the sum of the incident and the scattered field

u = ui + us .

Now putting it all together and restrict the dimension to two or three a problem
for acoustic scattering is set up in the following definition.

Definition 3.0.7 (Acoustic scattering problem). Consider an impenetrable obstacle D
which is a bounded domain in Rm with m = 2, 3 and has a boundary ∂D which is
of class C2. Further, given a time-harmonic incident field ui which scatters on D to a
scattered field us

us ∈ C2(Rm \ D) ∩ C(Rm \ D),
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ui

D

us

u∞

ν

Figure 3.1: Setup of acoustic scattering. Scatterer D with an normal ν. Shown is the
incident plane wave ui, the scattered field us and the far field pattern u∞.

that satisfies the Sommerfeld radiation condition (Definition 2.1.2) such that the total
field

u(x) = ui(x) + us(x),

solves the Helmholtz equation (Definition 2.1.1)

∆u + κ2u = 0, Rm \ D,

in Rm \ D and fulfils a boundary condition. The far field pattern (Theorem 2.1.3) u∞

is given via the scattered field us.

The setup of the acoustic scattering is shown in Figure 3.1. The scatterer D with
normal ν, the incident plane wave ui, the scattered wave us and its far field pattern
u∞ are shown.

The scattered fields and the far field patterns for the direct acoustic scattering prob-
lem have some symmetry properties which are commonly called reciprocity relations.
These symmetry properties play an important role in both direct and inverse acoustic
problems.

Theorem 3.0.8 (Far field reciprocity relation). Consider the setting of acoustic scattering
(Definition 3.0.7) with sound-soft or sound-hard boundary condition on the scatterer. Then,
the far field patterns for a scattered wave satisfy

u∞(x̂, d) = u∞(−d,−x̂), x̂, d ∈ S .

Proof. See Theorem 3.13 of [8] for the sound-soft case. The sound-hard case works
analogously.
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Moreover, there exists a reciprocity relation which shows symmetry-relations be-
tween the scattered field and the far field of a point source. This was first worked
out in [35, Chapter 2]. For this the constant

γm :=

{
eiπ/4
√

8πκ
, m = 2

1
4π , m = 3.

is needed.

Theorem 3.0.9 (Mixed reciprocity relation). Consider the setting of acoustic scattering
(Definition 3.0.7) with sound-soft or sound-hard boundary condition on the scatterer. Then
the far field Φ∞( · , z) of scattering from a point source Φ( · , z), z ∈ Rm \D and the scattered
wave us( · , d), d ∈ S for a plane wave incidence satisfy

Φ∞(x̂, z) = γmus(z,−x̂), z ∈ Rm \ D, x̂ ∈ S (3.1)

Proof. See proof of theorem 2.1.4 in [35].

3.1 Dirichlet or sound-soft problem

Now consider the direct acoustic scattering problem with an obstacle with sound-soft
(2.12) boundary conditions.

Definition 3.1.1 (Direct scattering problem, Dirichlet). Let the setting be as in the
acoustic scattering (Definition 3.0.7) problem. Then, given incident field ui and lo-
cation, shape of the obstacle D with Dirichlet (2.12) boundary condition, find the
scattered field us and the far field pattern u∞.

3.1.1 Uniqueness

For the uniqueness proof the following theorem is needed. It is taken from [8].

Lemma 3.1.2 (Extended Rellich). Let u ∈ C2(Rm \D)∩C(Rm \D be a radiating solution
to the Helmholtz equation with κ > 0 which has a normal derivative in the sense of a uniform
convergence and for which

=
∫

∂D
u

∂ū
∂ν
≥ 0 . (3.2)

Then u = 0 in Rm \ D.

Proof. From the identity (B.7) and (3.2) it follows that the prerequisite of Rellich’s
Lemma (Lemma 2.1.4) is fulfilled. Hence, applying the Lemma completes the proof.

Theorem 3.1.3 (Uniqueness, acoustic Dirichlet). The direct scattering problem with Dirich-
let boundary condition has at most one solution.
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Proof. Let ud = us,1 − us,2 be the difference of two solutions with the same incident
field ui. Then ud satisfies the Helmholtz equation with homogeneous boundary con-
dition on ∂D. Thus, the boundary data is C1,α and from the Theorem 3.27 in [9] u is
continously differentiable up to the boundary from which immediately Lemma 3.1.2
can be used to complete the proof.

3.1.2 Existence

For the solution of the Dirichlet problem the approach of Brakhage-Werner [4] is used.
Hence, the scattered field is represented as a combined single (2.21)- and double layer
potential (2.24).

us(x) =
∫

∂D

{
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

}
ϕ(y) ds(y), x ∈ Rm \ ∂D , (3.3)

with density ϕ ∈ C1,α(∂D) and the real coupling factor η chosen as η = κ. The
ansatz solves the scattering problem (Definition 3.1.1) if, due to the jump relations
(Theorem 2.2.4) and the boundary condition (2.12), the density ϕ satisfies the integral
equation

ϕ + Kϕ− iηSϕ = −2ui, (3.4)

where S is the single-layer operator (2.22) and K is the double-layer operator (2.25).

Theorem 3.1.4 (Existence, acoustic Dirichlet). The scattering problem in Definition 3.1.1
has a unique solution. Further, the operator which maps the boundary data onto the solution
is continuous from C1,α(∂D) into C1,α(R3 \ D).

Proof. To establish existence of a solution to the integral equation (3.4), by the Riesz-
Fredholm theory (Theorem A.2.2) it suffices to show that I + K − iηS is injective
since K and S are compact operators (see Section 2.2.2). Let ϕ be a solution to the
homogeneous form of (3.4). Then us satisfies the homogeneous boundary condition
us = 0 on ∂D. Therefore, by the uniqueness (Theorem 3.1.3) us = 0 ∈ Rm \ D. The
jump relations (Theorem 2.2.4) now yield

−u− = ϕ, −∂u−
∂ν

= iηϕ on ∂D.

Then from Green’s first theorem (Theorem B.1.1) it follows that

iη
∫

∂D
|ϕ|2 ds =

∫
∂D

ū−
∂u−
∂ν

ds =
∫

D

{
|grad u|2 − κ2 |u|2

}
dx .

Taking the imaginary part of the last equation implies that ϕ = 0 on ∂D. Thus, in-
jectivity of the operator I + K − iηS : C1,α(∂D) 7→ C1,α(∂D) is shown. Then by the
Riesz-Fredholm-theory (Theorem A.2.2) the operator is bijective and has a bounded
inverse, i.e. (3.4) possesses a solution and the solution depends continuously on the
right hand side. Furthermore, using theorem 3.3 in [8] and (3.3) implies that u be-
longs to C1,α(Rm \ D).
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3.2 Neumann or sound-hard problem

3.2 Neumann or sound-hard problem

Now consider the direct acoustic scattering problem with an obstacle with sound-
hard (2.13) boundary conditions.

Definition 3.2.1 (Direct scattering problem, Neumann)). Let the setting be the acous-
tic scattering (Definition 3.0.7) problem. Then, given incident field ui and location,
shape of the obstacle D with Neumann (2.13) boundary condition, find the scattered
field us and the far field pattern u∞.

3.2.1 Uniqueness

Theorem 3.2.2 (Uniqueness, acoustic Neumann). The direct scattering problem with
Neumann boundary condition has at most one solution.

Proof. The proof is analogous to the uniqueness proof (Theorem 3.1.3) for the acoustic
scattering problem with Dirichlet boundary conditions.

3.2.2 Existence

For the solution of the Neumann problem the modified approach due to Panich [32]
is used in the following way

us(x) =
∫

∂D

{
Φ(x, y)ϕ(y) + i

∂Φ(x, y)
∂ν(y)

(S2
0 ϕ)(y)

}
ds(y), x ∈ Rm \ ∂D, (3.5)

with density ϕ ∈ C0,α(∂D) where S0 denotes the single layer operator in the limit as
κ → 0. The ansatz solves the scattering problem (Definition 3.2.1) if, due to the jump
relations (Theorem 2.2.4) and the boundary condition (2.13), the density ϕ satisfies
the integral equation

ϕ− K′ϕ− iTS2
0 ϕ = 2

∂ui

∂ν
(3.6)

where K′ is the adjoint double layer operator (2.27) and T is the normal derivative of
the double layer operator (2.28).

Theorem 3.2.3 (Existence, acoustic Neumann). The scattering problem in Definition 3.2.1
has a unique solution. Further, the operator which maps the boundary data onto the solution
is continuous from C0,α(∂D) into C1,α(R3 \ D).

Proof. To establish existence of a solution to the integral equation (3.6), by the Riesz-
Fredholm theory (Theorem A.2.2) it suffices to show that I + K′ − iηTS2

0 is injective
since K′ − iηTS2

0 is a compact operator since K′, T are bounded and S0 is compact
(cf. Section 2.2.2). Let ϕ be a solution to the homogeneous form of (3.6). Then us

satisfies the homogeneous boundary condition ∂us/∂ν = 0 on ∂D. Therefore, by the
uniqueness (Theorem 3.2.2) us = 0 ∈ Rm \ D. The jump relations (Theorem 2.2.4)
now yield

−u− = iηS2
0 ϕ, −∂u−

∂ν
= −ϕ on ∂D.
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Chapter 3 Direct problem

Then, from Green’s first theorem (Theorem B.1.1) it follows that

iη
∫

∂D
|S0ϕ|2 ds = iη

∫
∂D

ϕS2
0 ϕ̄ ds =

∫
∂D

ū−
∂u−
∂ν

ds =
∫

D

{
|grad u|2 − κ2 |u|2

}
dx .

Taking the imaginary part of the last equation implies that S0ϕ = 0 on ∂D. The
single-layer potential w corresponding to the operator S0 with wave number κ = 0
and density ϕ is continuous throughout Rm, harmonic in Rm \ ∂D and in D and
vanishes on ∂D and at infinity. Therefore, by the maximum-minimum principle for
harmonic functions, it follows that w = 0 in Rm and the second scalar jump relation
(Theorem 2.2.4) yields ϕ = 0. Thus, injectivity of the operator I − K′ − iηTS2

0 :
C0,α(∂D) 7→ C0,α(∂D) is shown. Then by the Riesz-Fredholm-theory (Theorem A.2.2)
the operator is bijective and has a bounded inverse, i.e. (3.6) possesses a solution
and the solution depends continuously on the right hand side. Furthermore, using
Theorem 3.3 in [8] and (3.5) implies that u belongs to C1,α(Rm \ D).
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Inverse problem

In the subsequent sections of this chapter some different methods are explained
which then in their sum leads to the multiwave range test (Section 4.3). These are the
range test (Section 4.1) and the potential method (Section 4.2). At last, the singular
sources method (Section 4.4) is reached via the multiwave range test and is described
in an alternative form of the original. For the following sections the single-layer op-
erator (2.21) and its corresponding far field pattern (2.23) are used extensively.

4.1 Range test

This section describes the one-wave range test which is then intensively used in
Section 4.2, Section 4.3 and Section 4.4.

For the range test the inverse problem at hand is given in the following definition.

Definition 4.1.1 (Acoustic inverse shape reconstruction). In the setting of the acoustic
scattering (Definition 3.0.7) in the dimension m = 2 the following is given:

• one incident plane wave ui from the direction d ∈ S.

• an aperture of the measurement circle Λ ⊂ S .

• the measured far field pattern u∞ on Λ.

Then find the shape of the unknown boundary D.

Remark. There is a simple way for the range test to improve the final reconstructed
shape by using several incident waves. For every wave use the range test to get a
reconstruction of the shape and then take the union of the reconstructions for a better
reconstruction.

The basic idea of the range test [41] is to determine the maximal set on to which one
scattered field may be analytically extended via the single-layer approach. Then, the
complement of this set is a subset of the unknown scatterer D. However, the method
does not deliver full reconstructions of the shape of scatterers. From the knowledge
of one wave only and without the knowledge of the boundary condition there is no
hope to calculate the full shape of an unknown scatterer D. If there is more data
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ui

G

D

us

u∞

ϕ

Figure 4.1: Setup and idea of the range test. Shown is one test domain G containing
the scatterer D. The idea is to get the density ϕ from the measured u∞

from which to test the analytic extension of us into Rm \ G.

available it is well known that the far field patterns u∞(x̂, d) for x̂, d ∈ S uniquely
determine the unknown scatterer even if the boundary condition is not known, see
[35, Chapter 3].

Consider connected test domains G of class C2 with boundary ∂G such that the
interior Dirichlet problem for G is uniquely solvable for the wave number κ (i.e. κ is
not an interior Dirichlet eigenvalue). Then, by using the far field operator (2.23) of
the single-layer potential (2.21) defined on the boundary ∂G it can be evaluated if the
scattered field us is extensible into Rm \ G. The equation

S∞
∂G ϕ = u∞( · , d) (4.1)

is solvable if us can be analytically extended into Rm \ G and it is not solvable if it
cannot be analytically extended into Rm \ G. Thus, the solvability of the ill-posed
integral equation (4.1) can be used as a criterion for the analytic extensibility of us

into Rm \ G. This idea and the setup for the range test is shown in Figure 4.1.
For the numerical implementation of the ill-posed equation (4.1) the unbounded

inverse (S∞
∂G)−1 of S∞

∂G needs to be regularised. Using the Tikhonov regularisation
(Theorem A.4.3) the regularised inverse is given by

Rα := (αI + S∞,∗
∂G S∞

∂G)−1S∞
∂G .

If the equation (4.1) is solvable, then the norm ‖ϕα‖L2 of

ϕα := Rαu∞( · , d) (4.2)

will be bounded in the limit α→ 0. If equation (4.1) does not admit a solution, then

‖ϕα‖L2 → ∞, α→ 0, (4.3)

i.e. for α→ 0 the norm of the density will tend to infinity.
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The behaviour of the norm of the density is used to test the extensibility of the
field us by calculation of the norm ‖ϕα‖ for solutions with a number of different
test domains G and comparing ‖ϕα‖ with some cut-off constant C. If for sufficiently
small (fixed) regularisation parameter α there is ‖ϕα‖ ≤ C, then it is concluded
that the equation (4.1) is solvable. If in this case ‖ϕα‖ > C, then conclude that it is
unsolvable. In the case of solvability of (4.1) conclude that us is analytically extensible
into Rm \ G.

Now, to write down a proof for this behaviour first define the so called scattering
support and show some of the properties. For a more complete investigation see [24].

Definition 4.1.2 (Scattering support). A domain Ω supports u∞ if the corresponding
us can be continued to solve the Helmholtz equation in Rm \Ω.

Let the incident field have the wave number κ. Then, the intersection of all convex
Ω which support u∞ is called the convex scattering support or cSκ supp u∞ of the far
field u∞.

Lemma 4.1.3 (Supporting intersections). Let Ω1 and Ω2 be convex sets which support the
same far field u∞. Then, Ω1 ∩Ω2 supports u∞.

Proof. See proof of Lemma 3.1 of [41].

Lemma 4.1.4 (Properties of the convex scattering support). The convex scattering sup-
port has the following properties

1. if u∞ 6= 0 then cSκ supp u∞ is not empty.

2. Let ui be the incident field illuminating a scatterer with convex hull Ω which generates
the far field pattern u∞. Then cSκ supp u∞ ⊂ Ω.

3. The convex scattering support cSκ supp u∞ contains all the singularities of the scat-
tered field us which lie in the closure of the unbounded component of the complement of
the convex hull of the support of the scatterer.

Proof. See proof of Lemma 3.3 of [41].

With this definition and the Lemmata the Theorem for the extensibility properties
and its proof can be formulatied.

Theorem 4.1.5 (Extensibility properties). Assume that cSκ supp u∞ ⊂ G. Then the field
us can be analytically extended up to Rm \ G , i.e. the L2-norms of the densities ϕα solving
(4.1) on ∂G are bounded.

If cSκ supp u∞ 6⊂ G, then the field us cannot be extended up to Rm \ G, i.e. the L2-norms
of the densities ϕ solving (4.1) on ∂G will not be bounded.

Proof. case cSκ supp u∞ ⊂ G: The field us with the far field pattern u∞ can be analyt-
ically extended into the open exterior of the domain G and into the neighbourhood
of ∂G. The solution to the equation

Sϕ = us on ∂G
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is unique since S maps L2(∂G) bijectively into L2(∂G) ([8, Theorem 3.6]). On the
boundary ∂G, the single layer potential v now coincides with us and by the solution
of the exterior Dirichlet problem for the domain G it coincides on Rm \ G. Thus, the
far field pattern S∞ ϕ of the single layer potential v and u∞ coincide, i.e. u∞ is in the
range of S∞. Furthermore, there exists an ϕ ∈ L2(∂G) such that S∞

∂G ϕ = u∞. Then,
from the Tikhonov Theorem (Theorem A.4.3) the following holds

lim
α→0

ϕα = lim
α→0

(αI + S∞,∗
∂G S∞

∂G)−1S∞,∗
∂G u∞

= lim
α→0

(αI + S∞,∗
∂G S∞

∂G)−1S∞,∗
∂G S∞

∂G ϕ

= ϕ ,

thus ‖ϕα‖ for α→ 0 is bounded.
case cSκ supp u∞ 6⊂ G: Assume that there is a constant C such that ϕα is bounded

for sufficiently small α > 0. Then, there is a sequence αj → 0 for j → ∞ such that
the weak convergence ϕαj ⇀ ϕ̃ for j→ ∞ holds with some element ϕ̃ ∈ L2(∂G). The
bounded linear integral operator S∞

∂G maps the weakly convergent sequence into a
strongly convergent sequence, i.e.

S∞
∂G ϕαj → S∞

∂G ϕ̃

for j→ ∞ and with ũ∞ ∈ S∞
∂G(L2(∂G)) defined as

ũ∞ := S∞
∂G ϕ̃ .

Then from the Tikhonov regularisation

(αj I + S∞,∗
∂G S∞

∂G)ϕαj) = S∞,∗
∂G u∞

passing to the limit j→ ∞ this leads to

S∞,∗
∂G S∞

∂G ϕ̃ = S∞,∗
∂G u∞

and from the definition of ũ∞ this yields

S∞,∗
∂G ũ∞ = S∞,∗

∂G u∞ ,

which implies ũ∞ = u∞ and thus u∞ ∈ S∞
∂G(L2(∂G)). Then there is a function

ϕ ∈ L2(∂G) such that S∞
∂G ϕ = u∞. Using the single layer potential v with density

ϕ the field us can be analytic extended into Rm \ G. Thus G supports u∞ which
leads to the contradiction cSκ supp u∞ ⊂ G and therefore ϕα can not be bounded for
α→ 0.

From this Theorem and the description of the beginning of this section an algo-
rithm for the range test can be formulated.
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4.1 Range test

Algorithm 1 (Range test). Let J be a finite Index set and further letN :=
{

G(j) : j ∈ J
}

be the set of test domains G(j) which are of class C2 such that the interior homogeneous
Dirichlet problem does have only the trivial solution.

Then, use (4.2) to calculate the indicator function

µj := ‖Rαu∞‖L2(∂G) , (4.4)

for all G ∈ N . This is used to test whether the scattered field us can be analytically extended
into Rm \ G(j), and if so call the domain G(j) a positive test domain. Finally, take the
intersection of all positive test domains to calculate a subset of the unknown scatterer D by

Drec :=
⋂

µj<C
Gj ,

with a chosen cutoff constant C.

A Theorem of convergence is stated here.

Theorem 4.1.6 (Convergence of the range test). Let M be a domain with the property
cSκ supp u∞ ⊂ M. Using appropriate increasing sets of sampling domains N , there exists
a decreasing sequence of domains Mk, k ∈ N with cSκ supp u∞ ⊂ Mk such that for each
domain M and for all sufficiently large k ∈N it holds that Mk ⊂ M.

Proof. See second part of proof of Theorem 4.2 in [41].

The range test does not use the boundary condition and the method can be applied
to all kinds of objects with different or mixed boundary conditions. However, from
the knowledge of the far field pattern for one incident wave it can not reconstruct the
full shape of D. For example, testing the extensibility of the field us into the exterior
of convex test domain G it merely constructs the convex scattering support of D, which
is a subset of D. In special situations, for example for convex polygonal scatterers,
this subset coincides with the scatterer itself. However, in general the reconstructed
set will be only a part of the scatterer. Later in section 4.3 the extension to the range
test will reconstruct the full shape of the scatterer in the setting with multiple waves.

Efficiency. The range test needs to solve linear integral equations for a large number
of test domains. Setting up the integral operator for each test domain can make the
algorithm very time consuming.

However, with the following method it is possible to efficiently calculate (4.2) for
many test domains G(j), where S∞

∂G(j) only needs to be set up for one initial test
domain G0.

Theorem 4.1.7 (Shifted operators). Let the domain G0 be chosen such that the interior
Dirichlet problem is uniquely solvable for the wave number κ. Let the test domains G(x) be
constructed from G0 by translation

G(x) := G0 + x (4.5)
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with vector x ∈ Rm. Then, with ϕ̃(y) := ϕ(y + x) the following holds

(S∞
∂G(x)ϕ)(x̂) = γme−iκx̂ · x(S∞

∂G0
ϕ̃)(x̂) . (4.6)

Thus, the translation of the domain G0 provides a quick way to calculate the solution of the
corresponding integral equations.

Proof. Calculating

(S∞
∂G(x)ϕ)(x̂) = γm

∫
∂G(x)

e−iκx̂ · y ϕ(y) ds(y)

= γme−iκx̂ · x
∫

∂G0

e−iκx̂ · y ϕ̃(y) ds(y)

= γme−iκx̂ · x(S∞
∂G0

ϕ̃)(x̂),

finishes the proof.

Remark. It is sufficient to set up one version of the operator S∞
∂G0

and obtain the regu-
larised solutions ϕα for all test domains G(x) by multiplication with the exponential
factor e−iκx̂ · x, x̂ ∈ S . Denote the multiplication operator Mx by

(Mxψ)(x̂) := e−iκx̂ · xψ(x̂), x̂ ∈ S . (4.7)

The adjoint of Mx with respect to the L2 scalar product is given by

(M∗xψ)(x̂) := eiκx̂ · xψ(x̂), x̂ ∈ S .

From this obtain
S∞

∂G(x) = MxS∞
∂G0

, S∞,∗
∂G(x) = S∞,∗

∂G0
M∗x

and
Rα = R0,αM∗x. (4.8)

For this particular setting where translations can be used equation (4.8) speeds-up
the calculation of equations (4.2) and (4.3) by a large factor depending on the number
of test domains which are used. Numerical examples for the range test are shown
in Section 5.3. This speed-up is used for all methods under consideration in the part
for acoustic scattering.

4.2 Potential method

First, the original potential method of Kirsch and Kress (1986) (see [19], [20], [21] and
[8]) is introduced here. Then the range test is used to formulate a new version of the
potential method with improved convergence properties.

For the potential method the inverse problem at hand is given in the following
definition.

Definition 4.2.1 (Acoustic inverse shape reconstruction). In the setting of the acoustic
scattering (Definition 3.0.7) in the dimension m = 2 the following is given:
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• one incident plane wave ui from the direction d ∈ S.

• an aperture of the measurement circle Λ ⊂ S .

• the measured far field pattern u∞ on Λ.

• the boundary condition on the unknown obstacle D.

Then find the shape of the unknown boundary of D.

The basic idea of the potential method of Kirsch and Kress is to search for the scat-
tered field us in the form of a single-layer potential (2.21) S∂G. Given the measured
far field pattern u∞( · , d) solve the integral equation (4.1), i.e. the same integral equa-
tion as for the range test (Section 4.1) but which now have the property that the test
domain G is a subset of D. The scattered field is calculated by us = (S∂G ϕ). Then, the
shape of the scatterer D is determined via a nonlinear optimisation problem using
the boundary condition for the total field u. The setup and idea is shown in a) of
Figure 4.2.

With the approximate solution ϕα = Rαu∞ by (4.2) it is possible to obtain an ap-
proximation us

α to the the scattered field us on Rm \ G and its extension into the
interior D \ G by

us
α(x, d) = S∂G (Rαu∞( · , d)) (x) (4.9)

For convergence of the solution of the integral equation (4.1) it is a important con-
dition that the analytic extension of us into Rm \ G is possible. To obtain conver-
gence for shape reconstruction when the extensibility condition is violated (which is
the case for many situations) the calculation of us and the search for the unknown
boundary has been combined into a nonliner optimisation problem [8, Section 5.4].

4.2.1 Modification using the range test

A modified version of the Kirsch-Kress method can be obtained with the help of the
range test (Section 4.1). Then, the reconstruction problem can be split into a linear
ill-posed part for the of reconstruction us and a nonlinear but well-posed problem
to find the shape ∂D. Further, the test domains G are now bigger than D. For the
convergence the convergence properties of the range test are used, i.e. the reconstruc-
tion converges in the case where us can be analytically extended into Rm \ G. The
resulting setup is shown b) of Figure 4.2.

Algorithm 2 (Modified Kirsch-Kress method.). First, select a finite set of test domains
G(j) ⊂ Rm for j ∈ J with some index set J . Further, assume that the G(j) satisfy

D =
⋂

D⊂G(j)

G(j). (4.10)

For each test domain G(j) use the range test to evaluate whether the field u∞ can be
analytically extended into the exterior of G(j). In this case G(j) is called positive. If G(j) is
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Figure 4.2: Setup and idea of the potential method a) and the modified potential
method b). The idea is to get the density ϕ from the measured u∞ and
from that the scattered field us. The main difference in the setup between
the two methods is the size of the test domain G.

positive, use the evaluation of the single-layer potential to calculate an approximation us,j
α of

the scattered field us on Rm \ G(j).
Then, in a second step, combine all reconstructions us,j

α on Rm \ G(j) for positive test
domains G(j) to construct a field us

α on an open set M ⊃ Rm \ D as follows. Employ the
characteristic function

χB(x) :=

{
1, if x ∈ B
0, otherwise

and
σ(x) := ∑

G(j) positive

χ
Rm\G(j)(x),

which is well defined for a finite number of test domains. These functions are used for the
definition of the reconstruction of the scattered field us

α as

us
α :=

1
σ(x) ∑

G(j) positive

χ
Rm\G(j)(x) us,j

α (x) (4.11)

In the third step search for the shape of D using the Dirichlet or Neumann boundary condition
on ∂D ⊂ M.

Numerical examples for the modified Kirsch-Kress method will be presented in
Section 5.4. For the Kirsch-Kress method the efficient translations of the test domains
G(j) as in the range test (4.6) also can be used in the same way. The next steps are
completing the analysis of the modified Kirsch-Kress method and showing that the
method converges.

Note that the modified Kirsch-Kress method avoids the nonlinear optimisation
approach for the ill-posed part and truly splits the reconstruction problem into a
linear ill-posed part to reconstruction us and a nonlinear but well-posed part to find
the shape ∂D. Here, due to the use of the range test and the use of a set of test
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domains G(j) convergence can be obtained for the reconstruction on the set M. Thus,
convergence can be also obtained for us

α towards a true scattered field us of the inverse
problem. This result will be formulated in the following theorem.

Theorem 4.2.2 (Convergence of modified Kirsch-Kress method.). Assume that the (fi-
nite) set of test domains G(j), j ∈ J is sufficiently rich such that equation (4.10) is satisfied.
Then, the modified Kirsch-Kress method generates a set

M̃ :=
⋂

G(j) positive

G(j) (4.12)

which is a closed subset of D. As a consequence, the open set M := M̃c contains Rm \ D.
For true data u∞ the method calculates an approximation us

α to us with

us
α(x)→ us(x), α→ 0 (4.13)

for x ∈ M.

Proof. If D ⊂ G(j) then equation (4.1) is solvable, thus G(j) is positive. As the set of
test domains is sufficiently rich and the extension of us always contains Rm \ D, the
intersection M̃ of all positive test domains G(j) is a subset of the scatterer D. Then,
the complement Rm \ D of D is a subset of M = M̃c, i.e. M contains Rm \ D. For all
positive G(j) following the range test (Theorem 3.5 in [41]) the density ϕα converges
to the true solution ϕ of (4.1) for α → 0 and thus us,j

α (x) tends to us(x) for α → 0 for
each fixed x ∈ Rm \ G(j). Then, from equation (4.11) it holds that

us
α =

1
σ(x) ∑

G(j) positive

χ
Rm\G(j)(x) us,j

α (x)

→ 1
σ(x) ∑

G(j) positive

χ
Rm\G(j)(x) us(x)

= us(x)
1

σ(x) ∑
G(j) positive

χ
Rm\G(j)(x)

= us(x) ,

in the limit α → 0, x ∈ M. Thus, the convergence of the field reconstruction (4.13) is
shown.

4.3 Multiwave range test

The range test can be extended to the situation of several incident plane waves of one
fixed frequency, which is then called the multiwave range test. This extension enables
reconstructions of the full shape of D rather than a subset.

For the multiwave range test the inverse problem is given in the following defini-
tion.
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Definition 4.3.1 (Acoustic inverse shape reconstruction). In the setting of the acoustic
scattering (Definition 3.0.7) in the dimension m = 2 the following is given:

• many incident plane waves ui( · , d) from directions d ∈ S.

• an aperture of the measurement circle Λ ⊂ S .

• the measured far field patterns u∞( · , d) for all d ∈ Λ.

Then find the shape of the unknown boundary of D.

If the far field pattern is given for several incident waves, then first use the one-
wave range test for each plane wave. If it fails for one wave, then the test domain G
can be marked negative. Assume that the field us is analytic extensible into Rm \G, i.e.
the equation (4.1) is solvable for all directions d ⊂ Λ. In other words: the domain G
is positive for all one-wave range tests applied to the far field pattern u∞( · , d), d ∈ Λ.
In this case an approximation for us( · , d) for d ∈ Λ can be calculated by (4.9). Now
use the mixed reciprocity relation (Theorem 3.0.9) in the form

us(x,−d) =
1

γm
Φ∞(d, x) , (4.14)

where Φ∞ is the far field pattern of the scattered wave from a point source. With the
definition

vα(d, x) := γmS∂G (Rαu∞( · ,−d)) (x)

for d ∈ S and x ∈ Rm \ G the approximation

Φ∞(d, x) ≈ vα(d, x) , (4.15)

is obtained.
Given the far field pattern Φ∞( · , x) or its approximation vα( · , x) respectively for

fixed x on the set S, the extensibility of this field into the exterior of Rm \ G can now
be tested in the same way as in the range test for one wave above, i.e. the range test
is repeated, but now applied to vα( · , x) as far field pattern. This is carried out by
solving the equation

S∞
∂Gψx = vα( · , x), ∀x ∈ Rm \ G. (4.16)

If the scattered field of a point source Φs( · , x) can be analytically extended into
Rm \ G, then the equation

S∞
∂Gψx = Φ∞(d, x) (4.17)

– which is approximated by (4.16) – can be solved. If the equation (4.17) can not be
solved, then the field Φ∞( · , x) cannot be analytically extended into Rm \G. However,
if D 6⊂ G, i.e. consider a sequence of points xn ⊂ Rm \ G with xn → x0 for n → ∞
and x0 ∈ ∂D with x0 6∈ G. Then for n → ∞ the field Φs(xn, xn) becomes singular
([35, Theorem 2.1.15]) and the norm of the solution ψxn of equation (4.16) cannot be
uniformly bounded. The idea and basic setup for this method is shown in Figure 4.3.

With the following theorem a precise formulation for the extensibility of the field
Φs( · , x) into the interior of G is given.
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Figure 4.3: Idea and setup of the multiwave range test. From the measured data
u∞ the scattered field for one wave us

1 is reconstructed. Via the mixed
reciprocity relation the far field pattern Φ∞ from a point source in x is
established. Then calculate the density which defines Φs( · , x).

Theorem 4.3.2 (Extensibility properties). Assume that D ⊂ G. Then the field Φs( · , x)
can be analytically extended up to Rm \ G uniformly for all x ∈ Rm \ G, i.e. the L2-norms
of the densities ψx solving (4.17) on ∂G are uniformly bounded for x ∈ Rm \ G.

If D 6⊂ G, then the fields Φs( · , x) cannot be extended up to Rm \ G uniformly for all
x ∈ Rm \ G, i.e. the extensions will not be uniform in the sense that the L2-norms of the
densities ψx solving (4.17) on ∂G will not be uniformly bounded for x ∈ Rm \ G.

Proof. case D ⊂ G: By definition of Φs( · , x) as the scattered field for scattering of
Φ( · , x) by D, the field is defined in Rm \ D. The L2-norm of Φs( · , x) is uniformly
bounded for all x ∈ Rm \ G, since the boundary values Φ( · , x)|∂D for x ∈ Rm \ G
are uniformly bounded in C(∂D) and the mapping of the boundary values onto the
scattered field on ∂G ⊂ Rm \ D is bounded in any norm C2(∂G). Since the scattered
field Φs( · , x) is bounded, the corresponding density ψx is bounded in the L2 sense.

case D 6⊂ G: For a proof by contradiction assume that the fields Φs( · , x) can be
analytically extended up to Rm \ G such that the L2-norms of the fields on ∂G are
uniformly bounded for x ∈ Rm \ G. Let x0 ∈ ∂D be a point with x0 ⊂ Rm \ G.
Consider a sequence of points xn ⊂ Rm \G with xn → x0 for n→ ∞. Then, Φs( · , xn)
can be represented as a solution to the exterior Dirichlet problem in Rm \ G with
boundary values which are uniformly bounded for all n ∈ N. Thus, there is a
constant C > 0 such that

|Φs(xn, xn)| ≤ C, n ∈N, (4.18)

However, by the Theorem 2.1.15 of [35] for the Dirichlet and Neumann boundary
condition the estimate

|Φs(xn, xn)| → ∞, n→ ∞.

holds which contradicts (4.18). Thus, the assumption cannot be valid and the fields
are not analytically extensible uniformly for x ∈ Rm \ G.
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Chapter 4 Inverse problem

Remark. This implies that if all densities ψx are uniformly bounded for x ∈ Rm \ G,
i.e.

µ(G) := sup
x∈G
‖ψx‖L2(∂G) ≤ C (4.19)

with some sampling grid G ⊂ Rm \G and an appropriately chosen constant C, it can
be concluded that D ⊂ G and D 6⊂ G otherwise.

Now, using a set of test domains G(j) in the domain of observation with the index
j ∈ J and index set J a reconstruction of D can be obtained by

Drec :=
⋂

j∈J s.th.µ(G(j))≤C

G(j) . (4.20)

With an proper choice of this family of test domains in principle full reconstructions
of the unknown scatterer D can be obtained.

The numerical calculation of the densities ψx for all x ∈ G needs a big effort. To
reduce this effort an efficient implementation of this test will be described in the next
paragraph.

Efficiency and visualisation. First, the same efficient calculations through translat-
ing the test domains G(j) can be used as in the range test (4.6).

Second, in equation (4.19) the evaluation for ψx is for all x ∈ G, but this is not
necessary for the realization of the method. The following technique (see [39] for a
comparison with the above set handling approach) is used to recover the unknown
domain.

First, consider an admissible test domain G0 such that 0 6∈ G0. Usually G0 has to be
chosen such that d(0, G0) � 1. Then, use the translations (4.5) for x ∈ M, M ⊂ Rm,
the domain of observation. The set of domains

Θ := {G(x) : x ∈ M} (4.21)

is called a configuration Θ of the point x and the test domain G(x). A configuration
is determined by the choice of G0.

For the source point x and the domain G(x) the multiwave range test according to
(4.15) and (4.16) is used to calculate a density ψx. The norm ‖ψx‖ is then attributed
to the point x ∈ M. Due to the construction of the approximations the norm of ψx
becomes large if x → ∂D and D ⊂ G(x). Furthermore, the norm ‖ψx‖ is large when
D is not a subset of G(x). It will be small when x is in the exterior of D such that
D ⊂ G(x). Thus, the set M where ψx has small norm, is a subset of the exterior of D,
compare Figure 4.4 and Figure 4.5 for visualisation of this description. The decision
whether ‖ψx‖ is small or large is carried out using a cut-off constant C. The sets
Bj := Mc are calculated for several different configurations Θj, j = 1, . . . , n. Then the
intersections

Dapprox :=
⋂

j=1,...,n

Bj (4.22)
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4.3 Multiwave range test

(a) Configuration (b) Enlightened area

Figure 4.4: Configuration and area of small ‖ψx‖ in blue (Step 2 of algorithm 3). The
test domain is a circle. The evaluation point lies z below the test domain.

of the sets Bj are used to calculate an approximation to the unknown scatterer D.
A detailed computational version of the multiwave range test is given in the follow-

ing algorithm.

Algorithm 3 (Multiwave range test). Let M be some area in Rm where the search of the
unknown scatterer D takes place. The set of directions of incident plane waves is denoted by
−Λ ⊂ S. Let the far field pattern u∞( · , d) ∈ L2(Λ) be given for all d ∈ −Λ. The mul-
tiwave range test calculates a reconstruction to the unknown scatterer D by the following
steps.

1. A sampling grid M in M is chosen. Then build up a number of configurations Θj

for j = 1, . . . , n by construction of a set of admissible reference test domains G(j)
0

with boundary of class C2, such that the homogeneous interior Dirichlet problem for

G(j)
0 das only the trivial solution and 0 6∈ G(j)

0 . Further, G(j)
0 is chosen such that

ρ := d(0, G(j)
0 ) > 0 is sufficiently small. For each j = 1, . . . , n carry out the following

steps.

a) Set up the operator S∞
∂G(j)

0

: L2(∂G0) 7→ L2(Λ) defined in (2.23) and with some

α > 0 calculate the regularised inverse

R(j)
0,α = (αI + S∞,∗

∂G(j)
0

S∞
∂G(j)

0
)−1S∞,∗

∂G(j)
0

. (4.23)

b) Set up the single-layer evaluation operator

Seval : L2(∂G0) 7→ C, Sevalφ :=
∫

∂G0

Φ(0, y)φ(y) ds(y) (4.24)

41



Chapter 4 Inverse problem

(a) Configuration (b) Enlightened area

Figure 4.5: Configuration and area of small ‖ψx‖ in blue (Step 2 of algorithm 3). The
test domain is a circle. The evaluation point is on the right-hand side of
the test domain.

and calculate
W(j)

α := SevalR
(j)
0,α. (4.25)

c) For each x ∈ M calculate

v(j)(d, x) := γmW(j)
α Mxu∞( · ,−d), d ∈ Λ

with Mx defined in eq. (4.7), as an approximation to Φ∞(d, x).
d) For each x ∈ M calculate

ψ
(j)
x := R(j)

0,αMxv(j)( · , x)

and
µj(x) := ‖ψ(j)

x ‖L2(∂G0).

2. For chosen cut-off parameter C define the function

b(j, x) :=

{
0, if µ(j)(x) ≤ C,
1, if µ(j)(x) > C,

(4.26)

3. Evaluate the minimum of b(j, · ) for the configurations j = 1, . . . , n to calculate a
reconstruction of the scatterer D.

Drec :=
{

x ∈ M : min
j=1,...,n

b(j, x) = 1
}

. (4.27)

Numerical examples of the multiwave range test are shown in Section 5.5.
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Figure 4.6: Idea and setup of the singular sources method. From the measured data
u∞ the scattered field for one wave us

1 is reconstructed. Via the mixed
reciprocity relation the far field pattern Φ∞ from a point source in x is
established. Then from the density ψ calculate Φs( · , x).

4.4 Singular sources method - alternative

The chosen inverse problem which is then solved via the singular sources method is
given in the following Definition.

Definition 4.4.1 (Acoustic inverse shape reconstruction). In the setting of the acoustic
scattering (Definition 3.0.7) in the dimension m = 2 the following is given:

• many incident plane waves ui( · , d) from directions d ∈ S.

• an aperture of the measurement circle Λ ⊂ S .

• the measured far field patterns u∞( · , d) for all d ∈ Λ.

Then find the shape of the unknown boundary of D.

The idea of the singular sources method is to construct the scattered field Φs(z, z) for
an incident point source Φ( · , z) in its source point z and to use the blow-off property

|Φs(z, z)| → ∞, z→ ∂D (4.28)

to find the unknown shape ∂D.
This is an alternative approach to the singular sources method which will use

the techniques of the range test. In its original versions [34], [35] the singular sources
method is based on the point source method ([37] and [38]), i.e. an application of Green’s
formula (Theorem B.1.2) and point source approximations, to construct the function
Φs(x, z). Here the point source method will be replaced by the potential method in
combination with the range test to calculate an approximation to the function Φs(z, z)
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from the far field patterns u∞(x̂, d), x̂, d ∈ S . The analytic continuation of the field
u∞ into us and Φ∞( · , z) into Φs(z, z) is now accomplished by the potential method.

The first steps follow the equations (4.14) - (4.17) of the multiwave range test. Now,
given the field Φ∞( · , x) for some x ∈ Rm \ G the scattered field

Φs(y, x), y, x ∈ Rm \ G

can be reconstructed via an evaluation of the single-layer potential (Equation 2.21)
with density ψx. For the choice y = x = z an approximation for the function Φs(z, z)
is obtained, which is known to blow-up when z tends to the unknown boundary.
Thus, if there is any intersection D ∩ (Rm \ G), then it is possible to find a sequence
of points zn ∈ Rm \ G such that

lim
n→∞

zn = z∗ ∈ ∂D.

As the Φs will be calculated using a regularisation with regularisation parameter α it
can be denoted as Φs

α and the following property holds

Φs
α(zn, zn)→ Φs(zn, zn), α→ 0, n ∈N fixed .

This leads to: for all constants C > 0 there exists n > 0 such that for all α smaller
than some fixed α0 > 0 the following holds

|Φs
α(zn, zn)| > C , (4.29)

with chosen C. The equation (4.29) is used to find the blow-up and with that the
unknown boundary.

The algorithm for the singular sources method can be formulated in nearly the same
way as the multiwave range test algorithm. The only change is the calculation of
µj(x) in step (1d) of Algorithm 3.

Algorithm 4. Following Algorithm 3 and in step (1d) substituting ‖ψ(j)
x ‖ by

µj(x) :=
∣∣∣Sevalψ

(j)
x

∣∣∣ ,

the algorithm for the alternative version of the singular sources method is obtained.

4.5 Relation of sampling methods under consideration

Here the relations between the four methods under consideration, i.e. the range test,
the potential method, the multiwave range test and the singular sources method, are
compared. Figure 4.7 shows a simple diagram of the relations between the methods.
It can be seen, that the one-wave range test is the most simple approach. The poten-
tial method may be based on the one-wave range test. Then, the mixed reciprocity
relation (Theorem 3.0.9) might be used to formulate a multiwave range test based on
the one-wave range test and the potential method. Finally, the multiwave range test
can be extended to the singular sources method.
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One-wave
range test

(RT)

Potential
method

(PM)

Multiwave
range test
(MWRT)

Singular
sources method

(SSM)

use for

extend

extend use for

use for

extend

Figure 4.7: The Diagram shows the relation between the one-wave range test, the po-
tential method, the multiwave range test and the singular sources method
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Chapter 5

Numerics

The goal of this chapter is the numerical realization of the methods described above
in Chapter 4. As a model problem the two-dimensional case is chosen for the nu-
merical proof-of-concept study.

5.1 Simulation

First, the discretisation of the boundary ∂G0 of some reference domain G0 is chosen
as yk, k = 1, . . . , nG . A uniform discretisation of the unit circle is denoted by x̂j ∈ S,
j = 1, . . . , nS and then define

Λ :=
{

x̂j, j = 1, . . . , nS
}

.

The far field pattern u∞(x̂,−d) is given for the evaluation points x̂ ∈ Λ in all direc-
tions of incidence −d ∈ Λ, i.e. the matrix

u∞ =
(
u∞(x̂j,−dl)

)
j,l=1,...,nS

=
((

u∞(x̂j,−d1)
)

j=1,...,nS
, . . . ,

(
u∞(x̂j,−dnS)

)
j=1,...,nS

)
(5.1)

is given as data. The l-th column of u∞ contains the far field pattern for scattering of
plane waves e−iκy · dl , y ∈ Rm by the scatterer D.

A numerical quadrature rule is used for the evaluation of the single-layer boundary
operator (2.22) S∂G and for the calculation of its far field pattern (2.23) S∞

∂G. The ap-
plication of the trapezoidal quadrature rule (c.f. Kress [23]) to some parameterisation
of the curve ∂G0 leads to the matrix

S∞
∂G0

:= γm(eiκx̂j · yk sk)j=1,...,nS,k=1,...,nG .

with weights sk ∈ R. Now, for the stabilised inversion of S∞
∂G0

Tikhonov regulariza-
tion (Theorem A.4.3) is used, i.e. calculate

R0,α := (αI + S∞,∗
∂G0

S∞
∂G0

)−1S∞,∗
∂G0

for α > 0. Here ∗ denotes the complex conjugate transposed matrix and I is the
identity matrix.
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(a) Dirichlet (b) Neumann

Figure 5.1: Illustration of the total field from calculating the direct scattering problem
for a boat-like scatterer. The incident plane wave is coming from the right
with wave number κ = 3.

The single-layer potential evaluation operator Seval is represented by a row vector

Seval = (Φ(0, yk)sk)k=1,...,nG

and the potential is evaluated by

Seval ◦ϕ = ∑
k=1,...,nG

Φ(0, yk)sk ϕk

for some column vector ϕ. The multiplication operator Mx defined in (4.7) is dis-
cretized by the diagonal matrix

Mx := diag
(

e−iκx̂j · x
)

j=1,...,nS
.

The reconstruction operator Rα for translated domains G(x) is now represented by

Rα = R0,αMx.

As a basis for later comparisons of the reconstruction schemes, the numerical re-
sults for the direct problem are shown in Figure 5.1. The images show the modulus
of the total field with an incoming plane wave from the right hand side for the case of
the Dirichlet boundary condition in a) of Figure 5.1 and for the Neumann boundary
conditions in b) of Figure 5.1.

5.2 Choice of the test domains and regularisation

parameters

In principle, the choice of test domains G(j) has no limits for all methods under
consideration. To obtain positive test domains (in the sense of Algorithm 1) the test
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domains has to be chosen sufficiently large such that the scattered field can be ana-
lytically extended into their exterior, i.e. the test domains have to be large enough to
be in principle able to contain the convex scattering support.

For simple settings as considered in this work, it is sufficient to work with simple
test domains. Here, the choice of test domains are circles and the scan of the area
with the unknown domain was done by translations of one fixed circle.

For more complex situations the test domains needs to be no longer convex. This
might lead to difficult algorithmical questions, which are not covered in this work.
For complex situations, the choice carried out in this work can be seen as a first
step of a multistep algorithm (see also [35]) where in the first step the convex hull
of the scatterers under consideration are reconstructed and in a second step a more
involved choice of the test domains is used.

Both the regularisation parameter α and the cut-off constant C need to be adapted
to the particular choice of the test domain under consideration. This problem applies
to all sampling methods, compare the survey article [36]. The choice of these param-
eters can be carried out for example by simulation using a reference setting. Here,
the parameters were chosen by trial and error, which is considered to be legitimate
within a principle feasibility study for a new method. For the reconstructions, data
from the numerical simulations are used, which has approximately 1-2% numeri-
cal error. Reconstructions of the singular sources method (or probe method) with
different random errors can be found in [11], Figure 6.

The behaviour of reconstructions for different choices of C for a typical sampling
method is shown in Figure 6 of [27]. If C is chosen too large, the reconstruction is
too small. If C is chosen smaller, then the reconstruction becomes larger.

5.3 Range test

Here, the range test for one wave is studied in its numerical setting. As described in
theory of the range test (Section 4.1), the exact shape of the scatterer cannot be re-
constructed. However, it is still possible to obtain some reconstruction which reflects
basic properties of the shape of the scatterer under consideration.

The translation technique (Theorem 4.1.7) is used to speed up the calculations,
where for simplicity a circle of radius R = 4 with center x0 = (0, 0) is used as
reference test domain G0. In this case the density is calculated via

ϕx(d) := R0,αMx ◦ u∞(d) (5.2)

for all test domains G(x) and for one far field pattern u∞(d). Here, the dependence
on α is kept fixed with the value α = 10−9 for the calculations. The value of x is
chosen appropriately such that the center of G(x) takes values on a grid covering
M = [−3, 3]× [−3, 3]. Then the functional µ (4.4) can be written as

µ(x, d) =
√

ϕT
x (d) ·ϕx(d) . (5.3)

The size of the real number µ(x, d) is an indicator for the extensibility of the field
u∞(d) into the exterior of the test domain G(x).
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(a) Dirichlet boundary condition (b) Neumann boundary condition

Figure 5.2: Reconstruction of the shape with the range test with one incident plane
wave from the right with wave number κ = 3.

Numerically, a cut-off parameter is needed to decide whether the test domain is
positive or negative. The cut-off parameter C can be determined by calibration: use
a simulated far field pattern for a circle, carry out the reconstruction and choose C
appropriately to achieve reasonable reconstructions for the circle. Then, use the same
constant C for other domains as well.

The reconstruction of the shape of a boat-like scatterer with one incoming plane
wave from the right can be seen in Figure 5.2. The wave number κ is 3.

5.4 Modified potential method

Here, the steps of Algorithm 2 for the modified potential method are followed. First,
the range test is used to test whether the analytic continuation lies within a given
test domain. Then, calculate ψx(d) via (5.2) and determine µ(x, d) by (5.3). With
given cut-off constant C the test domain is evaluated for positiveness and for every
positive test domain an approximation to the scattered field us is calculated. For a
point z ∈ Rm \G(j) the fields us(z,−d1), . . . , us(z,−dnS) are approximated by the row
vector

us
α(z) := S∂G,z ◦ Rα ◦ u∞ , (5.4)

with u∞ defined in (5.1) and the row vector S∂G,z defined as

S∂G,z = (Φ(z, yk)sk)k=1,...,nG
.

For the later use in the multiwave range test as the Kirsch-Kress reconstruction step,
the calculation of the scattered field here is simultaneously carried out for ns far field
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(a) Reconstructed total field (b) Difference to the true solution

Figure 5.3: Field reconstructions with the modified method of Kirsch-Kress in the
case of Dirichlet boundary conditions for a boat-like scatterer with an
incident plane wave coming from the right with κ = 3. The test domains
have a radius of 4.

patterns, or one if its the potential method itself. A simultaneous evaluation of the
functional for different z ∈ Rm \ G can be obtained by definition of the matrix

S∂G :=
(
S∂G,zl

)
l=1,...,nl

.

with nl points in M. Then, in (5.4) S∂G,z needs to be replaced by S∂G which then leads
to the matrix which contains the field reconstructions

us
α := S∂G ◦ Rα ◦ u∞ , (5.5)

with nl points z1, . . . , znl (rows) for each d ∈ Λ (columns). Finally, the scattered fields
for all positive test domains are combined as described in (4.11).

Examples of the modified Kirsch-Kress method can be found in Figure 5.3 and Fig-
ure 5.4 for Dirichlet and Neumann case respectively. In both cases the test domains
are circle with radius of 4 and are evaluated with 100 points on the boundary. The
sampling grid has 100× 100 points.

5.5 Multiwave range test

Here, the numerical realization of the multiwave range test according to Algorithm 3

is described. Using us
α(x) given in (5.4), the numerical evaluation of the density ψx is

carried out by

ψx = γmRα ◦ (us
α(x))T

= γmRα ◦ (S∂G,x ◦ Rα ◦ u∞)T . (5.6)
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(a) Reconstructed total field (b) Difference to the true solution

Figure 5.4: Field reconstructions with the modified method of Kirsch-Kress in the
case of Neumann boundary conditions for a boat-like scatterer with an
incident plane wave coming from the right with κ = 3. The test domains
have a radius of 4.

Note that using the same Rα twice is only possible if the number of incoming waves
is equal to the number of farfield discretisation points. When they are different, also
two different matrix operators are necessary. The norm evaluation is used as

µ(x) =
√

ψT
x ·ψx .

Finally, proceed as in equations (4.26) to build up a boolean function b(j, x) for x
in a sampling grid M and then use the minimum over all b(j, x) (cf. 4.27) to find a
reconstruction to the unknown shape of the scatterer.

In Figure 5.5 reconstructions of an boat-like scatterer are shown. 100 incident plane
waves are used with wave number κ = 3. The test domains have 100 evaluation
points on the boundary and the number of configurations Θ were 20.

5.6 Singular sources method - alternative

Finally, the numerical realization of the new approach to the singular sources method
is described. The reconstruction of Φs(z, z) is based on equation (5.6). An application
of the potential evaluation can be used to calculate

Φs
α(z, z) := γmRα ◦ (S∂G,x ◦ Rα ◦ u∞)T

as an approximation to the scattered field Φs(z, z) for an incident point source with
source point z. The value of |Φs(z, z)| can be used according to (4.28) to detect the
shape of ∂D.

Reconstructions Φs
α(z, z) of an boat-like obstacle with the method are shown in

Figure 5.6. The parameters were chosen as κ = 3 and there were 100 incident plane
waves and measurement points inM.
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(a) Dirichlet boundary condition (b) Neumann boundary condition

Figure 5.5: Reconstruction of the shape with the multiwave range test with 100 inci-
dent plane waves with κ = 3, 100 evaluation points and 20 configurations.

(a) Dirichlet boundary conditions (b) Neumann boundary conditions

Figure 5.6: Reconstruction of the shape with the singular sources method for a boat
shaped domain. Here κ = 3 and 100 incident waves and measurement
points are used.
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Part II

Electromagnetic scattering
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In this part the focus lies on electromagnetic scattering in a two-layered media with
application to mine detection, especially with handheld detectors.

The part is, like the acoustic part, organised in four chapters. The first chapter
covers the setting and tools (Chapter 6), the second chapter focuses on the direct
problem (Chapter 7), the third is about the inverse problem (Chapter 8) and finally
the fourth describes the numerical implementation (Chapter 9) and gives examples
of the direct and inverse problem.
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Chapter 6

Setting and tools

In this chapter the setting and tools for the electromagnetic scattering problem under
consideration are described. In Section 6.1 the pieces for the scattering problem are
collected. Further, the necessary tools for the theory for the forward and the inverse
problem are summed up in Section 6.2.

6.1 Definition

First, the physical setting and its notation for the domains under consideration is
introduced.

Definition 6.1.1 (Domains). Assume D3 ⊂ D2 to be a bounded obstacle of class C2

with connected complement. In the following, for simplicity, D is written for D3
most of the time. Further, let ν be the outward unit normal to D and the upward
unit normal to S.

The free space without the obstacle is denoted as D0 := R3 \ D. Let D1 = D1 :=
{x = (x1, x2, x3) ∈ R3 : x3 > 0} be the upper half-space and D2 := {x ∈ R3 : x3 < 0}
the lower half-space. The lower halfspace without the obstacle is written as D2 :=
D2 \ D. Furthermore S1 := {x ∈ R3 : x3 = 0} denotes the interface between D1 and
D2. Summarising, the case j = 0 is used for the free space, j = 3 denotes the domain
of a penetrable obstacle and j = 1, 2 are used for the two half-spaces.

In the framework of mine detection this setting is illustrated in Figure 6.1. Consider
the propagation of electromagnetic waves with frequency ω in a two-layered medium
consisting of the two isotropic half-spaces Dj with electric permittivity εj, magnetic per-
meability µj and electric conductivity σj for j = 0, 1, 2, 3. The SI units of these parameters
are [ω] = 1/s, [ε] = As/Vm, [µ] = Vs/Am and [σ] = A/Vm.

6.1.1 Time-dependent and time-harmonic Maxwell equations

An electromagnetic wave is described by the electric field Ej = [V/m] and the mag-
netic field Hj = [A/m]. These quantities satisfy the Maxwell equations

curl Ej + µj
∂Hj

∂t
= 0, curlHj − εj

∂Ej

∂t
= σjEj . (6.1)
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S

D1

D2D

Figure 6.1: Common setting for mine detection with a handheld detector.

The electric and magnetic fields can be viewed as a superposition of time-harmonic
fields. This approach is applicable if the scattering object does not move in time.
Time-harmonic fields of frequency ω have the form

Ej,ω(x, t) = <
{(

εj +
iσj

ω

)−1/2

Ej(x)e−iωt

}
,

Hj,ω(x, t) = <
{

µ−1/2
j Hj(x)e−iωt

}
.

(6.2)

A general pulse can be modelled by the Fourier transform and yields

Ej(x, t) = <
{∫ ∞

−∞

(
εj +

iσj

ω

)−1/2

Ej,ω(x)e−iωt dω

}
,

Hj(x, t) = <
{∫ ∞

−∞
µ−1/2

j Hj,ω(x)e−iωt dω

}
,

(6.3)

where it is assumed that Ej,ω and Hj,ω are square integrable and sufficiently smooth
with respect to ω, i.e. the change in time is small. In these cases the Maxwell equa-
tions (6.1) are reduced to the symmetric time-harmonic Maxwell equations

curl Ej − iκHj = 0

curl Hj + iκEj = 0
(6.4)

for the field Ej = Ej,ω and Hj = Hj,ω, where the wave number ([κ] = 1/m) is defined
as

κj =

√(
εj +

iσj

ω

)
µjω2 (6.5)

with the complex square root chosen such that =κj ≥ 0. The wave number is as-
sumed to be a complex number in every domain with the exception of D1, where it
can be real or complex.
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This time-harmonic representation is used throughout this work, which by the
Fourier transform covers a full time-dependent scattering process.

The electric field Ej and the electric flow density Dj as well as the magnetic field
Hj and the magnetic flow Bj are connected by the material equations

Dj = εjEj, Bj = µjHj ,

but which are not further used in the scope of this work.
The following Theorem connects the cartesian components of the time harmonic

Maxwell equations to the Helmholtz equation, which is one step to be able to use
the results for the Helmholtz equation also in the framework of time-harmonic elec-
tromagnetics. The other step will be to show the componentwise equivalence of the
radiation conditions.

Theorem 6.1.2 (Vector Helmholtz equation). Let the fields Ej, Hj be solutions to the time
harmonic Maxwell equations (6.4). Then E and H are divergence free and satisfy the vector
Helmholtz equation

∆Ej + κ2
j Ej = 0 and ∆Hj + κ2

j Hj = 0 . (6.6)

Conversely, let the divergence free field Ej or Hj be a solution to the vector Helmholtz
equation. Then Ej and Hj := curl Ej/iκ or Hj and Ej := − curl Hj/iκ satisfy the Maxwell
equations (6.4).

Proof. Using the vector identity

curl curl Ej = −∆Ej + grad div Ej (6.7)

and the time harmonic Maxwell equations in

∆Ej + κ2Ej

leads to

∆Ej + κ2Ej = −iκ curl Hj −
1
iκ

grad div curl Hj + κ2Ej.

The second term trivially is zero. Again using the Maxwell equations to replace the
first term gives

∆Ej + κ2Ej = −κ2Ej + κ2Ej = 0.

For the other direction use (6.7) on the first equation of (6.6). Then with Hj :=
curl Ej/iκ (6.7) becomes

curl H + iκE = 0

This proves the vector Helmholtz equation for Ej. For Hj the proof is analogously.
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6.1.2 Transmission conditions

For the layered case the fields require the transmission conditions at the air-soil inter-
face S1 to be

ν× E1 = aEν× E2, ν× H1 = aHν× H2 on S1 , (6.8)

with constants aE, aH ∈ C \ {0}. For the applications in mine detection D1 is air
which is non-conducting, i.e. σ1 = 0 and consequently =κ1 = 0. However, in D2
there is soil with a conductivity of σ2 > 0 and therefore =κ2 > 0. The constants aE
and aH are then given by

aE =
√

ε1

ε2 + iσ2
ω

, aH =
√

µ1

µ2
.

These transmission conditions are a consequence of the symmetric form (6.2) of the
harmonic time dependence and the physical requirements, which is that the conti-
nuity of the tangential components of the electric field E and the magnetic field H
across the interface is required.

6.1.3 Boundary condition

Incident and scattered electric or magnetic fields, respectively, are interconnected by
boundary conditions. For perfectly conducting scatterers the tangential component
ν× E of the total electric field E has to vanish on the boundary, i.e. the metallic object
D is described by the perfect conductor boundary condition

ν× E = 0 on ∂D, (6.9)

which is a reasonable approximation for highly-conducting metals. Instead of the
electric field E the boundary conditions always can be written in terms of H through
the use of the Maxwell equations (6.4). The more general case of non-perfectly con-
ducting obstacles is modeled via a transmission boundary condition

ν(x)× Ej(x)− bEν(x)× E3(x) = 0

ν(x)× Hj(x)− bHν(x)× H3(x) = 0
(6.10)

for j = 0, 2 with constants bE and bH on the boundary ∂D of the obstacle. Due to the
continuity of the tangential components across the boundary the constants are given
by

bE =

√√√√ε0 + iσ0
ω

ε3 + iσ3
ω

, bH =
√

µ1

µ3
.

for the full space transmission problem and

bE =

√√√√ε2 + iσ2
ω

ε3 + iσ3
ω

, bH =
√

µ2

µ3
.

for the layered space transmission problem.
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6.1.4 Radiation condition and Rellich

To characterise physically relevant solutions, in view of the real wave number κ1 the
scattered field Es

1, Hs
1 is required to satisfy the Silver-Müller radiation condition

lim
|x|→∞

(Hs
1 × x− |x| Es

1) = 0 (6.11)

uniformly for all directions x̂ = x ‖x‖ in the upper half-space D1 or in R3 \D for the
full space case. An alternative form of the radiation condition is

x
|x| × H1(x) + E1(x) = o

(
1
|x|

)
, x → ∞ (6.12)

and

E1(x) = O
(

1
|x|

)
, x → ∞ (6.13)

uniformly for all directions in the upper half-space D1 or in R3 \ D . For x ∈ D2 and
the wave number κ2 with =κ2 > 0 explicitly assume an exponential decay

|Es
2(x)|+ |Hs

2(x)| ≤ M exp (−=κ2 |x|) (6.14)

with some constant M > 0.
Solutions to the Maxwell equations which fulfil this radiation condition are called

radiating solutions.

Theorem 6.1.3 (Equivalence of radiation conditions). The Silver-Müller radiation con-
dition is equivalent to the Sommerfeld radiation condition for the cartesian components of
solutions to the Maxwell equations.

Proof. Express the solutions to the Maxwell equations as magnetic and electric dipole
distributions, as implied through the Stratton-Chu formulas (Theorem B.2.1). With
straightforward calculations it can be shown, that the cartesian components of the
magnetic and electric dipole satisfies the Sommerfeld radiation condition uniformly
for all y ∈ ∂D. Then, from the Stratton Chu formulas, the cartesian components of
solutions to the Maxwell equations satisfy the Sommerfeld radiation condition.

For the other direction, start with looking at the asymptotic

curl aΦ(x, y)× x + x div aΦ(x, y)− ik |x| aΦ(x, y) = O
(
|a|
|x|

)
, x → ∞

uniformly for all directions x
|x| and all y ∈ ∂D. The same asymptotic holds true for

∂Φ(x, y)/∂ν(y) instead of Φ(x, y). Then with Green’s formula (Theorem B.1.2) and
the vector Helmholtz equation (Theorem 6.1.2) the solutions to the Maxwell equa-
tions which satisfy the Sommerfeld radiation condition componentwise also satisfy
the Silver-Müller radiation condition. This completes the proof.

Remark. Together with the vector Helmholtz equation (Theorem 6.1.2) this opens up
the possibility of using results for the Helmholtz equation also in the electromagnetic
framework under consideration.
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Chapter 6 Setting and tools

With the condition of radiating solutions Rellich’s Lemma (Lemma 2.1.4) and its
extension (Lemma 3.1.2) can be transfered from the acoustic case to the electromag-
netic case.

Lemma 6.1.4 (Extended Rellich). Assume that the bounded set D is the open complement
of an unbounded domain and let E, H ∈ C1(R3 \D) ∩ C(R3 \D) be a radiating solution to
the time harmonic Maxwell equations satisfying

<
∫

∂D
ν× E ·H ds ≤ 0 .

Then E = H = 0 in R3 \ D.

Proof. Let BR := {x ∈ R3 : |x| < R} with radius R > 0 be a ball. Then the Silver-
Müller radiation condition (6.11) implies

lim
R→∞

∫
∂BR

{
|H × ν|2 + |E|2 − 2<

(
ν× E ·H

)}
ds (6.15)

= lim
R→∞

∫
∂BR

|H × ν− E|2 ds = 0 .

Using the Gauss divergence theorem in the domain BR \ D leads to∫
BR\D

div(E× H) dx =
∫

∂BR

ν× E ·H ds−
∫

∂D
ν× E ·H ds . (6.16)

Then, with the vector-identity

div(E× H) = curl E ·H − E · curl H (6.17)

and the Maxwell equations, (6.16) is transformed to∫
∂BR

ν× E ·H ds = i
∫

BR\D

{
κ |H|2 − κ |E|2

}
dx

+
∫

∂D
ν× E ·H ds

(6.18)

Then, inserting the real part of (6.18) into (6.15) leads to

lim
R→∞

∫
∂BR

{
|H × ν|2 + |E|2

}
ds = 2<

∫
∂D

ν× E ·H ds . (6.19)

With the assumption of the Theorem all terms on the left hand side of (6.19) individu-
ally have to tend to zero. Then, from the vector Helmholtz equations (Theorem 6.1.2)
and the equivalence of the radiation conditions (Theorem 6.1.3) the assumption of
Rellichs lemma (2.1.4) for the Helmholtz equation is satisfied for the cartesian com-
ponents of the fields E, H. Then apply Rellichs lemma to complete the proof.

6.2 Solution tools

In this section the fundamental solution and Green’s tensors for the setting at hand
are developed and analysed. Further, following Huygens principle, the surface po-
tentials are introduced, which form the basis of the solution theory.
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G1

G3

G2

G3

G0

Figure 6.2: Scheme where the different Green’s tensors are valid. Left: layered case.
Right: free space.

6.2.1 Fundamental solution and Green’s tensor

A central tool for the description and solution of electromagnetic scattering is the fun-
damental solution of the Helmholtz equation and the Green’s tensor. In this work the
notation GE,j, GH,j, j = 0, 1, 2, 3 is used for the Green’s tensor for obstacle scattering
in all background cases whereas the case j = 0 describes the free space (x ∈ R \ D),
j = 1 denotes the upper halfspace (e.g. air)(x ∈ D1), j = 2 denotes the lower halfs-
pace (e.g. clay) of the layered medium (x ∈ D2) and j = 3 is used for a penetrable
object (x ∈ D3). The areas for which the Green’s tensors are used is also shown in
Figure 6.2.

The Green’s tensor for both the free space and the layered medium has to be con-
structed in such a way that it gives the solution for a point source (or dirac function).
Here, the fundamental solution to the Helmholtz equation (compare Definition 2.2.1)
in Dj, j = 0, 1, 2, 3 is denoted by

Φj(x, y) =
1

4π

eiκj|x−y|

|x− y| , x 6= y.

When used without index j the wave number κ is not fixed to a specific value.

Definition 6.2.1 (Green’s tensor, free space). For all x, y ∈ Dj with j = 0, 3 let the
Green’s tensor for the free space defined by

GE,j(x, y)p := curlx Φj(x, y)p

GH,j(x, y)p :=
1

iκj
curlx curlx Φj(x, y)p ,

(6.20)

for all polarisations p ∈ R3 and j = 0, 3, which corresponds to an magnetic dipole.

Theorem 6.2.2 (properties of free space Green’s tensor). The pairs of corresponding
columns of the Green’s tensor for free space GE,j and GH,j for j = 0, 3 satisfy the Maxwell
equations (6.4) in R3 \ {y} and the Silver-Müller radiation conditions (6.11).
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Proof. The Maxwell equations are satisfied directly from the definition of the tensor
and the vector Helmholtz equation (Theorem 6.1.2). The equivalence of the radi-
tion conditions then proof that the Green’s tensor satisfy the Silver-Müller radiation
condition.

Definition 6.2.3 (Green’s tensor, layered media). For all x ∈ Dj with j = 1, 2 and
fixed y ∈ DL with L = 1, 2 let the Green’s tensor for a two layered medium be given
as

GE,j(x, y)p :=

{
curlx Φj(x, y)p + G̃E,j(x, y)p , for j = L
G̃E,j(x, y)p , for j 6= L

GH,j(x, y)p :=
1

ik j
curlx GE,j(x, y)p,

(6.21)

for all polarisations p ∈ R3 and the smooth matrix G̃E,j, which is derived in Sec-
tion 6.2.2. The GE,j, GH,j have a singularity of the form of the electromagnetic field of
a magnetic dipole located in the source point y ∈ DL, L = 1, 2.

Theorem 6.2.4 (properties of layered space Green’s tensor). The pairs of corresponding
columns of the Green’s tensor for layered space GE,j and GH,j with j = 1, 2 satisfy the
Maxwell equations (6.4) in R3 \ {y}, the Silver-Müller radiation conditions (6.11), the decay
condition (6.14) and the transmission conditions (6.8).

Remark. The Maxwell equations are satisfied directly from the definition of the ten-
sor and the vector Helmholtz equation (Theorem 6.1.2). The equivalence of the radi-
tion conditions then proof that the Green’s tensor satisfy the Silver-Müller radiation
condition. The decay condition and the transmission condition is fulfilled via the
construction of the Green’s tensor derived in Section 6.2.2.

Remark. Since (6.21) has the same singularity as (6.20) and only differs with a smooth
matrix, it follows that all the regularity results for the surface potentials and bound-
ary integral operators (see Definition 6.2.11, Definition 6.2.12 and [8]) can be proven
analogously for the layered medium case.

6.2.2 Derivation of the Green’s tensor

For the construction of the Green’s tensor a simplified version of the approach in [33]
is used here. The derivation is written up in the submitted paper [10]. In [33] the
Green’s tensor is constructed for an arbitrary number of layers and uses a slightly
different ansatz which turns out to be more complicated in the end. The approach
described here is also more systematic than the presentation in [28] that is based on
Hertz vectors and that provides only the tensor for the magnetic fields.

Recall the definition of the Green’s tensor (Definition 6.2.3). The main idea for its
construction is to reduce the transmission problem for the Maxwell equations to a
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transmission problem for the Helmholtz equation. To this end denote the canonical
unit vectors in R3 by e1, e2 and e3 and begin with the following lemma.

Lemma 6.2.5. For j = 1, 2, let uj and vj satisfy the Helmholtz equations with wave numbers
κj in Dj and the transmission conditions

κ1u1 = aHκ2u2,
∂u1

∂ν
= aE

∂u2

∂ν
on S1 (6.22)

and

v1 = aEv2,
1
κ1

∂v1

∂ν
=

aH

κ2

∂v2

∂ν
on S1. (6.23)

Then the fields

Ej := curl curl{uj e3}+ curl{vj e3}, Hj :=
1

ik j
curl Ej (6.24)

satisfy the Maxwell equations (6.4) with wave numbers κj in Dj and the transmission condi-
tions (6.8)

ν× E1 = aE ν× E2, ν× H1 = aH ν× H2 on S1. (6.25)

Proof. Note for the proof that v on S1 is identical to e3. From

curl curl{uj e3} = κ2
j uj e3 + grad{grad uj · e3} (6.26)

conclude that

ν× curl curl{uj e3} = ν×Grad
∂uj

∂ν
on S1.

Furthermore, using the vector identity curl(Uv) = U curl v + (grad U) × v the fol-
lowing holds

ν× curl{vj e3} = ν× {grad vj × ν} on S1.

Now the last two identities and

Hj = −iκj curl{uj e3}+
1

ik j
curl curl{vj e3} (6.27)

immediately ensure that (6.22) and (6.23) imply that the transmission conditions
(6.25) are satisfied.

Now introduce notations and basic functions along with their properties for the
remainder of this derivation for the Green’s tensor. For x = (x1, x2, x3) and y =
(y1, y2, y3) in R3 denote

r :=
√

(x1 − y1)2 + (x2 − y2)2

and for λ ∈ R set
α :=

√
λ2 − κ2
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with <α > 0. Further abbreviate e⊥` = e3 × e`, ` = 1, 2, that is, e⊥1 = e2 and e⊥2 = −e1,
also {x− y}t = (x1 − y1, x2 − y2, 0) and introduce

Ψ`(x, y) := sgn(x3 − y3) e−α|x3−y3| e` · {x− y} J1(λr)
r

,

χ`(x, y) :=
1
α

e−α|x3−y3| e⊥` · {x− y} J1(λr)
r

,

Θ(x, y) :=
λ

α
e−α|x3−y3| J0(λr),

(6.28)

where J0 and J1 denote the Bessel function (B.12) of order zero and one, respectively.
Following the proof of the Sommerfeld identity (Theorem B.3.6) the function Θ solve
the Helmholtz equation with wave number κ. From (B.11) f (κr) can be identified
with J1(λr) and e⊥` · {x− y}/r and e` · {x− y}/r form the two dimensional spherical
harmonics of order 1, therefore the functions Ψ` and χ` solve the Helmholtz equation
in 2D again from following the proof of the Sommerfeld identity (Theorem B.3.6).

For the following straightforward calculations the vector identity

curl(Uv) = U curl v + grad U × v

with scalar U and vector v is used. Further, using the product rule, the Bessel dif-
ferential equation (Theorem B.3.1) for J0 and the recurance relation J′0 = −J1 (from
(B.15) and (B.16)) leads to

d
dr

J1(λr)
r

=
λJ0(λr)

r
− 2

J1(λr)
r2 .

Then, the following holds true

grad
(

J1(λr
r

)
=

(x− y)
r

d
dr

J1(λr)
r

=
(x− y)

r2

(
λJ0(λr)− 2

J1(λr)
r

)
.

Now, using the three above equations for calculating the curls of (6.28) leads to

curl{Ψ` e3}(x, y) = sgn(x3 − y3) e−α|x3−y3|
(
− J1(λr)

r
e⊥`

+e` · {x− y}
(

λJ0(λr)
r2 − 2

J1(λr)
r3

)
{x− y} × e3

)
.

(6.29)

and

curl curl{Ψ` e3}(x, y) = e−α|x3−y3|
(
−α

J1(λr)
r

e`

+ λ2 sgn(x3 − y3) e` · {x− y} J1(λr)
r

e3

−α e` · {x− y}
(

λJ0(λr)
r2 − 2

J1(λr)
r3

)
{x− y}t

)
,

(6.30)
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as well as

curl{χ` e3}(x, y) =
e−α|x3−y3|

α

(
J1(λr)

r
e`

+e⊥` · {x− y}
(

λJ0(λr)
r2 − 2

J1(λr)
r3

)
{x− y} × e3

) (6.31)

and

curl curl{χ` e3}(x, y) = sgn(x3 − y3) e−α|x3−y3|
(
− J1(λr)

r
e⊥`

+
λ2

α
sgn(x3 − y3) e⊥` · {x− y} J1(λr)

r
e3

−e⊥` · {x− y}
(

λJ0(λr)
r2 − 2

J1(λr)
r3

)
{x− y}t

)
.

(6.32)

For Θ(x, y) and using J′0 = −J1 (Theorem B.3.3) leads to

curl{Θ e3}(x, y) =
λ2

α
e−α|x3−y3| J1(λr)

r
e3 × {x− y}. (6.33)

and

curl curl{Θ e3}(x, y) = e−α|x3−y3|
(

λ3

α
J0(λr) e3

+λ2 sgn(x3 − y3)
J1(λr)

r
{x− y}t

)
.

(6.34)

Note that (6.29)–(6.34) remains valid if everywhere in (6.28)–(6.34) x3− y3 is replaced
by x3.

Now, a representation for the curl of the fundamental solution Φe` can be formu-
lated.

Lemma 6.2.6 (Representation of the fundamental solution). For ` = 1, 2, 3 and x3 6= y3
the following equations holds true

curl{Φje`} = curl{F`e3}+ curl curl{G`e3} (6.35)
1
iκ

curl curl{Φje`} =
1
iκ

curl curl{F`e3} − iκ curl{G`e3} (6.36)

where the functions F` and G` are given by

F`(x, y) = sgn(x3 − y3)
e` · {x− y}

4πr

∫ ∞

0
e−α|x3−y3| J1(λr) dλ,

G`(x, y) =
e⊥` · {x− y}

4πr

∫ ∞

0

1
α

e−α|x3−y3| J1(λr) dλ

(6.37)

for ` = 1, 2 and

F3(x, y) =
1

4π

∫ ∞

0

λ

α
e−α|x3−y3| J0(λr) dλ,

G3(x, y) = 0.
(6.38)
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Proof. First, the case for (6.35) is proven. The proof rests on the Sommerfeld integral
(Theorem B.3.6)

Φj(x, y) =
1

4π

∫ ∞

0

λ

α
e−α|x3−y3| J0(λr) dλ (6.39)

that is valid for x3 6= y3. The case ` = 3 is obvious from (6.39). For the cases ` = 1, 2
add (6.29) and (6.32) to get

w := e−α|x3−y3|
(

λ2

α
e⊥` · {x− y} J1(λr)

r
e3 − λ sgn(x3 − y3)J0(λr)e⊥`

)
(6.40)

On the other hand for ` = 1, 2 calculate

curl{Θ e`}(x, y) = e−α|x3−y3|
(
− λ sgn(x3 − y3) J0(λr) e⊥`

+
λ2

α
e⊥` · {x− y} J1(λr)

r
e3

)
.

(6.41)

Equations (6.40) and (6.41) are the same and thus can be extended to (6.35). Now, the
case of (6.36) follows immediately from (6.35) since the terms individually fulfil the
Maxwell equation from (6.28) and are divergence free because of the curls.

Denote by Fj,` and Gj,` the functions introduced by (6.37) and (6.38) with κ and α

replaced by κj and αj, respectively. First consider the case where y ∈ D1. In view of
Lemma 6.2.5 it suffices to construct functions Vj,` and Uj,` for j = 1, 2 and ` = 1, 2, 3
such that

v1,` := V1,` + F1,`, v2,` := V2,` and u1,` := U1,` + G1,`, u2,` := U2,`

satisfy the Helmholtz equation with wave numbers κj in Dj \ {y}, the radiation con-
dition and the transmission conditions (6.22) and (6.23). Then for j = 1, 2 the columns
of the electric Green’s tensor are given through

GE,1e` = curl{Φ1e`}+ G̃E,1e`, GE,2e` = G̃E,2e`,

with
G̃E,je` = curl curl{Uj,`e3}+ curl{Vj,`e3} . (6.42)

Analogously the columns of the magnetic tensor are given by

GH,1e` =
1

iκj
curl curl{Φ1e`}+ G̃H,1e`, GH,2e` = G̃H,2e`,

with
G̃H,je` = −iκj curl{Uj,`e3}+

1
iκj

curl curl{Vj,`e3} (6.43)

The ansatz for the solutions are given in the form

Vj,`(x, y) = sgn(x3)
1

4π

e` · {x− y}
r

∫ ∞

0
Aj(λ)e−αj|x3|−α1y3 J1(λr) dλ (6.44)
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and

Uj,`(x, y) =
1

4π

e⊥` · {x− y}
r

∫ ∞

0

Bj(λ)
αj

e−αj|x3|−α1y3 J1(λr) dλ (6.45)

for ` = 1, 2 and

Vj,3(x, y) =
1

4π

∫ ∞

0

λCj(λ)
αj

e−αj|x3|−α1y3 J0(λr) dλ (6.46)

and Uj,3 = 0 with unknown continuous and integrable functions Aj, Bj and Cj. In
view of Lemma 6.2.6 and the vector Helmholtz equation the functions vj,` and uj,`
fulfil the Helmholtz equation. Then, Lemma 6.2.5 can be used. The boundary condi-
tions of the lemma lead to inhomogeneous 2× 2 linear systems for the coefficients.
For vj,`, j = 1, 2 this system is given as

A1 − e−α1y3 = −aE A2
α1

κ1
(−A1 − e−α1y3) = −α2aH

κ2
A2

with the solution

A1 =
aHα2κ1 − aEα1κ2

aHα2κ1 + aEα1κ2
e−α1y3 , A2 =

2α1κ2

aHα2κ1 + aEα1κ2
e−α1y3 . (6.47)

For uj,`, j = 1, 2 the linear system has the form

κ1

α1
(B1 + e−α1y3) =

κ2aH

α2
B2

−B1 + e−α1y3 = aEB2

and the solution turns out to be

B1 =
aHκ2α1 − aEκ1α2

aHκ2α1 + aEκ1α2
e−α1y3 , B2 =

2κ1α2

aHκ2α1 + aEκ1α2
e−α1y3 . (6.48)

For vj,3 the system is

1
α1

(C1 + e−α1y3) =
aE

α2
C2

1
κ1

(−C1 + e−α1y3) =
aH

κ2
C2

with the solution

C1 = − aHα2κ1 − aEα1κ2

aHα2κ1 + aEα1κ2
e−α1y3 , C2 =

2α2κ2

aHα2κ1 + aEα1κ2
e−α1y3 . (6.49)
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Theorem 6.2.7 (Green’s tensor). For y ∈ D1 the columns of the electric field in the Green’s
tensor are given by

G̃E,j(x, y)e` =
e⊥` · {x− y}

4πr
e3

∫ ∞

0
Bj(λ)

λ2

αj
e−αj|x3| J1(λr) dλ

− sgn(x3)
1

4πr
e⊥`
∫ ∞

0
[Aj(λ) + Bj(λ)]e−αj|x3| J1(λr) dλ

+ sgn(x3)
e` · {x− y}

4πr
{x− y} × e3

∫ ∞

0
Aj(λ)e−αj|x3|

(
λJ0(λr)

r
− 2

J1(λr)
r2

)
dλ

− sgn(x3)
e⊥` · {x− y}

4πr
{x− y}t

∫ ∞

0
Bj(λ)e−αj|x3|

(
λJ0(λr)

r
− 2

J1(λr)
r2

)
dλ

for ` = 1, 2 and

G̃E,j(x, y)e3 =
1

4πr
e3 × {x− y}

∫ ∞

0
Cj(λ)

λ2

αj
e−αj|x3| J1(λr) dλ .

The columns of the Green’s tensor for the magnetic field are given by

G̃H,j(x, y)e` = sgn(x3)
e⊥` · {x− y}

4πiκjr
e3

∫ ∞

0
Aj(λ)λ2 e−αj|x3| J1(λr) dλ

− 1
4πiκjr

e⊥`
∫ ∞

0

1
αj

[α2
j Aj(λ)− κ2

j Bj(λ)]e−α|x3| J1(λr) dλ

+
e` · {x− y}

4πiκjαjr
{x− y} × e3

∫ ∞

0

κ2
j

αj
Bj(λ)e−αj|x3|

(
λJ0(λr)

r
− 2

J1(λr)
r2

)
dλ

−
e⊥` · {x− y}

4πiκjr
{x− y}t

∫ ∞

0
αj Aj(λ)e−αj|x3|

(
λJ0(λr)

r
− 2

J1(λr)
r2

)
dλ

for ` = 1, 2 and

G̃H,j(x, y)e3 = sgn(x3)
1

4πiκjr
{x− y}t

∫ ∞

0
Cj(λ) λ2 e−α|x3| J1(λr) dλ

+
1

4πiκjαj
e3

∫ ∞

0
Cj(λ)

λ3

αj
e−α|x3| J0(λr) dλ

Proof. From the ansatz functions Vj,`(6.44), Uj,` (6.45) and V3,` (6.46) the tensor for
the electric field follows from (6.29), (6.32) and (6.33) and the tensor for the magnetic
field follows from (6.30), (6.31) and (6.34).

Finally consider the case where y ∈ D2. Here construct functions Vj,` and Uj,` for
j = 1, 2 and ` = 1, 2, 3 such that

v1,` := V1,`, v2,` := V2,` + F1,` and u1,` := U1,`, u2,` := U2,` + G1,`
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satisfy the Helmholtz equation with wave numbers κj in Dj \ {y}, the radiation con-
dition and the transmission conditions (6.22) and (6.23). Then the Green’s tensor is
given through

GE,1e` = G̃E,1e`, GE,2e` = curl{Φ1e`}+ G̃E,2e`,

with G̃E,j as in (6.42). The corresponding linear systems lead to the coefficients

A1 =
2α2κ1aEaH

aHα2κ1 + aEα1κ2
eα2y3 , A2 = − aHα2κ1 − aEα1κ2

aHα2κ1 + aEα1κ2
eα2y3 (6.50)

replacing (6.47),

B1 =
2κ2α1aHaE

aHκ2α1 + aEκ1α2
eα2y3 , B2 = − aHκ2α1 − aEκ1α2

aHκ2α1 + aEκ1α2
eα2y3 . (6.51)

replacing (6.48) and

C1 =
2α1κ1aHaE

aHα2κ1 + aEα1κ2
eα2y3 , C2 =

aHα2κ1 − aEα1κ2

aHα2κ1 + aEα1κ2
eα2y3 (6.52)

replacing (6.49). Note that this corresponds to replacing e−α1y3 by eα2y3 and inter-
changing the roles of the two half spaces.

6.2.3 Surface potentials

Like in the acoustic case, surface potentials are introduced following Huygens prin-
ciple. In the 3D environment needed for electromagnetics densities which are tan-
gential to a boundary are needed. This spaces are defined and the question how a
gradient and a divergence can be understood for boundaries is answered.

Definition 6.2.8 (surface gradient/divergence). Let

x(u) = (x1(u1, u2), x2(u1, u2), x3(u1, u2))

be a parametric representation of a surface patch of ∂D. Then the surface gradient is
given by

Grad ϕ =
2

∑
i,j=1

g−1
ij

∂ϕ

∂ui

∂x
∂uj

with the first fundamental matrix of differential geometry

gij :=
∂x
∂ui
· ∂x

∂uj
i, j = 1, 2 .

An integrable tangential vector field a has a weak surface divergence if there exists an
integrable scalar denoted by (Div a) such that∫

∂D
ϕ Div a ds = −

∫
∂D

Grad ϕ · a ds

is satisfied for all ϕ ∈ C1(∂D). Then, the identity

Div(ν× Ej) = −ν · curl Ej

holds true.
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The space of tangential fields which are continuous are denoted by Ct(∂D). Then,
let the normed spaces of tangential fields possessing a surface divergence be defined
as

Ct,d(∂D) := {a ∈ Ct(∂D) : Div a ∈ C(∂D)}
equipped with the norm

‖a‖Ct,d
:= ‖a‖∞ + ‖Div a‖∞.

Let the space of Hölder continuous tangential vector fields to ∂D denoted by
C0,α

t (∂D). Then the subspace of all fields possessing a Hölder continuous surface
divergence is defined as the normed space

C0,α
t,d (∂D) :=

{
a ∈ C0,α

t (∂D) : Div a ∈ C0,α(∂D)
}

equipped with the norm

‖a‖C0,α
t,d

:= ‖a‖0,α + ‖Div a‖0,α.

Definition 6.2.9 (Vector surface Potentials). Let a ∈ L1(∂D) be an integrable vector
field on the boundary ∂D. Then, the integral

A(x) :=
∫

∂D
Φ(x, y)a(y) ds(y), x ∈ R3 \ ∂D

is called the vector surface potential with density a.

In the same way the jump relations are extended from the scalar to the vector case.

Theorem 6.2.10 (Jump relation vector surface potential). Let ∂D be of Class C2 and
let a ∈ Ct(∂D) be a continuous tangential field. Then the vector potential A with density
a ∈ Ct,d is continuous throughout R3. On the boundary the limiting values are given by

A(x) =
∫

∂D
a(y)Φ(x, y) ds(y)

ν(x)× curl A±(x) =
∫

∂D
ν(x)× curlx a(y)Φ(x, y) ds(y)± 1

2
a(x)

ν(x)× curl curl A±(x) = ν(x)× κ2A(x) + ν× grad div A(x)

(6.53)

for x ∈ ∂D where

ν(x)× curl A±(x) := lim
h→+0

ν(x)× curl A(x± hν(x))

ν(x)× curl curl A±(x) := lim
h→+0

ν(x)× curl curl A(x± hν(x))

is to be understood in the sense of uniform convergence on ∂D and where the integrals exist
as improper integrals. This implies

〈ν, curl curl A+ − curl curl A−〉 = 0
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Proof. See proof of Theorem 6.11 of [8] and using the identity (6.7) leads to the third
equation of (6.53).

For later use in the integral methods define the following integral operators.

Definition 6.2.11 (magnetic dipole operator). The magnetic dipole operator is defined
as the integral operator Mj : C0,α

t,d (∂D) 7→ C0,α
t,d (∂D) given by

(Mja)(x) := 2ν(x)×
∫

∂D
GE,j(x, y)a(y) ds(y), x ∈ ∂D, (6.54)

for j = 0, 2, 3 and whereas the case j = 3 and j = 0 only differ in the value of κ.

Remark. The operator for j = 0, 3 is a compact operator (see Theorem 6.15 and 6.16

from [8]). Since the operator for j = 2 differs from the corresponding integral op-
erator for the free space problem j = 0 only by an integral operator with a smooth
kernel, again from Theorem 6.16 and 6.15 in [8] it follows that Mj, j = 2 is a compact
operator.

Definition 6.2.12 (electric dipole operator). The electric dipole operator for the full
space Nj : C0,α

t,d (∂D) 7→ C0,α
t,d (∂D) is given by

(N0a)(x) := 2ν(x)× curl curl
∫

∂D
ν(y)×Φ0(x, y)a(y) ds(y), x ∈ ∂D . (6.55)

For the transmission problem the operators are given by

(N0,ta)(x) := 2ν(x)× curl curl
∫

∂D
Φ0(x, y)a(y) ds(y), x ∈ ∂D , (6.56)

(N2a)(x) =2ν(x)× curl curl
∫

∂D
Φ2(x, y)a(y) ds(y)

+ 2ν(x)×
∫

∂D
G̃H,2(x, y)a(y) ds(y) , x ∈ ∂D ,

(6.57)

and
(N3a)(x) := 2ν(x)× curl curl

∫
∂D

Φ3(x, y)a(y) ds(y), x ∈ ∂D . (6.58)

Remark. The operator for the full space is a bounded operator (see Theorem 6.15 and
6.17 from [8]). The operators (N2− N3) are compact operators (see [9, Theorem 2.33]
).

6.3 Common settings for mine detection

In the application of mine detection there are some special settings for the domains,
parameters and measurements. In particular for the simulation of handheld detectors
the given situation can be defined as follows.
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Definition 6.3.1 (Handheld mine detection). Let the mine detector be composed of
an emitter and receiver loop which are linked together in a static chassis. The hand-
held detector operates in the air and tries to find metallic objects (especially mines)
beneath the ground. The environment can roughly be seperated into two layers, the
air and the earth. The conductivity σ in the air is assumed to be 0 and in the earth σ

is assumed to be greater then 0.
The mine detector scans through an roughly plane area M in a specific height

above the ground. For every position x ∈ M the emitter sends out the incident
electromagnetic field Ei, which is scattered by the buried objects. The scattered field
Es from the objects induces a voltage inside the receiver loop, which is then measured
as induced Voltage U.

The source (Section 6.3.1), the measurement (Section 6.3.2) and the physical con-
stants (Section 6.3.3) are examined in more detail in the following subsections.

6.3.1 The source

In the setting at hand the following two forms of sources are used. For the range test
later on also plane waves are used, which are introduced there.

Definition 6.3.2 (Magnetic and electric dipole). The incident field could by given by
a magnetic dipole

Ei,m
j (x) := GE,j(x, y)p, Hi,m

j (x) :=
1

iκj
curl Ei,m

j (x) (6.59)

or an electric dipole

Hi,e
j (x) := GE,j(x, y)p, Ei,e

j (x) := − 1
iκj

curl Hi,e
j (x) (6.60)

for j = 0, 1, 2 with polarisation p ∈ R3.

Definition 6.3.3 (Wire loop). In the mine detection application the incident field is
generated by some time-depending current I(t) in a wire loop Γs contained in D1 (see
Figure 6.3). The magnetic field Hj(x, t) of a time-harmonic current I(t) = I0<e−iωt

on Γs is given via Biot-Savart’s law by

Hj(x, t) = <
{

I0

∫
Γs

GE,j(x, y) · τ(y)e−iωt ds(y)
}

, x ∈ Dj, (6.61)

where τ denotes the unit tangent vector to Γs.
By the Maxwell equations (6.4) and the time harmonic representation (6.2) this

leads to the space dependent incident fields

Hi
j(x) = I0

√
µj

∫
Γs

GE,j(x, y) · τ(y) ds(y) x ∈ Dj \ {y} (6.62)
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−0.1 0 0.1

−0.1

0

0.1

Γs

Γr

Figure 6.3: Wire loop of source Γs and receiver Γr. The receiver loop is an imitation
of the loop in the Foerster MINEX 2FD 4.500 handheld mine detector.

Again by (6.4) this becomes

Ei
j(x) = − 1

iκj
curl Hi

j(x) = −I0
√

µj

∫
Γs

GH,j(x, y) · τ(y) ds(y) x ∈ Dj \ {y} . (6.63)

The fields in (6.63) and (6.62) are used later on as incident field Ei
j, Hi

j .

6.3.2 The measurement

Measurements in mine detectors are carried out by a secondary wire loop Γr, which
often has the form of a “double D” (see Figure 6.3). The induction voltage in the
measurement loop Γr enclosing the area AΓr is given via Faraday’s law

Uj(t) = <
∫

Γr
E s

j (x, t) · τ(x) ds(x),

that is,

Uj(t) = <
∫

Γr

{(
εj +

iσj

ω

)−1/2

Es
j (x)e−iωt

}
· τ(x) ds(x) (6.64)

where τ denotes the unit tangent vector to Γr. This implies

Uj(t) = <
{(

εj +
iσj

ω

)−1/2

Uje−iωt

}
(6.65)

with
Uj =

∫
Γr

Es
j (x) · τ(x) ds(x). (6.66)
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Constant [As/Vm]

ε0 8.8542 · 10−12

µ0 1.2566 · 10−6

Table 6.1: Fundamental physical constants.

Material or medium εr σ [A/Vm] µr κ
[
m−1]

Aluminum (Al) 1.7 37.8 · 106 1 + 2.22 · 10−5 598(1 + i)
Copper (Cu) 2.8 59.6 · 106 1− 6.4 · 10−6 747(1 + i)
Air 1.00054 0 1 5.03 · 10−5

Conducting ground 4 0.05 1 2.18 · 10−2(1 + i)

Table 6.2: Example for some material constants.

6.3.3 Physical constants

First, the fundamental physical constants used here are the electric permittivity in
vacuum ε0 and the magnetic permeability in vacuum µ0 which are shown in Ta-
ble 6.1. A useful quantity is then the relative electric permittivity εr and relative
magnetic permeability µr

εj = εr,jε0 , µj = µr,jµ0 . (6.67)

which gives the total values inside the domains Dj, j = 0, 1, 2, 3.
Typical mine detectors use frequencies between 300 Hz and 1 MHz. This results

in κ being between κ1 ≈ 5 · 10−5 m−1 for the air or low conducting ground and low
frequency and κ2 ≈ 3(1 + i) m−1 for a frequency of 1 MHz and high conductivity
of the soil. Two examples of potential values of κ are shown in the following. For a
frequency of 1 kHz and εr = 10, µr = 1 and σ = 0 A/Vm we obtain κ = 7 · 10−5 m−1.
For σ = 10−5 the wave number becomes κ = 3 · 10−4 m−1. The values which are
mainly used in the numerical examples in this work are given by

κ1 ≈ 5 · 10−5 m−1 , κ2 ≈ 10−2(1 + i) m−1 ,

which corresponds to using a frequency of ω = 2400 Hz and the material con-
stants σ1 = 0 A/Vm, εr,1 = 1, µr,1 = 1 for the upper halfspace (air) and σ2 =
0.05 A/Vm, εr,2 = 4, µr,2 = 1 + 1.825 · 10−5 for the lower halfspace (soil). In Table 6.2
some used and common constants are summed up.
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Direct Problem

The direct problems under consideration are three-dimensional electromagnetic scat-
tering problems. In particular, in this work four different direct problems are exam-
ined.

First, the setting common for all four problems is described. Let the domain
D ⊂ D2 has a sufficiently smooth boundary, i.e. assume a C2-boundary and let a
measurement area be denoted asM ∈ D1, a typical area is a plane some centimetres
above the ground. Then, an incoming wave Ei

j, Hi
j scatters on the obstacle D which

then radiates outwards as scattered wave Es
j , Hs

j , i.e. the electromagnetic fields are
decomposed into the primary fields Ei

j, Hi
j and the secondary fields Es

j , Hs
j . The pri-

mary field is generated by an induction current in a wire loop, compare Figure 6.3,
or by single point sources. The total fields

Ej = Es
j + Ei

j, Hj = Hs
j + Hi

j (7.1)

satisfy Maxwell’s equations (6.4) (outside the wire loop), and, depending on the four
cases, transmission and/or boundary conditions (Section 6.1.2) and (Section 6.1.3).
Further, the scattered waves fulfil the radiation conditions (Section 6.1.4). The four
different background settings which defines the four different problems are summed
up in the following Definition.

Definition 7.0.4 (Four direct problems). The domain and background settings for the
four cases of direct problems are given in the following list.

(HP) Homogeneous background medium with perfectly conducting obstacle.

(LP) Layered background medium with perfectly conducting obstacle.

(HT) Homogeneous background medium with a homogenous conducting obstacle.

(LT) Layered background medium with a homogeneous conducting obstacle.

For the reality of mine detection the best possible case is (LT), i.e. an metallic
obstacle in a two-layered background medium.
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7.1 Perfect conductor in a homogenous background

medium

Here, as a first step towards the full layered-medium problem, the approach for a
homogeneous background medium is described.

The solution for problem in a homogenous medium R3 is based on a boundary
integral equation method. The electric and magnetic field in the full space is influ-
enced both by the background medium and the metallic scatterers. For simplicity,
the index j = 0 for the full space is neglected in the whole section

Definition 7.1.1 (Direct scattering problem (HP)). With given incident time-harmonic
electromagnetic field Ei, Hi, find two complex-valued vector fields Es, Hs ∈ C1(R3 \
D). Then, the incident fields, the scattered fields and the total time-harmonic elec-
tromagnetic field satisfy the time harmonic Maxwell equations (6.4)

curl E(x)− iκH(x) = 0
curl H(x) + iκE(x) = 0

for x ∈ R3 \D. The scattered fields satisfy the Silver-Müller radiation condition (6.11)
and the total field satisfy the boundary condition (6.9).

7.1.1 Uniqueness

Theorem 7.1.2 (Uniqueness (HP)). The scattering problem for a perfect conductor in a
homogeneous background medium (Definition 7.1.1) has at most one solution.

Proof. Let Es,d = Es,1 − Es,2 and Hs,d = Hs,1 − Hs,2 be the difference of two solu-
tions with the same incident field (Ei, Hi). Then (Es,d, Hs,d) satisfies the Maxwell’s
equations (6.4), boundary condition (6.9) and the radiation condition (6.11).

The boundary condition (6.9) implies directly

<
∫

∂D
ν× Es,d ·Hs,d ds = 0

which is an assumption for the extended Rellich’s Lemma (Lemma 6.1.4). Now
applying the extended Rellich’s Lemma leads to Es,d = Hs,d = 0 in R3 \ D, which
completes the proof.

7.1.2 Existence

With the fundamental solution (Definition 2.2.1) the following operators can be de-
fined. Let a ∈ C0,α

t,d (∂D) be a tangential field and η 6= 0 a real coupling parameter.
Further, the single layer operator (compare Definition 2.2.2) in the potential theoretic
case of κ = 0 is given by

(S0a) := 2
∫

∂D
a(y)Φ(x, y) ds(y), x ∈ ∂D , (7.2)
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which is a compact operator from C0,α(∂D) into C0,α(∂D). Then, with the magnetic
and electric dipole operator (Definition 6.2.11 and Definition 6.2.12) the ansatz for
Es, Hs ∈ R3 \ D with a combined single- and double-layer potential is given by

Es(x) = (P1a)(x) + iη(P2a)(x)

Hs(x) =
1
iκ

curl Es(x) ,
(7.3)

with the operators

(P1a)(x) := curl
∫

∂D
a(y)Φ(x, y) ds(y), x ∈ R3 \ ∂D, (7.4)

(P2a)(x) := curl curl
∫

∂D
ν(y)× (S2

0a)(y)Φ(x, y) ds(y), x ∈ R3 \ ∂D .

Using the vector Helmholtz equation (Theorem 6.1.2), the equivalence of the radi-
ation conditions (Theorem 6.1.3) and the jump relations (Theorem 6.2.10) the fields
Es, Hs defined in (7.3) solve the direct scattering problem (7.1.1) provided the density
a solves the integral equation

a + M0a + iηN0PS2
0a = −2ν× Ei, (7.5)

where P is the projection operator Pb := (ν × b) × ν mapping a density on the
boundary to the tangent plane, M0 the magnetic dipole operator (Definition 6.2.11)
and N0 the electric dipole operator (Definition 6.2.12).

Remark. This combined approach is chosen because for real κ with η = 0 the solution
to the integral equation could have eigenvalues for specific wave numbers κ, i.e. the
integral equation then would have nonunique solutions.

With this ansatz the existence can be proven. For a constant background medium
the following existence theorem is well known.

Theorem 7.1.3 (Existence (HP)). The scattering problem (Definition 7.1.1) has a unique
solution. Further, the operator which maps the boundary data onto the solution is continuous
from C0,α

t,d (∂D) into C0,α(R3 \ D)× C0,α(R3 \ D).

Proof. The proof follows the proof of [8, Theorem 6.19]). First examine the compact-
ness of the boundary integral operator. The operator PS0 : C0,α(∂D) 7→ C0,α

t,r (∂D)
can be seen to be bounded and S0 is a compact operator (see Theorems 3.2, 3.3 and
3.4 from [8]). This implies that PS2

0 is a compact operator. Then, using the mapping
properties of M0 and N0 the operator

M0 + iηN0PS2
0 : C0,α

t,d (∂D) 7→ C0,α
t,d (∂D) (7.6)

is a compact operator. Hence the Riesz-Fredholm theory (Theorem A.2.2) is applica-
ble and establishes the existence of (7.5), if the operator M0 + iηN0PS2

0 (7.6) is injec-
tive. Consider the homogeneous form of (7.5). Then, from the uniqueness theorem it
follows that E = H = 0 in R3 \ D. From the identity

curl curl E = −∆E + div grad E
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it follows that for surface vector potentials A it holds

curl curl A(x) = κ2
∫

∂D
a(y)Φ0(x, y) ds(y) + grad

∫
∂D

Div a(y)Φ0(x, y) ds(y) (7.7)

on the boundary ∂D and therefore

curl curl P1(x) = κ2 curl
∫

∂D
a(y)Φ0(x, y) ds(y) .

Then, looking at the jump on the boundary using the jump relations (Theorem 6.2.10)
leads to

−ν× E− = a, −ν× curl E− = iηκ2ν× S2
0a .

Now using Gauss’ divergence theorem yields

iηκ2
∫

∂D
|S0a|2 ds = iηκ2

∫
∂D

a · S2
0a ds (7.8)

=
∫

∂D
ν× E− · curl E− ds =

∫
D

{
|curl E|2 − κ2 |E|2

}
, (7.9)

from which S0a = 0 follows by taking the imaginary part. The cartesian components
of the Vector potential w corresponding to the operator S0 with wave number κ = 0
and density a are continuous throughout R3, harmonic in R3 \ ∂D and in D and
vanish on ∂D and at infinity. Therefore, by the maximum-minimum principle for
harmonic functions, it follows that w = 0 in R3 and the second scalar jump relation
(Theorem 2.2.4) yields a = 0. Thus, injectivity of the operator (7.6) is shown.

With the established injectivity the inverse of the operator I + M0 + iηN0PS2
0 ex-

ists and is bounded from C0,α
t,d (∂D) 7→ C0,α

t,d (∂D) by the Riesz-Fredholm theory, i.e.
the existence is proven. For the regularity results, using the Theorems 3.3 and 6.12

of [8] and the decomposition (7.7), Es and Hs belong to C0,α(R3 \ D) and depend
continously on the data −2ν× Ei in the norm of C0,α

t,d (∂D).

For the numerical examples the wave number is chosen to be no inner eigenfre-
quency and for simplicity in the program η = 0 is used. Then the fields are given
by

Es(x) = curl
∫

∂D
a(y)Φ0(x, y) ds(y)

Hs(x) =
1
iκ

∫
∂D

(
κ2Φ0(x, y)I + Φ′′0 (x, y)

)
a(y) ds(y) , x ∈ R3 \ D

(7.10)

with Φ′′0 being the Hessematrix of Φ0. This is calculated from Es(x) with the aid of
the Maxwell equations

Hs(x) =
1
iκ

curl Es(x)

=
1
iκ

curl curl
∫

∂D
a(y)Φ0(x, y) ds(y)
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7.2 Perfect conductor in a layered background medium

Pulling the double curl under the integral, which is only valid for x ∈ R3 \ D due to
the hypersingularity of the operator in x = y, using the identity

curl curl F = −∆F + grad div F

and with a = (a1, a2, a3) the magnetic field becomes

Hs(x) =
1
iκ

∫
∂D

κ2Φ0(x, y)a(y)

+ grad(∂1Φ0(x, y)a1(y) + ∂2Φ0(x, y)a2(y) + ∂3Φ0(x, y)a3(y)) ds(y)

=
1
iκ

∫
∂D

κ2Φ0(x, y)I +

∂1∂1 ∂1∂2 ∂1∂3
∂2∂1 ∂2∂2 ∂2∂3
∂3∂1 ∂3∂2 ∂3∂3

Φ0(x, y)

 a(y) ds(y)

=
1
iκ

∫
∂D

(
κ2Φ0(x, y)I + Φ′′0 (x, y)

)
a(y) ds(y) .

7.2 Perfect conductor in a layered background

medium

As worked out by Akduman and Potthast [2] in the two-dimensional case it is possi-
ble to proceed analogously for a layered medium when the fundamental solution for
the homogeneous case is replaced by a function solving the layered medium back-
ground problem. Thus, the ansatz for the solution theory in the two-layered medium
case (LP) can be the same as the ansatz for the homogenous background medium
but the fundamental solution is replaced with the Green’s tensor for a two-layered
medium.

Definition 7.2.1 (Direct scattering problem (LP)). With given incident fields Ei
j, Hi

j
which satisfy the time-harmonic Maxwell equations, find two complex-valued vector
fields Es

j , Hs
j ∈ C1(Dj) ∩ C(Dj), j = 1, 2 such that the total fields satisfy the time-

harmonic Maxwell equations

curl Ej(x)− iκjHj(x) = 0

curl Hj(x) + iκjEj(x) = 0 ,

for x ∈ Dj, j = 1, 2. The scattered field Es
1 satisfy the Silver-Müller radiation condition

(6.11) and the field Es
2 satisfy the exponential decay (6.14) in the lower halfspace.

Furthermore, the vector fields have to fulfil the transmission conditions (6.8) on the
interface S1 and the total fields the boundary conditions (6.9) on ∂D.

7.2.1 Uniqueness

Theorem 7.2.2 (Uniqueness (LP)). The scattering problem for a perfect conductor in a
two-layered medium (Definition 7.2.1) has at most one solution.
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Proof. Let Es,d
j = Es,1

j − Es,2
j and Hs,d

j = Hs,1
j − Hs,2

j for j = 1, 2 be the difference

of two solutions with the same incident field (Ei
j, Hi

j). Then (Es,d
j , Hs,d

j ) satisfies the
Maxwell’s equations (6.4), the homogeneous transmission and boundary conditions
(6.8 and 6.9) and the the radiation conditions (6.11) and (6.14). For simplicity, in the
remainder of the proof, Es,d

j and Hs,d
j will be written as Ej and Hj.

Let BR := {x ∈ R3 : |x| < R} with radius R > 0 a ball and denote the correspond-
ing half-balls BR,j with

BR,j := {x ∈ Dj : |x| < R} ,

and its half-spheres
BR,j := {x ∈ Dj : |x| = R}.

Let SR a disk with radius R > 0 on the interface S1

SR := {x ∈ S1 : |x| < R}.

Further, by ν the outward unit normal to ∂BR,j and the upward unit normal to SR is
notated. For the lower half-space, the radiation condition (6.14) implies

lim
R→∞

∫
BR,2

{
|H2 × ν|2 + |E2|2 − 2<

(
κ1

κ2
ν× E2 ·H2

)}
ds = 0 . (7.11)

For sufficiently large R.
Using the Gauss divergence theorem in the domain BR,2 \ D leads to∫

BR,2\D
div(E2 × H2) dx =

∫
∂BR,2

ν× E2 ·H2 ds−
∫

∂D
ν× E2 ·H2 ds . (7.12)

Because of the boundary condition (6.9), the integral over ∂D in Equation 7.12 van-
ishes. Then, with the vector-identity

div(E2 × H2) = curl E2 ·H2 − E2 · curl H2

and from the splitting of the boundary ∂BR,2 = BR,2 ∪ SR of the half-ball BR,2, Equa-
tion 7.12 can be written as∫

BR,2

ν× E2 ·H2 ds = −
∫

SR

ν× E2 ·H2 ds

+
∫

BR,2\D

{
curl E2 ·H2 − E2 curl H2

}
dx

and therefore by Maxwell equations∫
BR,2

ν× E2 ·H2 ds = −
∫

SR

ν× E2 ·H2 ds

+ i
∫

BR,2\D

{
κ2 |H2|2 − κ2 |E2|2

}
dx .

(7.13)

From this and

< iκ1κ2

κ2
= < iκ1κ2

2

|κ2|2
=

κ1σ2µ2ω

|κ2|2
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7.2 Perfect conductor in a layered background medium

conclude that

<κ1

κ2

∫
BR,2

ν× E2 ·H2 = −<κ1

κ2

∫
SR

ν× E2 ·H2 −
κ1σ2µ2ω

|κ2|2
∫

BR,2\D
|E2|2 dx . (7.14)

Inserting (7.14) into (7.11) leads to

lim
R→∞

{ ∫
BR,2

{
|H2 × ν|2 + |E2|2

}
ds + 2<κ1

κ2

∫
SR

ν× E2 ·H2 ds

+
2κ1σ2µ2ω

|κ2|2
∫

BR,2\D
|E2|2 dx

}
= 0 . (7.15)

For the upper half-space, first consider∫
BR,1

|H1 × ν− E1|2 .

Then condition (6.11) implies

lim
R→∞

∫
BR,1

{
|H1 × ν|2 + |E1|2 − 2<

(
ν× E1 ·H1

)}
ds

= lim
R→∞

∫
BR,1

|H1 × ν− E1|2 ds = 0.
(7.16)

Again using Gauss divergence theorem and Maxwell equations following (7.12) to
(7.14) yields

<
∫

BR,1

ν× E1 ·H1 ds = <
∫

SR

ν× E1 ·H1 ds (7.17)

and inserting (7.17) into (7.16) leads to

lim
R→∞

{ ∫
BR,1

{
|H1 × ν|2 + |E1|2

}
ds− 2<

∫
SR

ν× E1 ·H1 ds
}

= 0 . (7.18)

Adding the equations (7.18) and (7.15) yields

lim
R→∞

{ ∫
BR,1

{
|H1 × ν|2 + |E1|2

}
ds− 2<

∫
SR

ν× E1 ·H1 ds

+
∫

BR,2

{
|H2 × ν|2 + |E2|2

}
ds + 2<κ1

κ2

∫
SR

ν× E2 ·H2

+
2κ1σ2µ2ω

|κ2|2
∫

BR,2\D
|E2|2 dx

}
= 0 .

(7.19)

From the transmission condition (6.8) it follows that

ν× E1 ·H1 =
κ1

κ2
ν× E2 ·H2 on S1 ,

Using this and triple scalar product identities, Equation 7.19 leads to

lim
R→∞

{ ∫
BR,1

{
|H1 × ν|2 + |E1|2

}
ds +

∫
BR,2

{
|H2 × ν|2 + |E2|2

}
ds

+
2κ1σ2µ2ω

|κ2|2
∫

BR,2\D
|E2|2 dx

}
= 0. (7.20)
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By the physical setting, the constant in front of the volume integral, i.e. the third term,
in Equation 7.20 is positive. Therefore, from Equation 7.20 conclude that E2 = 0 in
D2 and by the first of the Maxwell equations (6.4) it also follows that H2 = 0 in D2.
Then via the transmission conditions (6.8), Holmgren’s theorem (see [22]) implies
E1 = H1 = 0 in D1. Hence, Es,d

j = Hs,d
j = 0 in R3 \ D, i.e. the two solutions Es,1

j and

Es,2
j as well as Hs,1

j and Hs,2
j are the same, which completes the proof.

7.2.2 Existence

The fundamental ingredient for the solution of the scattering problem is the Green’s
tensor (Definition 6.2.3) for the layered medium GE,j, GH,j, j = 1, 2.

The solution of the scattering problem is again done with a boundary integral
equation approach. Seek the solution in the form of the electromagnetic field of a
magnetic dipole distribution (6.59), i.e. consider the ansatz functions

Es
j (x) =

∫
∂D

GE,j(x, y)a(y) ds(y),

Hs
j (x) =

∫
∂D

GH,j(x, y)a(y) ds(y),
(7.21)

with x ∈ Dj, for j = 1, 2 and with a continuous tangential field a ∈ C0,α
t,d (∂D). Using

the Maxwell equations, the relation between Es
j (x) and Hs

j (x) is calculated via

Hs
j (x) =

1
iκj

curl Es
j (x) , x ∈ Dj ,

=
1

iκj

∫
∂D

curlx GE,j(x, y)a(y) ds(y)

=
1

iκj

∫
∂D

iκjGH,j(x, y)a(y) ds(y)

=
∫

∂D
GH,j(x, y)a(y) ds(y)

for j = 1, 2.
Proceeding as in Section 7.1.2, i.e. using the vector Helmholtz equation (Theo-

rem 6.1.2), the equivalence of the radiation conditions (Theorem 6.1.3) and the jump
relations (Theorem 6.2.10) the fields Es, Hs defined in (7.21) solve the direct scatter-
ing problem (Definition 7.2.1) provided the density a ∈ C0,α

t,d (∂D) satisfies the integral
equation

a + M2a = −2ν× Ei
2 . (7.22)

Remark. Here, due to the mine detection setting the wave number κ2 is a complex
number and as such eliminates the possibility of inner eigenfrequencies. This justifies
the simpler boundary integral equation approach.

Theorem 7.2.3 (Existence (LP)). The scattering problem in Definition 7.2.1 has a unique
solution. Further, the operator which maps the boundary data onto the solution is continuous
from C0,α

t,d (∂D) into C0,α(R3 \ Dj)× C0,α(R3 \ Dj).
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7.3 Transmission problem in a homogeneous background medium

Proof. To establish existence of a solution to the integral equation (7.22), by the
Riesz-Fredholm theory (Theorem A.2.2) it suffices to show that I + M2 is injective
if M2 is compact, which it is (magnetic dipole operator (Definition 6.2.11)). Then,
let a ∈ C0,α

t,d (∂D) be a solution to the homogeneous form of (7.22). Then the fields
Es

j , Hs
j given by (7.21) satisfy the homogeneous boundary condition (6.9). Therefore,

by the uniqueness (Theorem 7.2.2) Es
2 = Hs

2 = 0 in D2. From the jump relations
(Theorem 6.2.10) for surface vector potentials it follows that the jumps of Es

2 and Hs
2

when approaching ∂D from inside D (extending the fields inside D is justified from
Green’s theorem (Theorem B.1.1)) are given by

ν× Es
2 = −a, ν× Hs

2 = 0 on ∂D . (7.23)

By the Gauss’ divergence theorem and the Maxwell equations following (7.12) to
(7.13) and using the second equation in (7.23) leads to

i
∫

D

{
κ2 |Hs

2|
2 − κ2 |Es

2|
2
}

dx =
∫

∂D
ν× Es

2 ·H2
s ds = 0.

From this, multiplying by κ2 and taking the real part conclude that

=(κ2
2)
∫

D
|Hs

2|
2 dx = 0

whence Hs
2 = 0 in D follows. From this it follows via the second Maxwell equation

that Es
2 = 0 in D. Finally, the first equation of (7.23) implies that a = 0, which proofs

the injectivity of I + M2 and thus the existence.
By the Riesz-Fredholm theory the inverse operator (I + M2)−1 is continuous. There-

fore the regularity statement of the Theorem follows from the regularity results for
surface vector potentials analogous to Theorem 7.1.3.

7.3 Transmission problem in a homogeneous

background medium

The solution based on a boundary integral equation method for the electromagnetic
transmission problem in a homogeneous background medium is analysed (See also
[29] and [3]).

Definition 7.3.1 (Direct scattering problem (HT)). Given incident fields Ei
j, Hi

j find
two complex-valued vector fields Es

j , Hs
j ∈ R3, j = 0, 3. Then, the incident fields, the

scattered fields Es
j , Hs

j and the total field satisfy the time-harmonic Maxwell equations

curl Ej(x)− iκjHj(x) = 0

curl Hj(x) + iκjEj(x) = 0

for j = 0, 3 and x ∈ R3. Furthermore, the scattered fields have to fulfil the Silver-
Müller radiation condition (6.11) and the transmission conditions

ν(x)× Es
0(x)− bEν(x)× Es

3(x) = f (x)
ν(x)× Hs

0(x)− bHν(x)× Hs
3(x) = g(x)

(7.24)
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on the boundary ∂D of the obstacle. Assume that f and g are Hölder-continuous tan-
gential fields with Hölder-continuous surface divergence on ∂D, i.e. f , g ∈ C0,α

t,d (∂D),
which are given by

f (x) = ν× Ei
0, g(x) = ν× Hi

0 . (7.25)

For the transmission parameters bE, bH ∈ C \ {0} it holds that bHbH ∈ R+ for physi-
cal reasons.

7.3.1 Uniqueness

Theorem 7.3.2 (Uniqueness (HT)). The scattering problem for a conducting scatterer in a
homogeneous background medium (Definition 7.3.1) has at most one solution.

Proof. Let Es,d
j = Es,1

j − Es,2
j and Hs,d

j = Hs,1
j − Hs,2

j with j = 0, 3 be the difference

of two solutions with the same incident field (Ei
0, Hi

0). Then (Es,d
j , Hs,d

j ) satisfy the

Maxwell’s equations (6.4), transmission conditions (7.24) and (Ed
0 , Hd

0 ) the radiation
condition (6.11). For simplicity, in the remainder of the proof, Es,d

j and Hs,d
j will be

written as Ej and Hj.
The homogeneous transmission conditions (7.24) imply that∫

∂D
ν× E0 ·H0 ds = bEbH

∫
∂D

ν× E3 ·H3 ds .

Using the vector identity (6.17) and the Maxwell equations this becomes∫
∂D

ν× E0 ·H0 ds = bEbHi
∫

D

{
κ3 |H3|2 − κ3 |E3|2

}
dx .

Then, from bEbH = κ0/κ3 and using the fact that κ0 is real, the real part of the last
equation is given by

<
∫

∂D
ν× E0 ·H0 ds = −κ0σ3µ3ω

|κ3|2
∫

D
|E3|2 dx . (7.26)

This implies that the assumption for the extended Rellich’s Lemma (Lemma 6.1.4)
is satisfied and thus applying the extended Rellich’s Lemma yields E0 = H0 = 0 in
R3 \ D. With the transmission conditions it follows that E3 = H3 = 0 on ∂D and
the Stratton-Chu formulas (Theorem B.2.1) finally imply E3 = H3 = 0 in D which
completes the proof.

7.3.2 Existence

The transmission problem is solved with a boundary integral equation approach.
Consider the ansatz functions with combined magnetic and electric dipole distribu-
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tions

Es
3(x) =

κ3

κ0bH

∫
∂D

GE,3(x, y)ψ(y) ds(y)

+
1
bE

curl
∫

∂D
GE,3(x, y)ϕ(y) ds(y) , x ∈ D

Es
0(x) =

∫
∂D

GE,0(x, y)ψ(y) ds(y)

+ curl
∫

∂D
GE,0(x, y)ϕ(y) ds(y) , x ∈ R3 \ D

with continuous tangential fields ϕ and ψ. The magnetic fields are given via Hj(x) =
1

iκj
curl Ej(x) as

Hs
3(x) =

1
iκ0bH

curl
∫

∂D
GE,3(x, y)ψ(y) ds(y)

− iκ3

bE

∫
∂D

GE,3(x, y)ϕ(y) ds(y) , x ∈ D

Hs
0(x) =

1
iκ0

curl
∫

∂D
GE,0(x, y)ψ(y) ds(y)

− iκ0

∫
∂D

GE,0(x, y)ϕ(y) ds(y) , x ∈ R3 \ D .

This ansatz functions are solutions to the transmission problem in a homogeneous
medium (Definition 7.3.1) if it satisfies the transmission condition on ∂D. From the
transmission conditions (7.24) and using the jump relations (Theorem 6.2.10) the
densities has to solve the system of integral equations(

1 +
κ3bE

κ0bH

)
ψ +

(
M0 −

κ3bE

κ0bH
M3

)
ψ + (N0,t − N3)ϕ = 2 f(

1 +
κ3bH

κ0bE

)
ϕ +

(
M0 −

κ3bH

κ0bE
M3

)
ϕ +

1
κ2

0
(N0,t − N3)ψ =

2i
κ0

g
(7.27)

with the magnetic dipole operators Mj (6.54) and the electric dipole operator N0 (6.55)
and N3 (6.58) . For convenience the integral equations in (7.27) are summarised into
the following equation

(Y3 + Z3)χ = h (7.28)

where the operators Y3 and Z3 are given by

Y3 =

1 + κ3bE
κ0bH

0

0 1 + κ3bH
κ0bE

 ,

Z3 =

M0 − κ3bE
κ0bH

M3 N0,t − N3

1
κ2

0
(N0,t − N3) M0 − κ3bH

κ0bE
M3

 ,
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the right hand side is defined by

h := 2

(
f

i
κ0

g

)
and the unknown density χ has the form

χ =
(

ψ

ϕ

)
.

Theorem 7.3.3 (Existence (HT)). The scattering problem in Definition 7.3.1 has a solution
which is unique. Further, the operator which maps the boundary data onto the solution is
continuous from C0,α

t,d (∂D) into C0,α(R3 \ Dj)× C0,α(R3 \ Dj).

Proof. The following proof follows ideas from [48] and [33]. First, examine the com-
pactness of the boundary integral equation (7.28). Using the mapping properties of
Nj the operator (N0,t − Nj) maps C0,α

t,d (∂D) into C0,α
t,d (∂D) and is a compact operator

(see Definition 6.2.12). Since also the Mj are compact operators (see Definition 6.2.11)
the operator Z3 is a compact operator from C0,α

t,d (∂D) into C0,α
t,d (∂D). Now applying

Y−1 from the left leads to the operator I + Y−1Z3 and an equation of the second
kind. Y−1Z3 is compact since Y−1 is bounded linear and Z3 is compact. Hence, the
Riesz-Fredholm theory (Theorem A.2.2) is applicable and establishes the existence
of (7.28), if the operator (Y3 + Z3) is injective. Consider the homogeneous form of
(7.28). Then, Es

j , Hs
j for j = 0, 3 solve the homogeneous transmission problem and

then from the uniqueness theorem it follows that Es
j = Hs

j = 0 in R3 \ D ∩ D. Then
the jumps on the boundary can be expressed as

ν(x)× Es
3,+(x)− ν(x)× Es

3(x) =
κ3

κ0bH
ψ(x) ,

ν(x)× Es
0(x)− ν(x)× Es

0,−(x) = ψ(x) ,

ν(x)× Hs
3,+(x)− ν(x)× Hs

3(x) = − iκ3

bE
ϕ(x) ,

ν(x)× Hs
0(x)− ν(x)× Hs

0,−(x) = −iκ0ϕ(x) ,

(7.29)

whereas the Es
3,+, Hs

3,+ and Es
0,−, Hs

0,− are the continuations in R \D and in D respec-
tively. Subtracting the equations leads to the following transmission conditions

ν× Es
3,+ +

κ3

κ0bH
ν× Es

0,− = 0 ,

ν× Hs
3,+ +

1
bE

ν× Hs
0,− = 0 .

Then Es
3,+, Hs

3,+ solve the homogeneous transmission problem in R3 \D and Es
0,−, Hs

0,−
solve the homogeneous transmission problem in D. From the uniqueness (Theo-
rem 7.3.2) it follows that

Es
3,+(x) = Hs

3,+(x) = 0 , x ∈ R3 \ D

Es
0,−(x) = Hs

0,−(x) = 0 , x ∈ D .
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7.4 Transmission problem in a layered background medium

Then from (7.29) and Es
j = Hs

j = 0 it follows that ψ = ϕ = 0 and thus injectivity of
(Y3 + Z3) is shown.

With the established injectivity the inverse of the operator (Y3 + Z3) exists and is
bounded from C0,α

t,d (∂D) 7→ C0,α
t,d (∂D) by the Riesz-Fredholm theory, i.e. the existence

is proven.
The regularity results follows analogously as in the existence proof of the case (HP)

(Theorem 7.1.3). Using the Theorems 3.3 and 6.12 of [8] and the decomposition (7.7),
Es and Hs belong to C0,α(R3 \ D) and depend continously on the data −2ν× Ei in
the norm of C0,α

t,d (∂D).

7.4 Transmission problem in a layered background

medium

The solution based on a boundary integral equation method for the electromagnetic
transmission problem in a two-layered background medium is analysed.

Definition 7.4.1 (Direct scattering problem (LT)). Given incident fields Ei
j, Hi

j which
satisfy the time-harmonic Maxwell equations, find two complex-valued vector fields
Es

j , Hs
j ∈ C1(Dj)∩C(Dj), j = 1, 2, 3 such that the total fields satisfy the time-harmonic

Maxwell equations

curl Ej(x)− iκjHj(x) = 0

curl Hj(x) + iκjEj(x) = 0

for x ∈ Dj, j = 1, 2, 3. The scattered fields have to fulfil the Silver-Müller radiation
condition (6.11) in the upper halfspace and the exponential decay (6.14) in the lower
halfspace. Furthermore, the vector fields have to fulfil the transmission conditions
(6.8) on the interface S1 and the scattered fields the transmission condition

ν(x)× Es
2(x)− bEν(x)× Es

3(x) = f (x)
ν(x)× Hs

2(x)− bHν(x)× Hs
3(x) = g(x)

(7.30)

on the boundary ∂D of the obstacle. Assume that f and g are Hölder-continuous tan-
gential fields with Hölder-continuous surface divergence on ∂D, i.e. f , g ∈ C0,α

t,d (∂D).
and are given by

f (x) = ν× Ei
1, g(x) = ν× Hi

1 . (7.31)

For the transmission parameters bE, bH ∈ C \ {0} it holds that bHbH ∈ R+ due to
physical reasons.

7.4.1 Uniqueness

Theorem 7.4.2 (Uniqueness (LT)). The scattering problem in Definition 7.4.1 for a con-
ducting scatterer in a two-layered medium has at most one solution.
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Proof. Let Es,d
j = Es,1

j − Es,2
j and Hs,d

j = Hs,1
j − Hs,2

j for j = 1, 2, 3 be the difference

of two solutions with the same incident field (Ei
j, Hi

j). Then (Ed
j , Hd

j ) satisfies the
Maxwell’s equations (6.4), the transmission condition (6.8) on the interface S1 and the
homogeneous transmission condition (7.30) on the boundary of D. Further, (Ed

1 , Hd
1 )

satisfy the radiation condition (6.11) and (Ed
2 , Hd

2 ) the decay behaviour (6.14). For
simplicity, in the remainder of the proof, Es,d

j and Hs,d
j will be written as Ej and Hj.

Let BR := {x ∈ R3 : |x| < R} with radius R > 0 a ball and denote the correspond-
ing half-balls BR,j with

BR,j := {x ∈ Dj : |x| < R} ,

and its half-spheres
BR,j := {x ∈ Dj : |x| = R}.

Let SR a disk with radius R > 0 on the interface S1

SR := {x ∈ S : |x| < R}.

Further, by ν the outward unit normal to ∂BR,j and the upward unit normal to SR is
notated.

Then, for the lower half-space following (7.11) to (7.15) from the uniqueness proof
(Theorem 7.2.2) of case (LP), using the transmission conditions instead of the bound-
ary conditions and taking (7.26) with κ0 replaced by κ2 yields

lim
R→∞

{ ∫
BR,2

{
|H2 × ν|2 + |E2|2

}
ds + 2<κ1

κ2

∫
SR

ν× E2 ·H2 ds

+
2κ1σ2µ2ω

|κ2|2
∫

BR,2\D
|E2|2 dx +

2κ1σ2µ2ω

|κ2|2
∫

D
|E3|2 dx

}
= 0 . (7.32)

For the upper half-space again following (7.16) to (7.18) yields

lim
R→∞

{ ∫
BR,1

{
|H1 × ν|2 + |E1|2

}
ds− 2<

∫
SR

ν× E1 ·H1 ds
}

= 0 . (7.33)

Analogously to uniqueness proof (Theorem 7.2.2) of case (LP) adding the equations
(7.33) and (7.32), using the layer transmission condition and triple scalar product
identities yields

lim
R→∞

{ ∫
BR,1

{
|H1 × ν|2 + |E1|2

}
ds +

∫
BR,2

{
|H2 × ν|2 + |E2|2

}
ds

+
2κ1σ2µ2ω

|κ2|2
∫

BR,2\D
|E2|2 dx +

2κ1σ2µ2ω

|κ2|2
∫

D
|E3|2 dx

}
= 0 . (7.34)

By the physical setting, the constants in front of the third and fourth term in Equa-
tion 7.34 are positive. Therefore, from Equation 7.34 conclude that E2 = 0 in D2 and
E3 = 0 in D. Then, by the first of the Maxwell equations (6.4) it also follows that
H2 = 0 in D2 and via the transmission conditions (6.8) on the interface S1, Holm-
gren’s theorem (see [22]) implies E1 = H1 = 0 in D1. Hence, Es,d

j = Hs,d
j = 0 in

R3 \ D ∩ D, i.e. the two solutions Es,1
j and Es,2

j as well as Hs,1
j and Hs,2

j are the same,
which completes the proof.
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7.4.2 Existence

The transmission problem is solved with a boundary integral equation approach.
Consider the ansatz functions with a combined magnetic and electric dipole distri-
bution

Es
3(x) =

κ3

κ2bH

∫
∂D

GE,3(x, y)ψ(y) ds(y) +
1
bE

curl curl
∫

∂D
Φ3(x, y)ϕ(y) ds(y)

Es
j (x) =

∫
∂D

GE,j(x, y)ψ(y) ds(y) + curl curl
∫

∂D
Φj(x, y)ϕ(y) ds(y)

+
∫

∂D
G̃H,j(x, y)ϕ(y) ds(y) ,

for x ∈ Dj, j = 1, 2 with continuous tangential fields ϕ and ψ. The magnetic fields
are given through Hj(x) = 1

iκj
curl Ej(x) as

Hs
3(x) =

1
iκ2bH

curl curl
∫

∂D
Φ3(x, y)ψ(y) ds(y)− iκ3

bE

∫
∂D

GE,3(x, y)ϕ(y) ds(y) ,

Hs
j (x) =

1
iκj

curl curl
∫

∂D
Φj(x, y)ψ(y) ds(y) +

∫
∂D

G̃H,j(x, y)ψ(y) ds(y)

− iκj

∫
∂D

GE,j(x, y)ϕ(y) ds(y) ,

for x ∈ Dj, j = 1, 2. This ansatz functions are solutions to the transmission problem
in a two-layered medium (Definition 7.4.1) if it satisfies the transmission condition
on ∂D. From the transmission conditions (7.30) and using the jump relations (Theo-
rem 6.2.10) the densities has to solve the system of integral equations(

1 +
κ3bE

κ2bH

)
ψ +

(
M2 −

κ3bE

κ2bH
M3

)
ψ + (N2 − N3)ϕ = 2 f ,(

1 +
κ3bH

κ2bE

)
ϕ +

(
M2 −

κ3bH

κ2bE
M3

)
ϕ +

1
κ2

2
(N2 − N3)ψ =

2i
κ2

g ,
(7.35)

with the magnetic dipole operators Mj (6.54) and the electric dipole operator N2
(6.57) and N3 (6.58). For convenience the integral equations (7.35) are summarised
into the following equation

(Y4 + Z4)χ = h (7.36)

where the operators Y4 and Z4 are given by

Y4 =

1 + κ3bE
κ2bH

0

0 1 + κ3bH
κ2bE

 ,

and

Z4 =

M2 − κ3bE
κ2bH

M3 N2 − N3

1
κ2

2
(N2 − N3) M2 − κ3bH

κ2bE
M3

 ,
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the right hand side is defined by

h := 2

(
f

i
κ2

g

)

and the unknown density χ has the form

χ =
(

ψ

ϕ

)
.

Theorem 7.4.3 (Existence (LT)). The scattering problem in Definition 7.4.1 has a solution
which is unique. Further, the operator which maps the boundary data onto the solution is
continuous from C0,α

t,d (∂D) into C0,α(R3 \ Dj)× C0,α(R3 \ Dj).

Proof. The proof is analogous to the proof of existence for (HT) (Theorem 7.3.3).
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Inverse Problem

In this chapter an inverse problem to the direct problems in Chapter 7 is defined and
analysed. First, define the inverse problem under consideration.

Definition 8.0.4 (Electromagnetic inverse shape reconstruction). In the setting of Def-
inition 6.1.1 the following data is given.

• form of the emitter and receiver loop Γs, Γr. They are mechanically linked such
that for each measurement both the sender and receiver are moved together.

• positions of emitter and receiver, i.e. the measurement areaM.

• incident field Ei emitted from every point inM.

• measured induced voltages Umeas for every point inM.

Then, find the location and size of the buried object D in D2.

In Section 8.1 this inverse problem is reformulated as a least-squares optimisation
problem. In Section 8.2 a direct search method called the Nelder-Mead algorithm is
introduced which is used to solve the optimisation problem in Section 8.1. Further,
the range test (Section 4.1) is expanded from the acoustic case to the electromagnetic
case in Section 8.3

8.1 An inverse optimisation problem

The information given in the inverse problem (Definition 8.0.4) is too few information
to properly reconstruct the object D in a fast and robust way. Thus, to get further
information find a way to characterise the earth a priori. Direct measurements of
the conductivity of the background medium σ1, σ2 are not very practical. A way to
do this, is to calibrate the mine detector with a scan over an area where no metallic
object lies, and then use the difference of the reference scan to the actual scans. In
this work, however, it is assumed that σ1, σ2 and therefore κ1, κ2 is known.

Now, describing the steps of solving the problem, begin with determining the x1
and x2-coordinate of the location of the obstacle. Looking at the structure of the
measured data (see Figure 9.3) it is a simple task of signal analysis to determine the
planar coordinates of the unknown object and its remains to find its depth and shape.
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Further, assume that the form of the unknown obstacle is approximately known
beforehand. This is justified through the application of finding mines with their
known metal parts. It remains to find depth and radius of the unknown obstacle. For
a feasibility study in this work the obstacles are restricted to spheres and ellipses.

A simple way to achieve this, is to reformulate the problem as a least-squares
optimisation problem which is then solved via a direct search method described in
the next section.

Definition 8.1.1 (Optimisation problem). Given is the following data:

• the positions of the emitter and receiver, i.e. the measurement areaM⊂ D1,

• the form of the emitter and receiver loop Γs, Γr with center x ∈ M,

• the incident fields Ei(x, · ) originating from Γs for every position x ∈ M,

• the measured induced voltages Umeas(x) in the receiver loop Γr for every posi-
tion x ∈ M,

• the conductivity of the background medium κ1, κ2,

• the x1- and x2-coordinate of the location of the obstacle.

Let G := {D̃ ⊂ D2} be a set of bounded obstacles of class C2 with connected com-
plement and

Umeas := {Umeas(x) : x ∈ M}

the set of all measured induces voltages in M. Denote by Fj, j = {HP, LP, HT, LT}
the operators for the direct problems (Definition 7.0.4) that map the incident field on
the boundary Ei(x, · )|∂D̃ on to the induced voltages U(x) (cf. (6.66)) and denote by

F∂D̃ := {Fj(Ei(x, · )|∂D̃) : x ∈ M}

the set of calculated induced voltages for every position x ∈ M for the domain D̃.
Then, find D̃ ⊂ G for which the functional

u := inf
D̃⊂G
‖F∂D̃ −Umeas‖L2 (8.1)

is minimised.

8.2 Nelder-Mead simplex method

The optimisation problem (Definition 8.1.1) can be solved using a simplex method
originally developed from J. A. Nelder and R. Mead in [30]. The description of
the method follows the paper of Jeffrey C. Lagarias et al. [25]. This Nelder-Mead
algorithm attempts to minimise a nonlinear function mapping Rn 7→ R, n ∈N0 using
only function values, i.e. without using any derivative explicitly or implicitly. The
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8.2 Nelder-Mead simplex method

method is part of the class of direct search methods, which are discussed in more detail
in for example [26],[49] or [45].

The basic idea of a direct search method is decribed as follows. The algorithm
is based on nondegenerate simplexes which are geometric figures in n dimensions
of nonzero volume with n + 1 vertices, whereas the vertices are associated with the
function values. Thus, a simplex defines a triangle in R2, a tetrahedron in R3, and
so on. The nondegenerate property of the simplex ensures that the set of edges
adjacent to any vertex in the simplex forms a basis for the space, i.e. any point in the
domain of the search can be constructed by taking linear combinations of the edges
adjacent to any given vertex. In each iteration the simplex is altered through testing
one or more new points which replace other points in the simplex such that the
simplex fulfils some descent condition in comparison to the previous simplex. This
is possible using no more than n + 1 function values because n + 1 vertices define
a plane and n + 1 values would be needed for a finite difference scheme. As such
the simplex can be used to drive the function values towards a minimiser. A simple
idea to find new points is to reflect a point through the centroid of the opposite face,
which again forms a nondegenerate simplex. Then test wether the point has a better
value in respect to the minimisation and if so accept the point. Doing this for all
points in the simplex until a better point is found finishes an iteration and forms a
new simplex. Then iterate the method until some stopping criteria is reached.

The Nelder-Mead method itself adds some other steps to increase the speed of the
search but otherwise follows the main idea described above. The algorithm of the
Nelder-Mead method is stated in the following.

Algorithm 5 (Nelder-Mead algorithm). Let f (x), x ∈ Rn be a real-valued function. De-
fine the parameters reflection (ρ), expansion(χ), contraction(γ) and shrinkage(σ) (The
notation for these parameters is only used in this section). These parameters satisfy the rela-
tions

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1, and 0 < σ < 1.

The standard parameters are chosen to be

ρ = 1, χ = 2, γ =
1
2

, and σ =
1
2

.

The simplex for the kth iteration is denoted by ∆k, its vertices (points) are denoted as
x(k)

1 . . . x(k)
n+1, such that

f (x(k)
1 ) ≤ f (x(k)

2 ) ≤ . . . ≤ f (x(k)
n+1) .

also, for simplicity f1 denotes f (x(k)
1 ). Then, x(k)

1 is the best point and x(k)
n+1 the worst point

regarding that the goal is to minimise f . Further, denote by x̄ = ∑n
i=1 xi/n the centroid of

the best n points. Then the Nelder-Mead algorithm for the kth iteration is as follows.

1. Order. Order the n + 1 vertices such that f (k)
1 ≤ f (k)

2 ≤ . . . ≤ f (k)
n+1.
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x̄

xr

x̄

xe

xr

x̄

xc

xr

x̄

xcc

x̄

Figure 8.1: Simplices after an iteration step. The original example simplex is shown
as dashed line with the corners being the points x1, x2 and x3. From top
left to bottom right the following steps are shown: reflection, expansion,
outside contraction, inside contraction and a shrink.

2. Reflect. Compute the reflection point xr from

xr = x̄ + ρ(x̄− xn+1) = (1 + ρ)x̄− ρxn+1 ,

and evaluate fr = f (xr). If f1 ≤ fr < fn, accept the reflected point xr and go to step
5b.

3. Expand. If fr < f1, calculate the expansion point xe via

xe = x̄ + χ(xr − x̄) = x̄ + ρχ(x̄− xn+1) = (1 + ρχ)x̄− ρχxn+1 ,

and evaluate fe = f (xe). If fe < fr, accept xe and if fe ≥ fr accept xr and go to step
5b.

4a. Contract (outside). If fn ≤ fr < fn+1, perform an outside contraction:

xc = x̄ + γ(xr − x̄) = x̄ + γρ(x̄− xn+1) = (1 + ργ)x̄− ργxn+1 ,

and evaluate fc = f (xc). If fc ≤ fr, accept xc and go to step 5b.
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4b. Contract (inside). If fr ≥ fn+1, perform an inside contraction:

xcc = x̄− γ(x̄− xn+1) = (1− γ)x̄ + γxn+1 ,

and evaluate fcc = f (xcc). If fcc < fn+1, accept xcc and go to step 5b.

5a. Termination (shrink). Evaluate f at the n points vi = x1 + σ(xi − x1), i =
2, . . . , n + 1. The vertices of the simplex at the next iteration ∆k+1 are x1, v2, . . . , vn+1.

5b. Termination (nonshrink). The worst point xn+1 is discarded and the accepted point,
denoted by v(k), is integrated at the position

j = max
0≤`≤n

{`| f (v(k)) < f (x(k)
1 )} .

This set of points becomes the vertices of the new simplex for the next iteration ∆k+1.

Remark (Properties of the Nelder-Mead algorithm). One iteration requires 1 function
evaluation if the reflection point is accepted, 2 function evaluations if the expansion
point or contraction point is accepted and 2n + 1 function evaluations if a shrink is
performed. The single steps of the algorithm are visualised in Figure 8.1.

8.3 Range test

The range test was originally developed by Roland Potthast, John Sylvester and
Steven Kusiak in [41] in a acoustic setting in 2 dimensions (see also Section 4.1).
Here, a variant of the range test is described for the electromagnetic case in 3 dimen-
sions.

The inverse problem for the electromagnetic range test is given in the following
definition.

Definition 8.3.1 (Electromagnetic inverse shape reconstruction). In the setting of the
electromagnetic scattering (Definition 7.0.4) for a homogeneous background medium
(HP), the following data is given:

• one incident plane wave Ei from the direction d ∈ S.

• the measurement plane M.

• the measured scattered electric field Es on M.

Then find the shape of the unknown boundary D.

Remark. As with the acoustic range test, there is a simple way for the range test to
improve the final reconstructed shape by using several incident waves. For every
wave use the range test to get a reconstruction of the shape and then take the union
of the reconstructions for a better reconstruction.
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Ei

G

D

Es

Es|M

ϕ

Figure 8.2: Setup and idea of the range test. Shown is one test domain G containing
the scatterer D. The idea is to get the density ϕ on G from the measured
nearfield Es|M and from this the analytic extension of Es into R3 \ G can
be tested.

The basic idea of the range test in electromagnetics is to determine the maximal set
on to which one scattered field may be analytically extended. Then, the complement
of this set is a subset of the unknown scatterer D. Thus, the range test in general not
deliver full reconstructions of the shape of scatterers.

Consider test domains G of class C2 with boundary ∂G such that the interior
Dirichlet problem for G is uniquely solvable for the wave number κ (i.e. there ex-
ist no interior eigenvalues). Then by using the operator P1 (see 7.4) mapping from
the boundary ∂G onto some measurement area M it can be evaluated if the scattered
field Es is extensible into R3 \ G. The equation

P1,∂G ϕ = Es|M( · , d) (8.2)

is solvable if Es can be analytically extended into R3 \ G and it is not solvable if it
cannot be analytically extended into R3 \ G. P1,∂G is injective since when Es|M is 0 it
follows from Holmgren’s theorem that Es is zero everywhere. Thus, the solvability
of the ill-posed integral equation (8.2) can be used as a criterion for the analytic
extensibility of Es into R3 \ G. This idea and the setup for the range test is shown in
Figure 8.2.

For numerical implementation of the ill-posed equation (8.2) the unbounded in-
verse (P1)−1 of P1 needs to be regularised. Using the Tikhonov regularisation (Theo-
rem A.4.3) the regularised inverse is given by

Rα := (αI + P∗1 P1)−1P1 .

If the equation (8.2) is solvable, then the norm ‖ϕα‖L2 of

ϕα := RαEs|M( · , d) (8.3)
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will be bounded in the limit α→ 0. If equation (8.2) does not admit a solution, then

‖ϕα‖L2 → ∞, α→ 0, (8.4)

i.e. for α → 0 the norm of the density will tend to infinity. This is proven in Theo-
rem 8.3.5.

This behaviour of the norm of the density is used to test the extensibility of the field
Es by comparing the norm ‖ϕα‖ for solutions with a number of different test domains
G with some cut-off constant C. If for sufficiently small and fixed regularisation
parameter α there is ‖ϕα‖ ≤ C, then conclude that the equation (8.2) is solvable. If in
this case ‖ϕα‖ > C, then conclude that it is unsolvable. In the case of solvability of
(8.2) conclude that Es is analytically extensible into R3 \ G.

Now, the theory for the electromagnetic case is presented. First, remember the
definition of the scattering support (Definition 4.1.2) which can be translated to the
electromagnetic case by replacing the us with Es and u∞ with Es|M.

Definition 8.3.2 (Scattering support). A domain Ω supports Es|M if the corresponding
Es can be continued to solve the Helmholtz equation in R3 \Ω.

Let the incident field have the wave number κ. Then, the intersection of all convex
Ω which support Es|M is called the convex scattering support or cSκ supp Es|M of the
near field Es|M.

Lemma 8.3.3 (Supporting intersections). Let Ω1 and Ω2 be convex sets which support the
same near field Es|M. Then, Ω1 ∩Ω2 supports Es|M.

Proof. Let E1 a continued field outside Ω1 and E2 a continued field outside Ω2.
Then Rellich’s Lemma (Lemma 6.1.4) and the unique continuation Theorem for the
Helmholtz equation together with the vector Helmholtz equation (Theorem 6.1.2)
guarantee that the two continuations agree on the unbounded open component of
Rm \ (Ω1 ∪Ω2). If Ω1 and Ω2 are convex, then this set is connected and

E12 =


E1 , on Ω2 \ (Ω1 ∩Ω2)
E2 , on Ω1 \ (Ω1 ∩Ω2)
E1 , on Rm \ (Ω1 ∪Ω2)

is well defined and satisfy the free Helmholtz equation outside Ω1 ∩Ω2. Therefore
Ω1 ∩Ω2 supports Es|M.

Lemma 8.3.4 (Properties of the convex scattering support). The convex scattering sup-
port has the following properties.

1. if Es|M 6= 0 then cSκ supp Es|M is not empty.

2. Let Ei be the incident field illuminating a scatterer with convex hull Ω which produces
the near field Es|M. Then cSκ supp Es|M ⊂ Ω.

3. The closure of the convex scattering support cSκ supp Es|M contains all the singulari-
ties of the scattered field Es.
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Proof. The proof for the three properties is shown in the following.

1. If cSκ supp Es|M is empty, then there exist at least a finite number of convex
and disjunct domains Ω which support Es|M. From Lemma 8.3.3 it follows that
Es can be extended to a solution to the free vectorial Helmholtz equation in
Rm but the only radiating solution to the free Helmholtz equation is identically
zero.

2. This is a direct consequence of the Definition of the convex scattering support
(Definition 8.3.2).

3. The scattered field Es has a unique real analytic continuation to the complement
of cSκ supp Es|M, i.e. Es is bounded in a neighbourhood of any x in that open
set. This implies that unbounded neighbourhoods of any x have to be in the
closure of cSκ supp Es|M.

With this definition and the Lemmas the Theorem for the extensibility properties
and its proof can be written up.

Theorem 8.3.5 (Extensibility properties). Assume that cSκ supp Es|M ⊂ G. Then the
field Es can be analytically extended up to Rm \ G for all x ∈ Rm \ G, i.e. the L2-norms of
the densities ϕα solving (8.3) on ∂G are bounded.

If cSκ supp Es|M 6⊂ G, then the fields Es cannot be extended up to Rm \ G uniformly, i.e.
the extensions will not be uniform in the sense that the L2-norms of the densities ϕ solving
(8.3) on ∂G will not be uniformly bounded.

Proof. case cSκ supp Es|M ⊂ G: The field Es with nearfield Es|M can be analytically
extended into the open exterior of the domain G and into the neighbourhood of ∂G.
The solution to the equation

P1ϕ = Es on ∂G

is unique, since from [8, Theorem 6.12] and from denseness arguments P1 maps
L2(∂G) bijectively into L2(∂G). On the boundary ∂G, the vector potential P1 now
coincides with Es and by the solution of the exterior Dirichlet problem for the domain
G it coincides with Rm \ G. Thus, the nearfield P1ϕ and Es|M coincide, i.e. Es|M is in
the range of Ps

1 |M. Furthermore, There exists an ϕ ∈ L2(∂G) such that P1,∂G ϕ = Es|M.
Then, from the Tikhonov Theorem (Theorem A.4.3) the following holds

lim
α→0

ϕα = lim
α→0

(αI + P∗1,∂GP1,∂G)−1P∗1,∂GEs|M

= lim
α→0

(αI + P∗1,∂GP1,∂G)−1P∗1,∂GP1,∂G ϕ

= ϕ

thus ‖ϕα‖ for α→ 0 is bounded.
case cSκ supp Es|M 6⊂ G: Assume that there is a constant C such that ϕα is bounded

for sufficiently small α > 0. Then, there is a sequence αj → 0 for j → ∞ such that
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the weak convergence ϕαj ⇀ ϕ̃ with some ϕ̃ ∈ L2(∂G) for j → ∞ holds. The com-
pact linear integral operator P1,∂G : L2(∂G) 7→ L2(M) maps the weakly convergent
sequence into a strongly convergent sequence, i.e.

P1,∂G ϕαj → P1,∂G ϕ̃

for j→ ∞ and with Ẽs|M ∈ P1,∂G(L2(∂G)) defined as

Ẽs|M := P1,∂G ϕ̃ .

Then passing to the limit j→ ∞ in

(αj I + P∗1,∂GP1,∂G)ϕαj = P∗1,∂GEs|M

leads to
P∗1,∂GP1,∂G ϕ̃ = P∗1,∂GEs|M .

From the definition of Ẽs|M this yields

P∗1,∂GẼs|M = P∗1,∂GEs|M ,

which implies Ẽs|M = Es|M from the injectivity of P1,∂G. Then there is a function
ϕ ∈ L2(∂G) such that P1,∂G ϕ = Es|M. Using P1 with density ϕ the field Es can be an-
alytic extended into Rm \ G. Thus G supports Es|M which leads to the contradiction
cSκ supp Es|M ⊂ G. This completes the proof.

The algorithm for the range test is now given analogous to the acoustic case.

Algorithm 6 (Range test). Let J be a finite index set and further let N :=
{

G(j) : j ∈ J
}

be the set of test domains G(j) which are of class C2 such that the interior homogeneous
Dirichlet problem does have only the trivial solution.

Then, use (8.3) to calculate the indicator function

µ(j) := ‖RαEs|M‖L2(∂G) . (8.5)

This is used to test whether the scattered field Es can be analytically extended into Rm \G(j),
and if so call the domain G(j) a positive test domain. Finally, take the intersection of all
positive test domains to calculate a subset of the unknown scatterer D by

Drec :=
⋂

µ(j)<C

G(j)
.

Convergence for the range test is stated and proven in the following Theorem.

Theorem 8.3.6 (Convergence range test). Using sets of sampling domains Nk, k ∈ J
with index set J , then there exist reconstructions Drec,k with the properties cSκ supp Es|M ⊂
Drec,k and Drec,k+1 ⊂ Drec,k and such that for a every domain M with cSκ supp Es|M ⊂ M
there exists a sufficiently large k such that Drec,k ⊂ M.
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Proof. The reconstructions Drec,k with cSκ supp Es|M ⊂ Drec,k exists because of The-
orem 8.3.5. The property Drec,k+1 ⊂ Drec,k is fulfilled using appropriate sampling
domains in increasing number and/or better suited shapes under the condition that
κ is no Maxwell eigenvalue for the test domains (which, for example, is the case if
=κ > 0). For example, using spheres, with radii other than the zero points of the
spherical bessel functions, it is clear that any convex domain can constructed through
the intersection of sufficiently many and sufficiently big spheres. This completes the
proof.

Note that as in the acoustic case the range test can not reconstruct the full shape of
the obstacle using only one wave but only the convex scattering support of D which
is a subset of D.
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Chapter 9

Numerics

The goal of this chapter is the numerical realization, i.e. discretizing of the four
different methods for the direct problem for electromagnetic scattering (Chapter 7)
and for some simple reconstruction algorithms (Chapter 8).

9.1 Simulation

For the discretisation of the boundary ∂D a triangulation is chosen. The nS triangles
are denoted by tl, l = 1, . . . , nS as

tl :=
{

ti
l ∈ ∂D, i = 1, 2, 3

}
.

Their barycentres are written as tc
l and the area of the triangle is hl. Note that the

barycentres tc
l do not lie on the boundary ∂D and thus define a approximate bound-

ary ∂D̃. Further, the tc can be written as a matrix with the columns corresponding
to a point and each row corresponding to the coordinates of the points. Two typical
triangulations are shown in Figure 9.1.

The implementation of the boundary integral operators Mj, Nj in the integral equa-
tions (7.5, 7.22, 7.27 and 7.35) is done via a straightforward Nyström method (The-
orem C.1.1) with a midpoint rule. Then the kernels K(x, y) (i.e. the Greens tensors
Gj(x, y)) can be written as K(tc

l , tc
m), l, m = 1, . . . , nS. Then, the integral operators in

the generalised form

F(x) =
∫

∂D
K(x, y)a(y) ds(y) (9.1)

are given in their discrete form as

F(tc
l ) = ∑

m=1,...,nS

K(tc
l , tc

m)a(tc
m)hm . (9.2)

The diagonal terms of the matrix K(tc
l , tc

m) are approximated through constants cl.
The case of cl = 0 is known as ignoring the singularity, which is used here. Since the
integration is now over an approximate boundary ∂D̃ it is necessary to analyse the
validity of this approximation. This is justified by the continuous dependence of the
scattered field Es from the boundary ∂D, see Theorem 6.12 in [8].

For more accurate quadrature rules and handling of these integral operators with
singular kernels see for example the phd-thesis of Wienert [47] or the powerful recent
algorithms for scattering [5, 6, 13].

105



Chapter 9 Numerics

(a) sphere (b) ellipse

Figure 9.1: Triangulation of a sphere and ellipse which centers lies in (0, 0,−0.1)m.
The sphere has a radius of 0.04 m and the ellipse the radii of
(0.04, 0.08, 0.04)m.

Here, the Green’s tensors are described in their discrete and implemented form.
This can be done in a general way and is valid for all tensors Gj, j = 0, 1, 2, 3. For
example take the magnetic dipole operator

(Mja)(x) = 2ν(x)×
∫

∂D
GE,j(x, y)a(y) ds(y), x ∈ ∂D .

Then the discretized form is

(Mja)(tc
l ) = 2ν(tc

l )× ∑
m=1,...,nS

GE,j(tc
l , tc

m)a(tc
m)hm

for l, m = 1, . . . , nS. For the summation the matrix G is introduced. Further, for
simplicity in this section, the indices E, j are neglected. The matrix is constructed in
such a way, that a matrix-vector multiplication yields the summation over all tc

m for
a given density a. For this the density a is written as a vector a in the following way

a =
(

a1(tc
1), a2(tc

1), a3(tc
1), . . . , a1(tc

nS
), a2(tc

nS
), a3(tc

nS
)
)

.

Then, G is given by the matrix

G =



(Ge1)1(tc
l , tc

m) (Ge2)1(tc
l , tc

m) (Ge3)1(tc
l , tc

m) . . . . . . . . .
(Ge1)2(tc

l , tc
m) (Ge2)2(tc

l , tc
m) (Ge3)2(tc

l , tc
m) . . . m is changing . . .

(Ge1)3(tc
l , tc

m) (Ge2)3(tc
l , tc

m) (Ge3)3(tc
l , tc

m) . . . . . . . . .
...

...
... . . .

... l is changing
... . . .

...
...

... . . .


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and the areas of the triangles are written as

h = (h1, h1, h1 . . . , hm, hm, hm) .

For the crossproduct the vector ν is introduced as vectorial form of ν(tc
l ), which can

be written as

ν =
(
ν(tc

1), ν(tc
1), ν(tc

1), . . . , ν(tc
nS

), ν(tc
nS

), ν(tc
ns)
)

.

Then, with introducing the notation

a� b := (a1b1, . . . , anbn) ,

the discretized magnetic dipole operator can be written as

(Ma) = 2ν×G(a� h) . (9.3)

This can be done for all boundary integral operators under consideration. Analo-
gously, the evaluation operators Es

j , Hs
j can be handled in the same way. Then they

have the form
(Ea) = G(a� h) .

Remark. In praxis, the implementation for the layered case, i.e. the Green’s tensors
Gj, j = 1, 2, were done in two different ways to be able to compare the complicated
programs and to ensure correctness. The first version is based on the phd-thesis
of Martin Petry [33] and the second implemented version is based on the theory
presented in this work. One of the main differences between the two versions is
that the first theoreticly handles an arbitrary number of layers, whereas the second is
adopted to the problem at hand and thus uses two layers. A second major difference
is the fact that the theory for the first version uses a slightly different ansatz in the
layer where x 6= y but which turns out to be redundant. The first one is a more
complicated approach than the second. The second is therefore favoured but had
some problems with the calculation of the induced voltages. Thus, both versions
were used in the calculation of the numerical examples and are marked as either (1)
for the first and (2) for the second.

In both versions many Hankel transforms have to be computed. In a naive way,
these computations are very costly, therefore a fast method is needed. Here, the fast
hankel transform (Section C.2) following [17] is used.

It is left to discretise both the integrals for the incident field from a loop (6.63) and
for the induced voltage in a loop (6.66). These are straight forward discretized using
rectangular quadrature rules.

For demonstration of the forward solver, the following simulation scenario is used.
The setting is a simulation for the mine detection with handheld mine detectors. For
the simulated mine detector the Foerster MINEX 2FD 4.500 is chosen. This handheld
mine detector has a roughly circular emitter loop and a “double-D”-shaped receiver
loop (see Figure 6.3).
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Figure 9.2: Setting for the simulation. Measurement points (blue) with the lower
halfspace in transparent green and the obstacle indicated with dark red.

(a) sphere (b) ellipse

Figure 9.3: Simulated induced voltages of a homogeneous background medium with
a sphere and an ellipse which lies in the position (0, 0,−0.1)m. The sphere
has a radius of 0.04 m and the ellipse the radii of (0.04, 0.08, 0.04)m.

The mine detector scans through an area M := [−0.4, 0.4]2m in the height of
0.05 m which is discretized with 20× 20 equidistant locations. The buried object is
either a sphere of radius 0.04 m or an ellipsoid with semi-axis (0.04, 0.08, 0.04)m (see
Figure 9.2). For every position x ∈ M the emitter sends out the incident electro-
magnetic field Ei, which is scattered by the buried object centered in (0, 0,−0.1)m.
The scattered field Es from the object induces a voltage inside the receiver loop, such
that the induced voltage U is given by (6.66) for every point x ∈ M. The resulting
induced voltage is shown in the Figure 9.3.

9.1.1 Rate of convergence

To check the quality of the forward solver the convergence- and error rates are deter-
mined and analysed. In the case of an perfect conductor the true solution is known
through theoretic argument and thus the evaluation of approximation-errors can be
done. The theoretic argument is as follows: place a point source inside the obsta-
cle. Then through the perfect conductor boundary conditions ν× E = 0 on ∂D the
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9.1 Simulation

Relative error in %
n (HP) (LP) (HT) (LT)

108 2.5961 2.5758 18.872 18.8835

200 1.4362 1.4282 15.342 15.3481

416 0.7079 0.70563 8.6864 8.684

812 0.3593 0.36008 1.4082 1.4069

1004 0.2918 0.29199 - -
1224 0.2479 0.24878 - -

O 0.976 0.972 1.24 1.24

Table 9.1: Illustration of the relative error between true and approximate induced
voltage with homogenous and layered background in case (HP) and (LP),
respectively and between reference and approximate induced voltage in
the case (HT) and (LT). n is the number of triangles on the surface of the
scatterer. The columns contains the relative error in percent. The lowest
line contains the rate of convergence O.

scattered field via the integral equation must be the same as the incident field of the
point source outside of the obstacle Es

j (x) = Ei
j(x), x ∈ Dj, j = 0, 1, 2.

In the case of conducting obstacles there is no such true solution and the only way
of analysing convergence rates is to use a very good discretized reference solution.

For the sake of better comparison the measurement of the error is done via com-
paring the induced voltages from the true or reference solution to the approximate
solution. These voltages are given through a line integral over the chosen receiver
loop.

Now the setting of the convergence tests is described. A “double-D” shaped loop
is used with radius 0.15 m lying in a measurement planeM in the height 0.05 m. The
obstacle is a ball of radius 0.014 m centered in z = (0, 0,−0.1)m and the incident field
comes from a point source in z = (0, 0,−0.1)m. The reference solution was calculated
using 916 triangles. For the two layered variants (LP) and (LT) the implementation
variant (1) was used.

Conducting the tests with these settings for all cases (Definition 7.0.4) the errors
and convergence rates are summed up in Table 9.1. It shows the L2-error for sev-
eral triangular meshes of the surface of the scatterer with an increasing number of
triangles n. The rate of convergence O is shown in the last line of Table 9.1.

To determine the convergence rates the error is drawn versus the number of tri-
angles n on a double-logarithmic scale in Figure 9.4. Then, through a line-fit the
polynomial convergence rate is determined via the slope of the fitting line. In the
cases of perfect conductor (case (HP) and (LP)) the convergence rate is of approxi-
mately of order 1.

This observed linear convergence is expected due to a nonoptimal handling of
the weak singularity for the kernel and the rough approximation of the surface of
the obstacle. In the cases of a conducting obstacle (case (HT) and (LT)) the mean
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Figure 9.4: Relative error regarding number of triangles in a double logarithmic plot.
The slope of the best fit approximation lines in the L2-sense gives the
approximate convergence rate of the problem under consideration.

convergence rate is of order 1.24, thus approximately linear. In theory it is also
expected that the rate is of oder 1 which, in this case, is well represented through the
measured order of 1.24. This is because the reference solution itself has an error and
as such is reached faster.

A convergence rate of higher order is in principle possible using an appropriate
handling of the singularities but is neglected here due to much higher effort for
analysis and implementation.

9.2 Nelder-Mead simplex method

Here, some numerical examples for the reconstruction of the location of an obstacle
in all four cases (Definition 7.0.4) is presented.
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9.2 Nelder-Mead simplex method

Figure 9.5: Setting for the reconstructions with the Nelder-Mead simplex method.
Measurement points (blue) with the lower halfspace in transparent green
and the obstacle indicated with dark red.

The given optimisation problem (Definition 8.1.1) is handled with the Nelder-Mead
simplex method. The implementation of the method is taken from an external source
and is directly applied to (8.1). The simulated data for this reconstructions are cal-
culated with the following setting. Again, a circular emitter loop and a “double-D”-
shaped receiver loop is used (Figure 6.3) which are moved together as a simulated
mine detector. The mine detector scans through an area M := [−0.8, 0.8]2m in the
height 0.05 m which is discretized with 5× 5 equidistant locations of the detector.
The buried object is either a sphere of radius 0.04 m or an ellipsoid with semi-axis
(0.04, 0.08, 0.04)m, both centered in (0, 0,−0.1)m. No noise is applied to the data.
The setting is shown in Figure 9.5.

In the following the reconstructions of size, location with additionally known ori-
entation of the obstacle are shown in the following Figures 9.6, 9.8, 9.7 and 9.9 cor-
responding to the four cases (Definition 7.0.4). Each single image shows the state
of the reconstruction to a given iteration of the algorithm. The true obstacle has a
transparent blue colour and the reconstructed obstacle is painted in transparent red.
Every Figure shows reconstructions for spheres and ellipses.

Case (HP) is the case of homogeneous background medium with a perfect conduc-
tor obstacle and is shown in Figure 9.6.

Case (LP) is the case of layered background medium with a perfect conductor
obstacle and is shown in Figure 9.7. The implementation variant (2) is used here.

Case (HT) is the case of homogenous background with a conducting obstacle and
is shown in Figure 9.8.

Case (LT) is the case of layered background medium with a conducting obstacle
and is shown in Figure 9.9. The implementation variant (2) is used here.

In all cases the reconstruction of the true obstacle was successful. The examples ex-
hibit the feasibility of the proposed method to identify the depth and size parameters
of a buried metallic object via scattering theory and a direct search method.
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(a) Iteration 5 (b) Iteration 10 (c) Iteration 15 (d) Iteration 20

(e) Iteration 5 (f) Iteration 15 (g) Iteration 20 (h) Iteration 25

Figure 9.6: Shape reconstructions in a homogenous background with a perfect con-
ductor (case (HP)). The top line shows iterations of the reconstruction of
a sphere. The bottom line shows iterations for an ellipse. Scatterer (blue),
Reconstruction (red).

(a) Iteration 5 (b) Iteration 15 (c) Iteration 25 (d) Iteration 30

(e) Iteration 10 (f) Iteration 15 (g) Iteration 20 (h) Iteration 25

Figure 9.7: Shape reconstructions in a layered background with a perfect conductor
(case (LP)). The top line shows iterations of the reconstruction of a sphere.
The bottom line shows iterations for an ellipse. Scatterer (blue), Recon-
struction (red). Implementation variant (2).
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(a) Iteration 5 (b) Iteration 15 (c) Iteration 20 (d) Iteration 30

(e) Iteration 5 (f) Iteration 15 (g) Iteration 20 (h) Iteration 30

Figure 9.8: Shape reconstructions in a homogenous background with a conducting
obstacle (case (HT)). The top line shows iterations of the reconstruction of
a sphere. The bottom line shows iterations for an ellipse. Scatterer (blue),
Reconstruction (red).

(a) Iteration 25 (b) Iteration 30 (c) Iteration 35 (d) Iteration 50

(e) Iteration 10 (f) Iteration 15 (g) Iteration 20 (h) Iteration 25

Figure 9.9: Shape reconstructions in a layered background medium with a conduct-
ing obstacle (case (LT)). The top line shows iterations of the reconstruc-
tion of a sphere. The bottom line shows iterations for an ellipse. Scatterer
(blue), Reconstruction (red). Implementation variant (2).
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Figure 9.10: Setting for the reconstructions with the range test. Measurement points
(blue) with the obstacle indicated in green. One incident plane wave
from above.

9.3 Range test

Here, numerical implementation and examples for the range test for one incident
plane wave in the electromagnetic setting is presented. The setting with homoge-
neous background and a perfect conductor obstacle (HP) is used here, since for a
first step with the range test in electromagnetics the restriction to a simple and fast
computable setting is preferable to minimise errors.

Since here, like in acoustic, plane waves are used they are introduced in the elec-
tromagnetic case. Note, that the range test is not depending on the type of incoming
field. A plane wave was chosen for better comparison to the range test in the acoustic
case.

Definition 9.3.1 (Electromagnetic plane wave). In the setting of time-harmonic Max-
well equations a electromagnetic plane wave with direction of propagation d in R3 with
wave number κj (6.5) is given by

Ei
j(x) = pei(κjx · d) .

As described in theory of the range test (Section 8.3), the exact shape of the scatterer
cannot be reconstructed. However, it is still possible to obtain some reconstructions
which reflects basic properties of the shape of the scatterer under consideration.

Analogous to the derivation of (9.3) the evaluation operator P1 for the test domain
G(j) can be written in his discretized form as

(P(j)
1 a) = G(a� h)

For the stabilised inversion of P1 again the Tikhonov regularisation (Theorem A.4.3)
is used, i.e. calculate

R(j)
α := (αI + P(j),∗

1 P(j)
1 )−1P(j),∗

1
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(a) µ(j) (b) Reconstruction

Figure 9.11: Reconstructions with the range test for an ellipse in a slice horizontally
through the center of the obstacle. The true object is indicated through a
black circle. (a) shows the norm of the density where the colours are red
if the norm is above the cutoff and (b) shows the reconstruction.

for α > 0. Here ∗ denotes the complex conjugate transposed matrix and I is the
identity matrix.

Then for all j ∈ J , the density living on the boundary of the test domains is
calculated via

ϕ(j) := R(j)
α ◦ Es|M(d) (9.4)

for all test domains G(j) and for the nearfield Es|M(d). Then the functional µ(j) (8.5)
can be written as

µ(j) =
√

ϕ(j),T ·ϕ(j). (9.5)

The size of the real number µ(j) is an indicator for the extensibility of the field Es|M(d)
into the exterior of the test domain G(j).

Numericly, a cut-off parameter is needed to decide whether the test domain is pos-
itive or negative. The cut-off parameter C can be determined by calibration: use a
simulated nearfield for a given domain, carry out the reconstruction and choose C
appropriately to achieve reasonable reconstructions for the domain under consider-
ation. Then, use the same constant C for other domains as well.

For the reconstruction examples the following parameters and settings were used.
The measurement area is given byM := [−0.4, 0.4]2m in the height of 0.25 m which
is discretized with 10 × 10 equidistant points. The regularisation parameter α is
kept fixed with the value α = 10−9. For simplicity spheres of radius r = 0.15 m
and 252 triangles are used as test domains G and the search grid is constructed by
Ms = [−0.25, 0.25] × [−0.25, 0.25] × [−0.35, 0.15]m such that every xj ∈ Ms is the
center of the corresponding test domain G(j). The one incoming plane wave has the
direction (0, 0,−1). The setup is shown in Figure 9.10.

In the first example the obstacle is an ellipse with radii r = (0.08, 0.03, 0.03)m with
the center lying in (0, 0,−0.1)m. The results are shown in Figure 9.11 and Figure 9.12.
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(a) surface µ(j) = C (b) Reconstruction

Figure 9.12: Reconstructions with the range test for an ellipse. The true object is
indicated through a transparent green surface. (a) shows the surface of
the cut in the density and (b) shows the reconstruction as a transparent
red surface in 3D.

In the second example the obstacle is a sphere with radius r = 0.04 m with the
center lying in (0, 0,−0.1)m. The results are shown in Figure 9.13 and Figure 9.14.
Both figures contain four images each. The subfigures a) and b) show images for
a horizontal slice through the center of the obstacle where the slice of the surface
of the true object is represented as a black curve. The subfigures c) and d) show
images regarding a cubic search grid where the surface of the true object is shown
in transparent green. In a) the functional µ(j) is shown. The cut-off parameter C is
incorporated such that the colour is dark red (top of colourscale) when µ(j) > C. b)
then shows the reconstruction of the unknown obstacle in dark red colour. In c) the
surface with µ(j) = C is shown in transparent red. At last in d) the reconstruction of
the unknown obstacle is presented in a red surface.

The reconstructions in the slices seem to be much better than in the full 3D-case.
This is mainly because the calculated µ(j) becomes more blurred along the z-axis,
which can be seen from the “egg”-like surfaces in the plots of µ(j). This seems to be
an effect of the small measurement area M above the obstacle. Due to the intersection
of the corresponding test domains this then leads to an cutoff of the lower parts of
the reconstruction, which leaves the impression of getting only reconstructions which
are lying to high. This problem doesn’t occur in the slice-reconstructions such that
this reconstructions can be quite good, dependent of height. Without knowing the
boundary condition, from one incoming wave and with this small measurement area
the 3D reconstruction is reasonable good to find objects and their size which would
be the main task in the application of mine detection.
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(a) µ(j) (b) Reconstruction

Figure 9.13: Reconstructions with the range test for a sphere in a slice horizontally
through the center of the obstacle. The true object is indicated through a
black circle. (a) shows the norm of the density where the colours are red
if the norm is above the cutoff and (b) shows the reconstruction.

(a) surface µ(j) = C (b) Reconstruction

Figure 9.14: Reconstructions with the range test for a sphere. The true object is indi-
cated through a transparent green surface. (a) shows the surface of the
cut in the density and (b) shows the reconstruction as a transparent red
surface in 3D.
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Appendix A

Integral equations

The chapter is organised as follows. Compact integral operators are introduced in
Section A.1. Following Frigyes Riesz and Erik Ivar Fredholm who developed a the-
ory for solving integral equations of the second kind with compact operators which
is described in Section A.2. Then, Section A.3 covers the concept of ill-posed equa-
tions which leads to numerical instabilities. These can be overcome with so called
regularisation schemes, presented in Section A.4.

A.1 Operators

Compact integral operators are playing an important role in this work and some of
their properties are briefly summed up in this section.

Definition A.1.1 (Compact operators). Let X, Y be normed spaces and A : X 7→ Y
a linear operator, then it is called compact if it maps each bounded set in X in a
relatively compact set in Y.

Remark (Properties of compact operators). Compact operators have the following
properties:

• They are bounded.

• Linear combinations are again compact.

• They have no continuous inverse.

An important class of compact operators is given by integral operators with con-
tinuous or weakly singular kernels.

Definition A.1.2 (weakly singular, domain). A continuous kernel K(x, y), x, y ∈ D ⊂
Rm, x 6= y is called weakly singular if there exists positive constants C and a ∈ (0, m]
such that

|K(x, y)| ≤ C |x− y|a−m , x, y ∈ D, x 6= y .
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Now, briefly describe integral operators for the application in integral equations
and the particular problems in scattering theory.

Theorem A.1.3 (Integral operator, domain). Let D ⊂ R3 be a nonempty compact and
Jordan measurable set that coincides with the closure of its interior. Let K : D× D 7→ C be
a function which is called a kernel. Then the linear operator A : C(D) 7→ C(D) defined by

(Aϕ)(x) :=
∫

D
K(x, y)ϕ(y) dy, x ∈ D,

is called an integral operator with kernel K. For continuous kernel the operator is compact
with norm

‖A‖∞ = max
x∈D

∫
D
|K(x, y)| dy.

For weakly singular kernel the operator remains compact.

Having boundary value problems in scattering theory in mind, the integral oper-
ators need to be analysed on surfaces in Rm, m = 2, 3. Therefore, a classification of
smooth domains is introduced. First, the regularity of a domain can be described as
in the following definition.

Definition A.1.4 (Classes of domains). An open and connected domain D ∈ Rm is of
class Ck, k ∈ N, if for each point z of the boundary ∂D there exists a neighbourhood
Vz of z with the following properties:

• The intersection Vz ∩D can be mapped bijectiveley onto the half ball {x ∈ Rm :
|x| < 1, xm ≥ 0}.

• The mapping and its inverse are k-times continuously differentiable.

• The intersection Vz ∩ ∂D is mapped onto the disk {x ∈ Rm : |x| < 1, xm = 0}.
Further, denote by Ck(D) the linear space of real or complex valued functions defined
on the domain D which are k-times continuously differentiable.

With the weakly singular kernels defined on a boundary the integral operator on
a surface can be properly defined.

Definition A.1.5 (weakly singular, surface). A continuous kernel K(x, y), x, y ∈
∂D, x 6= y is called weakly singular if there exists positive constants C and a ∈
(0, m− 1] such that

|K(x, y)| ≤ C |x− y|a−m+1 , x, y ∈ ∂D, x 6= y .

Theorem A.1.6 (Integral operator, surface). Let D be a bounded open domain of class C1

with the boundary denoted by ∂D. Then the integral operator A : C(∂D) 7→ C(∂D) defined
as

(Aϕ)(x) :=
∫

∂D
K(x, y)ϕ(y) ds(y), x ∈ ∂D (A.1)

with a continuous or weakly singular kernel K is a compact operator.

Now, defining and analysing integral equations can be properly done.
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(a) Frigyes Riesz (b) Erik Ivar Fredholm

Figure A.1: Frigyes Riesz (1880 – 1956) and Erik Ivar Fredholm (1866 – 1927).

A.2 Riesz-Fredholm theory

Consider an operator equation of the second kind

(I − A)ϕ = f (A.2)

with a compact linear operator A : X 7→ X defined on a normed space X. The
theory for solving these equations was developed by Frigyes Riesz (1880 – 1956) in
his work [42] and initiated through the work [12] of Erik Ivar Fredholm (1866 – 1927).
Frigyes Riesz was a Hungarian mathematician. Erik Ivar Fredholm was a Swedish
mathematician who had a fundamental impact on the theory of integral equations.
From both a picture is shown in Figure A.1. The theory presented here follows [23,
Chapter 3 and 4].

Some of the analysis done by Riesz for this kind of integral equations can be
summed up in the following Theorem.

Theorem A.2.1 (Invertibility). Let X be a normed space and the operator A : X 7→ X be
compact and linear. Then the nullspace of the operator I − A

N(I − A) := {ϕ ∈ X : (I − A)ϕ = 0} (A.3)

is a finite dimensional subspace of X. Further, I − A is injective if and only if it is surjective.
If I − A is injective (and therefore bijective), then the inverse operator (I − A)−1 : X 7→ X
is bounded.

This Theorem can be reformulated in terms of solvability of an operator equation
of the second kind.
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Theorem A.2.2 (Riesz - solvability). Let X be a normed space and A : X 7→ X a linear
compact operator. If the homogeneous equation

(I − A)ϕ = 0 (A.4)

only has the trivial solution ϕ = 0, then for each f ∈ X the inhomogeneous equation

(I − A)ϕ = f (A.5)

has a unique solution ϕ ∈ X and this solution depends continuously on f . If the homogeneous
equation (A.4) does have nontrivial solutions, then it has a finite number of linear independent
solutions. Then the inhomogeneous equation (A.5) is either unsolvable or its general solution
is a superposition of the linear independent solutions for the homogenous equation plus a
particular solution of the inhomogeneous equation.

Proof. see Corollary 3.5 in [23].

The Riesz Theorem (Theorem A.2.2) implies that if (I − A) is injective it is con-
tinuous invertible. Further, to show existence of a solution of (A.5) it is sufficient
to consider the simpler problem wether (A.4) has only the trivial solution, which in
scattering theory is usually established with a uniqueness proof of a corresponding
scattering problem. The Theorem also does not make an explicit statement about the
solvability of (A.5) if (A.4) does have nontrivial solutions. This question is settled by
the Fredholm alternative [12], which will be presented now.

Theorem A.2.3 (Fredholm alternative). Let f ⊂ Rm be either a domain as in Theo-
rem A.1.3 or a boundary ∂D as in Theorem A.1.6 and let K be a continuous or weakly
singular kernel. Then 〈C(D), C(D)〉 is a dual system with the bilinear form

〈ϕ, ψ〉 :=
∫

D
ϕ(x)ψ(x) dx, ϕ, ψ ∈ C(D).

The homogeneous equations are given by

ϕ(x)−
∫

D
K(x, y)ϕ(y) dy = 0, x ∈ D

ψ(x)−
∫

D
K(y, x)ψ(y) dy = 0, x ∈ D

and the inhomogeneous equations are written as

ϕ(x)−
∫

D
K(x, y)ϕ(y) dy = f (x), x ∈ D

ψ(x)−
∫

D
K(y, x)ψ(y) dy = g(x), x ∈ D

Then, there are two cases of solvability.

1. The homogenous integral equations only have the trivial solutions ϕ = ψ = 0 and the
inhomogeneous integral equations have a unique solution ϕ, ψ for each right hand side
f , g, respectively.
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Figure A.2: Jacques Solomon Hadamard (1865 – 1963).

2. The homogeneous integral equations have the same finite number of linearly indepen-
dent solutions and the inhomogeneous equations are solvable if and only if the right-
hand sides f , g satisfy ∫

D
f (x)ψ(x) dx = 0∫

D
g(x)ϕ(x) dx = 0

for all solutions ψ, ϕ of the homogeneous equations respectively.

This establishes the theory for solvability of integral equations of the second kind.

A.3 Ill-posed problems

In inverse scattering theory the concept of ill-posedness for integral equations is in
particular interest and is introduced here. The ill-posed solutions of these integral
equations are either non-unique, non-existent or instable. First, to understand ex-
actly what a ill-posed problem is, define a well-posed problem. Jacques Solomon
Hadamard (1865 – 1963) introduced three properties for well-posed problems for
boundary value problems for partial differential equations [15].

Definition A.3.1 (Well-posed problem). Let A : U 7→ V be a not necessarily linear
operator from a subset U of a normed space X into a subset V of a normed space Y
and consider the operator equation

Aϕ = f . (A.6)

Then, a well-posed problem has the three properties:

a) Existence. A is surjective.
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b) Uniqueness. A is injective.

c) Continuous dependence of the solution on the data. The inverse operator A−1 : V 7→
U exists and is continuous.

If one of the three properties is not fulfilled, (A.6) is called an ill-posed problem.

According to this Definition, there are three types of ill-posedness. If a) is not
fulfilled there is no solution (nonexistence), if b) is not fulfilled there may be more
than one solution (nonuniqueness) and if c) is not fulfilled the solution of (A.6) does
not depend continuously on the data f (instability). The case of instability is of
primary interest in the study of applied ill-posed problems and is the only case to
occur in this work.

Theorem A.3.2 (Ill-posedness of equations of the first kind). Let A : X 7→ Y be a linear
compact operator from a normed space X into a normed space Y. If X is of infinite dimension
the equation of the first kind Aϕ = f is ill-posed.

Proof. Assume that A−1 : X 7→ Y exists and is continuous. Then, consider I = A−1A.
The product of a continuous and a compact operator is compact (see [23, Theorem
2.16]), hence the Identity operator is compact. From Theorem 2.20 in [23] it follows
that X must be finite dimensional and therefore A−1 cannot be continuous and then
the equation of the first kind is ill-posed.

A.4 Tikhonov regularisation

An ill-posed equation is numerically unstable and has to be treated properly, since
inevitable round-off errors are amplified. A numerical approximation to a given
equation may be viewed as the solution to perturbed data. Because A−1 is non-
continuous, a straight forward numerical implementation of the equation would then
lead to a very bad numerical approximation to the solution. This means that the
condition number of the numerical approximation matrix for A would grow with
the quality of the discretisation, i.e. the approximation to the equation of the first
kind would become worse.

The numerical approximation can be viewed as having pertubed data f δ. Given a
perturbed right hand side f δ with known error level

‖ f δ − f ‖ ≤ δ ,

it cannot be expected that f δ ∈ A(X), the range of A. This means it is necessary
to find a good approximate and stable solution ϕδ to the true solution ϕ, i.e. ϕδ de-
pends continuously on the data f δ. Stable methods for constructing an approximate
solution to an ill-posed problem are called regularisation schemes and are presented in
the following Definition.
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Definition A.4.1 (Regularisation scheme). Let X and Y be normed spaces and let
A : X 7→ Y be an injective bounded linear operator. Then a family of bounded linear
operators Rα : Y 7→ X, α > 0 with the property of pointwise convergence

lim
α→0

Rα ϕ = A−1Aϕ = ϕ (A.7)

for all ϕ ∈ X is called a regularisation scheme for the operator A. The parameter α is
called the regularisation parameter.

Remark. It can be shown that Rα can not be uniformly bounded with respect to α.

For analysing the approximation error, first write down the regularised solution

ϕδ
α := Rα f δ ,

which comes from applying the regularisation scheme to the equation Aϕδ = f δ. For
looking at the approximation error first take the difference of the solutions

ϕδ
α − ϕ = Rα f δ − Rα f + Rα Aϕ− ϕ .

Then, using the triangle inequality leads to the estimate

‖ϕδ
α − ϕ‖ ≤ δ‖Rα‖+ ‖Rα Aϕ− ϕ‖ .

Thus, the error consists of two parts. The first term reflects the influence of the in-
correct data and the second term can be seen as the approximation error between
Rα and A−1. With α → 0 the first term is increasing due to the remark after Regu-
larisation schemes (Definition A.4.1) and the second term is decreasing due to (A.7).
Hence, every regularisation scheme and its application has to carefully adjust α in
dependence of the problem and the error level δ to have a low total error level for
the regularised solution. A regularisation strategy should have the property that the
approximate solution converges to the true solution, when the error level tends to
zero, which is summed up in the following Definition.

Definition A.4.2 (Regular strategy). A strategy for a regularisation scheme Rα, α > 0
is a rule for the choice of the regularisation parameter α = α(δ) depending on the
error level δ. A strategy is called regular if for all f ∈ A(X) and all f δ ∈ Y with
‖ f δ − f ‖ ≤ δ it holds that

lim
δ→0

Rα f δ = A−1 f .

There are a number of different regularisation methods which have been developed
in the literature. In this work the Tikhonov regularisation is used, which is presented
next. The method is named after Andrey Nikolayevich Tychonoff (1906 – 1993) who
was a Russian mathematician with a wide range of mathematical contributions. In
particular in the scope of this work his book [44] is worth mentioning.
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Figure A.3: Andrey Nikolayevich Tychonoff (1906 – 1993).

Theorem A.4.3 (Tikhonov regularisation). Let A : X 7→ Y be a compact linear operator.
Then for each α > 0 the operator (αI + A∗A) : X 7→ X is bijective and has a bounded
inverse. Furthermore, if A is injective then

Rα := (αI + A∗A)−1 A∗ (A.8)

describes a regularisation scheme with ‖Rα‖ ≤ 1
2
√

α
.

Proof. See proof of Theorem 15.23 in [23]
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Appendix B

Common tools for scattering theory

In this chapter some common tools for acoustic and electromagnetic scattering are
introduced. First, Green’s Theorem is described in Section B.1. The fundamental
solutions for the acoustic and electromagnetic problem are using Hankel- and Bessel
functions respectively, which are briefly discussed in Section B.3.

B.1 Green’s theorem and formula

One of the basic tools for studying the Helmholtz equation are the Green’s theorems
and the Green’s formula which originate from George Green (1793 – 1841). The original
title page of the essay of Green containing Green’s theorem is shown in Figure B.1.

Theorem B.1.1 (Green’s theorem). Let D be a bounded domain of class C1 and let ν

denote the unit normal vector to the boundary ∂D directed into the exterior of D. Then, for
u ∈ C1(D) and v ∈ C2(D) Green’s first theorem is given by∫

D
{u∆v + grad u · grad v} dx =

∫
∂D

u
∂v
∂ν

ds (B.1)

and for u, v ∈ C2(D) Green’s second theorem is given by∫
D

(u∆v− v∆u) dx =
∫

∂D

(
u

∂v
∂ν
− v

∂u
∂ν

)
ds (B.2)

Proof. Applying Gauss divergence theorem to (u grad v) proves (B.1). Interchanging
u and v and subtracting the resulting equation from (B.1) proves (B.2).

A consequence of Green’s theorems which is of interest here is Green’s formula,
which is also known as Helmholtz representation and is introduced in the next Theo-
rem. It leads to some special properties of the Green’s formula with respect to the
Helmholtz equation which are used later on.

With the Helmholtz equation (Definition 2.1.1) Green’s formula can be properly
introduced.

Theorem B.1.2 (Green’s formula / Helmholtz representation). Let D be a bounded
domain of class C2 and let ν denote the unit normal vector to the boundary ∂D directed into
the exterior of D. Let u ∈ C2(D) ∩ C(D) and v ∈ C2(R3 \ D) ∩ C(R3 \ D) be solutions to
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Figure B.1: Original essay on Green’s theorem by George Green (1793 – 1841).

the Helmholtz equation which possess normal derivatives on the boundary in the sense that
the limits

∂u
∂ν

(x) = lim
h→+0

ν(x) · grad u(x− hν(x)), x ∈ ∂D

∂v
∂ν

(x) = lim
h→+0

ν(x) · grad v(x + hν(x)), x ∈ ∂D

exists uniformly on ∂D. Assume further that v is radiating, then Green’s formula

u(x) =
∫

∂D

{
∂u
∂ν

(y)Φ(x, y)− u(y)
∂Φ(x, y)

∂ν(y)

}
ds(y), x ∈ D

v(x) =
∫

∂D

{
v(y)

∂Φ(x, y)
∂ν(y)

− ∂v
∂ν

(y)Φ(x, y)
}

ds(y), x ∈ R3 \ D

holds, where the volume integrals exist as improper integrals.

Proof. case x ∈ D: Let ∂Dh be a parallel surface ([9],[23]). Define the sphere contained
in Dh as Ω(x; R) := {y ∈ Rm : |x− y| = R} and direct the normal into the interior of
Ω(x; R). Now apply Green’s second theorem (Theorem B.1.1) to the functions u and
Φ(x, · ) in the domain DR := {y ∈ Dh : |x− y| > R} to obtain∫

∂Dh∪Ω(x;R)

{
∂u
∂ν

(y)Φ(x, y)− u(y)
∂Φ(x, y)

∂ν(y)

}
ds(y) = 0 . (B.3)

Using the fundamental solution and its derivative together with the mean value
theorem in Ω(x; R) leads to

lim
R→0

∫
Ω(x;R)

{
u(y)

∂Φ(x, y)
∂ν(y)

− ∂u
∂ν

(y)Φ(x, y)
}

ds(y) = u(x) .
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Then passing to the limit h → 0 from the parallel surface finishes the proof for the
case x ∈ D.

case x ∈ Rm \ D: First, show that∫
ΩR

|u|2 ds = O(1) , r → ∞ (B.4)

where ΩR denotes the sphere of radius R with center in the origin. Consider∫
ΩR

∣∣∣∣∂u
∂ν
− iκu

∣∣∣∣2 ds ,

where ν is the outward normal to DR. From the radiation condition (Definition 2.1.2)
it follows that

lim
R→∞

∫
ΩR

{∣∣∣∣∂u
∂ν

∣∣∣∣2 + κ2 |u|2 + 2κ=
(

u
∂ū
∂ν

)}
ds =

∫
ΩR

∣∣∣∣∂u
∂ν
− iκu

∣∣∣∣2 ds = 0 . (B.5)

For sufficiently large R apply Green’s first Theorem (Theorem B.1.1) in the domain
DR :=

{
y ∈ Rm \ D : |y| < r

}
to obtain∫

Ωr
u

∂ū
∂ν

ds =
∫

∂D
u

∂ū
∂ν

ds− κ2
∫

DR

|u|2 dy +
∫

DR

|grad u|2 dy (B.6)

Taking the imaginary part of (B.6) and inserting in (B.5) leads to

lim
r→∞

∫
ΩR

{∣∣∣∣∂u
∂ν

∣∣∣∣2 + κ2 |u|2
}

ds = −2κ=
∫

∂D
u

∂ū
∂ν

ds (B.7)

Both terms on the left hand side of (B.7) are nonnegative and therefore the terms has
to be individually bounded for r → ∞ since the right hand side is bounded. Hence,
(B.4) is proven. Now from (B.4) and the radiation condition it follows that

∂Φ(x, y)
∂ν(y)

− iκΦ(x, y) = O
(

1
r2

)
, r → ∞

which is valid uniformly for y ∈ ΩR. Then, applying the Cauchy-Schwarz inequality
leads to

I1 :=
∫

ΩR

u(y)
{

∂Φ(x, y)
∂ν(y)

− iκΦ(x, y)
}

ds(y)→ 0, r → ∞

Similar, from the radiation condition and Φ(x, y) = O(1/r) for y ∈ ΩR and again
applying Cauchy-Schwarz yields

I2 :=
∫

ΩR

Φ(x, y)
{

∂u
∂ν

(y)− iκu(y)
}

ds(y)→ 0, r → ∞ .

Then ∫
ΩR

{
u(y)

∂Φ(x, y)
∂ν(y)

− ∂u
∂ν

(y)Φ(x, y)
}

ds(y) = I1 − I2 → 0, r → ∞

from which the proof is completed applying the first case for DR and taking the limit
r → ∞.
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B.2 Stratton-Chu formulas

Here, the equivalent to Green’s formula (Theorem B.1.2) in the case of Maxwell equa-
tions is presented.

Theorem B.2.1 (Stratton-Chu formulas). Let D be a bounded obstacle with open comple-
ment of class C2 with normal vector ν directed into the exterior (as in Definition 6.1.1).

1. Let E, H ∈ C1(R3 \ D) ∩ C(R3 \ D) be radiating solutions to the Maxwell equations
(6.4). Then for x ∈ R3 \ D the Stratton-Chu formulas are given by

E(x) = curl
∫

∂D
ν(y)× E(y)Φ(x, y) ds(y)

− 1
iκ

curl curl
∫

∂D
ν(y)× H(y)Φ(x, y) ds(y)

(B.8)

and

H(x) = curl
∫

∂D
ν(y)× H(y)Φ(x, y) ds(y)

+
1
iκ

curl curl
∫

∂D
ν(y)× E(y)Φ(x, y) ds(y).

(B.9)

2. Let E, H ∈ C1(D) ∩ C(D) be solutions to the Maxwell equations. Then for x ∈ D the
Stratton-Chu formulas are given by the formulas (B.8) and (B.9) where the right hand sides
are multiplied with (−1).

Proof. A proof for case 1 is the proof for Theorem 6.6 in [8] and for case 2 a proof is
equivalent to the proof of Theorem 6.2 in [8].

Remark. The Theorem covers only the case of homogeneous background medium,
but the formulas can be analogous be derived for a layered background medium.
The Stratton Chu formulas are distributions of magnetic and electric dipoles over the
boundary and as such justify that (6.20) can be seen as a fundamental solution to the
time harmonic Maxwell equations.

B.3 Spherical Bessel and Hankel functions

In this work, spherical Bessel functions are extensively used for the Green’s tensor
in a two-layered medium in electromagnetic scattering. Also, Hankel functions are
used for the two-dimensional fundamental solution for the Helmholtz equation, i.e.
for the acoustic case.

Theorem B.3.1 (Spherical Bessel differential equation). Provided f solves the spherical
Bessel differential equation given as

t2 f ′′(t) + 2t f ′ +
[
t2 − n(n + 1)

]
f (t) = 0 , (B.10)
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(a) J0 (b) N0

Figure B.2: Bessel functions of order 0.

with n ∈N, then

u(x) = f (κ |x|)Yn(x̂) (B.11)

solves the Helmholtz equation, where Yn are the spherical harmonics of order n and x̂ =
x/ |x|.

Theorem B.3.2 (Spherical Bessel, Neumann and Hankel functions). Let n ∈N. Then,
the spherical Bessel functions

Jn(t) =
∞

∑
p=0

(−1)ptn+2p

2p p!1 · 3 · · · (2n + 2p + 1)
(B.12)

and the spherical Neumann functions

Nn(t) = − (2n)!
2nn!

∞

∑
p=0

(−1)pt2p−n−1

2p p!(−2n + 1)(−2n + 3) · · · (−2n + 2p− 1)

represent solutions to the spherical Bessel differential equation (Theorem B.3.1). Jn is an
analytic function in R and Nn is analytic in (0, ∞). The following linear combinations are
called the spherical Hankel functions

H(1)
n = Jn + iNn, H(2)

n = Jn − iNn (B.13)

of the first and second kind of order n.

The Bessel functions have some recurrence relations and properties which are use-
ful in this work and are summed up here.
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Theorem B.3.3 (Bessel functions - Recurrence relations). The following recurrence rela-
tions hold for the spherical Bessel functions of order n.

2n
x

Jn(x) = Jn−1(x) + Jn+1(x) (B.14)

J−n(x) = (−1)n Jn(x) (B.15)
2J′n(x) = Jn−1(x)− Jn+1(x) (B.16)

Jn+1(x) =
n
x

Jn(x)− J′n(x) (B.17)

Jn−1(x) =
n
x

Jn(x) + J′n(x) (B.18)

Because integrals over Bessel functions have some broader application they were
given the name Hankel transforms and are examined in the following.

Definition B.3.4 (Hankel transform). For the given function f : [0, ∞) 7→ C the func-
tion g : [0, ∞) 7→ C defined by

g(r) :=
∫ ∞

0
f (λ)Jn(λr)λ dλ , (B.19)

with Bessel-functions Jn (see Section B.3) of order n ∈ N0, is called the Hankel trans-
form of f .

Since there exist some different normalisations of the Fourier transform it is de-
fined here.

Definition B.3.5 (Fourier transform). Let f ∈ L1(Rm) be a function. Then the Fourier
transform is defined as

f̂ (y) := F ( f )(y) :=
1

(2π)m/2

∫
Rm

e−ix · y f (x) dx .

The inverse Fourier transform as

F−1( f )(y) :=
1

(2π)m/2

∫
Rm

eix · y f (x) dx . (B.20)

The fundamental solution of the Helmholtz equation (Definition 2.2.1) can be ex-
pressed through a Hankel transform which is called the Sommerfeld integral or Som-
merfeld identity [43, Page 242].

Theorem B.3.6 (Sommerfeld integral). Let x, y ∈ R3, x 6= y and abbreviate the radius
as r :=

√
(x1 − y1)2 + (x2 − y2)2. Then, the fundamental solution Φ of the Helmholtz

equation for wave number κ with =κ > 0 can be expressed as the Sommerfeld integral

Φ(x, y) =
1

4π

∫ ∞

0

λ

α
e−α|x3−y3| J0(λr) dλ
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with α :=
√

λ2 − κ2 and using the branch
√
−1 = −i of the square root which corresponds

to <α > 0.

Proof. The idea is to analyse a cylindrical function with the Fourier transform. Let
f : R2 \ {0} 7→ C be a function which in polar coordinates

λ1 = r cos ϕ, λ2 = r sin ϕ, (B.21)

has the property
f(λ1, λ2) = f̆(r)einϕ

with n ∈N∪ {0}. Using the two-dimensional Fourier transform for λ1 and λ2 yields

f(λ1, λ2) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(ξ, η)eiβ(λ1−ξ)eiγ(λ2−η) dξ dη dβ dγ.

With the polar coordinates

ξ = ρ cos ψ, β = σ cos ω

η = ρ sin ψ, γ = σ sin ω

and the trigonometric identity

cos(x− y) = cos(x) cos(y) + sin(x) sin(y) (B.22)

this becomes

f̆(r)einϕ =
1

4π2

∫ ∞

0

∫ π

−π

∫ ∞

0

∫ π

−π
f̆(ρ)einψeiσr cos(ω−ϕ)e−iσρ cos(ψ−ω)ρ dψ dρσ dω dσ.

Dividing the equation through einϕ yields

f̆(r) =
∫ ∞

0

∫ π

−π

∫ ∞

0
f̆(ρ)

1
2π

∫ π

−π
e−iσρ cos(ψ−ω)ein(ψ−ω+ π

2 )ρ dψ dρ

1
2π

eiσr cos(ω−ϕ)ein(ω−ϕ−π
2 )σ dω dσ.

Using the integral representation of the Bessel functions ([46, Page 31])

Jn(z) =
1

2π

∫ π

−π
eiz cos aein(a−π

2 ) da

=
1

2π

∫ π

−π
e−iz cos bein(b+ π

2 ) db

and the substitution
a = ω− ϕ, b = ψ−ω (B.23)

the equation becomes

f̆(r) =
∫ ∞

0

∫ ∞

0
f̆(ρ)Jn(σρ)ρ dρJn(σr)σ dσ. (B.24)
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This can be written as the system

f̆(r) =
∫ ∞

0
g(σ)Jn(σr)σ dσ , r ∈ (0, ∞)

g(σ) =
∫ ∞

0
f̆(ρ)Jn(σρ)ρ dρ , σ ∈ (0, ∞).

(B.25)

Now, leaving the general separation and choosing the function f̆ as

f̆(r) =
eiκr

r
,

with y ∈ R3 be fixed, x3 = y3 and r > 0. Further, renaming λ = σ, f = g and
choosing n = 0 in (B.25) the system changes to

eiκr

r
=
∫ ∞

0
f (λ)J0(λr)λ dλ , r ∈ (0, ∞)

f (λ) =
∫ ∞

0
eiκr J0(λρ) dr , λ ∈ (0, ∞). (B.26)

The integral in (B.26) is well defined since =(κ) > 0. Now, the fundamental solution
Φ can be written as

Φ(r) =
1

4π

eiκr

r
=

1
4π

∫ ∞

0
λ f (λ)J0(λr) dλ.

Inserting the integral representation of the Bessel function J0 leads to

f (λ) =
1

2π

∫ π

−π

∫ ∞

0
eiρ(κ+λ cos ω) dρ dω .

Again using the property =(κ) > 0 gives

f (λ) = − 1
2πi

∫ π

−π

1
κ + λ cos ω

dω .

Then, the integral [14, Page 99] now leads to

f (λ) = − 1
2πi

2π√
κ2 − λ2

=
1
α

,

which is an explicit form of f . Finally, the fundamental solution for x3 = y3 and
r > 0 can be represented as

Φ(r) =
1

4π

∫ ∞

0

λ

α
J0(λr) dλ , r ∈ (0, ∞). (B.27)

For the case x3 > y3 the following ansatz will be used: Let λ ∈ (0, ∞) be fixed and
define

g(x1, x2) :=
λ

α
J0(λr) .
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Then find a function h : R → C with the property h(y3) = 1 such that the function
F(x1, x2, x3) := g(x1, x2)h(x3) fullfills the Helmholtz equation for a wave number κ

and F tends to zero for x3 → ∞. Then, the function h has to solve the boundary value
problem

h′′(x3) = (λ2 − κ2)h(x3)
h(y3) = 1
h(x3)→ 0 , x3 → ∞.

The unique solution to this problem is

h(x3) = e−α(x3−y3).

For the case x3 < y3 analogously the solution is

h(x3) = eα(x3−y3).

Thus, for x, y ∈ R3 with r > 0 and using F, the fundamental solution can be repre-
sented as

Φ(r) =
eiκ|x−y|

4π |x− y| =
1

4π

∫ ∞

0

λ

α
e−α|x3−y3| J0(λr) dλ.

For the case r = 0 for x3 6= y3 elementary integration yield

1
4π

∫ ∞

0

λ

α
e−α|x3−y3| dλ =

eiκ|x−y|

4π |x− y| = Φ(|x− y|), (B.28)

the existence of the integral is ensured through <α > 0.

Remark. The Theorem remains valid for the limit =κ → 0. The physical interpre-
tation of the Sommerfeld identity is that a spherical wave can be expanded into a
summation of cylindrical waves in r direction, multiplied by a plane wave in the z
direction.
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Numerical treatment

In this work integral equations of the second kind are employed. The numerical solu-
tion of such equations needs proper handling of the integral operators. An Nyström
method is chosen to handle the operators throughout this work.

C.1 Nyström method

Consider numerical integration of an integral operator of the form

(Aϕ)(x) =
∫

∂D
K(x, y)ϕ(y) dy, x ∈ ∂D

with continuous or weakly singular kernel K. Then, with the points xk, k = 1, . . . , n
an approximation to the integral operator through a quadrature rule is given by

(An ϕ)(x) :=
n

∑
k=1

αkK(x, xk)ϕ(xk), x ∈ ∂D.

Note that the xk are also dependent on the total number of points n which for sim-
plicity is neglected in the notation. The solution to the integral equation of the second
kind

ϕ− Aϕ = f ,

is then approximated by the solution of

ϕn − An ϕn = f .

This now can be reduced to a finite-dimensional linear system. The Nyström method
now consists of interpolating the density ϕ on the quadrature points which is written
up in the following theorem. The method has its name from the mathematician
Evert J. Nyström (1895—1960) and was published in [31] and the representation here
follows [8].

Theorem C.1.1 (Nyström method). Consider the semi-discretized integral equation of the
second kind

ϕn(x)−
n

∑
k=1

αkK(x, xk)ϕn(xk) = f (x), x ∈ ∂D. (C.1)
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Then the values ϕn,j = ϕn(xj), j = 1, . . . , n at the quadrature points satisfy the linear system

ϕn,j −
∞

∑
k=1

αkK(xj, xk)ϕn,k = f (xj), j = 1, . . . , n. (C.2)

Conversely, let the ϕn,j = ϕn(xj), j = 1, . . . , n be a solution of the (C.2). Then, the function
ϕn defined by

ϕn(x) := f (x) +
n

∑
k=1

αkK(x, xk)ϕn,k, x ∈ ∂D (C.3)

solves (C.1). Equation (C.3) is called the Nyström interpolation formula.

Remark. This especially means that the solutions ϕn of (C.1) are completely deter-
mined by their values at the nodes {xj}.

For the numerical calculations the Nyström method is used with trapezoidal rule
with ignoring the singularity. This is a further approximation to the operator but
which can be shown to be convergent to the original. This hasn’t a good convergence
rate but trapezoidal rules with better convergence rates in this weakly singular case
and in higher dimensions is complex and neglected in this work.

C.2 Fast Hankel transform

The fast Hankel transform is used for fast numerical calculations of Hankel integrals.
These are extensively used for the Green’s tensor for a two-layered medium in a
setting for time-harmonic electromagnetic waves (see Part II), thus the proper and
fast numerical treatment of the Hankel integrals is an important goal. The method
used here for the fast Hankel transform follows the paper of Johansen and Sørensen
[17]. The basic idea of the fast Hankel transform is to reformulate it as a convolution
integral with an analytically given kernel which only needed to be calculated once.

The numerical integration of the Hankel transform (B.19) becomes costly, when r
becomes large. This behaviour descends from the oscillations of the Bessel-function
Jn(r) for large r (see left image of Figure C.1).

The first step to efficiently handle the integral numericly is the following transfor-
mation.

Theorem C.2.1 (Fast Hankel transform - substitution). With the substitution

x = log(r), y = − log(λ) (C.4)

and the definitions

G(x) := exg(ex), F(y) := e−y f
(
e−y) (C.5)

Kn(x) := ex Jn(ex) (C.6)

the Hankel transform can be written as a convolution integral

G(x) =
∫ ∞

−∞
F(y)Kn(x− y) dy . (C.7)
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20

Figure C.1: Example for the kernel of the Hankel transform (left) and the kernel of
the substituted Hankel transform (right). Both have order 0.

Proof. With the substitution (C.4) the Hankel transform (B.19) becomes

g(ex) =
∫ ∞

−∞
f
(
e−y) Jn(ex−y)e−y(e−y) dy ,

and with the definitions (C.5) this leads to

G(x) =
∫ ∞

−∞
F(y)ex−y Jn(ex−y) dy .

Finally, with (C.6) this transforms to the convolution integral

G(x) =
∫ ∞

−∞
F(y)Kn(x− y) dy ,

which proves the theorem.

The now changed behaviour of the substituted hankel transform can be seen in the
right image of Figure C.1. Now justify the chosen substitution through examining its
properties.

Theorem C.2.2 (Fast Hankel transform - substitution properties). The Kernel of the
substitution has the property that

|K̂n(s)| = 1 , n > 1, =(s) = 0 . (C.8)

This ensures the existence of the inverse transform and the symmetry of the Hankel transform
is preserved. F and G have the same spectra

|Ĝ(s)| = |F̂(s)| (C.9)

and the noise in F is neither amplified nor diminished by the convolution with K.
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Proof. Taking the Fourier transform

K̂n(s) =
1

2π

∫ ∞

−∞
Kn(x)e−ixs dx (C.10)

and using the convolution theorem leads to

Ĝ(s) = F̂(s) · K̂n(s) . (C.11)

Using the explicit expression of Kn(x) from (C.6) in (C.10), substituting back and
using the integral 11.4.16 from [1] leads to

K̂n(s) =
∫ ∞

0
Jn(t)t−is dt = 2−is Γ((n + 1− is)/2)

Γ((n + 1 + is)/2)
. (C.12)

Convergence conditions in (C.12) are given by

<(−is) ≤ 1
2

, <(n− is) > −1 (C.13)

which for real s and n obviously is fulfilled for all n > −1. Since the Gamma function
fulfils the Schwarz reflection principle ([1, 6.1.23])

Γ(z̄) = Γ̄(z)

the following property holds true for real s and n > 1

|K̂n(s)| = 1 ,

which implies that the inverse Fourier transform exists. This also means that F and
G have the same spectra

|Ĝ(s)| = |F̂(s)||K̂n(s)| = |F̂(s)| .

Hence, the noise in F is neither amplified nor diminished by the convolution with
Kn. This completes the proof of the theorem.

Remark (Justification of the substitution). The Theorem is valid for all n > −1 and
thus covers a wide range of problems. Further, since the noise in F is neither am-
plified nor diminished by the convolution with Kn, the numerical realization of the
Hankel transform can be simplified in some important steps. It is possible to get an
analytic representation of Kn, which then only needs to be calculated once.

The kernel Kn(r) still oscillates exponentially with r getting larger and has a sig-
nificant distribution to the integral and as such cannot be neglected. In the case of
slowly changing F(y), i.e. it is nearly constant over a period of the fast oscillating
function Kn(r), then the integral over a period of Kn(r) is nearly zero. The main idea
of the fast Hankel transform is to low pass filter the function Kn(r) which reduces the
fast oscillating behaviour and leaves the underlying low oscillations of significance
for the integral.
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C.2 Fast Hankel transform

The numerical calculation of the convolution integral (C.7) in a fast way is the goal
of this paragraph. First, create equidistant points yp := ph, p ∈ Z with stepsize
h ∈ R. Approximate the function F with

F̃(y) :=
∞

∑
p=−∞

F(yp)P(y− yp) ,

with interpolating function P which has the property

P(ph) =

{
1 , p = 0
0 , p 6= 0

,

thus the supporting points are reproduced. Then the approximation of the function
G(x) from (C.7) becomes

G̃(x) :=
∫ ∞

−∞
F̃(y)Kn(x− y) dy =

∞

∑
p=−∞

F(yp)K̃n(x− yp)

where
K̃n(x) :=

∫ ∞

−∞
P(y)Kn(x− y) dy . (C.14)

Then, evaluating on equidistant points xm := mh, m ∈ Z leads to

G̃(xm) =
∞

∑
p=−∞

F(yp)K̃n(xm − yp) =
∞

∑
p=−∞

F(yp)K̃n((m− p)h) . (C.15)

The function K̃n(xm − yp) = K̃n((m− p)h) now only depends on h and the order of
the Bessel function and hence it is sufficient to calculate K̃n once for all differences
m− p and later interpolate for arbitrary points if necessary.

Further, it is possible to give an analytic expression for K̃n, which is covered by the
following Theorem.

Theorem C.2.3 (Analytic form of K̃n). Choosing the interpolating function as a smoothed
sinc-function

P(y) :=
sin(sNy)

sNy
· a sNy

sinh(asNy)
= a

sin(sNy)
sinh(asNy)

(C.16)

where sN := π/h is the Nyquist frequency and a := h/(dπ) a smoothness factor with
d ∈ N ∪ {0}. For a = 0 this smoothed function is the sinc-function. Then (C.14) is given
analytical as

K̃n(x) = c · e(n+1)x
∞

∑
k=0

(−1)k

4kΓ(k + 1)Γ(n + 1 + k)
e2kx

− 2a cos(xsN)exsN/d=
{

∞

∑
l=0

ex2lsN/dK̂n(sN − i(2l + 1)asN)

}
,
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i

x

=poles from P̂
=poles from K̂n

Figure C.2: Integration Path C for residue Theorem and the poles of the functions P̂
and K̂n. Note: the integration path is extended to −∞ in the imaginary
axis.

where c is an oscillating exponential factor defined as

c = ih

(
1− esNπd/2

2 + (−1)d(n+1)

)
2−(n+1)

Proof. First, write (C.14) as a Fourier integral through the convolution theorem

K̃n(x) =
1

2π

∫ ∞

−∞
P̂(s)K̂n(s)eisx ds . (C.17)

The goal is to use the residue Theorem for the integration. For this the residues of
both P̂ and K̂n has to be determined and the integration in the chosen path C in the
complex plane has to vanish besides the integration on the real axis. The integration
path C is chosen as shown in Figure C.2.

The function K̂n(s) (C.12) is an analytic function in the complex plane except in
the poles

pk,K̂n
:= −i(n + 1 + 2k), k ∈N0 (C.18)

with the residues

Rk,K̂n
:= (−1)k 2−(n+1+2k)

Γ(k + 1)Γ(n + 1 + k)
, k ∈N0 . (C.19)

In the lower halfplane the function K̂n(s) decays faster than any exponential func-
tion for =(s) → −∞ and as such the integration over the path vanishes besides the
integration on the real axis.

Further, the interpolating function P has the Fourier transform

P̂(s) =
h
2

(
tanh

(
π(s + sN)

2asN

)
− tanh

(
π(s− sN)

2asN

))
. (C.20)
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Figure C.3: Example for the dependence of P(y) (left) and P̂(s) (right) on the smooth-
ness parameter a.

This is shown in Figure C.3 for some values of the smoothness factor a. For a = 0 the
function resembles the sinc-function, and with this function the interpolation (C.14)
is exact if K̂n(s) is bandlimited and |s| > sN due to the Shannon sampling Theorem.
On the downside the sinc-function would make the integral numericly more costly
because it only decays with 1/ |x|. Smoothing the sinc-function leads to a faster
decay, and thus lesser numerical cost, with only a small decrease of accuracy for the
interpolation.

The poles of the function P̂ in the complex plane are given as

p±
k,P̂

:= ±sN − i(2k + 1)asN, k ∈N0 . (C.21)

In the lower halfplane the function P̂(s) decays faster than any exponential function
for =(s)→ ∞.

Now, it is possible to evaluate the whole integral in (C.17) with the residue Theo-
rem:

K̃n(x) = i
∞

∑
k=0

P̂(pk,K̂n
)Rk,K̂n

eixpk,K̂n

+ i
∞

∑
l=0

{
R+

l,P̂
K̂n(p+

l,P̂
)eixp+

l,P̂ + R−
l,P̂

K̂n(p−
l,P̂

)eixp−
l,P̂

}
.
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Inserting all the poles and residues and making minor simplifications leads to

K̃n(x) = i
h
2

(
tanh

(
−πd(i(n + 1) + sN)

2

)
− tanh

(
−πd(i(n + 1)− sN)

2

))
· 2−(n+1)e(n+1)x

∞

∑
k=0

(−1)k

4kΓ(k + 1)Γ(n + 1 + k)
e2kx

+ia
∞

∑
l=0

e
x(2l+1)sN

d

{
K̂n(sN − i(2l + 1)asN)eixsN − K̂n(−sN − i(2l + 1)asN)e−ixsN

}
.

Using the exponential representation of the tangens hyperbolicus yields

K̃n(x) = ih

(
1− esNπd/2

2 + (−1)d(n+1)

)
2−(n+1)e(n+1)x

∞

∑
k=0

(−1)k

4kΓ(k + 1)Γ(n + 1 + k)
e2kx

+ia
∞

∑
l=0

e
x(2l+1)sN

d

{
K̂n(sN − i(2l + 1)asN)eixsN − K̂n(−sN − i(2l + 1)asN)e−ixsN

}
Then, with the identity

K̂n(−s + it) = K̂n(s + it) , (C.22)

and using the Schwartz reflecting principle in the last sum only real parts remain
and thus can be simplified to

K̃n(x) = ih

(
1− esNπd/2

2 + (−1)d(n+1)

)
2−(n+1)e(n+1)x

∞

∑
k=0

(−1)k

4kΓ(k + 1)Γ(n + 1 + k)
e2kx

− 2a cos(xsN)exsN/d=
{

∞

∑
l=0

ex2lsN/dK̂n(sN − i(2l + 1)asN)

}
,

which completes the proof.

Numericly calculating the K̂n has some difficulties which are in detail analysed in
[17]. In this paper of Johansen also the sampling error is determined analytically.

Summarising, the fast Hankel transform speeds up the numerical calculations by a
large factor. It beats the fast Fourier transform by approximately a factor of 25. This
is accomplished mainly through a low pass filtering of the Kernel function Kn, which
then is given analytically and can be calculated a priori. Further, it can be shown that
K̃n is decaying exponentially and thus the infinite sum in (C.15) can be calculated
efficiently (see [17]).
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