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Chapter 1

Introduction

1.1 Motivation
Public transportation affects the daily life of billions of people worldwide and
besides ineffectiveness producing more costs and wasting more resources on the
operators side, it wastes billions of hours of valueable time on the customers side
and therefore is of global economical as well as ecological dimension.

Traditionally, the construction and maintainance of a public transporation
network, like for busses, metro or intercity trains, consists of the following plan-
ning steps

1. Network Design Where to put the stations and infrastructure?

2. Line Planning How to layout the lines, i.e. the vehicle paths?

3. Passenger Routing Which paths will passengers take?

4. Timetabling At which times will lines arrive/depart at the stations?

5. Vehicle Scheduling How should the lines be served by vehicles?

6. Crew Scheduling How should the crew circulate within the vehicles?

7. Delay Management What to do in case of delays? How to prevent them?

Usually, the steps are done in the order above by hand and heuristics. But
questions arise:

Of what quality will our network be? How far is it away from the
optimum? Can we do it better?
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These are difficult questions. In fact, politicians, transportation man-
agers, customers, taxpayers, etc. frequently employ judgments such
as “good” and “efficient”, but nobody can give a definition what this
exactly means. Since almost every public transportation system in
the world is in the red, the cheapest system is no public transporta-
tion at all. On the other hand, the most convenient system for the
passenger - a stop in front of every house with direct connections to
everywhere – is much too expensive. What is the right compromise?
Operations Research has no good answer either - so far. But OR can
improve aspects of public transportation significantly [. . . ]

[BGP06]

There is evidence for the last statement:

In December 2006, Netherlands Railways introduced a completely new
timetable. Its objective was to facilitate the growth of passenger and
freight transport on a highly utilized railway network and improve the
robustness of the timetable, thus resulting in fewer operational train
delays. Modifications to the existing timetable, which was constructed
in 1970, were not an option; additional growth would require signif-
icant investments in the rail infrastructure. Constructing a railway
timetable from scratch for about 5,500 daily trains was a complex
problem. To support this process, we generated several timetables
using sophisticated operations research techniques. Furthermore, be-
cause rolling-stock and crew costs are principal components of the
costs of a passenger railway operator, we used innovative operations
research tools to devise efficient schedules for these two resources.

The new resource schedules and the increased number of passengers
resulted in an additional annual profit of e40 million ($60 million);
the additional revenues generated approximately e10 million of this
profit. We expect this profit to increase to e70 million ($105 mil-
lion) annually in the coming years. However, the benefits of the new
timetable for the Dutch society as a whole are much greater: more
trains are transporting more passengers on the same railway infras-
tructure, and these trains are arriving and departing on schedule more
than they ever have in the past. In addition, the rail transport system
will be able to handle future transportation demand growth and thus
allow cities to remain accessible to more people. Therefore, we ex-
pect that many will switch from car transport to rail transport, thus
reducing the emission of greenhouse gases.

[KHA+09]
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LinTim1, a project by Prof. Schöbel, is a collection of methods to perform
some of the planning steps above automatically. With LinTim we can e.g. eval-
uate the impact of different line planning methods on the average traveling time
or the delay robustness.

“Why can we not simply compute the optimum?”

There are two problems:

1. It is hard to define what that optimum should actually be. However a low
average traveling time seems to be desireable when it comes to efficiency.

2. Computing space and time. Problems related to public transportation are
usually NP hard and models that incorporate several levels of planning
grow astromically in their sizes.

Therefore, traditional planning uses simple models. Let us have a look at the
timetabling objective function:

min
∑

a∈A

waxa,

where wa is a fixed number of passengers that take the activity a (drive, wait or
change) and xa its duration.

In that model, the number of passengers is fixed per activity. If we assume
that passengers will take the shortest path in time to get from one station to
another, lets say they looked it up at reiseauskunft.bahn.de, their number is
actually not fixed. As expected: in general, the average traveling time decreases,
if we reroute the passengers and recalculate the timetable. This holds for both
tiny and gigantic networks and means that the traditional model only delivers an
approximation of unknown overall quality to the possible optimum.

If we follow the traditional traffic planning workflow, another problem arises:
some steps at the beginning actually depend on data we only get at the end, as we
have seen for the timetabling where we need to perform some initial guess. But
this goes down much further: At the line planning step we also made assumptions
about how many passengers will use certain links within the network, which we
only know after timetabling.

1http://lintim.math.uni-goettingen.de

http://lintim.math.uni-goettingen.de
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1.2 Overview
In this Chapter we introduce the basic formalism used throughout the work,
which is most basic notation of graph theory, a collection of later useful number
theoretical lemmata and our notation of public transportation.

The next Chapter 2, Classical Models, builds on the definitions from this
chapter, introduces the default methods of the LinTim framework, which should
mostly correspond to what is used in research practice. Further it introduces the
widely used periodic event scheduling problem PESP.

Chapter 3, Beyond Classical Models, the author introduces his extensions to
LinTim, subject to comparison with classical models and base for later theoretical
and computational results.

In Chapter 4, Planning Steps Lower Bounds we work on lower bounds for the
average traveling time at different stages of planning.

Besides lower bounds we face the Worst Case Error in Chapter 5, which is
a collection of various example networks, parametrized by the period length T
as well as line frequencies and facing different common simplification techniques
and sequential planning.

Finally, Chapter 6, Computational Results, compares the worst case findings
with what happens in actual networks. Further, we introduce a scaleable, exten-
sible and iterative heuristic method that for practice-relevant large scale networks
can improve results more than an additional threefold in average and more than
an additional eightfold if combined with a statistic framework compared to what
had been possible before with state-of-the-art methods for timetabling [GS11].
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1.3 Prerequisites
The reader should be familiar with optimization in public transportation, math-
ematical programming as well as elementary number, graph and complexity the-
ory. For the former one, [Sch04] is our main source, for the latter one, the author
proposes [GJ79] and for the others arbitrary lecture notes should do it.

To the taste of the author, this work could be less formal. However, one big
issue is that most of the formalism is result of the work on LinTim, so that it is
hard to judge to which amount definitions intersect with those of the reader, even
if he or she is involved in the subject. On the other hand, many proofs require
precise, if not pedantic formulations of the actual problem, since by itsself it
usually spans several levels of planning in public transportation and often involves
an aspect changed in between.

In this section we introduce the most basic preliminaries for this work.

1.3.1 Number Theory

This section is for reference purposes but should be read as a whole. Without
reading the main text however it is most likely meaningless to the reader.

Definition 1.1 (Periodic Interval). Let a, b, T ∈ N \ {0}. A periodic interval
[a, b]T is defined as

[a, b]T =
⋃

z∈Z

[a+ zT, b + zT ] = [a, b] + ZT . (1.1)

For example, [1, 2]60 = . . . [−59,−58] ∪ [1, 2] ∪ [61, 62] ∪ . . ..

Lemma 1.2. Let a, b ∈ Z with constraints a, b ∈ [l, u], where l, u ∈ Z and T ∈ N

with l ≤ u and u− l ≤ T − 1. Then a = b mod T iff a = b.

Proof. a = b mod T is defined by: there exist z ∈ Z such that a = b+ zT .
“⇒”: For z holds

a− b

T
= z . (1.2)

Using the lower and upper bounds yields

0 ≤

⌈

l − u

T

⌉

≤ z ≤

⌊

u− l

T

⌋

=

⌊

T − 1

T

⌋

= 0 , (1.3)

therefore z = 0
“⇐”: Chose z = 0.

Note that Lemma 1.2 is not true if e.g. l − u > T − 1. Therefore consider
a, b ∈ [0, 60]. Then both a = 0 and 60 yield a− b = 0 mod T with b = 0.

Theorem 1.3 (Bézout’s Identity). Let a, b ∈ N \ {0}. Then there exist x, y ∈ Z:

xa + yb = gcd(a, b) . (1.4)
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Proof from Wikipedia. Let S = {na+mb > 0 : n,m ∈ Z}. Since S is not empty
and S ⊂ N, there exists a minimal element d = xa+ yb with d ≤ s, for all s ∈ S.

By division with remainder a = qd+ r with r ∈ {0, . . . , d− 1}. Solving for r
yields r = a− qd = a− q(xa + yb) = a(1 − qx) + b(−yq). If r > 0 it must be in
S, which would contradict the fact that d is minimal in S. Therefore r = 0 and
d|a. The same argument yields d|b. If c is another common divisior of a and b, it
divides xa+ yb = d, since it divides every summand and thus c|d and d must be
the greated common divisor.

Lemma 1.4. Let T, f1, f2 ∈ N \ {0}, f1|T , f2|T . It holds that

gcd

(

T

f1
,
T

f2

)

=
T

lcm(f1, f2)
. (1.5)

Proof. By the fundamental theorem of arithmetic, every positive integer has a
unique decomposition into a product of prime powers. Let p1, . . . , pnp

be prime
divisors of T . Since f1|T and f2|T , f1 and f2 can be represented as a product of
prime powers of T

T =

np
∏

i=1

pTi

i , Ti ∈ N \ {0}, (1.6)

f1 =

np
∏

i=1

p
f1
i

i , f2 =

np
∏

i=1

p
f2
i

i , f 1
i , f

2
i ∈ {0, . . . , Ti}, (1.7)

and thus

T

f1
=

np
∏

i=1

p
Ti−f1

i

i ,
T

f2
=

np
∏

i=1

p
Ti−f2

i

i . (1.8)

Further, lcm can be expressed by prime power products

lcm(f1, f2) =

np
∏

i=1

p
min(f1

i ,f
2
i )

i , (1.9)

and gcd as well

gcd

(

T

f1
,
T

f2

)

=

np
∏

i=1

p
max(Ti−f1

i ,Ti−f2
i )

i =

np
∏

i=1

p
Ti−min(f1

i ,f
2
i )

i =
T

lcm(f1, f2)
. (1.10)

Lemma 1.5 (Division With Negative Remainder). Let x ∈ Z, T ∈ N\{0}. Then
there are unique k1, k2 ∈ Z and x1, x2 ∈ {0, . . . , T − 1} with

x = k1T + x1 = k2T − x2 . (1.11)
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Proof. Division with remainder yields x = k1T + x1 with unique k1 ∈ Z and
x1 ∈ {0, . . . , T − 1}. If x1 = 0, then select k2 = k1 and x2 = 0. Otherwise select
k2 = k1 + 1 and obtain

x = k2T − x2 = k1T + T − x2 . (1.12)

The lemma follows with x2 = T − x1 ∈ {1, . . . , T − 1}.

Lemma 1.6 (Modulus Reducibility). Let τ, T ∈ N \ {0} with τ |T and a ∈ Z.

∃ k ∈ {0, . . . , T
τ
− 1} : a + kτ = 0 mod T ⇔ a = 0 mod τ . (1.13)

Proof. Equivalent are

a + kτ = 0 mod T (1.14)

∃ z ∈ Z : a + kτ = zT (1.15)

a =

(

zT

τ
− k

)

τ . (1.16)

It remains to show that for all z′ ∈ Z there exists z ∈ Z and k ∈ {0, . . . , T
τ
− 1}

such that

z′ = z
T

τ
− k . (1.17)

Division with negative remainder as in Lemma 1.5 yields

z′ = z
T

τ
− k, z ∈ Z, k ∈ {0, . . . , T

τ
− 1} . (1.18)

Choose k = k and z = z to obtain the lemma.

Theorem 1.7 (A Periodic lcm Representation). Let T, f1, f2 ∈ N \ {0}, f1|T ,
f2|T . Then there exist ξ1 ∈ {0, . . . , f1 − 1}, ξ2 ∈ {0, . . . , f2 − 1} with

ξ1
T

f1
− ξ2

T

f2
=

T

lcm(f1, f2)
mod T . (1.19)

Proof. From Bézout’s Identity (Theorem 1.3) with a = T
f1
, b = T

f2
follows that

there exist x, y ∈ Z with

x
T

f1
+ y

T

f2
= gcd

(

T

f1
,
T

f2

)

. (1.20)

Devision with (negative) remainder yields

x = k1f1 + ξ1 , k1 ∈ Z, ξ1 ∈ {0, . . . , f1 − 1}, (1.21)

y = k2f2 − ξ2 , k2 ∈ Z, ξ2 ∈ {0, . . . , f2 − 1} (1.22)



14 CHAPTER 1. INTRODUCTION

and hence

(k1f1 + ξ1)
T

f1
+ (k2f2 − ξ2)

T

f2
= gcd

(

T

f1
,
T

f2

)

(1.23)

which is equivalent to

ξ1
T

f1
− ξ2

T

f2
= gcd

(

T

f1
,
T

f2

)

− T (k1 + k2) (1.24)

=
T

lcm(f1, f2)
mod T , (1.25)

by Lemma 1.4.

Lemma 1.8. Let T, f1, f2 ∈ N \ {0}, f1|T , f2|T . For all k̃ ∈ N there are i ∈
{0, . . . , f1 − 1} and j ∈ {0, . . . , f2 − 1} with

i
T

f1
− j

T

f2
= k̃

T

lcm(f1, f2)
mod T . (1.26)

Proof. Let ℓ := lcm(f1, f2). As per Theorem 1.7 there are ξ1 ∈ {0, . . . , f1 − 1},
ξ2 ∈ {0, . . . , f2 − 1} with

ξ1
T

f1
− ξ2

T

f2
=

T

ℓ
mod T . (1.27)

Thus, for a given k̃ ∈ N

k̃ξ1
T

f1
− k̃ξ2

T

f2
=

k̃T

ℓ
mod T . (1.28)

By devision with remainder

k̃ξ1 = k1f1 + i , k1 ∈ Z, i ∈ {0, . . . , f1 − 1}, (1.29)

k̃ξ2 = k2f2 + j , k2 ∈ Z, j ∈ {0, . . . , f2 − 1}. (1.30)

It follows that

i
T

f1
− j

T

f2
=

k̃T

ℓ
+ T (k2 − k1) = k̃

T

lcm(f1, f2)
mod T . (1.31)

Lemma 1.9 (Representation of lcm). Let T, f1, f2 ∈ N \ {0}, f1|T , f2|T . For
each k̃ ∈ N there exists k ∈ K := {0, . . . , lcm(f1, f2)− 1} so that

k̃
T

lcm(f1, f2)
= k

T

lcm(f1, f2)
mod T . (1.32)

K is a smallest set with the property from equation (1.32).
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Proof. Let ℓ := lcm(f1, f2). Devision with remainder yields

k̃ = k1ℓ+ k , k1 ∈ Z, k ∈ {0, . . . , ℓ− 1} (1.33)

and thus

k̃
T

ℓ
=

k1ℓT + kT

ℓ
= k1T +

kT

ℓ
= k

T

lcm(f1, f2)
mod T . (1.34)

The greatest multiple of T
ℓ
which is still in [0, T ) is (ℓ−1)T

ℓ
. Therefore, for given

κ1, κ2 ∈ {0, . . . , ℓ− 1} with κ1 6= κ2 also
κ1T
ℓ

6= κ2T
ℓ

mod T is satisfied. It follows
that K is a smallest set with the property from equation (1.32).

Theorem 1.10 (Compact Representation of lcm). Let T, f1, f2 ∈ N \ {0}, f1|T ,
f2|T . For all k ∈ {0, . . . , lcm(f1, f2) − 1} there are i ∈ {0, . . . , f1 − 1} and
j ∈ {0, . . . , f2 − 1} with

i
T

f1
− j

T

f2
= k

T

lcm(f1, f2)
mod T . (1.35)

Proof. Combine Lemma 1.8 and 1.9.

Theorem 1.11 (Compact Representation by lcm). Let T, f1, f2 ∈ N \ {0},
f1|T , f2|T . For all i ∈ {0, . . . , f1 − 1} and j ∈ {0, . . . , f2 − 1} there exists
k ∈ {0, . . . , lcm(f1, f2)− 1} with

i
T

f1
− j

T

f2
= k

T

lcm(f1, f2)
mod T . (1.36)

Proof. Let ℓ := lcm(f1, f2). Then there are k1 = ℓ/f1, k2 = ℓ/f2 so that

i
T

f1
− j

T

f2
= (ik1 − jk2)

T

ℓ
= k̃

T

ℓ
mod T , (1.37)

where k̃ = ik1 − jk2 ∈ Z. With help of Lemma 1.9 follows that

i
T

f1
− j

T

f2
= k

T

lcm(f1, f2)
mod T , (1.38)

with k ∈ {0, . . . , lcm(f1, f2)− 1}.

Corollary 1.12 (lcm Representation Map). Let T, f1, f2 ∈ N \ {0}, f1|T , f2|T .
The lcm Representation Map

k : {0, . . . , f1 − 1} × {0, . . . , f2 − 1} → {0, . . . , lcm(f1, f2)− 1}

(i, j) 7→ k : i
T

f1
− j

T

f2
= k

T

lcm(f1, f2)
mod T

is well-defined and surjective. Further, i and j together with f1 and f2 may be
swapped.
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Proof. Well-definedness follows from theorem 1.11 and surjectivity from Lemma
1.9 and Theorem 1.11. Swapping i and i together with f1 and f2 is possible due
to the symmetry of lcm.

Corollary 1.13. With ℓ = lcm(f1, f2), the lcm representation map from Corol-
lary 1.12 may be represented as

k = i
ℓ

f1
− j

ℓ

f2
mod ℓ . (1.39)

Proof. It holds

∃ z : Z : i
T

f1
− j

T

f2
= k

T

ℓ
+ zT , (1.40)

which is equivalent to

∃ z : Z : i
ℓ

f1
− j

ℓ

f2
= k + zℓ , (1.41)

from which the corollary follows.

1.3.2 Graph Theory

Definition 1.14 (Graph). An directed G = (V, ~E) is a tuple of a finite set V

called vertices and ~E, a finite subset of V × V × N, called edges. An element
(v, v′, i) ∈ E is called edge from v to v′ resp. edge from vertex v and to vertex
v′ and the notation (v, v′) = e means that the tuple (v, v′) contains the from and
to vertices of e. For v, v′ ∈ V the set Ev,v′ = {(v, v′, i) ∈ E} is called the set of
edges between nodes v and v′. G = (V,E) is an undirected graph, if the edges
are sets {v, v′} and thus not oriented, but for simplicity reasons still denoted by
(v, v′).

Definition 1.15 (Subgraph). A subgraph G′ = (V ′, E ′) of G = (V,E) has the
property V ′ ⊂ V , E ′ ⊂ E and is a graph by itsself, i.e. for all (v, v′) ∈ E ′ it holds
v, v′ ∈ V ′.

Definition 1.16 (Connected Edge Sequence, Path, Cycle). Let G = (V, ~E) be a
directed graph. A connected edge sequence of length k − 1 is a finite sequence of
edges

S =
[

(v1, v2), (v2, v3), . . . , (vk−1, vk)
]

(1.42)

with mutually distinct edges (vj , vj+1) ∈ ~E or (vj+1, vj) ∈ ~E for all j ∈ {1, . . . , k−

1} with the sets S+ = {(vj, vj+1) : (vj , vj+1) ∈ ~E} and S− = {(vj+1, vj) :

(vj , vj+1) ∈ ~E} being forward arcs resp. backward arcs of P .
If all nodes in S are mutually distinct, then S is denoted by P and called

undirected path from v1 to vk. If P
− = ∅, then P is called directed path. If for

S holds vk = v1 it is called a cycle, denoted by C instead of S and if additionally
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C− = ∅ it is called a circle. A cycle resp. circle for which all nodes besides the
first and the last one are mutually distinct is called simple.

For an undirected graph G = (V,E) a structure P as above is just called path.
Connected edge sequences and cycles keep their names.

Definition 1.17 (Connected). Let G = (V, ~E) be a directed graph. G is called
weakly connected resp. strongly connected if for all v1, v2 ∈ V , v1 6= v2 there is
a undirected resp. directed path from v1 to v2.

An undirected graph G = (V,E) is called connected if for every v1, v2 ∈ V
there is a path from v1 to v2.

Definition 1.18 (Connected Component). Let G = (V, ~E) be a directed graph
and v0 ∈ V . The weakly resp. strongly connected component of v0 is a subgraph
G0 = (V0, ~E0) of G that consists of the maximal set of vertices v ∈ V so that there
is an undirected resp. directed path from v0 to v together with all edges e ∈ E
that are contained in any path from v0.

For undirected graphs analogously despite there is no destinction between undi-
rected and directed paths.

For all graphs we work with we assume that they are (strongly) connected. If
they are not, our results still hold for every connected component.

Definition 1.19 (Tree). A tree is a (directed) graph G = (V,E) that satisfies
one of the equivalent conditions

• G is (weakly) connected and has no cycles.

• G is (weakly) connected and if one edge is removed from E, it is not (weakly)
connected anymore.

• For any two v1, v2 ∈ V there is a unique (undirected) path from v1 to v2.

Definition 1.20 (Spanning Tree). For a graph G = (V,E) a spanning tree is a
subgraph G′ = (V ′, E ′) that is a tree and satisfies V ′ = V , i.e. it is spanning.

Definition 1.21 (Shortest Path). Let G = (V, ~E) be a (directed) graph, w : E →
R≥0 edge weights and v1, v2 ∈ V . A shortest path P from v1 to v2 w.r.t. w is a
(directed) path from v1 to v2 minimizes

∑

e∈P

we. (1.43)

Definition 1.22 (Shortest Path Tree). Let G = (V,E) be a directed graph and
w : E → R≥0 edge weights and v0 ∈ V . A (directed) shortest path tree from v0
w.r.t. w is a spanning tree that contains v0, called root and every (directed) path
to other v1 ∈ V , v1 6= v0 is a shortest (directed) path from v0 to v1.



18 CHAPTER 1. INTRODUCTION

Note that in this context, a directed tree refers to the underlying graph being
directed and strong connectivity.

For nonnegative edge weights as above shortest paths trees and therefore
shortest paths as well may be computed in polynomial time, e.g. O(E+V log V )
with Dijkstras algorithm with Fibonacci Heaps.

1.3.3 Public Transportation

Public Transportation is ubiquitous and there is no one who never used a bus or
a train at least once in his or her lifetime. Therefore, the intention of this section
is not to introduce anything new to anyone, but to link the perceived reality with
a concrete formalism.

Kallithea

Figure 1.1: Athens Metro, a dataset in LinTim.
Image Source: http://en.wikipedia.org/wiki/Athens Metro

This section are many repetitions that could easily be avoided but actually
are indented, since they allow a quick look up.

Most of the defintions arise from the implementation in the LinTim project
which is based on [Sch04].

Definition 1.23 (Public Transportation Network). A Public Transportation

Network PTN = (S,E) is an undirected resp. PTN = (S, ~E) a directed graph
that has a set of stations S as vertices and a set of edges E with possibly multiple
edges.

http://en.wikipedia.org/wiki/Athens_Metro
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Edges represent physical connections like roads or rails between bus stops or
train stations.

If the PTN = (S,E) graph is undirected this means that all edges may be

used in both directions, while a directed PTN = (S, ~E) may have one-way roads,
e.g. as they occur for bus networks in inner cities like it is the case in Göttingen.

For our purposes, we consider undirected edges as two identical directed edges,
one pointing in one and one in the other direction, like the two lanes of a road or
two parallel railway tracks. Therefore we effectively work with directed networks
only.

Definition 1.24 (Time). Time is an integral number given in a time unit t.

For example, t = 1min for intercity rail traffic like in Bahn Gross or t = 6 s
for rapid transit as in the Athens Metro dataset.

Definition 1.25 (Edge Lower and Upper Bounds). Given a PTN = (S,E), a
lower bound map l : E → N assigns every edge e ∈ E a lower bound le. An
upper bound map u : E → N assigns every edge e ∈ E a upper bound ue ≥ le.
Both are given in time units t.

This implies that our networks are limited to only a single kind of vehicle. A
lower bound le is engineerically given by the minimal time a vehicle needs to pass
an edge e, whereas an upper bound ue is a more or less arbitrary maximal time
to pass e, with le ≤ ue.

The edge e ∈ E could for example be a road of one kilometer length. If the
speed limit on that road is 60km/h and the vehicle can go that fast, then le = 1.
Since passengers can walk with around 6km/h, ue = 10 would be a reasonable
upper bound.

Definition 1.26 (Edge Headway). Given a PTN = (S,E), a headway map
h : E → Z assigns every edge e ∈ E a headway he in time units t.

Roughly speaking, a headway he is a minimal safety time distance for every
pair of vehicles that use e to make sure that vehicles do not crash. To be more
precise, see headway activities in Definition 1.42.

A headway of he = 2 for some e ∈ E, means that if two vehicles v1 and v2 use
he, that every departure of v1 must be at least two time units later than that of
v2 and vice versa.

We defined lower bounds, upper bounds and headways on undirected public
transportation networks, which works out that way for directed networks as well.
Since we expect our edges to be identical in both directions, bounds and headways
persist in the case of a switch to the directed representation.

Definition 1.27 (Vehicle Capacity). The Vehicle Capacity is an integral number
cVehicle given in passengers.
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In case of several vehicles, we would need a map, but since our networks are
limited to one kind of vehicle, we can denote its capacity with c

Vehicle.
The vehicle capacity must not necessarily be the maximal number of passen-

gers that fit into the vehicle and may be reduced for travel comfort reasons.

Definition 1.28 (Period Length). The Period Length T ∈ N is an integer given
in time units t.

Departure and arrival times of lines from Definition 1.32, i.e. the timetable
(Section 2.5) repeats every period length.

For all our example datasets, the period length is one hour, i.e. T = 60 for
Bahn Gross and T = 600 for Athens Metro.

Definition 1.29 (Origin Destination Matrix). Let PTN = (S, ~E) be a public
transportation network and T a period length. An origin destination matrix OD =
(ws1s2)s1,s2∈S assigns an origin destination pair ws1s2 ≥ 0, for all s1, s2 ∈ S, which
is the number of travelers from station s1 to s2 within T , given in passengers.

In our datasets we interpolate ws1s2 from the number of passengers per day
between s1 and s2, for all s1, s2 ∈ S and thus we do not account for rush hours
or idle times. In our model, the passenger distribution stays uniform throughout
a period and thus throughout the day.

Definition 1.30 (PTN Passenger Route). Let PTN = (S, ~E) be a public trans-
portation network. For a given pair of stations s1, s2 ∈ S, a PTN passenger route
is a path in the PTN from s1 to s2.

Definition 1.31 (Passenger Load, Vehicle Demand, Maximal Vehicle Load).
Given a PTN = (S,E) and a period length T , a passenger load map p : E → N

assigns every edge e ∈ E a passenger load pe, given in passengers. A vehicle
demand map f low : ~E → N assigns every edge e ∈ E an edge vehicle demand
f low
e = ⌈pe/cVehicle⌉. A maximal vehicle load map fup : E → N assigns every edge
e ∈ E a maximal vehicle load fup

e ≥ f low
e .

Since we do not have data on maximal vehicle loads, our fup
e is arbitrary, for

all e ∈ E.

Definition 1.32 (Line). Let PTN = (S,E) be a public transportation network.
A line ℓ is a path ℓ = (eℓ1, . . . , e

ℓ
nℓ
) in the PTN.

A line can be thought as a bus or metro line. However, lines exist also for
intercity rail traffic.

We cannot define a line by the stations it passes, since there can be multiple
edges in the PTN.

The only reason why we limit lines to be paths is that our current formalism
does not allow a station to be passed twice. This happens to some lines, especially
in bus networks. Introducing an additional index to characterize departures and
arrivals would fix that issue, but is not of conceptional interest for this work.
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Definition 1.33 (Frequency). A frequency fℓ ∈ N is the number of times a line
occurs within a period length T . This implies that fℓ|T .

If fℓ|T is not explicitly stated, it still holds. However, for recalling purposes
or formal clarity, we mention it occasionally.

The frequency fℓ ∈ F , is roughly the number of vehicles used on ℓ equally dis-
tributed within the period length. Directed lines inherit fℓ from their undirected
representation.

Definition 1.34 (Line Concept). A line concept LC = (L, F ) is a set of lines L
and a frequencies map F : L → N∪ {0} that assigns a frequency fℓ to every line
ℓ ∈ L.

We may derive line concepts from an initial set of lines, a so-called line pool
L or be generated in some other fashion. As for the PTN, although lines are
undirected, we can represent LC in a directed manner: in (~L, F ) for each ℓ ∈ L
we assign two lines; one that heads in one direction of the edge sequence, one in
the other.

To do timetabling, we need to combine a public transportation network PTN
with a line concept LC and an origin destination matrix OD. We give a quick
overview about the most basic aspects. For a visualization of event activity
networks and their construction, consult Sections 2.3 and 3.1.

Definition 1.35 (Event Activity Network). Let PTN = (S, ~E) be a public trans-

portation network and LC = (~L, F ) be a line concept. An associated Event
Activity Network EAN = (E ,A) is a directed graph that has a set of events E
as vertices and a set of activities A as edges. Events ε ∈ E are either depar-
tures (dep) or arrivals (arr) and have a unique representation ε = (s, ℓ, arr/dep, i)

with s ∈ S, ℓ ∈ ~L and a frequency instance i ∈ {0, . . . , fℓ − 1}. A representative
event has a frequency instance i = 0.

An event ε = (s, ℓ, arr/dep, i) with s ∈ S, ℓ ∈ ~L and i ∈ Z can be thought as
an arrival/depature of the vehicle that serves the line ℓ. But strictly speaking,
it only means that some vehicle serves it, which is to be determined by vehicle
scheduling, which is not part of this work.

The term event activity network refers to periodic event activity network, since
we work with the periodic version only anyway. Besides the pure graph, an EAN
is assumed to have lower and upper bounds for activities as well as a period length
attached, so we only mention them explicitly on usage.

Definition 1.36 (Timetable). Let EAN = (E ,A) be an event activity network.
A timetable is a map π : E → Z.

The only information at this point is: a timetable maps from the events to
the integers. For more details on periodic timetabling see Section 2.5.
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Definition 1.37 (Activitiy Lower and Upper Bounds). Given an EAN = (E ,A),
a lower bound map l : A → N assigns every activity a ∈ A a lower bound la.
An upper bound map u : A → N assigns every activity a ∈ A a upper bound
ua ≥ la. Both are given in time units t.

The diversity among activities a = (ε, ε′) ∈ A is greater than that of events.

Definition 1.38 (Drive Activity). Let PTN = (S, ~E) be a public transportation

network, LC = (~L, F ) be a line concept and EAN = (E ,A) an associated event
activity network. A drive activity leads from a departure ε = (dep, ℓ, s, i) ∈ E at

some station s ∈ S to an arrival ε′ = (arr, ℓ, s′, i) ∈ E of the same line ℓ ∈ ~L at
a different station s′ 6= s but same frequency instance i and is called drive from
s to s′. The drive activity edge map edge : A → ~E assigns every drive activity a
an edgea = (e, s, s′) ∈ ~E. To every event ε ∈ E there is only one unique assigned
drive activitiy driveε ∈ A, that is outgoing of ε if it is a (dep) or incoming, if
ε is an (arr). It inherits a lower bound la = ledgea as well as an upper bound

ua = uedgea from its assigned edgea ∈ ~E and induces edgeε := edgeε′ := edgea as
the event’s assigned edge. The set of all drive activities is denoted by Adrive.

Definition 1.39 (Wait Activity). Let PTN = (S, ~E) be a public transportation

network, LC = (~L, F ) be a line concept and EAN = (E ,A) an associated event
activity network. A wait activity leads from an arrival ε = (arr, ℓ, s, i) ∈ E to a

departure ε′ = (dep, ℓ, s, i) ∈ E of the same line ℓ ∈ ~L at the same station s with
same frequency instance i. The set of all wait activities is denoted by Await.

In our datasets, la = lwait, ua = uwait for all a ∈ A, with lwait ≤ uwait being
some arbitrary global constants, typically lwait = 1 and uwait = 3.

Definition 1.40 (Change Activity). Let PTN = (S, ~E) be a public transportation

network, LC = (~L, F ) be a line concept and EAN = (E ,A) an associated event
activity network. A change activity leads from an arrival ε = (arr, ℓ, s, i) ∈ E

to a departure ε′ = (dep, ℓ′, s, j) ∈ E of different lines ℓ, ℓ′ ∈ ~L, ℓ 6= ℓ′ at the
same station s ∈ S but arbitrary frequency instances i ∈ {0, . . . , f1 − 1}, j ∈
{0, . . . , f2 − 1}. If for (ε1, ε) := driveε, (s1, ℓ, dep, i) := ε, (ε′, ε2) := driveε′,
(s2, ℓ

′, arr, j) := ε2 holds s1 = s2, then the change a is called local station loop.
The set of all change activities is denoted by Achange.

In our datasets, la = lchange, ua = uchange for all a ∈ Achange, with lchange ≤
uchange being some arbitrary global constants, e.g. lwait = 4 and uwait = T + 3,
where T is the period length.

To take a local station loop basically means that that one travels from some
station s1 to s and changes into some line that brings one back to station s1.
Since we consider traveling time only, such changes may be ignored2.

2From a comfort point of view, this may be an issue if vehicles are air-conditioned and
stations are not.
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Definition 1.41 (Passenger Usable Activities). For an EAN = (E ,A) the union
of all drive, wait and change activities Adrive ∪ Await ∪ Achange is denoted by Ap

and called the set of passenger usable activities.

But there are also activities passengers can not utilize.

Definition 1.42 (Headway Activity). Let PTN = (S, ~E) be a public transporta-

tion network, LC = (~L, F ) be a line concept and EAN = (E ,A) an associated
event activity network. For every ordered pair of departures ε1 = (dep, ℓ, s, i),

ε2 = (dep, ℓ′, s, j) ∈ E at the same station s ∈ S of different lines ℓ, ℓ′ ∈ ~L there
is a headway activity a if the associated drive activities share the same edge, i.e.
edgedriveε1 = edgedriveε2 . It inherits a lower bound la = hedgea from its assigned

edgea ∈ ~E. The set of all headway activities is denoted by Aheadway.

Our headway definition is not the most general case, since we only require
headways between departures. In practice, especially in train networks, there are
also headways between arrivals and between departures and arrivals for single-way
tracks.

To get more information about the influence of the frequency instances i and
j, consult Sections 2.3.3 and 3.1.4.

Definition 1.43 (EAN Passenger Route). Let PTN = (S, ~E) be a public trans-

portation network, LC = (~L, F ) be a line concept and EAN = (E ,A) an associated
event activity network. For a given pair of stations s1, s2 ∈ S, a EAN passenger
route is a path from s1 to s2 in the EAN and can utilize passenger usable activi-
ties, i.e. drive, wait and change. Its first activity has to be a drive from s1 and
its last activity a drive to s2.

Definition 1.44 (PTN Passenger Route Trace). Let PTN = (S, ~E) be a public

transportation network, LC = (~L, F ) be a line concept, EAN = (E ,A) an associ-
ated event activity network, s1, s2 ∈ S a pair of stations and P ⊂ Ap an EAN pas-
senger route. A PTN passenger route trace is the image PPTN = edge(P∩Adrive),
i.e. the set of edges in the PTN that the path P uses.

Lemma 1.45. PPTN from Definition 1.44 contains a path from s1 to s2.

Proof. Every passenger path in an EAN can either follow a line with drive and
wait activities, of which the trace yield a path in the PTN or take a change and
since both departure and arrival of every change must be at the same station,
connectivity between s1 and s2 can not be broken.
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Chapter 2

Classical Models

In this chapter we introduce actual models to get from a line concept to an event
activity network, mostly relying on [Sch04] and perform timetable optimization,
for which we use [Lie02]. The term classical refers to the popularity in teaching
and research rather than to whether a model is state-of-the-art.

2.1 Passenger Load

Let a PTN = (S,E) with lower time bounds le for all e ∈ E. For line planning
as in the subsequent Section 2.2, for every edge e ∈ E we need a to calculate
the edge vehicle demand f low

e = ⌈pe/cVehicle⌉ from Definition 1.31. Therefore, we
need passenger loads pe for all e ∈ E, as in [Sch04]. Without any line concept
available, a first estimation is that passengers travel along the edges E of PTN
on shortest paths with le being the weight for all e ∈ E.

2.2 Line Planning

In [Sch04] the author introduces a cost minimizing line concept linear formulation.

Linear Program 2.1 (Cost Minimizing Line Concept). Let a PTN = (S,E), a
line pool L as well as costs cℓ for all ℓ ∈ L and a period length T be given.

We use an inclusion representation

C L = (leℓ)e∈E,ℓ∈L ,

leℓ =

{

1 line ℓ contains link e

0 otherwise
, ∀ ℓ ∈ L, e ∈ E, (2.1)

as well vehicle demands and maximal vehicle loads from definition 1.31

C f low
e , fup

e ∈ [0, T ] ∩ Z (2.2)

25



26 CHAPTER 2. CLASSICAL MODELS

and we want to determine the frequency

V fℓ ∈ [0, T ] ∩ Z , ∀ ℓ ∈ L. (2.3)

Our objective is to minimize the cost

L min
∑

ℓ∈L

fℓcℓ (2.4)

while satisfying the edge bounds

L f low
e ≤

∑

ℓ∈L

leℓfℓ ≤ fup
e ∀ e ∈ E. (2.5)

Finding a feasible line concept for the Linear Program 2.1 is generally NP-
complete, since the exact cover by 3-sets problem may be reduced to it as shown
in [Sch04]. However, without upper bounds feasibility can easily be checked by
simply using all lines from L with some global upper bound frequency.

2.3 Event Activity Network

Let a PTN = (S, ~E) and a LC = (~L, F ) be given. Our Event Activity Network
Construction consists of the following steps:

1. Roll Out Lines,

2. Generate Change Activities,

3. Generate Headways.

2.3.1 Lines Roll Out

In this step we construct an initial base for an event activity network: departures,
arrivals, drive and wait activities for all lines in the line concept. Note that our
public transportation network PTN = (S, ~E) as well as line concept LC = (~L, F )
are supposed to be directed or in case they still are undirected need to be made
directed.

The classical lines roll out model we call frequency_as_attribute, which
iterates through every line and creates one arrival and one departure per edge,
no matter what the frequency of that line is, see Algorithm 1 and Figure 2.1 for
illustration.
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s1 s2 s3 s4 ℓ ∈ ~L,

dep arr code lines 1-5,

dep arr dep arr code lines 6-10,

dep arr dep arr dep arr code lines 6-10,

dep arr dep arr dep arr final output.

e1

[l1, u1] = [4, 5]

e2

[l2, u2] = [6, 10]

e3

[l3, u3] = [4, 6]

drive

[4, 5]

drive

[4, 5]

wait

[1, 3]

drive

[6, 10]

drive

[4, 5]

wait

[1, 3]

drive

[6, 10]

wait

[1, 3]

drive

[4, 6]

drive

[4, 5]

wait

[1, 3]

drive

[6, 10]

wait

[1, 3]

drive

[4, 6]

Figure 2.1: Illustration of frequency_as_attribute Lines Roll Out: line ℓ
consists of three edges: e1, e2 and e3 with bounds ranged in [4, 5], [6, 10] resp.
[4, 6]. The minimal and maximal waiting times are lwait = 1 resp. uwait = 3.

Algorithm 1 Lines Roll Out, frequency_as_attribute

Input:
• PTN = (S, ~E), LC = (~L, F ),

• bounds [le, ue] for all e ∈ ~E,
• bounds for wait activities [lwait, uwait].

Output:
• EAN = (E ,Adrive ∪ Await),
• bounds [la, ua] for all a ∈ A.

1: for all ℓ = (e1, . . . , enℓ
) ∈ ~L do

2: if fℓ 6= 0 then
3: (u, v) := e1
4: Add ε1 := (u, ℓ, dep, 0), ε2 := (v, ℓ, arr, 0) to E
5: Add a := (ε1, ε2, drive) to A with [la, ua] := [le, ue]
6: for all e = (u, v) ∈ (e2, . . . , enℓ

) do
7: Add ε1 := (u, ℓ, dep, 0) to E
8: Add a := (ε2, ε1,wait) to A with [la, ua] := [lwait, uwait]
9: Add ε2 := (v, ℓ, arr, 0) to E

10: Add a := (ε1, ε2, drive) to A with [la, ua] := [le, ue]
11: end for
12: end if
13: end for
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2.3.2 Change Activities

When two lines ℓ1, ℓ2 ∈ ~L cross at a station s ∈ S, passengers may use change
activities to get from one line into another. Basically, we could allow all changes,
but some do not make sense, e.g. the local station loops from Definition 1.40,
therefore we skip them.

Note that the simple Generate Changes model inserts change activities
also between different frequency instances. For the frequency_as_attribute

Lines Roll Out model, there is only one frequency instance visible, however,
for the frequency_as_multiplicity Lines Roll Out model to be introduced
in Section 3.1.1, all are visible and thus simple has a different outcome then.

Algorithm 2 Generate Changes, simple

Input:
• PTN = (S, ~E), LC = (~L, F ),
• EAN = (E ,A) without changes,
• bounds for change activities [lchange, uchange]
(typically: uchange = T − 1 + lchange).

Output:
• EAN = (E ,A) with changes.

1: for all ε1 = (s, ℓ1, dep, i), ε2 = (s, ℓ2, arr, j) ∈ E do
2: (ε̃1, ε1) := driveε1, (s1, ℓ1, dep, i) := ε̃1
3: (ε2, ε̃2) := driveε2, (s2, ℓ2, arr, j) := ε̃2
4: if s1 6= s2 (i.e. no local station loop changes) then
5: Add a := (ε1, ε2, change) to A with [la, ua] := [lchange, uchange]
6: end if
7: end for

s1

s2 s3 s4

ℓ1
ℓ2

Figure 2.2: A public transportation network PTN = (V,E) that has four stations
V = {s1, s2, s3, s4} and four edges E = {e13, e23, e13 , e34 }.
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dep arr dep arr ℓ1

arr dep arr dep ℓ′1

dep arr dep arr ℓ2

arr dep arr dep ℓ′2

s1

s3

s2

s4

drive wait drive

drivewaitdrive

drive wait drive

drivewaitdrive

(a) After Lines Roll Out.

dep arr dep arr ℓ1

arr dep arr dep ℓ′1

dep arr dep arr ℓ2

arr dep arr dep ℓ′2

s1

s3

change s2

s4

drive wait drive

drivewaitdrive

drive wait drive

drivewaitdrive

(b) Induces local loop to s1.

dep arr dep arr ℓ1

arr dep arr dep ℓ′1

dep arr dep arr ℓ2

arr dep arr dep ℓ′2

s1

s3

change s2

s4

drive wait drive

drivewaitdrive

drive wait drive

drivewaitdrive

(c) Code line 4 satisfied, no local loops
induced.

dep arr dep arr ℓ1

arr dep arr dep ℓ′1

dep arr dep arr ℓ2

arr dep arr dep ℓ′2

s1

s3

change

change

change

change

change

change

s2

s4

drive wait drive

drivewaitdrive

drive wait drive

drivewaitdrive

(d) Final output after iteration trough all
arrivals.

Figure 2.3: Illustration of Generate Changes for the PTN from Figure 2.2
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2.3.3 Headways

Let PTN = (S, ~E), T be a period length and he headways, for all e ∈ ~E. We
want to construct an EAN = (E ,A) and because of periodicity and us working
on representants, events cannot be ordered in time. Therefore we must ensure
that between every pair of departures ε1, ε2 ∈ E which use the same edge e =
edgeε1 = edgeε2 headways are enforced: A timetable π : E → {0, . . . , T −1} must
thus satisfy

πε1 − πε2 ∈ [he, T − 1]T and πε2 − πε1 ∈ [he, T − 1]T , (2.6)

which is equivalent to define two durations x, x′ ∈ {h, . . . , T − 1} as depicted in
Figure 2.4. They form a single cycle (cycles in timetabling introduced in Section
2.5) that yields the constraint x+ x′ = 0 mod T .

dep dep 7→ dep dep

x ∈
[he, T − 1]

x′ ∈
[he, T − 1]

x ∈
[he, T − he]

Figure 2.4: A Headway Reduction.

However, one duration does the trick as well:

Lemma 2.2. Let h, T ∈ N, h < T and x, x′ ∈ {h, . . . , T − 1} then the constraint
x+ x′ = 0 mod T is equivalent to x ∈ {h, . . . , T − h} and x′ may be omitted.

Proof. As a linear constraint x+ x′ = 0 mod T writes

x+ x′ = kT , x, x′ ∈ {h, . . . , T − 1}, k ∈ Z. (2.7)

Solving for k yields
⌈

2h

T

⌉

= 1 ≤ k ≤

⌊

2−
2

T

⌋

= 1 (2.8)

and thus k = 1. We further obtain

x = T − x′ , x′ = T − x (2.9)

and therefore, for each x ∈ {h, . . . , T − h} there is an x′ ∈ {h, . . . , T − h} that
satisfies x + x′ = 0 mod T and x′ may be omitted, since it passengers cannot
use them and they thus do not occur in the timetabling objective function from
equation (2.20) in section 2.5.

It follows that algorithm 3 constructs the headways required, if all lines have
frequency one and when using frequency_as_attribute for Lines Roll Out.
We call it the Generate Headways model simple. In Section 3.1.4 we see that
for frequencies greater than one frequency_as_multiplicity may be needed.
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Algorithm 3 Generate Headways, simple

Input:
• PTN = (S, ~E), LC = (~L, F ),
• EAN = (E ,A) without headways,

• headways he for all e ∈ ~E,
• period length T .

Output:
• EAN = (E ,A) with headways.

1: for all ε1 = (s, ℓ1, dep, i), ε2 = (s, ℓ2, dep, j) ∈ E do
2: edge := edgeε1
3: if edge = edgeε2 then
4: Add a := (ε1, ε2, headway) to A with [la, ua] := [hedge, T − hedge]
5: end if
6: end for

dep arr dep arr ℓ1

arr dep arr dep ℓ′1

dep arr dep arr ℓ2

arr dep arr dep ℓ′2

s1

s3

s2

s4

drive wait drive

drivewaitdrive

drive wait drive

drivewaitdrive

(a) After Lines Roll Out

dep arr dep arr ℓ1

arr dep arr dep ℓ′1

dep arr dep arr ℓ2

arr dep arr dep ℓ′2

s1

s3

headway
[ T
2
, T

2
]

headway
[ T
2
, T

2
]

s2

s4

drive wait drive

drivewaitdrive

drive wait drive

drivewaitdrive

(b) After Generate Headways

Figure 2.5: Illustration of Generate Headways for the PTN from Figure 2.2.
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2.4 Passenger Distribution

In this section we introduce both the concept of a passenger distribution as well
as a method to compute one.

Definition 2.3 (Passenger Distribution). Let EAN = (E ,A) be an event activity
network with PTN = (S,E) as an underlying public transportation network. A
passenger distribution w : A → R≥0, assigns to every activity a ∈ A a passenger
weight wa ≥ 0 that statisfy the property that it is the sum of coefficents from a
linear combination of EAN passenger routes (Def. 1.43) from arbitrary tuples
(s1, s2) ∈ S × S. If for a given origin destination matrix OD = (ws1s2)s1,s2∈S
coefficients of the linear combination for every tuple (s1, s2) are ws1s2, then the
passenger distribution is derived from OD.

Indeed, we use the same letter w for both passenger distribution and origin
destination matrix entry. However since former uses an activity and latter two
stations as indices, we can always distinguish between them.

The requirement that the wa should be linear combinations of EAN passen-
ger routes in Definition 2.3 actually poses limitations to the possible passenger
distributions, since every path must start and end with a drive activity and thus
not all passenger weights yield passenger distributions as can be seen in Figure
2.6. Especially, wa = 0 for all A \Ap, i.e. those activities that are not passenger
usable, since by Definition 1.43 these activities may not be passed.

(s1, ℓ, dep) (s2, ℓ, arr) (s2, ℓ, dep) (s3, ℓ, arr)
0

drive

1

wait

0

drive

Figure 2.6: Not a passenger distribution.

An evident way to compute an OD derived passenger distribution is to dis-
tribute passengers along shortest paths. Therefore let EAN = (E ,A) be an event

activity network derived from PTN = (S, ~E) and LC with passenger usable ac-
tivities Ap = Adrive ∪ Await ∪ Achange ⊂ A and further OD = (ws1s2)s1s2∈S. We
introduce source and sink events as well as enter and leave activities

Esource = {εssource : s ∈ S} , (2.10)

Esink = {εssink : s ∈ S} , (2.11)

Aenter = {a = (εssource, ε) : ε = (s, ℓ, dep), ℓ ∈ L, s ∈ S} , (2.12)

Aleave = {a = (ε, εssink) : ε = (s, ℓ, arr), ℓ ∈ L, s ∈ S} , (2.13)



2.4. PASSENGER DISTRIBUTION 33

the passenger usable origin destination closure EAN = (E ,A)

E = E ∪ Esource ∪ Esink , (2.14)

A = Ap ∪ Aenter ∪Aleave (2.15)

and furthermore an initial duration assumption

xinit : A → R≥0 . (2.16)

We set xinit
a = 0, for all a ∈ Aenter ∪ Aleave, since we discard enter and leave

activities for timetabling anyway. We can obtain xinit
a from an arbitrary choice

or some feasible timetable from Definition 2.5 and the passenger distribution by
Algorithm 4.

Algorithm 4 Passenger Distribution

Input:
• PTN = (S,E), OD = (ws1s2)s1,s2∈S, EAN = (E ,A),
• initial duration assumption xinit

a , for all a ∈ A.
Output:

• passenger distribution wa ≥ 0, for all a ∈ A.

1: for all a ∈ A ∪Aenter ∪ Aleave do
2: wa := 0
3: end for
4: for all s1 ∈ S do
5: Compute shortest path tree t from εsources1

w.r.t. xinit
a on A

6: for all s2 ∈ S do
7: if ws1s2 > 0 then
8: Compute path p in t from εsources1

to εsinks2

9: for all a ∈ A do
10: wa := wa + paws1s2

11: end for
12: end if
13: end for
14: end for

To save computing time, we reuse the shortest paths tree t instead of calcu-
lating the shortest paths for every pair s1, s2 ∈ S, since widely used methods
compute that tree anyway or simply stop once s2 is reached. Further, we do
not need to calculate shortest paths for all pairs of events; passengers only travel
between stations, shortest paths between source and sink events suffice. For large
scale networks Bellman-Ford based methods like Floyd-Warshall need hours while
Dijkstra based methods with Fibonacci Heaps only seconds, which should be con-
sidered in an actual implementation.
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2.5 Timetabling
In this section, we introduce the linear program of the Periodic Event Scheduling
Problem PESP.

In its original formulation by [Ser89] the PESP is about finding a feasible pe-
riodic timetable for all lines occuring within the period T exactly once and widely
used according to [Lie02], from which wide parts of this section are taken. We
adapt to our notation and add some small results we make use of in the chapters
later. For different line frequencies, [Ser89] proposed the Extended Periodic Event
Scheduling Problem EPESP, which we have a look at later in this section.

Throughout the section we assume that any event activity networks as graphs
are connected. If they are not, our results still hold for connected components.

For our purposes, we add the objective to minimize the average traveling time
which is basically the sum over activity duration times passengers that uses the
activity1 and when we refer to PESP we not only mean constraints, as some
sources do, but include the average traveling time objective.

Linear Program 2.4 (Periodic Event Scheduling Problem PESP). Let T be
a period length and EAN = (E ,A) an event activity network with passenger
distribution wa ≥ 0, a ∈ A.

We introduce times

V πε ∈ [0, T − 1] ∩ Z , ∀ ε ∈ E , (2.17)

and modulo parameters

V za ∈ Z , ∀ a ∈ A, (2.18)

want periodic interval constraints or time windows to be satisfied

L la ≤ πε′ − πε + zaT ≤ ua ∀ a ∈ A (2.19)

and to minimize the average traveling time

L min
∑

a∈A
(ε,ε′)=a

wa(πε′ − πε + zaT ) . (2.20)

1Actually, the term average would imply that we take the average over some domain, e.g.
divide by the total number of passengers in an additionally given OD matrix or the average in
time over a longer term. However, we skip it since in our model the number of passengers is
constant and the timetable keeps repeating.
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Definition 2.5 (Feasible Timetable). Let T be a period length and EAN = (E ,A)
an event activity network. A timetable πε, ε ∈ E is called feasible if it is feasible
for Linear Program 2.4 resp. the equivalent Linear Program 2.15.

To illustrate what the PESP is about, take some activity (ε, ε′) = a ∈ A and
let us have a look at Inequation (2.19). Without the zaT term it writes

la ≤ πε′ − πε ≤ ua , (2.21)

which basically states that event ε′ should take at least la and at most ua time
units after ε, e.g. πε = 5 and πε′ = 10 would mean that ε′ happens 5 time units
after ε and which would be feasible for la = 3, but not for la = 7, analogously
for upper bounds. However, in a periodic timetable ε and ε′ represent infinitely
many events that keep repeating every T and the interval constraints have to be
satisfied for just one tuple of actual events being represented by ε and ε′, e.g. if
T = 60, then πε = 57 and πε′ = 2 still satisfy the lower bound la = 3, since for
z = 1 holds 2− 57 + 60 = 5.

In Equation (2.19) it looks like as if bounds like [la, ua] = [2, T + 1] do not
make sense, since the constraint is always satisfied. However, note that it makes
a difference in the objective function. Let T = 60, then for (ε, ε′) = a ∈ A with
πε = 0 and πε′ = 1 and wa = 1 it holds that

2 ≤ 1− 0 + zaT ≤ T + 1 (2.22)

implies za = 1 and thus the objective gets an additional T +1 while for [la, ua] =
[1, T ] we obtain

1 ≤ 1− 0 + zaT ≤ T , (2.23)

thus za = 0 and just an extra summand of 1. If a had been a change activity,
then la = 2 means that passengers need at least two time units to change and if
the time difference is 1, they cannot take the transfer and have to wait a whole
period.

Note that (2.19) is actually equivalent to

There must be some representant xa in

xa = πε′ − πε mod T

for which holds

xa ∈ [la, ua] , ∀ a ∈ A.

Theorem 2.6. The PESP is NP-complete.

In their paper [Ser89] showed NP-completeness for even finding a feasible so-
lution to the PESP by reducing the Hamiltonian Circuit Problem to it. Although
being NP-complete, advances in solving constraint satisfaction problems allow to
find feasible periodic timetables for large networks (80k activities) within seconds,
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e.g. with [Lec08]. This thus does not ease the task to find an optimal timetable.
However, if one fixes the modulo parameters za, for all a ∈ A the problem trans-
forms into an aperiodic event scheduling problem and is polynomially solveable,
since its constraint matrix is totally unimodular [Sch04].

There are some meaningless time windows, i.e. if ua − la ≥ T , since then
ua − la − ⌊(ua − la)/T ⌋T would still be in ua − la, thus the constraint is still
satisfied and since wa ≥ 0 for all a ∈ A the simplication ua− la ≤ T − 1 does not
worsen the objective function.

If A forms an undirected tree, PESP has a trivial solution by simply setting
za = 0, for all (ε, ε′) = a ∈ A, πε0 = 0 for an arbitrary ε0 ∈ E and determining the
remaining πε ∈ E by summing up la along undirected paths, addition if the path
has the same orientation as a, substraction otherwise. Therefore, cycles pose the
actual challange, from which arises the next formulation. A function that maps
from the vertices of a graph into the reals is often referred to as potential, like
our timetable π. For a potential, one usually defines a tension as well.

Definition 2.7 (Tension, Feasible Durations). A function x : A → Z is a peri-
odic tension with period T if there is a potential πε, ε ∈ E and there are modulo
parameters za, a ∈ A so that it holds

xa = πε′ − πε + zaT , ∀ (ε, ε′) = a ∈ A. (2.24)

If the potential π is a timetable, then xa, a ∈ A is called duration of activity a.
If π is feasible and for xa holds la ≤ xa ≤ ua, for all a ∈ A then xa, a ∈ A are
feasible durations or feasible duration set.

Lemma 2.8 (Modulo Parameter Uniqueness). For a given feasible timetable π
modulo parameters and durations are unique iff for every activity a ∈ A it holds
ua − la ≤ T − 1.

Proof. Apply Lemma 1.2, where a and b are two durations for an activity.

Therefore, assuming ua − la ≤ T − 1 for all a ∈ A is not only a lossless
simplification w.r.t. the PESP objective, but also allows us to reconstruct modulo
parameters and durations from a feasible timetable π2.

Definition 2.9 (Derived Timetable). Let xa, a ∈ A be feasible durations. A
timetable that is a potential π for x is called periodic tension derived timetable
or derived timetable for short.

A derived timetable is not unique since all times may be shifted by T and
may be obtained by setting πε = 0 for some ε ∈ E and summing up durations
along a spanning tree, as in the proof of Theorem 2.14.

2Note that this is not possible if for some (ε, ε′) = a ∈ A it holds ua − la ≥ T , e.g. πε = 0
and πε′ = 1 could then either mean xa = 1 or xa = T + 1.
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Definition 2.10 (Derived Modulo Parameters). Let π be as in Lemma 2.8. The
unique modulo parameters that belong to π are called derived modulo parameters.
If ua− la ≤ T −1 for all a ∈ A is not explicitly stated, then it is assumed to hold.

Definition 2.11 (Derived Durations). Let π be as in Definition 2.10 with derived
modulo parameters za, a ∈ A. Then xa = πε′ − πε + zaT , a ∈ A are called
durations derived from π.

Note that if ua − la ≤ T − 1 for all a ∈ A does not hold derived durations
from a derived timetable may differ from the original durations3.

This allows us to formally define an average traveling time that depends only
on the timetable and passenger distribution but not on the modulo parameters.

Definition 2.12 (Average Traveling Time). Let T be a period length, EAN =
(E ,A) and πε, ε ∈ E be a feasible (derived) timetable with derived durations xa,
as well as wa ≥ 0, a ∈ A a passenger distribution. Then

ATTπ
w := ATTx

w :=
∑

a∈A

waxa (2.25)

is called the average traveling time w.r.t. π and w resp. w.r.t. x and w.

Corollary 2.13 (PESP Average Traveling Time). The PESP minimizes the av-
erage traveling time ATTπ

w for a fixed passenger distribution w.

Proof. As per definition of the PESP in Linear Program 2.4.

Let us get back to the potentials and tensions: Every solution of the PESP is
a potential and therefore yields a periodic tension. However, to really profit from
it we also have to be able to do the reverse, i.e. checking whether a function is
a periodic tension without having to solve the PESP, for which we formulate a
necessary and sufficient condition.

A cycle C ∈ C, where C denotes the set of all cycles in A is said to have the
cycle periodicity property if it satisfies

∃ qC ∈ Z :
∑

a∈C+

xa −
∑

a∈C−

xa = TqC . (2.26)

Theorem 2.14. Let T be a period length and EAN = (E ,A) and C the set of
cycles in A. A function π : A → R is a periodic tension with period T if and
only if each cycle C = C+ ∪ C− ∈ C has the cycle periodicity property.

3Same reason as for modulo parameters being ambiguous: e.g. if xa = 61, T = 60, xa ∈
[1, 61]. A derived timetable π could look like πε = 0, πε′ = 1 for (ε, ε′) = a. However, after
deriving x from π it may hold xa = 1.
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Proof from [Nac94]. “⇒”: Let x : A → R be a periodic tension. Taking the sum
of values xa = πε′ −πε+Tza along a cycle according to orientation, the πε cancel
out, which yields

∑

a∈C+

xa −
∑

a∈C−

xa =
∑

a∈C+

zaT −
∑

a∈C−

zaT (2.27)

= T

(

∑

a∈C+

za −
∑

a∈C−

za

)

=: TqC , (2.28)

where qC is called themodulo parameter of C and since TqC is an integral multiple
of T , one way of the equivalence follows.

“⇐”: Suppose xa, a ∈ A satisfies

∑

a∈C+

xa −
∑

a∈C−

xa = TqC , ∀ C ∈ A. (2.29)

To construct a corresponding solution (π, z) for the PESP, choose an arbitrary
spanning tree H ⊂ A and set za = 0, for all a ∈ H and some arbitrary ε0 ∈ E ,
for which πε0 := 0. For all other events ε ∈ E , ε 6= ε0 set

πε =
∑

a∈P+
ε0ε

xa −
∑

a∈P−

ε0ε

xa , (2.30)

with Pε0ε being the path from ε0 to ε w.r.t. H . A tree edge (ε, ε′) = a ∈ H , π
thus satisfies

πε′ − πε =
∑

a′∈P+
ε0ε

′

xa′ −
∑

a′∈P−

ε0ε
′

xa′ −

(

∑

a′∈P+
ε0ε

xa′ +
∑

a′∈P−

ε0ε

xa′

)

= xa , (2.31)

since both paths Pε0ε′ and Pε0ε just differ in a. For a non tree edge (ε, ε′) = a ∈
A \H , adding a to H creates a cycle C. If C contains ε0

xa +

(

∑

a′∈P+
ε0ε

xa′ −
∑

a′∈P−

ε0ε

xa′

)

−

(

∑

a′∈P+
ε0ε

′

xa′ −
∑

a′∈P−

ε0ε
′

xa′

)

= TqC , (2.32)

since C consists of Pε0ε, a = (ε, ε′), Pε′ε0. If C does not contain ε0, then the
common part of Pε0ε and Pε′ε0 cancels out in the above expression. Therefore, it
holds xa − πε + πε′ = TqC and setting pa = qC therefore yields xa = πε′ − πε =
TqC .

The method with the spanning tree from Theorem 2.14 allows us to obtain a
feasible timetable π from durations, given they are a periodic tension.

As a consequence of Theorem 2.14 we can introduce the Cyclic Periodicity
Formulation CPF as an equivalent alternative to PESP.
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Linear Program 2.15 (Cyclic Periodicity Formulation CPF). Let a PTN =
(S,E) and an EAN = (E ,A) be given, as well as C the set of all cycles in A and
wa ≥ 0 a passenger distribution, a ∈ A.

We introduce durations

V xa ∈ [la, ua] ∩ Z , ∀ a ∈ A. (2.33)

We want to minimize the average traveling time

L min
∑

a∈A

waxa (2.34)

subject to periodicity being satisfied

L
∑

a∈C+

xa −
∑

a∈C−

xa = zCT , ∀ C ∈ C. (2.35)

The PESP has an obvious lower bound, which is
∑

a∈Awala and can be ob-
tained by setting all durations to their lower bounds.

Definition 2.16. Let xa ∈ [la, ua], a ∈ A be durations and wa a passenger
distribution, a ∈ A. The slack of a is defined by xa− la. The weighted slack sum
is

∑

a∈A

wa(xa − la) . (2.36)

We call the weighted slack sum simply slack as well. It cannot be mixed up
since one refers to an activity and the other to a whole PESP.

Lemma 2.17. Minimizing the weighted slack sum is equivalent to minimize the
PESP objective.

Proof. Since the CPF is equivalent to PESP, take (2.34) as objective. It holds

∑

a∈A

waxa =
∑

a∈A

wa(xa − la) +
∑

a∈A

wala , (2.37)

where
∑

a∈Awala is constant and thus does not affect minimization.

Lemma 2.18 (PESP Lower Bound). For the PESP,

lPESP =
∑

a∈A

wala (2.38)

is a lower bound.
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Proof. Since every term in
∑

a∈A wa(xa − la) is nonnegative, the PESP objective
cannot be less than lPESP.

In the PESP, if the weighted slack sum is zero, it is impossible to further
improve the average traveling time, but for variable passenger distributions this
is delusive as can be seen in Section 5.6.

However, there is still a significant drawback in the CPF: for nontrivial graphs,
the number of cycles in a graph grows exponentially with the number of activities,
e.g. the complete graph on n nodes has

∑n
k=3

(

n
k

) (k−1)!
2

simple cycles and therefore
we get exponentially many variables qC . For comparison, the PESP only has
m = |A| time windows and modulo parameters. From the set of all cycles, some
may always be removed.

Definition 2.19 (Period Spanning Activity). An activity a ∈ A spans a period
if ua − la ≥ T − 1.

Period spanning activities may still play a role when it comes to objective
functions, but may be ignored when searching for a feasible timetable.

Lemma 2.20. Let EAN = (E ,A) be an event activity network, T a period length
and a ∈ A a period spanning activity as well as π a feasible timetable for EAN′ =
(E ,A \ {a}). Then π is also feasible for EAN.

Proof. With ua = T − 1 the the constraint induced by (ε, ε′) = a is the tightest

∃ k ∈ Z : πε − πε′ + kT ∈ [la, la + T − 1] ∩ Z , (2.39)

which is equivalent to

∃ k ∈ Z : πε − πε′ + kT − la ∈ [0, T − 1] ∩ Z , (2.40)

with ua ≥ la + T − 1. Let ∆ = πε − πε′ − la ∈ Z. By division with remainder
∆ = kT + δ, where k ∈ Z and δ ∈ {0, . . . , T − 1}. Thus

∃ k ∈ Z : πε − πε′ + kT = (k + k)T + δ ∈ [0, T − 1] ∩ Z (2.41)

may be satisfied with k = −k.

For example, change activities a with la = 4 and ua = 63 are periodically
unbounded for T = 60.

Definition 2.21. A trivial cycle is a cycle that contains a period spanning activity
a ∈ A as in Definition 2.19 with no passengers using it, i.e. wa = 0 in the
objective function. All other cycles are called nontrivial cycles.

Lemma 2.22. Trivial cycles may be ignored in CPF.
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Proof. Since wa = 0 the activity a has only influence on feasibility, but not on
the objective. However, with Lemma 2.20 it has even no influence on feasibility
as well. Therefore, it may be removed from A and every cycle that contains a
gets broken that way, so it does not occur in the constraints (2.35).

For some small networks we consider in Chapter 5 there is usually only one
nontrivial cycle due to the passenger distribution, so that we can apply the CPF
directly.

Let us establish an estimation for qC .

Theorem 2.23 (Theorem of Odijk [Odi96]). A PESP instance defined by a given
EAN = (E ,A) and period length T is feasible if and only if there exists an integer
vector za, a ∈ A that satisfies the cycle inequalities

aC ≤
∑

a∈C+

za −
∑

a∈C−

za ≤ bC (2.42)

for all (simple) cycles C ∈ C, where C denotes the set of all cycles in A and aC
and bC are defined by

aC =

⌈

1

T

(

∑

a∈C+

la −
∑

a∈C−

ua

)⌉

, bC =

⌊

1

T

(

∑

a∈C+

ua −
∑

a∈C−

la

)⌋

. (2.43)

Lemma 2.24 (Lemma of Odijk). Let aC and bC be from Theorem 2.23. In
equation (2.35) the cycle periodicity variables qC are bounded by aC ≤ qC ≤ bC.

Proof. In the constraint (2.35) divide by T . The feasible time windows [la, ua] of
xa may be used to get a lower and upper bounds for zC . Due to the integrality
of zC , floor and ceil may be applied to the bounds and yield aC and bC .

We also use Lemma 2.24 extensively in Chapter 5, but even for the big issue
with exponentially many variables there is a solution: instead of taking all cycles,
one can use an integral cycle base that reduces the number of cycle to k =
|E| − |V | + 1 for an directed, connected graph G = (V,E). However, although
the implementation makes use of it, we do not use it directly in this work and
therefore skip it. For a brief review see [Lie02] and for a broader survey see
[KLM+09].

Let us have a look at the EPESP announced at the beginning of the section.
Introduced by [Ser89], especially [Nac96] is cited by different authors. As for
PESP, the EPESP is only about feasibility in its original form, but when we refer
to it we think of minimizing some sort of average traveling time as objective,
which we detailed out in Section 3.1.
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Linear Program 2.25 (Extended Periodic Event Scheduling Problem EPESP).
Let EAN = (E ,A) be an event activity network with activity periods Ta and
passenger distribution wa ≥ 0, a ∈ A.

We introduce times

V πe ∈ [0, T − 1] ∩ Z , ∀ e ∈ E , (2.44)

and modulo parameters

V za ∈ Z , ∀ a ∈ A, (2.45)

want periodic interval constraints to be satisfied

L la ≤ πε′ − πε + zaTa ≤ ua ∀ a ∈ A (2.46)

and to minimize the average traveling time

L min
∑

a∈A
(ε,ε′)=a

wa(πε′ − πε + zaTa) . (2.47)

If Ta = T , for all a ∈ A for some T , then the EPESP obviously transforms into
PESP. However, the question arisies what different Ta may even mean. Again
answer can be found in Section 3.1. The intention of the EPESP is to circumvent
the necessity of the frequency_as_multiplicity Lines Roll Out model to
be introduced in Section 3.1.1, therefore it only make sense with the already
introduced frequency_as_attribute model.



Chapter 3

Beyond Classical Models

In this chapter we mainly deal with how frequencies may be considered in event
activity networks and how passenger routing affects timetabling. Therefore, we
not only introduce new models but also compare with the EPESP, which as a
classical model is intended to account for frequencies.

The term beyond refers to extensions the author made during his work on
LinTim, which is based on classical models from [Sch04].

Some results the author has been able to find in literature as well, e.g. in
the widely cited [Nac96], from which he took the results for 3.1.3 and wants
to thank Marie Schmidt for providing him [Kin08] and [Lue09], who worked on
integrating timetabling and rerouting as well and introduced models similar to
ours. However, they did neither take different line frequencies nor headways
into account. The author aquired [Nac98] when Section 3.1.4 had already been
written, which he does not consider as a disadvantage, since he could use the
number theoretic methods he deployed for Chapter 5 as well.

3.1 Event Activity Network

This section introduces the frequency_as_multiplicity Lines Roll Out

model, the Periodic Rollout transformation that allows to map timetables
from the classical frequency_as_attribute model, an estimation for the best
change between two lines given a feasible timetable as well as three headway
models to fix a feasibility issue.

3.1.1 Frequency as Multiplicity

We introduce a new kind of activity.

Definition 3.1 (Sync Activity). Let PTN = (S, ~E) be a public transportation

network, LC = (~L, F ) be a line concept and EAN = (E ,A) an associated event
activity network. A sync activity connects two departures ε1 = (dep, ℓ, s, i), ε2 =
(dep, ℓ, s, i+ 1) ∈ E at the same station s that use the same line ℓ and belong to

43
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consecutive frequency instances, for all i ∈ {0, . . . , fℓ − 2} and has a lower and
upper bound la = ua = T/fℓ.

The sync activities ensures that departures of the same line are equally dis-
tributed throughout the period. Note that it is not necessary to connect instances
fℓ − 1 and 0, since fℓ|T by Definition 1.33.

In the frequency_as_attribute model from Section 2.3.1 we did not account
for frequencies. Now, we do so by iterating through every line ℓ ∈ ~L and create
fℓ arrivals and fℓ departures per edge, i.e. as many as the frequency fℓ and add
sync activities in between, see algorithm 5 and Figure 3.1 for illustration1.

s1 s2 s3 s4 ℓ ∈ ~L, fℓ = 3,

dep arr code lines 1-7,

dep arr dep arr dep arr 2x code lines 8-15,

dep arr dep arr dep arr

dep arr

dep arr dep arr dep arr

dep arr dep arr dep arr

dep arr dep arr dep arr

dep arr dep arr dep arr

dep arr dep arr dep arr

code lines 15-20,

2x code lines 21-28,

code lines 15-20,
2x code lines 21-28,

final output.

e1

[l1, u1] = [4, 5]

e2

[l2, u2] = [6, 10]

e3

[l3, u3] = [4, 6]

drive

[4, 5]

drive

[4, 5]

wait

[1, 3]

drive

[6, 10]

wait

[1, 3]

drive

[4, 6]

sync
[20, 20]

drive

[4, 5]

wait

[1, 3]

drive

[6, 10]

wait

[1, 3]

drive

[4, 6]

drive

[4, 5]

sync
[20, 20]

sync
[20, 20]

sync
[20, 20]

drive

[4, 5]

wait

[1, 3]

drive

[6, 10]

wait

[1, 3]

drive

[4, 6]

drive

[4, 5]

wait

[1, 3]

drive

[6, 10]

wait

[1, 3]

drive

[4, 6]

sync
[20, 20]

sync
[20, 20]

sync
[20, 20]

drive

[4, 5]

wait

[1, 3]

drive

[6, 10]

wait

[1, 3]

drive

[4, 6]

sync
[20, 20]

sync
[20, 20]

sync
[20, 20]

drive

[4, 5]

wait

[1, 3]

drive

[6, 10]

wait

[1, 3]

drive

[4, 6]

drive

[4, 5]

wait

[1, 3]

drive

[6, 10]

wait

[1, 3]

drive

[4, 6]

Figure 3.1: Illustration of frequency_as_multiplicity Lines Roll Out.

1The frequency_as_attribute model is not to be confused with the X-PESP model from
[Kin08]. In his model, the network size grows with the period length while our network size
grows with the line frequencies.
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Algorithm 5 Lines Roll Out, frequency_as_multiplicity

Input:
• PTN = (S, ~E), LC = (~L, F ),
• bounds [le, ue] for all e ∈ E,
• bounds for wait activities [lwait, uwait],
• period length T .

Output:
• EAN = (E ,A := Adrive ∪ Await ∪ Async),
• bounds [la, ua] for all a ∈ A.

1: for all ℓ = (e1, . . . , enℓ
) ∈ ~L do

2: if fℓ 6= 0 then
3: m : {1, . . . , nℓ} → E
4: (s, s′) := e1
5: Add ε := (s, ℓ, dep, 0), ε′ := (s′, ℓ, arr, 0) to E
6: m1 := ε1
7: Add a := (ε, ε′, drive) to A with [la, ua] := [le, ue]
8: for all ei = (s, s′) ∈ (e2, . . . , en(ℓ)) do
9: Add ε := (s, ℓ, dep, 0) to E

10: Add a := (ε′, ε,wait) to A with [la, ua] := [lwait, uwait]
11: mi := ε
12: Add ε′ := (s′, ℓ, arr, 0) to E
13: Add a := (ε, ε′, drive) to A with [la, ua] := [le, ue]
14: end for
15: for all j ∈ (1, . . . , fℓ − 1) do
16: (s, s′) := e1
17: Add ε := (s, ℓ, dep, j) ε′ := (s′, ℓ, arr, j) to E
18: Add a := (m1, ε, sync) to A with [la, ua] := [T/fℓ, T/fℓ]
19: m1 := ε
20: Add a := (ε, ε′, drive) to A with [la, ua] := [le, ue]
21: for all ei = (s, s′) ∈ (e2, . . . , en(ℓ)) do
22: Add ε := (s, ℓ, dep, j) to E
23: Add a := (ε′, ε,wait) to A with [la, ua] := [lwait, uwait]
24: Add a := (mi, ε, sync) to A with [la, ua] := [T/fℓ, T/fℓ]
25: mi := ε
26: Add ε′ := (s′, ℓ, arr, j) to E
27: Add a := (ε, ε′, drive) to A with [la, ua] := [le, ue]
28: end for
29: end for
30: end if
31: end for
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3.1.2 Periodic Rollout

An EANFA = (EFA,AFA) constructed with the frequency_as_attribute fre-
quency model seems more attractive for periodic timetabling since it yields less
variables and constraints than an event activity network with Lines Roll Out

model frequency_as_multiplicity. However, the former is less complete and
thus there are some pitfalls as can be seen in Chapter 5, where we extensively
use the concept of a periodic rollout or just rollout for short, which constructs
an EANFM = (EFM,AFM) and especially maps the timetable πFA into πFM with
Algorithm 6.

Algorithm 6 Periodic Rollout

Input:
• PTN = (S, ~E), LC = (~L, F ), EANFA(EFA,A),
• bounds [le, ue] for all e ∈ E, wait activity bounds [lwait, uwait],
• period length T , timetable πFA.

Output:
• EANFM = (EFM,A′), timetable πFM,
• bounds [la, ua] for all a ∈ A.

1: run Lines Roll Out, frequency_as_multiplicity (Algorithm 5)
2: for all (s, ℓ, arr / dep, i) = ε ∈ EFM do
3: πFM

ε := πFM
(s,ℓ,arr /dep,i) + i T

fℓ
4: end for
5: run Generate Changes (Algorithm 2)
6: run Generate Headways (Algorithm 3)

We may take over an old passenger distribution w by embedding it as w into
EANFM

wa =

{

wa a ∈ AFA

0 otherwise
, ∀ a ∈ AFM, (3.1)

where (ε, ε′) = a ∈ AFA ∩AFM if both ε and ε′ have a frequency instance of zero.
However, redistributing passengers in the rolled out network generally de-

creases the average traveling time as can be observed in Chapter 6 or at least
never increases it.

Theorem 3.2 (Periodic Rollout ATT). Let EANFA = (EFA,AFA) be an

event activity network on PTN = (S, ~E) with Lines Roll Out model fre-
quency_as_attribute and feasible timetable πFA, OD = (ws1s2)s1s2∈S an origin
destination matrix and wa, a ∈ A an OD derived passenger distribution as well
as EANFM = (EFM,AFM) the Periodic Rollout of EANFA with timetable πFM

and w′
a obtained by Passenger Distribution w.r.t. πFM derived durations as

shortest paths weights. Then it holds

ATTπFM
w′ ≤ ATTπFA

w . (3.2)
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Proof. Since EANFM with πFM derived durations xFM contains EANFA with πFA

derived durations xFA, for the embedded distribution w it holds

ATTπFM
w = ATTπFA

w , (3.3)

where ATT is the average traveling time from Definition 2.12. By the upcoming
Corollary 3.18, replacing w by w′ does not increase the average traveling time
and thus

ATTπFM

w′ ≤ ATTπFM
w = ATTπFA

w . (3.4)

3.1.3 Change Activities

After a Periodic Rollout not only departures, but also arrivals are synchro-
nized by construction of the rolled out timetable. This allows us to estimate the
duration of the newly introduced inter frequency changes, since they form a nice
pattern as can be seen in Figure 3.2.

dep
π′
0 : 5

j = 0

i = 0
arr

π0 : 0
dep

π′
1 : 20

j = 1

i = 1
arr

π1 : 30
dep

π′
2 : 35

j = 2

dep
π′
3 : 50

j = 3

s

35

50

5

20

xr

5

20

35

50

30

15

15

15

Figure 3.2: Detail of an EAN = (E ,A) with period length T = 60 associated to a

PTN = (S, ~E) and a LC = (~L, F ), two lines ℓ1, ℓ2 ∈ ~L that cross at station s ∈ S,
have frequencies (f1, f2) = (2, 4) and a timetable π. Note that the durations are
five plus a multiple of fifteen.

The question arises whether or not there is some simple way to obtain and
characterize the durations of all changes between two lines only knowing a ref-
erence duration xr from the frequency_as_attribute model. And indeed, it is
possible.
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Lemma 3.3 (Change Duration Pattern). Let T be a period length, PTN = (S, ~E),

LC = (~L, F ) and EAN = (E ,A) an associated event activity network, further
εi = (arr, ℓ1, s, i), ε

′
j = (dep, ℓ2, s, j) ∈ E , with ℓ1 6= ℓ2, aij ∈ A a change activity

between εi and ε′j, xij be the duration of aij for a feasible timetable π, with xr :=
x00 defined as the reference duration and further lchange the lower bound as well
as uchange = lchange + T − 1 the upper bound for all change activities, f1 and f2
the frequencies of ℓ1 resp. ℓ2 as well as τ = T/ lcm(f1, f2). The possible change
durations xij satisfy the property

xij = xr − k(i, j)τ mod T , (3.5)

where k(i, j) is the lcm representation map from Corollary 1.12.

Proof. By the Periodic Rollout durations between events ε0, . . . , εf1−1 as
well as ε′0, . . . , ε

′
f2−1 are fixed as if there had been sync activities, not only for

departures but also for arrivals. The duration of xij may be obtained by the cycle
it shares with xr

i
T

f1
+ xij − j

T

f2
− xr = 0 mod T (3.6)

which, with the lcm representation map is equivalent to

xij = xr − k(i, j)τ mod T (3.7)

and thus the lemma follows.

From Lemma 3.3 we already see what is the shortest change activity.

Lemma 3.4 (Best Change Activity). The shortest change or best change activity
an activity between εi and εj from Lemma 3.3 has a duration that satisfies

xr = xr mod τ , (3.8)

where xr ∈ {lchange, . . . , lchange + τ − 1}.

Proof. In Equation (3.5), apply Lemma 1.6.

For change activities a ∈ Achange between lines of frequencies f1 and f2, setting
Ta = τ yields the best change activity duration for a in the objective of EPESP
from Section 2.5, which is stated in [Nac96] as well. Further, the upper bound
may be reduced to ua = τ + lchange in that case. However, although a passenger
may be able to take the best change at some station, in general it is not possible
to take all best change activities on the way from one station to some other,
which is shown in Section 5.7.
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3.1.4 Headways

The simple Headway Generation model does not necessarily yield a Peri-

odic Rollout feasible timetable, when we perform the Lines Roll Out with
frequency_as_attribute2 , as we can see in Figure 3.3.

ℓ1
dep
π1 : 0

dep
π2 : 30

ℓ2

s

headway

[5, 55]

(a) Event Activity Network Detail,
frequency_as_attribute

ℓ1,1
dep
π1 : 0

dep
π2 : 30

ℓ2

ℓ1,2
dep

π3 : 30

s

headway

[5, 55]

sync
[30, 30] headway

[5, 55]

(b) Event Activity Network Detail,
frequency_as_multiplicity,

after Periodic Rollout

Figure 3.3: Detail of an EAN = (E ,A) with period length T = 60 associated to

a PTN = (S, ~E) and a LC = (~L, F ), two lines ℓ1, ℓ2 ∈ ~L that cross at station
s ∈ S, have frequencies (f1, f2) = (2, 1) and a timetable π. In (a), i.e. when
using the frequency_as_attribute model, π1 = 0 and π2 = 30 satisfy the
only headway constraint. However, when extrapolating the EAN in (b) with a
Periodic Rollout, a second headway arises and is violated, i.e. π3 − π2 = 0 /∈
[5, 55]T and therefore π becomes infeasible.

However, there is a solution: We copy the headways from the rolled-out net-
work3. Instead of one headway per departure pair with same associated edge the
product_of_frequencies Headway Generation model adds, as the name
says, product f1f2 many headways, where f1 and f2 are the frequencies of the
lines.

2When headways were introduced to LinTim, Michael Schachtebeck was working on ape-
riodically rolled out periodic event activity networks, which were constructed with the fre-

quency_as_attribute model and wondered he why his delay management did not work any-
more, thus he discovered that the initial periodic timetable was already infeasible.

3Marc Goerigk was working on periodic timetabling and wanted to create aperiodic rollout
feasible timetables without the effort to solve the periodically rolled out problem. Therefore
the product_of_frequenciesHeadway Generation model is one of his many contributions
to LinTim.
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Algorithm 7 Headway Generation, product_of_frequencies

Input:
• PTN = (S, ~E), LC = (~L, F ),
• EAN = (E ,A) without headways,

• headways he for all e ∈ ~E,
• period length T .

Output:
• EAN = (E ,A) with headways.

1: for all ε1 = (s, ℓ1, dep, 0), ε2 = (s, ℓ2, dep, 0) ∈ E do
2: e := edgeε1
3: if e = edgeε2 then
4: for all (i, j) ∈ {0, . . . , fℓ1} × {0, . . . , fℓ2} do
5: δ := jT/fℓ2 − iT/fℓ1
6: Add a := (ε1, ε2, headway) to A with [la, ua] := [he + δ, T − he + δ]
7: end for
8: end if
9: end for

Theorem 3.5 (product_of_frequencies Feasibility). Let πFA be a timetable
for the event activity network EANFA = (EFA,AFA) with Lines Roll Out

model frequency_as_attribute and as Headway Generation model prod-
uct_of_frequencies. Let EANFM = (EFM,AFM) be the Periodic Rollout

of EANFA with timetable πFM and simple as Headway Generation model.
Then πFA is feasible for EANFA iff πFM is feasible for EANFM.

Proof. Let T be the period length, εi = (dep, ℓ1, s, i), ε
′
j = (dep, ℓ2, s, j) ∈ EFM,

edgeεi = edgeε′j , f1, f2 frequencies of ℓ1 and ℓ2, l1 6= l2, πi := πFM(εi) and

π′
j := πFM(ε

′
j) for all i ∈ {0, . . . , f1 − 1}, j ∈ {0, . . . , f2 − 1}. Then, by Periodic

Rollout

π0 = πFM(ε0) = πFA(ε0) , π′
0 = πFM(ε

′
0) = πFA(ε

′
0) , (3.9)

and

πi = π0 + i
T

f1
, π′

j = π′
0 + j

T

f2
. (3.10)

Therefore EANFM poses the constraints

∃ xij ∈ {h, . . . , T − h} :

π′
0 − π0 = π′

j − πi + j
T

f2
− i

T

f1
= xij − i

T

f1
+ j

T

f2
mod T ,

∀ i ∈ {0, . . . , f1 − 1}, j ∈ {0, . . . , f2 − 1}, (3.11)
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thus (3.11) is equivalent to

∃ xij ∈ {h+ δij, . . . , T − h + δij} : π′
0 − π0 = xij mod T ,

δij := j
T

f2
− i

T

f1
, ∀ i ∈ {0, . . . , f1 − 1}, j ∈ {0, . . . , f2 − 1}, (3.12)

as stated in Algorithm 7, lines 5 and 6.

Generally however, fewer constraints as generated by Algorithm 8 already
ensure feasibility.

Algorithm 8 Headway Generation, lcm_of_frequencies

Input:
• PTN = (S, ~E), LC = (~L, F ),
• EAN = (E ,A) without headways,

• headways he for all e ∈ ~E,
• period length T .

Output:
• EAN = (E ,A) with headways.

1: for all ε1 = (s, ℓ1, dep, 0), ε2 = (s, ℓ2, dep, 0) ∈ E do
2: e := edgeε1
3: if e = edgeε2 then
4: for all k ∈ {0, . . . , l − 1} do
5: δ := kT/ lcm(f1, f2)
6: Add a := (ε1, ε2, headway) to A with [la, ua] := [he + δ, T − he + δ]
7: end for
8: end if
9: end for

Theorem 3.6 (lcm_of_frequencies Equivalence). Let π be a timetable for
the event activity networks EAN = (E ,A) and EAN′ = (E ,A′) with Lines

Roll Out model frequency_as_attribute and Generate Headways mod-
els product_of_frequencies resp. lcm_of_frequencies. Then π is feasible
for EAN′ iff π is feasible for EAN.

Proof. Let T be the period length, ε = (dep, l1, s, 0), ε
′ = (dep, l2, s, 0) ∈ E ,

edgeε = edgeε′, f1, f2 frequencies of l1 and l2, ℓ = lcm(f1, f2), π0 := π(ε) and
π′
0 := π(ε′). In the product_of_frequencies Headway Generation model

holds

∃ xij ∈ {h, . . . , T − h} : π′
0 − π0 = x̃ij = xij − i

T

f1
+ j

T

f2
mod T ,

∀ i ∈ {0, . . . , f1 − 1}, j ∈ {0, . . . , f2 − 1}, (3.13)
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where x̃ij ∈ {h+ δij , . . . , T − h + δij} with δij = jT/f2 − iT/f1 are the headway
activities constructed by Algorithm 7. Let

k : {0, . . . , f1 − 1} × {0, . . . , f2 − 1} → {0, . . . , ℓ− 1}

(i, j) 7→ k : j
T

f2
− i

T

f1
= k

T

ℓ
mod T (3.14)

be the swapped lcm representation map, which, as per Corollary 1.12 is well-
defined and surjective, i, i′ ∈ {0, . . . , f1 − 1} and j, j′ ∈ {0, . . . , f2 − 1} with
k(i, j) = k(i′, j′). Then

xij − i
T

f1
+ j

T

f2
= xij + k(i, j)

T

ℓ
= π′

0 − π0 = xi′j′ − i′
T

f1
+ j′

T

f2

= xi′j′ + k(i′, j′)
T

ℓ
= xi′j′ + k(i, j)

T

ℓ
mod T, (3.15)

therefore xij = xi′j′ mod T and since xij , xi′j′ are both in {h, . . . , T −h} Lemma
1.2 yields xij = xi′j′. It follows that if i 6= i′ or j 6= j′ the variable xi′j′ together
with its constraint are redundant and, since k is surjective, the constraints from
equation (3.13) are equivalent to

∃ xk ∈ {h, . . . , T − h} : π′
0 − π0 = xk + k

T

lcm(f1, f2)
mod T ,

∀ k ∈ {0, . . . , lcm(f1, f2)− 1}, (3.16)

which just is the lcm_of_frequencies Headway Generation model from Al-
gorithm 8.

Corollary 3.7 (lcm_of_frequencies Feasibility). Let πFA be a timetable for the
event activity network EANFA = (EFA,AFA) with Lines Roll Out model fre-
quency_as_attribute and lcm_of_frequencies as Generate Headways

model. Let EANFM = (EFM,AFM) be the Periodic Rollout of EANFA with
timetable πFM and simple as Headway Generation model. Then πFA is fea-
sible for EANFA iff πFM is feasible for EANFM.

Proof. Direct consequence from theorem 3.5 and 3.6.
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t area t area t area
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(a) Infeasible Area Induced by ℓ1, . . .
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(b) . . . by 3rd Frequency Instance of ℓ1 and
1st of ℓ2, . . .
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(c) . . . by 1st of ℓ1 and 1st of ℓ2 . . .

t area t area t area
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3 13 23
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(d) . . . and by 2nd of ℓ1 and 1st of ℓ2

Figure 3.4: Lines ℓ1 ∈ ~L and ℓ2 ∈ ~L from LC = (~L, F ) with frequencies f1 = 3

resp. f2 = 2 using the same edge e ∈ E from PTN = (S, ~E) with headway he = 2,
and T = 30. The time of the representative departure event of ℓ1 w.l.o.g. is zero.
Gray areas show the infeasible area to place any departure of ℓ2 and X denotes
that either there is a departure of ℓ1 or a time which may not be used for ℓ2
because of another X. Note that in (d) the white area may be parametrized by
t ∈ [2, 3] + 5k with k ∈ {0, . . . , 5}.
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Theorem 3.6 and Figure 3.4 let us already suggest that periodic headways
between lines of different frequencies f1 and f2 have a regular structure. And
indeed, this is the case: regardless what frequencies f1 and f2 are, we only need
one activity and two variables to ensure rollout feasibility.

Algorithm 9 Headway Generation, lcm_representation

Input:
• PTN = (S, ~E), LC = (~L, F ),
• EAN = (E ,A) without headways,

• headways he for all e ∈ ~E,
• period length T .

Output:
• EAN = (E ,A) with headways.

1: for all ε1 = (s, ℓ1, dep, 0), ε2 = (s, ℓ2, dep, 0) ∈ E do
2: e := edgeε1
3: if e = edgeε2 then
4: l := lcm(f1, f2), τ := T/l
5: Add a := (ε1, ε2, headway) to A with [la, ua] := [he, T − he]
6: In the periodic timetabling step, state xa = xa + κτ ,

where xa ∈ {he, . . . , τ − he}, κ ∈ {0, . . . , l − 1}
7: end if
8: end for

Theorem 3.8 (lcm_representation Equivalence). Let π be a timetable for
the event activity networks EAN = (E ,A) and EAN′ = (E ,A′) with Lines

Roll Out model frequency_as_attribute and Generate Headways mod-
els lcm_of_frequencies resp. lcm_representation. Then π is feasible for
EAN′ iff π is feasible for EAN.

Proof. Let ε = (dep, l1, s, 0), ε
′ = (dep, l2, s, 0) ∈ E , edgeε = edgeε′, f1, f2 fre-

quencies of l1 and l2, ℓ = lcm(f1, f2), τ = T/ℓ, π0 := π(ε) and π′
0 := π(ε′).

The lcm_of_frequencies model yields

∃ xk ∈ {h, . . . , T − h} : xr := π′
0 − π0 = x̃k = xk + kτ mod T ,

∀ k ∈ {0, . . . , ℓ− 1}, (3.17)

where x̃k ∈ {h + δk, . . . , T − h + δk}, δk = kτ and xr ∈ {0, . . . , T − 1} is the
reference duration. From division with remainder follows

xr = x+ κτ , x ∈ {0, . . . , τ − 1}, κ ∈ {0, . . . , ℓ− 1} (3.18)

and

∀ k ∈ {0, . . . , ℓ− 1} : ∃ xk ∈ {h, . . . , T − h}, x ∈ {0, . . . , τ − 1} :

x+ κτ = xk + kτ mod T . (3.19)
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With substituting k 7→ κ− k, equations from (3.17) write as

∀ k ∈ {κ− ℓ+ 1, . . . , κ} : ∃ xk ∈ {h, . . . , T − h}, x ∈ {0, . . . , τ − 1} :

xk = x+ (κ− (κ− k))τ = x+ kτ mod T , (3.20)

and since ℓτ = T = 0 mod T the range k ∈ {κ − ℓ + 1, . . . , κ} is equivalent to
k ∈ {0, . . . , ℓ− 1}

∀ k ∈ {0, . . . , ℓ− 1} : ∃ xk ∈ {h, . . . , T − h}, x ∈ {0, . . . , τ − 1} :

xk = x+ kτ mod T . (3.21)

It must further hold that h ≤ x ≤ τ − h: Assume that x < h, then xk < h for
k = 0. For x > τ − h, i.e. x = τ − h+ a, a > 0 with k = ℓ− 1 follows

xk = τ − h+ a + (ℓ− 1)τ = ℓ
T

ℓ
− h+ a = T − h + a > T − h . (3.22)

Thus both assumptions contradict h ≤ xk ≤ T − h and therefore h ≤ x ≤ τ − h,
which also yields

2h ≤ τ , (3.23)

a necessary condition for a feasible timetable to exist at all, so let h and τ be
such that (3.23) is valid. Yet was shown that every reference duration xr must
have the lcm_representation representation

xr = x+ κτ , x ∈ {h, . . . , τ − h} , κ ∈ {0, . . . , ℓ− 1}. (3.24)

to satisfy the lcm_of_frequencies model, i.e. necessity. To show sufficiency,
consider

∀ k ∈ {0, . . . , ℓ− 1} : ∃ xk ∈ {h, . . . , T − h}, x ∈ {h, . . . , τ − h}, z ∈ Z :

xk − x− kτ = zT , (3.25)

equivalent to lcm_of_frequencies constraints (3.21) with

⌈

h− τ + h− kτ

T

⌉

≤ z ≤

⌊

T − h− h− kτ

T

⌋

. (3.26)

For the lower bound, k = 0 poses the greatest restriction, for the upper bound
k = ℓ− 1. Further

⌈

2h− τ

T

⌉

(3.23)
= 0 ≤ z ≤

⌊

T − 2h− (ℓ− 1)T
ℓ

T

⌋

=

⌊

−2h+ τ

T

⌋

(3.23)
= 0 , (3.27)

thus the lcm_representation representation (3.24) always satisfies the model
lcm_of_frequencies, i.e. it is sufficient and therefore the theorem follows.
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Corollary 3.9 (lcm_representation Feasibility). Let πFA be a timetable for
the event activity network EANFA = (EFA,AFA) with Lines Roll Out model
frequency_as_attribute and lcm_representation as Headway Genera-

tion model. Let EANFM = (EFM,AFM) be the Periodic Rollout of EANFA

with timetable πFM and simple as Headway Generation model. Then πFA is
feasible for EANFA iff πFM is feasible for EANFM.

Proof. Direct consequence from Theorem 3.8 and Corollary 3.7.

In terms of the EPESP from Section 2.5, Corollary 3.9 states that if a head-
way a ∈ Aheadway between lines of frequencies f1 and f2 with minimum du-
ration h is to be satisfied, then Ta = τ := lcm(f1, f2) bounds la = h and
ua = τ − h does the trick, which [Nac98] found out as well. Therefore, using
the lcm_representation actually transforms the PESP into an EPESP, besides
that by the representation xa = xa + κτ the advantages of the CPF may still be
used. The lcm_of_frequencies model, since it reduces the problem size com-
pared to the initial product_of_frequencies is interesting for heuristic methods
that rely on the PESP model, like the modulo simplex from [GS11].

Corollary 3.10 (A Timetable Feasibility Criterion for Line Concepts). Let T be

a period length, PTN = (S, ~E) be a public transportation network, LC = (~L, F )

a line concept, ℓ1, ℓ2 ∈ ~L two lines with frequencies f1|T resp. f2|T , h : ~E →
{0, . . . , T − 1} a headway map, EANFA an event activity network and EANFM its
Periodic Rollout with timetable π. Then

max
e∈ℓ1∩ℓ2⊂ ~E

he ≤

⌊

T

2 lcm(f1, f2)

⌋

. (3.28)

Proof. Let τ := T/ lcm(f1, f2). For every e ∈ ℓ1 ∩ ℓ2, Headway Generation

creates a headway activity with duration xa for which in EANFM, trough the
lcm_representation representation as per corollary 3.9 must hold

xa = x+ κτ , x ∈ {he, . . . , τ − he} , κ ∈ {0, . . . , ℓ− 1}, (3.29)

where the existance of a valid x implies that the set {he, . . . , τ −he} is nonempty
and therefore he ≤ τ − he or he ≤ τ/2 and since he is integral

he ≤

⌊

τ

2

⌋

(3.30)

and thus the corollary follows.
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3.2 Timetabling and Routing
In this section, we introduce both quadratic and linear models for an extension
of the PESP, namely the Origin Destination Aware Periodic Event Scheduling
Problem ODPESP4.

Quadratic Program 3.11 (Quadratic ODPESP). Let a PTN = (S,E) and an
EAN = (E ,A) be given, Ap ⊂ A the passenger usable activities as well as an
integral cycle basis or just the set of all cycles C, a ∈ A and an origin destination
matrix OD = (ws1s2)s1,s2∈S.

We use an incidence matrix

C A = (aaε)a∈A,ε∈E ,

aaε′ =























1
∃ ε′ ∈ E :
a = (ε′, ε)

−1
∃ ε′ ∈ E :
a = (ε, ε′)

0 otherwise

,
∀ a ∈ A,

ε ∈ E ,
(3.31)

introduce path decision variables

V pas1s2 =







1
path from s1 to s2
uses activity a

0 otherwise
,

∀ a ∈ Ap,

s1, s2 ∈ S,

ws1s2 > 0,

(3.32)

and durations

V xa ∈ [la, ua] ∩ Z , ∀ a ∈ A. (3.33)

We want to minimize the average traveling time

L min
∑

s1,s2∈S,
ws1s2>0,
a∈Ap

ws1s2pas1s2xa (3.34)

subject to periodicity being satisfied

L
∑

a∈C+

xa −
∑

a∈C−

xa = zcT , ∀ C ∈ C, (3.35)

4Independent of our results, [Lue09] also worked out that model in his diploma thesis and
called it IntMod.
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and the path are connected

L
∑

a∈Ap\

(drivedeps1
∪drivearrs2

)

aaεpas1s2 = 0 ,

∀ ε ∈ E ,

s1, s2 ∈ S,

ws1s2 > 0,

(3.36)

L
∑

a∈drivedeps1

aaεpas1s2 = 1 ,

∀ ε ∈ E ,

s1, s2 ∈ S,

ws1s2 > 0,

(3.37)

L
∑

a∈drivearrs2

aaεpas1s2 = −1 ,

∀ ε ∈ E ,

s1, s2 ∈ S,

ws1s2 > 0.

(3.38)

Quadratic Program 3.11 is based on the PESP cyclic periodicity formulation
CPF. A feasible timetable thus may be derived from the durations xa, a ∈ A,
proofs for feasibility and all kind of equivalences below. From a classification
point of view, the ODPESP is a minimum cost multi-commodity flow problem5.

Theorem 3.12 (ODPESP Shortest Paths Subproblem). For an ODPESP opti-
mum the paths pas1s2, a ∈ A are shortest paths w.r.t. xa for all s1, s2 ∈ S with
ws1s2 > 0. Especially, replacing p with shortest paths w.r.t. x does not increase
the objective function.

Proof. Assume some path pas′1s′2, a ∈ Ap for a tuple (s′1, s
′
2) ∈ S2 with ws′1s

′

2
> 0

is not a shortest path w.r.t. xa, i.e. there exists a path p̃as′1s′2 , a ∈ Ap with

ws′1s
′

2

∑

a∈Ap

p̃as′1s′2xa < ws′1s
′

2

∑

a∈Ap

pas′1s′2xa . (3.39)

The ODPESP objective function (3.34) then writes as

∑

s1,s2∈S,
ws1s2>0,
a∈Ap

ws1s2pas1s2xa =

[

∑

s1,s2∈S,
ws1s2>0,

(s1,s2)6=(s′1,s
′

2),
a∈Ap

ws1s2pas1s2xa

]

+ ws′1s
′

2

∑

a∈Ap

pas′1s′2xa (3.40)

>

[

∑

s1,s2∈S,
ws1s2>0,

(s1,s2)6=(s′1,s
′

2),
a∈Ap

ws1s2pas1s2xa

]

+ ws′1s
′

2

∑

a∈Ap

p̃as′1s′2xa (3.41)

5http://en.wikipedia.org/wiki/Multi-commodity flow problem

http://en.wikipedia.org/wiki/Multi-commodity_flow_problem
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and therefore contradicts optimality. Iterating over all (s′1, s
′
2) ∈ S × S with

ws1s2 > 0 yields that every non-shortest path may be replaced by a shortest path,
which reduces the objective function and in case all paths are already shortest,
(other) shortest paths do not change the objective. Therefore, replacing paths
by shortest paths cannot increase the ODPESP objective function.

Thus, finding shortest paths w.r.t. a given timetable may be considered as a
subproblem of ODPESP.

Theorem 3.13 (ODPESP Feasible Timetable). A timetable π from ODPESP is
feasible iff it is feasible by Definition 2.5.

Proof. Constraint (3.35) is the same as (2.35) in the CPF and the xa is defined
with the same bounds as well. Since no other constraints limit the choice of xa

in neither ODPESP nor the CPF, the theorem follows.

Theorem 3.14 (ODPESP NP-completeness). The ODPESP is NP-complete.

Proof. By Theorem 3.13 a timetable π from ODPESP is feasible iff it is feasible
by Definition 2.5, i.e. iff it is feasible for PESP. Since finding feasible solutions
for the PESP is NP-complete, so is ODPESP.

ODPESP and PESP have in common than just timetable feasbility.

Theorem 3.15 (PESP Subproblem of ODPESP). Let EAN = (E ,A) be an
event activity network, wa, a ∈ A be an OD = (ws1s2)s1,s2∈S derived passenger
distribution with paths p̃as1s2, a ∈ Ap for all s1, s2 ∈ S with ws1s2 > 0 and
ODPESP and PESP two problem instances for EAN and OD with fixed pas1s2 =
p̃as1s2 in Equation (3.32) resp. for EAN and w. Then the problems are equivalent.

Proof. It holds

min
∑

s1,s2∈S,
ws1s2>0,
a∈Ap

ws1s2pas1s2xa =
∑

a∈Ap

(

∑

s1,s2∈S,
ws1s2>0

ws1s2pas1s2

)

xa =
∑

a∈Ap

waxa (3.42)

with wa :=
∑

s1,s2∈S
ws1s2pas1s2, i.e. fixing the passenger paths not only removes

variables, but converts the ODPESP it into a PESP with OD derived passenger
distribution.

Thus solving the PESP for an OD derived passenger distribution may be
considered as a subproblem of ODPESP.

Corollary 3.16 (ODPESP Optimum Recoverability). If from an ODPESP opti-
mum the durations xa, a ∈ A are known, then the passenger paths can be obtained
by pairwise shortest paths w.r.t. x. If on the other hand the ODPESP optimal
passenger distribution wa, a ∈ A is known, then solving the PESP for wa recovers
the durations from the ODPESP optimum.
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Proof. Combine Theorems 3.15 and 3.12.

Therefore, the actual difference between ODPESP and PESP (compare Corol-
lary 2.13) is the way the passengers are modeled in the objective function.

Corollary 3.17 (ODPESP Average Traveling Time). The ODPESP minimizes
the average traveling time ATTx

w from Definition 2.12 over the domain of feasible
duration sets x (resp. timetables) and OD derived passenger distributions w.

In other words: the ODPESP objective function actually is the average trav-
eling time from Definition 2.12.

Proof. In the Quadratic Program 3.11 the passenger paths are arbitrary EAN
passenger routes as in Definition 1.43 and the objective is to minimize the average
traveling time over a derived passenger distribution as per Theorem 3.15.

Corollary 3.18 (Shortest Paths Average Traveling Time). For a given feasible
duration set x (resp. timetable) an OD derived passenger distribution w may be
replaced by w′ obtained from the Passenger Distribution Algorithm 4 with x
as shortest path weights and it holds

ATTx
w′ ≤ ATTx

w . (3.43)

Proof. By Corollary 3.17, the ODPESP objective is the average traveling time,
which by Theorem 3.12 cannot be increased by replacing paths with shortest
paths.

Theorem 3.19 (Aperiodic ODPESP NP-completeness). The ODPESP stays
NP-complete, even with fixed modulo parameters in equation (3.35).

A proof for Theorem 3.19 may be found in [SS10], where the authors reduce
the Minimum Cover problem to aperiodic timetabling with even only one origin
destination pair and thus show that it is strongly NP-hard, which also covers
NP completeness.

Compared to the PESP the ODPESP is gigantic in its dimensions and since
it is already hard in practice to solve the PESP for large instances, fully solv-
ing the ODPESP seems to be utopic. However, there is an evident heuristic:
Retimetabling6.

Definition 3.20 (Retimetabling Step). Let OD = (wss′)s,s′∈S an origin destina-
tion matrix, EAN = (E ,A) an event activity network and wa, a ∈ A a passenger
distribution derived from OD. Solving the PESP for w with timetable π and
rerouting passengers along shortest paths w.r.t. derived durations from π is called
Retimetabling step w.r.t. EAN and OD or ReTim step for short.

6Independently of us, in his diploma thesis [Kin08] worked on this heuristic as well. We and
[Lue09] use his naming.
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Definition 3.21 (Retimetabling). A loop of ReTim steps, i.e. solving the PESP
and distributing passengers along shortest paths w.r.t. the last timetable yields a
sequence of passenger distributions and timetables w0 = w, π1, w2, π3, w4, . . . and
is called Retimetabling or ReTim for short. Let ATTn be the average traveling
time w.r.t. πn−1 and the passenger distribution wn if 2|n and w.r.t. πn and wn−1

otherwise. The ReTim limit is defined as

lim
ReTim

:= lim
n→∞

ATTn . (3.44)

Theorem 3.22 (Retimetabling Convergence). Let EAN = (E ,A) be an event
activity network, OD = (wss′)s,s′∈S an origin destination matrix. For ReTim on
EAN and OD the average traveling time, already if never increasing by (subopti-
mally) solving the PESP, decreases monotonically and converges with limReTim ≥
obj∗ODPESP, where obj∗ODPESP is the objective function of the ODPESP optimum
for EAN and OD.

Proof. By Corollary 3.16, fixing the passenger distribution transforms ODPESP
into a PESP and fixing the durations into an all pairs shortest paths problem.
Therefore, ReTim only solves subproblems and if it converges it holds limReTim ≥
obj∗ODPESP. If an instance of ODPESP is feasible, there exist some initial feasible
p0as1s2, x

0
a with s1, s2 ∈ S, a ∈ Ap with modulo parameters z0c derived from x0

a,
c ∈ C for C and objective function value obj0. Let p0 w.l.o.g. be shortest paths
and q0a, a ∈ A be the derived passenger distribution, i.e.

q0a =
∑

s1,s2∈S
ws1s2>0

p0as1s2 , ∀ a ∈ Ap. (3.45)

A timetabling iteration provides a new x1 (and z1) that by the requirements from
the theorem has the property

ATTx1

q0 ≤ ATTx0

q0 . (3.46)

By Corollary 3.18 the average traveling time cannot increase by rerouting passen-
gers along shortest paths w.r.t. x1 and since it did not increase by the preceding
timetabling step, this makes ReTim monotonic decreasing. Since it has a lower
bound as well, i.e. obj∗ODPESP, it converges.

Theorem 3.22 allows for heuristics for the timetabling step. The simpliest
one could think of is just fixing the modulo parameters to those of the previous
timetable or more elaborated methods like the modulo simplex [GS11].

Nowadays linear solvers like CPLEX are capable to find optimal solutions to
quadratic programs. However, therefore the objective function must be convex,
which is not the case for ODPESP, as shown in [Lue09]. Therefore, we introduce
a linearization with integral auxiliary variables.
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Linear Program 3.23 (Linear ODPESP). Let the Quadratic Program 3.11 of
the ODPESP be given.

We introduce auxiliary variables

V das1s2 =

{

xa pas1s2 = 1

0 otherwise
,

∀ a ∈ A,

s1, s2 ∈ S,

ws1s2 > 0

(3.47)

that have to satisfy their definition

L 0 ≤ das1s2 ≤ xa ,

∀ a ∈ A,

s1, s2 ∈ S,

ws1s2 > 0,

(3.48)

L xa − ua(1− pas1s2) ≤ das1s2 ≤ pas1s2ua ,

∀ a ∈ A,

s1, s2 ∈ S,

ws1s2 > 0

(3.49)

and linearize the formulation by modifying the objective function

L min
∑

s1,s2∈S,
ws1s2>0,

a∈A

ws1s2das1s2 . (3.50)

Theorem 3.24. Linear Formulation 3.23 is equivalent to 3.11.

Proof. If the auxiliary variables satisfy their Definition 3.47, then the objective
function

∑

s1,s2∈S,
ws1s2>0,

a∈A

ws1s2das1s2 =
∑

s1,s2∈S,
ws1s2>0,

a∈A

ws1s2pas1s2xa , (3.51)

which would prove the theorem. Therefore it suffices to show that Equations
(3.48) and (3.49) ensure it. Let pas1s2 = 0, then Inequation (3.49) states

xa − ua ≤ das1s2 ≤ 0 , (3.52)

which is always possible since xa − ua ≤ 0 and since das1s2 ≥ 0 by Inequation
(3.48) it holds das1s2 = 0. Let on the other hand pas1s2 = 1. Then (3.49) writes
as

xa ≤ das1s2 ≤ ua , (3.53)

which is again always feasible, since xa ≤ ua and das1s2 = xa since by Inequation
(3.48) it holds das1s2 ≤ xa.



Chapter 4

Planning Steps Lower Bounds

In Section 1.1 we gave an overview about the traditional planning steps in public
transportation. In this chapter, we deal with four of them:

1. Network Design Where to put the stations and infrastructure?

2. Line Planning How to layout the lines, i.e. the vehicle paths?

3. Passenger Routing Which paths will passengers take?

4. Timetabling At which times will lines arrive/depart at the stations?

For the timetabling step our objective is to minimize the average traveling time
w.r.t. a feasible timetable π resp. feasible durations x and a passenger distri-
bution w as in Definition 2.12. However, to obtain x and w, we started with a
public transportation network PTN, an origin destination matrix OD as well as
line pool L, from which we derived a line concept LC and constructed an event ac-
tivity network EAN on top of this LC. All these preliminary steps have an effect
on the average traveling time and in this chapter we estimate it quantitatively
by introducing easy-to-compute lower bounds w.r.t. a given origin destination
matrix OD = (ws1s2)s1,s2∈S.

Throughout the chapter we assume that for all s1, s2 ∈ S with ws1s2 > 0 in
OD = (ws1s2)s1,s2∈S there are paths in the PTN = (S, ~E) that lead from s1 to s2
as well as line pools resp. line concepts always ensure connectivity between those
s1 and s2. If this is not the case, the model is broken anyway and something
needs to be fixed first.

4.1 Public Transportation Network

Given a public transportation network PTN = (S, ~E), what is the best line

concept LC = (~L, F ) one could think of from the traveling time point of view?

63



64 CHAPTER 4. PLANNING STEPS LOWER BOUNDS

4.1.1 General Lower Bound

Vehicles would never need to pay attention to each other, i.e. no headways. Fur-
thermore, every passenger has a line that goes directly from origin to destination,
so that changes are not needed at all and there are no stopovers. The only re-
striction: vehicles need is to pass the minimal driving time on the edges they
use1. To obtain the average traveling time we then could simply take minimal
driving times as weights for the PTN graph, compute pairwise shortest paths
lengths dPTN

s1s2 , for all s1s2 ∈ S with ws1s2 > 0 in OD = (ws1s2)s1,s2∈S and look at

lPTN =
∑

s1,s2∈S
ws1s2>0

dPTN
s1s2

ws1s2 . (4.1)

We call lPTN the General Public Transportation Network Average Traveling Time
Lower Bound or General PTN ATT Lower Bound for short.

Theorem 4.1 (General PTN ATT Lower Bound). Let PTN be a public trans-
portation network and OD an origin destination matrix. For every feasible dura-
tion set x and OD derived passenger distribution w that can be obtained for PTN
and OD by constructing an EAN with methods from Sections 2.3 or 3.1 on top
of any line concept LC holds

lPTN ≤ ATTx
w , (4.2)

where ATTx
w is the average traveling time from Definition 2.12.

Proof. Theorem 4.2 with lwait = lchange = 0.

4.1.2 Wait Aware Lower Bound

If additionally to the Section 4.1.1 before we take minimal stopover times into
account, i.e. global minimal waiting times lwait in our case, we can further increase
this bound. Therefore, we replace every station s ∈ S by an incoming station sIn,
which gets the incoming edges of s, an outgoing station sOut analogously and add
edgewaits , an virtual wait edge in between, as in Figure 4.1. We introduce Ins = sIn
and Outs = sOut as the incoming station map resp. outgoing station map as well
as Im(In(S)) = SIn and Im(Out(S)) = SOut as the set of incoming stations resp.

set of outgoing stations. Let further ~Ewait := {edgewaits : s ∈ S} the set of

virtual wait edges. We call this expanded graph PTN = (SIn ∪ SOut, ~E ∪ ~Ewait)
wait expanded public transportation network. We take minimal driving times as
weights for all e ∈ ~E and lwait as weight for all e ∈ ~Ewait, compute pairwise

shortest paths lengths d
PTN

s1s2
, for all Outs1 ∈ SOut, Ins2 ∈ SIn and

lwaitPTN =
∑

s1,s2∈S,
ws1s2>0

d
PTN

s1s2 ws1s2 (4.3)

1We could also think of passengers with walk speed as fast as vehicles and never interfere.
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s sin sout7→
edgewaits

Figure 4.1: Station wait expansion.

where ws1s2 is an entry from the origin destination matrix OD for all s1, s2 ∈ S.
We call lwaitPTN the Wait Aware Public Transportation Network Average Traveling
Time Lower Bound resp. Wait aware PTN ATT Lower Bound for short.

Theorem 4.2 (Wait aware PTN ATT Lower Bound). Let PTN be a public trans-
portation network, lwait the minimal wait time, lchange the minimal change time
with lwait ≤ lchange, OD an origin destination matrix. For every feasible duration
set x and OD derived passenger distribution w that can be obtained for PTN and
OD by constructing an EAN with methods from Sections 2.3 or 3.1 on top of any
line concept LC holds

lwaitPTN ≤ ATTx
w , (4.4)

with ATTx
w being the average traveling time from Definition 2.12.

Proof. By Definition 2.3, every OD derived passenger distribution w has the
property that wa, a ∈ A is the sum of coefficients from OD of a linear combination
of EAN passenger routes pEAN

s1s2
, s1, s2 ∈ S, ws1s2 > 0. Every such passenger route

posesses a PTN route trace PPTN
s1s2 which, after Lemma 1.45 is connected and

thus contains a path pPTN
s1s2

from s1 to s2 in the PTN. By the Lines Roll Out

methods from Sections 2.3 and 3.1 drive activities in the EAN inherit their lower
bounds from edges in the PTN. Therefore, if ds1s2 and d

PTN

s1s2 are the lengths of
the shortest path between s1 and s2 in the PTN resp. of pPTN

s1s2
, both w.r.t. the

minimal driving times and wait times lwait ≤ lchange at every station as well as
dl,EAN
s1s2 and dx,EAN

s1s2 the lengths of pEAN
s1s2 w.r.t. the activity lower bounds resp. x,

then it holds

ds1s2 ≤ d
PTN

s1s2 ≤ dl,EAN
s1s2 ≤ dx,EAN

s1s2 (4.5)

for all s1, s2 ∈ S with ws1s2 > 0 and thus

lwaitPTN =
∑

s1,s2∈S,
ws1s2>0

ds1s2ws1s2 ≤
∑

s1,s2∈S,
ws1s2>0

dx,EAN
s1s2

ws1s2 = ATTx
w , (4.6)

which yields the theorem.

Theorem 4.3. It holds lPTN ≤ lwaitPTN.

Proof. For lwait = 0 it holds lPTN = lwaitPTN and since lwait > 0 compared to lwait = 0
does not decrease ds1s2 for any s1, s2 ∈ S it does not decrease lwaitPTN and thus the
theorem follows.
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4.2 Line Planning

4.2.1 Line Concept Lower Bound

For an actually given LC = (~L, F ) the best scenario for the average traveling
time would be if all lines were taken and never interfered, i.e. no headways
influence timetables later. Therefore we run the classical Lines Roll Out

with frequency_as_attribute model, Generate Changes, which yields an
event activity network EANLC = (ELC,ALC), take the activities lower bounds as
initial duration assumption, i.e. xinit

a = la, for all a ∈ ALC in the Passenger

Distribution Algorithm 4, obtain pairwise distances2 dLCs1s2 and sum up

lLC =
∑

s1,s2∈S,
ws1s2>0

dLCs1s2ws1s2 (4.7)

where ws1s2 is from OD = (ws1s2)s1s2∈S. We call lLC the Line Concept Average
Traveling Time Lower Bound or LC ATT Lower Bound for short.

Theorem 4.4. For event activity networks as constructed by a combination of
methods from Sections 2.3 or 3.1, the line concept average traveling time lower
bound lLC is a lower bound for the ODPESP objective function.

Proof. Let EAN = (E ,A) be an event activity network derived from PTN =

(S, ~E), LC = (~L, F ), OD = (ws1s2)s1,s2∈S and la being lower bounds, for all a ∈ A
as well as Ap ⊂ A the passenger usable activities. In the Quadratic Program 3.11
of the ODPESP the objective function objODPESP may be estimated by

∑

s1,s2∈S,
ws1s2>0,
a∈Ap

ws1s2pas1s2xa ≥
∑

s1,s2∈S,
ws1s2>0,
a∈Ap

ws1s2pas1s2la =
∑

s1,s2∈S,
ws1s2>0

ws1s2

∑

a∈Ap

pas1s2la (4.8)

and since pas1s2 must satisfy path constraints
∑

a∈Ap

pas1s2la ≥ d̃s1s2 , ∀s1, s2 ∈ S, ws1s2 > 0, (4.9)

where d̃s1s2 is the length of a shortest path from s1 to s2 w.r.t.3 the weights la.
Further it holds

d̃s1s2 = dLCs1s2 , ∀s1, s2 ∈ S, ws1s2 > 0, (4.10)

2Note that dLCs1s2 is not a distance in a line concept, but in EANLC, therefore wait and change
activities are considered.

3Note that in general,
∑

a∈Ap
pas1s2 la 6= d̃s1s2 , since the pas1s2 , a ∈ Ap in a feasible ODPESP

solution are arbitrary paths resp. shortest paths w.r.t. feasible durations in an optimal solution
as stated in Theorem 3.12 and not necessarily shortest paths w.r.t. lower bounds as can be
seen in Figure 5.12, frequency_as_attribute model to the left.
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since headway activities are not passenger usable and thus negliable and the
frequency_as_multiplicity Lines Roll Out model, if used for EAN, does
only introduce parallel paths with equal lower bounds compared to the fre-

quency_as_attribute model. Therefore

objODPESP =
∑

s1,s2∈S,
ws1s2>0,
a∈Ap

ws1s2pas1s2xa ≥
∑

s1,s2∈S,
ws1s2>0

dLCs1s2ws1s2 = lLC . (4.11)

Theorem 4.5 (LC ATT Lower Bound). Let PTN be a public transportation
network, OD an origin destination matrix and LC a line concept for PTN. For
every feasible duration set x and OD derived passenger distribution w that can
be obtained for PTN, LC and OD by constructing an EAN with methods from
Sections 2.3 or 3.1 on top of LC holds

lLC ≤ ATTx
w , (4.12)

where ATTx
w is the average traveling time from Definition 2.12.

Proof. By Corollary 3.17 the ODPESP minimizes the average traveling time over
the domain of feasible timetables and OD derived passenger distributions. Latter
implies that there is a fixed, underlying EAN. Theorem 4.4 shows that lLC is a
lower bound for ODPESP, independent of how that EAN was obtained from LC
and therefore the theorem follows.

Theorem 4.6. Let LC′ = (~L′, F ′), LC = (~L, F ) be two line concepts with the

property that ~L ⊂ ~L′ and that if fℓ > 0 in F , then fℓ > 0 in F ′. Then it holds

lLC′ ≤ lLC . (4.13)

Proof. By construction through the frequency_as_attribute Lines Roll Out

model, the event activity network EAN′ derived from LC′ contains EAN derived
from LC. Therefore, all passenger routes from EAN are contained in EAN′ as
well and thus lLC′ ≤ lLC.

Theorem 4.7. Let PTN be a public transportation network, OD an origin desti-
nation matrix and LC a line concept for PTN and lwait ≤ lchange, where lwait and
lchange are the minimal wait resp. change times. Then it holds

lwaitPTN ≤ lLC . (4.14)

Proof. By Theorem 4.2 lwaitPTN is a lower bound for the average traveling time for
arbitrary line concepts on PTN, if lwait ≤ lchange and therefore for LC as well.
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4.2.2 Line Pool Lower Bound

Let L be a line pool. Since the set of lines ~L in a line concept LC = (~L, F )
used later is taken from L, the best scenario for the average traveling time would
be if all lines were taken, which can be seen as a maximal extension of the line
concept from the preceding Section 4.2.1, in the sense of Theorem 4.6. We thus
define LC = (~L, F ), where F = {ℓ 7→ 1 : ∀ ℓ ∈ ~L}. Further, we construct a
dummy event activity network EANL = (EL,AL) on top of LC, by using classical
methods Lines Roll Out and Generate Changes as described in Section
2.3. Since we are only interested in lower bounds the frequency_as_attribute
Lines Roll Out model is sufficient. Again, we compute shortest paths lengths
dLs1s2 for all s1, s2 ∈ S, ws1s2 > 0 this time with lower bounds from AL as weights
and therefore

lL =
∑

s1,s2∈S,
ws1s2>0

dLs1s2ws1s2 (4.15)

with ws1s2 being the origin destination matrix OD entry for all s1, s2 ∈ S and
delivers the Line Pool Average Traveling Time Lower Bound or for short Line
Pool ATT Lower Bound for a given line pool L.

Corollary 4.8 (Line Pool ATT Lower Bound). Let PTN be a public transporta-
tion network, OD an origin destination matrix and L a line pool for PTN. For
every feasible duration set x and OD derived passenger distribution w that can be
obtained for PTN, L and OD by constructing an EAN with methods from Sections
2.3 or 3.1 on top any LC derived from L holds

lL ≤ ATTx
w , (4.16)

with ATTx
w being the average traveling time from Definition 2.12.

Proof. The line pool L may be considered as an extension of a line concept LC
derived from that pool, therefore Theorem 4.6 is applicable.

4.3 Summary

Let ODPESP be a problem instance with optimal objective function obj∗ODPESP

on an origin destination matrix OD and an event activity network EAN, derived
from a line concept LC, derived from a line pool L on a public transportation
network PTN as well as lwait ≤ lchange. This chapter yields lower bounds lPTN,
lwaitPTN, lL as well as lLC and shows that they satisfy

lPTN ≤ lwaitPTN ≤ lL ≤ lLC ≤ obj∗ODPESP . (4.17)

An evaluation for our large scale networks yields that lwaitPTN, lL and lLC are close
together, while lPTN is rather low. With Retimetabling we get as close as 6 to
7% to lLC. For more details see Chapter 6.



Chapter 5

Worst Case Error

Event Activity Networks can be modeled in different ways, if we compare Chap-
ters 2 and 3. All classical models are simplifications to the actual ODPESP
problem with frequency_as_multiplicity Lines Roll Out model mentioned
in Sections 3.2 resp. 3.1.1 and we want to know how large the relative error can
get if we simplify. An initial analytic estimation from Section 5.1 is very rough.
Can that gigantic error really occur in some real network? Therefore, we con-
struct parametrized example networks from public transportation network level
on and consider different scenarios to at least get an estimate for the lower bound
of the worst case.

Although we consider the general ODPESP, some results are independend of
the passenger distribution and thus directly applicable to PESP as well, about
which the reader will be informed. If passengers can take different paths, we have
a look at what happens after an iteration of PESP timetabling. Since we compare
objective functions in the rolled out and rerouted network, rerouting is included
before the additional PESP step. However, for the Section Overestimation 5.5
we make an exception and compare two different ODPESP objective functions:
One of the EAN with frequency_as_attribute Lines Roll Out model, the
other with frequency_as_multiplicity.

To distinguish between actual example and general quantities, we use the
superscript X, e.g. PTNX is a public transportation network depicted in some
figure in this chapter, while PTN is some arbitrarily given, general PTN.

5.1 Analytic Point

In our event activity network, the only passenger usable drive, wait and change
activities limit the average traveling time by their lower and upper bounds la resp.
ua. However, are these ua arbitrary large? Generally yes, but, e.g. ua − la ≥ T
does not make sense from an average traveling time point of view, as seen in
Section 2.5, which makes us take a closer look at la. For wait, change and drive
activities, la is determined by the passengers/vehicle enter/vehicle leave/walk

69
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speed and distances within stations resp. the vehicles speed and edge length.
Every public transportation network has some longest edge, longest walk distance,
slowest vehicle and slowest passenger, which are all network intrinsic and are, a
priori, independend of the choice of the period length or can at least be bound
by a fixed multiple of T and thus ua may also be limited.

Definition 5.1 (Bounded By Period Property). Let T be a period length. An
EAN = (E ,A) with upper bounds ua satisfies the bounded by period property, if
with Ap ⊂ A being the set of passenger usable activities, it holds

∃ kmax ∈ N : ua ≤ kmaxT , ∀ a ∈ Ap . (5.1)

An activity that does not satisfy the bounded by period property has bounds
of e.g. [la, ua] = [T 2−1, T 2]. Since ua− la = 1, this actually influences feasibility.
However, at least to the author no szenario in public transportation is know in
which such a bound parametrization would be useful.

For an actual EAN = (E ,A) we can calculate

kmax =

⌈

maxa∈Ap
ua

T

⌉

. (5.2)

Let us find an estimation for the maximal error magnitude.

Theorem 5.2 (Objective Values Quotient Estimation). Let T be the period

length, PTN = (S,E), LC = (~L, F ), OD = (ws1s2)s1,s2∈S and EAN = (E ,A)
an associated event activity network with Ap ⊂ A being the passenger usable ac-
tivities as well as lower and upper bounds la resp. ua, for all a ∈ A. Further
EAN satisfies the bounded by period property from Definition 5.1 with kmax. Let

wmin = min
s1,s2∈S,
ws1s2>0

ws1s2 ,

wmax = max
s1,s2∈S,
ws1s2>0

ws1s2 ,

lmin = min
a∈Ap,la>0

la ,

umax = max
a∈Ap,ua>0

ua ,

‖OD>0 ‖ =
∑

s1,s2∈S,
ws1s2>0

1 ,

(5.3)

as well as obj1 and obj2 two nonvanishing objective function values for two solu-
tions of ODPESP. It then holds

obj1
obj2

≤
wmaxkmax

wminlmin
‖OD>0 ‖|Ap|T resp.

obj1
obj2

∈ O(‖OD>0 ‖|Ap|T ) . (5.4)

Proof. Let pas1s2, xa with s1, s2 ∈ S, ws1s2 > 0, a ∈ A be solution for the ODPESP
problem with nonvanishing objective function

∑

s1,s2∈S,
ws1s2>0,
a∈Ap

ws1s2pas1s2xa . (5.5)
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Since the sum does not vanish and all summands are nonnegative, at least one
summand therefore must be positive. It holds

ws1s2pas1s2xa = ws1s2xa ≥ wminlmin (5.6)

for all s1, s2 ∈ S, ws1s2 > 0, a ∈ Ap for which ws1s2pas1s2xa

!
> 0 and therefore

∑

s1,s2∈S,
ws1s2>0,
a∈Ap

ws1s2pas1s2xa ≥ wminlmin . (5.7)

On the other hand
∑

s1,s2∈S,
ws1s2>0,
a∈Ap

ws1s2pas1s2xa ≤
∑

s1,s2∈S,
ws1s2>0,
a∈Ap

ws1s2pas1s2ua ≤
∑

s1,s2∈S,
ws1s2>0,
a∈Ap

ws1s2ua (5.8)

=
∑

s1,s2∈S,
ws1s2>0

ws1s2

∑

a∈Ap

ua ≤ wmaxumax‖OD>0 ‖|Ap| (5.9)

≤ wmaxkmax‖OD>0 ‖|Ap|T , (5.10)

so for two different solutions with different objective function values obj1 and
obj2 holds

obj1
obj2

≤
wmaxkmax

obj2
‖OD>0 ‖|Ap|T ≤

wmaxkmax

wminlmin
‖OD>0 ‖|Ap|T (5.11)

and thus the theorem follows.

We basically need Theorem 5.2 for the fact that errors cannot grow more
than linearly in T . Under different conditions, this error magnitude is reached
and gives reason to talk about an unbounded error for practical application, at
least when it comes to public transportation. Therefore, we vary only T and
line frequencies but not the number of nonzero OD entries or passenger usable
activities which, by Theorem 5.2 could basically also affect the worst case error.

For the networks we shall consider, for the variable kmax from Defintion 5.1 it
holds kmax ≤ 2, since the greatest upper bound used is T + 2 for a drive activity
derived from an edge in Figure 5.13.

5.2 Fixed Passengers
The PESP as in Section 2.5 uses a fixed passenger distribution wa, a ∈ A in
its objective function. But since the traveling time is a major criterion to the
passengers, their distribution may change as soon as the network operator uses
a different timetable. This effect can and empirically will, as we shall see in
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Chapter 6, lead to our timetable to not be in a ODPESP optimum if we use
PESP timetabling.

In this section, we use a very simple PTNX, LCX and ODX from Figure 5.1,
and consider an associated event activity network EANX as in Figures 5.2a and
5.3a with frequency_as_attribute as Lines Roll Out model, since for the
actual estimation frequencies are negligible. The period length is a parameter
and figures see below text.

Let us consider the public transportation network PTNX = (V,E) as depicted
in Figure 5.1 and assume that there is only one passenger in total, traveling from
s2 to s1. The line ℓ1 needs a whole period length T to get from s3 to s1, while ℓ2
needs only one time unit. Our passenger must definitely take ℓ1 to get from s2
to s3 and then either stay in ℓ1 or change to ℓ2 to get from s3 to s1.

Lemma 5.3. Let T be the period length, PTNX, LCX and ODX as in Figure
5.1, EANX an associated event activity network as in Figure 5.2 and objX∗

p1 the

optimal ODPESP objective value for a fixed ODX derived passenger distribution
p1 (effectively PESP). It holds

objX∗
p1

= T + 2 (5.12)

and there exist timetables which cannot attain a better objective by an iteration
of shortest duration rerouting and PESP timetabling, if the solver used operates
deterministially.

Proof. Since all timespans are fixed, objX∗
p1 = T +2 is the only objective function

value possible for p1. Let the timetable πp1 as in Figure 5.2b be obtained by a
linear solver. There are only two ODX derived passenger distributions possible:
p1 and p2 as depicted in 5.2 resp. 5.3, where p1 takes passengers T +2 and p2 uses
T + 3 time units. Therefore duration shortest paths rerouting does not change
the passenger distribution. Thus, an additional PESP timetabling step in the
iteration yields πp1 again if the solver operates deterministically.

Lemma 5.4. Let T be the period length, PTNX, LCX and ODX as in Figure
5.1, EANX an associated event activity network as in Figure 5.3 and objX∗

p2
the

optimal ODPESP objective value for a fixed ODX derived passenger distribution
p2 (effectively PESP) and objX∗ the global ODPESP optimum. It holds

objX∗ = objX∗
p2 = 3 . (5.13)

Proof. See caption of Figure 5.3.

Theorem 5.5 (Fixed Passengers Worst Case Relative Error Lower Bound). Let
EAN be an event activity network that satisfies the bounded by period property
from definition 5.1 and derived from PTN, LC, OD and period length T . Let
further obj∗ be the ODPESP global optimum objective function value resp. obj∗p
the ODPESP optimum for a fixed OD derived passenger distribution p (effectively
PESP). It holds
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1. max
PTN,
LC,OD

obj∗p
obj∗

≥
T + 2

3
.

2. The error magnitude is maximal in T .

Proof. 1. EANX satisfies the bounded by period property with kmax = 2, since
the greatest upper bound is T + 1. Therefore, Lemmata 5.3 and 5.4 may
be combined to

max
PTN,
LC,OD

obj∗p
obj∗

≥
objX∗

p1

objX∗
p2

=
objX∗

p1

objX∗
=

T + 2

3
. (5.14)

2. Apply Theorem 5.2.

Table 5.1: Fixed passengers worst case relative error lower bounds for different
period lengths T , see Theorem 5.5.

T 2 5 15 30 60 120 600 1200 2400

T+2
3

1.33 2.33 5.67 10.67 20.67 40.67 200.67 400.67 800.67

s1

s2 s3

ℓ1
ℓ2

[1,1][T,T]

[1,1]

change ∈ [2, T + 1],

wait ∈ [1, 1],

ODss′ =

{

1 (s, s′) = (s2, s1)

0 otherwise
,

∀s, s′ ∈ S.

Figure 5.1: A public transportation network PTNX = (V,E) that has three
stations V = {s1, s2, s3} and three edges E = {e13, e23, e13 }, each with equal
lower and upper bounds l23 = u23 = 1, l13 = u13 = T and l13 = u13 = 1
together with a line concept LCX = (L, F ) with two lines L = {ℓ1, ℓ2} as well as
an asymmetric origin destination ODX matrix that states that there is only one
passenger in the network that wants to go from s2 to s1.
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dep arr dep arr ℓ1

arr dep arr dep ℓ′1

dep arr ℓ2

arr dep ℓ′2s3

s1

s2

change

drive

[T, T ]

wait drive

[1, 1]

drive

[1, 1]

waitdrive

[T, T ]

drive

[1, 1]

drive

[1, 1]

(a) Passenger Distribution p1

0 0 1 2 ℓ1

2 2 1 0 ℓ′1

0 1 ℓ2

3 2 ℓ′2s3

s1

s2

T + 1

T 1 1

11T

1

1

(b) An Optimal Timetable πp1

for Passenger Distribution p1

Figure 5.2: (a) depicts the EANX = (A, E) that belongs to the PTNX from
Figure 5.1, together with an ODX derived passenger distribution p1 (dashed line).
Since change times span a period length, we consider only those change activities
relevant to ODX. (b) shows a timetable πp1 (with durations) that minimizes the
average traveling time objX∗

p2
= T + 3 for p1. Note that rerouting passengers by

duration shortest paths and solving the PESP for the resulting distribution only
allows to find a better timetable as in Figure 5.3 if the solver operates (pseudo-
)nondeterministically.

dep arr dep arr ℓ1

arr dep arr dep ℓ′1

dep arr ℓ2

arr dep ℓ′2s3

s1

s2

change

drive

[T, T ]

wait drive

[1, 1]

drive

[1, 1]

waitdrive

[T, T ]

drive

[1, 1]

drive

[1, 1]

(a) Passenger Distribution p2

0 0 1 2 ℓ1

2 2 1 0 ℓ′1

0 1 ℓ2

4 3 ℓ′2s3

s1

s2

2

T 1 1

11T

1

1

(b) An Optimal Timetable πp2

for Passenger Distribution p2

Figure 5.3: (a) depicts the EANX = (A, E) that belongs to the PTNX from
Figure 5.1, together with an ODX derived passenger distribution p2 (dashed line).
Since change times span a period length, we consider only those change activities
relevant to ODX. (b) shows a timetable π2 (with durations) that minimizes the
average traveling time for p2 and yields the global optimum objX∗ = objX∗

p2
= 3,

since p1 from Figure 5.2 and p2 are the only ODX derived distributions possible
and objX∗

p2 < objX∗
p1 for T > 1.
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5.3 Fixed Moduli
When we have a feasible periodic timetable, we can fix the modulo parameters
zc from Section 2.5. This effectively turns the periodic event scheduling into
an aperiodic event scheduling problem, which can be solved in polynomial time.
However, this affects the average traveling time objective.

As in the section before, we use a very simple PTNX, LCX and ODX from
Figure 5.4, and consider an associated event activity network EANX as in Figure
5.5 with frequency_as_attribute as Lines Roll Out model, since for the
actual estimation frequencies are negligible. Figures see below text.

Lemma 5.6. Let T be the period length, PTNX, LCX and ODX as in Figure 5.4
and EANX an associated event activity network as in Figure 5.5 with objX∗ as
the ODPESP global optimum objective value as well as objX∗

0 and objX∗
1 being

optimal for z = 0 resp. z = 1 in Figure 5.5b. Independent of a ODX derived
passenger distribution, i.e. also for PESP, it holds

objX∗ = objX∗
0 = 6 , objX∗

1 = T + 6 (5.15)

and z ∈ {0, 1} are the only feasible modulo parameters.

Proof. In EANX there is only one nontrivial cycle, which gives the constraint

x1 − 1 + x2 − 1 = zT , x1, x2 ∈ {2, . . . , T + 1}, z ∈ {0, 1}, (5.16)

with x1 and x2 being the change durations and the modulo parameter z ∈ {0, 1}
due to bounds of x1 and x2, Lemma 2.24 (Odijk). Further

objX(x1, x2) = x1 + x2 + 4 (5.17)

is the ODPESP objective function from Section 3.2 since there is only one ODX

derived passenger distribution possible and therefore coincides with the PESP
objective. Setting z = 1 leads to objX1 = T + 6, so the global optimum is z = 0
with objX∗ = objX∗

0 = 6.

Theorem 5.7 (Fixed Moduli Worst Case Relative Error Lower Bound). Let EAN
be an event activity network that satisfies the bounded by period property from
Definition 5.1 derived from PTN, LC, OD and period length T . Let further obj∗

be the ODPESP global optimum objective function value resp. obj∗z the ODPESP
optimum for fixed moduli. Independend of a OD derived passenger distribution,
i.e. also for PESP, it holds

1. max
PTN,
LC,OD

obj∗z
obj∗

≥
T

6
+ 1 .

2. The error magnitude is maximal in T .
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3. After an iteration of PESP timetabling non-fixed moduli, the error van-
ishes.

Proof. 1. The greatest upper bound is T + 1, therefore EANX satisfies the
bounded by period property with kmax = 2. Lemma 5.6 holds

max
PTN,
LC,OD

obj∗p
obj∗

≥
objX∗

1

objX∗
0

=
objX∗

1

objX∗
=

T + 6

6
=

T

6
+ 1 . (5.18)

2. Theorem 5.2 is applicable.

3. The error vanishes by definition, since in the PESP model, modulo param-
eters are variables.

Table 5.2: Fixed moduli worst case relative error lower bounds for different period
lengths T , see Theorem 5.7.

T 2 5 15 30 60 120 600 1200 2400

T
6
+ 1 1.33 1.83 3.5 6 11 21 101 201 401
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s1

s2 s3 s4

s5

ℓ1
ℓ2

[1,1]

[1,1]

[1,1] [1,1]

change ∈ [1, T + 1],

wait ∈ [1, 1],

ODX
ss′ =











1
(s, s′) = (s2, s4)

(s, s′) = (s5, s1)
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Figure 5.4: A public transportation network PTNX = (S,E) that has five stations
S = {s1, s2, s3, s4, s5} and four edges E = {e13, e23, e34, e35}, all with equal lower
and upper bounds l13 = u13 = l23 = u23 = l34 = u34 = l35 = u35 = 1 together with
a line concept LCX = (L, F ) with two lines L = {ℓ1, ℓ2} as well as an asymmetric
origin destination ODX matrix that states that there is only two passengers in
the network: one that wants to go from s2 to s4 and one from s5 to s1.
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Figure 5.5: (a) depicts the frequency as attribute EANX
FA = (A, E) that belongs to

the PTNX from Figure 5.4. Since change times span a period length, we consider
only those change activities relevant to the origin destination ODX matrix. The
only cycle possible is shown in (b).
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5.4 Line Concept
One may assume: the less and longer lines, the lower the ODPESP objective,
since passengers have to change between lines less frequently and save valuable
time by taking the, usually lower, waiting time. However, this is not true in
general. The reason for this effect on the traveling time are bounds being too
stiff. Especially, the line concept is cruical for timetabling.

As before, we use a very simple PTNX, LCX and ODX from Figure 5.6, and
consider an associated event activity network EANX as in Figure 5.7 with fre-

quency_as_attribute as Lines Roll Out model, since for the actual estima-
tion frequencies are negligible. Unless we refer to the Section 5.3 before, figures
see below text.

Lemma 5.8. Let T be the period length, PTNX, LCX and ODX as in Figure 5.6
and EANX an associated event activity network as in Figure 5.7 with objX∗ as
the ODPESP global optimum objective value. Independend of an ODX derived
passenger distribution, i.e. also for PESP, it holds

objX∗ = 8 . (5.19)

Proof. In EANX there is not a single nontrivial cycle, i.e. no constraints. There-
fore, all activities attain their lower bounds and therefore the objective value
is

objX(x1, x2) = x1 + x2 + 4 = 2 + 2 + 4 = 8 , (5.20)

since there is only one ODX derived passenger distribution possible.

Theorem 5.9 (Line Concept Worst Case Relative Error Lower Bound). Let
EAN, EAN′ be two event activity networks for which holds the bounded by period
property from Definition 5.1 and both derived from PTN, LC resp. LC′, OD and
period length T . Let further obj∗ be the ODPESP optimal objective function value
for EAN resp. obj′∗ for EAN′. Independend of the passenger distribution, i.e.
also for PESP, it holds

1. max
PTN,LC,
LC′,OD

obj∗

obj′∗
≥

T + 6

8
.

2. The error magnitude is maximal in T .

Proof. 1. Lemmata 5.6 and 5.8 together hold the theorem, since kmax = 2 for
the bounded by period property.

2. Apply Theorem 5.2.
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Table 5.3: Line concept worst case relative error lower bounds for different period
lengths T , see Theorem 5.9.

T 2 5 15 30 60 120 600 1200 2400

T+6
8

1 1.375 2.625 4.500 8.25 15.75 75.75 150.75 300.75
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0 otherwise

,

∀s, s′ ∈ S.

Figure 5.6: A public transportation network PTNX = (S,E) that has five stations
S = {s1, s2, s3, s4, s5} and four edges E = {e13, e23, e34, e35}, all with equal lower
and upper bounds l13 = u13 = l23 = u23 = l34 = u34 = l35 = u35 = 1 together with
a line concept LCX = (L, F ) with this time three lines L = {ℓ1, ℓ2, ℓ3} as well as
an asymmetric origin destination ODX matrix that states that there is only two
passengers in the network: one that wants to go from s2 to s4 and one from s5
to s1.
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(b) No Nontrivial Cycles

Figure 5.7: (a) depicts the frequency as attribute EANX
FA = (A, E) that belongs to

the PTNX from Figure 5.6. Since change times span a period length, we consider
only those change activities relevant to the origin destination ODX matrix. There
are no nontrivial cycles, take (b) as comparison to 5.5b.
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5.5 Overestimation
Unlike in the other sections, this time we compare two different ODPESP objec-
tive functions: the one of the EAN with frequency_as_attribute Lines Roll

Out model, the other with frequency_as_multiplicity and show that the
ODPESP timetabling objective in the former case overestimates the actual aver-
age traveling time obtained from the latter case. The example in this section has
two nice properties to evaluate overestimation: In the frequency_as_attribute
case, there is only one passenger distribution possible and the requirements are
very low, since we need just two lines with arbitrary frequencies that cross at
some station.

Therefore, throughout the section, we use a very simple PTNX, LCX and
ODX from Figure 5.8, and consider an associated event activity networks EANX

FA

and EANX
f1f2

as in Figures 5.9 resp. 5.11 with frequency_as_attribute resp.
frequency_as_multiplicity as Lines Roll Out models, frequencies f1, f2
and period length being parameters. PTNX is identical to that of Section 5.3,
but for self-containment purposes we mention it again. Figures see below text.

Lemma 5.10. Let T be the period length, PTNX, LCX and ODX as in Figure 5.8
and EANX

FA an associated event activity network with the Lines Roll Out model
frequency_as_attribute as in Figure 5.9 with objX∗

FA as the optimal ODPESP
objective value. Independent of an ODX derived passenger distribution, i.e. also
for PESP, it holds

objX∗
FA = T + 6 . (5.21)

Proof. In EANX
FA there is only one ODX derived passenger distribution possible

and only one nontrivial cycle, which gives the constraint

x1 − 1 + x2 − 1 = zT , x1, x2 ∈ {2, . . . , T + 1}, z ∈ {1, 2}, (5.22)

where x1 and x2 are the change durations. Further, z ∈ {1, 2} due to bounds of
x1 and x2 or more generally the Lemma 2.24 (Odijk). Let

objXFA(x1, x2) = x1 + x2 + 4 (5.23)

be the ODPESP objective function from Section 3.2. Since z = 2 leads to objXFA =
2T + 6, the choice is z = 1 with objX∗

FA = T + 6.

Let us have a look at fixed line frequencies for introductory purposes.

Lemma 5.11. Let T be the period length, PTNX, LCX and ODX as in Figure
5.8 and EANX

1,2 an associated event activity network with the Lines Roll Out

model frequency_as_multiplicity as in Figure 5.10 with objX∗
1,2 as the optimal

ODPESP objective value. It holds

objX∗
1,2 =

1
2
T + 6 . (5.24)
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Proof. There are only four ODX derived passenger distributions possible, of which
two have the same cycle as the former Figure 5.9b, and two are equivalent to
Figure 5.10b. In the latter case, there is again is only one (nontrivial) cycle that
yields the constraint

x1 +
T

2
− 1 + x2 − 1 = zT , x1, x2 ∈ {2, . . . , T + 1}, z ∈ {1, 2}, (5.25)

where x1 and x2 are the change durations, and again z ∈ {1, 2} due to the bounds
of x1 and x2. The objective function still looks same

objX1,2(x1, x2) = x1 + x2 + 4 (5.26)

and since z = 2 gives objX1,2 = 3
2
T + 6 the choice is z = 1 and at the end

objX∗
1,2 =

1
2
T + 6.

We confront the general case.

Lemma 5.12. Let T be the period length, PTNX, LCX and ODX as in Figure
5.8 and EANX

f1f2
an associated event activity network with the Lines Roll Out

model frequency_as_multiplicity as in Figure 5.11 with objX∗
f1f2

as the optimal
ODPESP objective value and l = lcm(f1, f2). It holds

objX∗
f1f2

=
(1 + ⌊ l

T
⌋)

l
T + 6 . (5.27)

Proof. The frequencies of lines ℓ1 and ℓ2 are f1 resp. f2, so there are up to
(f1f2)

2 possible ODX derived passenger distributions, depending on which of the
f1f2 changes at s3 the passenger from s2 to s4 resp. from s5 to s1 takes. Without
loss of generality the change from ℓ1 to ℓ2 may be fixed as depicted in Figure
5.11. The remaining distributions can be parametrized by the second change, i.e.
i and j as in Figure 5.11a which yields the only nontrivial cycle C

x1 − j
T

f2
− 1 + x2 + i

T

f1
− 1 = zT , x1, x2 ∈ {2, . . . , T + 1}, z ∈ Z, (5.28)

where x1 and x2 are again the change durations and bounds for z are yet to be
determined. This is equivalent to the modulo equation

x1 + x2 − 2 + i
T

f1
− j

T

f2
= 0 mod T , x1, x2 ∈ {2, . . . , T + 1}, (5.29)

which the compact representation by lcm (Theorem 1.11) with l := lcm(f1, f2),
k ∈ {0, . . . , l − 1} rewrites as

i
T

f1
− j

T

f2
=

kT

l
mod T (5.30)
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and thus

x1 + x2 +
kT

l
− 2 = zT , x1, x2 ∈ {2, . . . , T + 1}, z ∈ Z, (5.31)

A lower bound estimation aC for z yields

aC =

⌈

2 + 2 + kT
l
− 2

T

⌉

=

⌈

2

T
+

k

l

⌉

≥ 1 . (5.32)

The upper bound bC for z in a similar fashion

bC =

⌊

T + 1 + T + 1 + kT
l
− 2

T

⌋

=

⌊

2 +
k

l

⌋

= 2 . (5.33)

The objective function again looks same

objXf1f2(x1, x2) = x1 + x2 + 4 (5.34)

and replacing x1 + x2 with constraint C gives

objXf1f2(x1, x2) =

(

z −
k

l

)

T + 6 . (5.35)

On the first sight, k = l− 1 and z = 1 are the most desirable. However, it is not
always possible, because certain k can make aC = 2 and force z = 2. A closer
look at the final term in the ceil function Equation (5.32) unveils that

2

T
+

k

l
≤ 1 (5.36)

must be satisfied for aC = 1. Substituting k = l − k, k ∈ {1, . . . , l} yields

2

T
+

l − k

l
≤ 1 , (5.37)

which is the case iff

l ≤
kT

2
. (5.38)

Therefore, k = 2 i.e. k = l − 2 always works and k = l − 1 functions iff

l ≤
T

2
, (5.39)

which is only violated for very high frequencies, i.e. since two is the smallest
prime divisor, iff l = T . Thus for latter case

objXf1f2 =
T

l
+ 6 (5.40)
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for the former

objXf1f2 =
2T

l
+ 6 , (5.41)

generally

objX∗
f1f2

=
(1 + ⌊ l

T
⌋)T

l
+ 6 (5.42)

Theorem 5.13 (Overestimation Worst Case Error Lower Bound). Let EANFA

and EANFM be two event activity networks that satisfy the bounded by period prop-
erty from Definition 5.1 with optimal ODPESP objective function values obj∗FA
resp. obj∗FM derived from a common PTN = (S,E), LC(l) = (~L, F (l)), OD
and common period length T with only different construction models, i.e. fre-

quency_as_attribute resp. frequency_as_multiplicity, where f1, f2 ∈ F ,
f1, f2|T are the frequencies of two lines ℓ1 and ℓ2 that cross at least at one station
s ∈ S and l = lcm(f1, f2) is maximal among all crossing lines.

max
PTN,

LC(l),OD

objFM∗

objFA∗

≥
1+⌊l/T ⌋

l
T + 6

T + 6
, ∀ l = lcm(f1, f2) ∈ {1, . . . , T}. (5.43)

Proof. The greatest upper bound is T +1, thus EANX
FA and EANX

FM both satisfies
the bounded by period property with kmax = 2. Therefore combine Lemmata 5.10
and 5.12

max
PTN,

LC(l),OD

obj∗FM
obj∗FA

≥
objX∗

f1f2

objX∗
FM

=
1+⌊l/T ⌋

l
T + 6

T + 6
,

∀ l = lcm(f1, f2)
∈ {1, . . . , T}

. (5.44)

For Theorem 5.13 in numbers see Table 5.4.
Please note that we just compare objective function values. After a Periodic

Rollout and rerouting passengers the objective most likely improves drastically,
but not necessarily in general. Therefore, have a look at Section 5.6.
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Table 5.4: Frequency representation worst case relative error lower bounds for
different period lengths T and different maximal lcm(f1, f2), see Theorem 5.13.

Period Length T

lcm(f1, f2) 2 5 15 30 60 120 600 1200 2400

2 1.00 1.71 1.83 1.91 1.98 1.99 2.00
3 1.91 2.25 2.54 2.74 2.94 2.97 2.99
4 2.67 3.14 3.50 3.88 3.94 3.97
5 1.38 2.33 3.00 3.67 4.20 4.81 4.90 4.95
6 2.47 3.27 4.13 4.85 5.72 5.85 5.93
12 2.90 4.24 6.00 7.88 10.82 11.38 11.68
15 2.63 4.50 6.60 9.00 13.17 14.02 14.49
20 4.80 7.33 10.50 16.83 18.27 19.10
30 4.50 8.25 12.60 23.31 26.22 27.98
60 8.25 15.75 37.88 46.38 52.30
120 15.75 55.09 75.38 92.54
600 75.75 150.75 240.60
1200 150.75 300.75
2400 300.75
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change ∈ [2, T + 1],

wait ∈ [1, 1],
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ss′ =











1
(s, s′) = (s2, s4)

(s, s′) = (s5, s1)

0 otherwise

,

∀s, s′ ∈ S.

Figure 5.8: A public transportation network PTNX = (S,E) that has five stations
S = {s1, s2, s3, s4, s5} and four edges E = {e13, e23, e34, e35}, all with equal lower
and upper bounds l13 = u13 = l23 = u23 = l34 = u34 = l35 = u35 = 1 together with
a line concept LCX = (L, F ) with two lines L = {ℓ1, ℓ2} as well as an asymmetric
origin destination ODX matrix that states that there is only two passengers in
the network: one that wants to go from s2 to s4 and one from s5 to s1.
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Figure 5.9: (a) depicts the frequency as attribute EANX
FA = (A, E) that belongs to

the PTNX from Figure 5.8. Since change times span a period length, we consider
only those change activities relevant to the origin destination ODX matrix. The
only cycle possible is shown in (b).
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(b) Nontrivial Cycles

Figure 5.10: (a) depicts the frequency as multiplicity EANX
1,2 = (A, E) that be-

longs to the PTNX from Figure 5.8 with line frequencies F = (f1, f2) = (1, 2).
Since change times span a period length, we consider only those change activities
relevant to the origin destination ODX matrix. The besides permutation only
nontrivial cycle different from the one in Figure 5.9b is shown in (b).
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(b) Nontrivial Cycles

Figure 5.11: (a) depicts the frequency as multiplicity EANX
f1f2

= (A, E) that

belongs to the PTNX from Figure 5.8 with line frequencies F = (f1, f2). For
space reasons, only one direction per line is visible. Since change times span
a period length, we consider only those change activities relevant to the origin
destination ODX matrix. (b) shows the only cycle possible, parametrized by i
and j.
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5.6 Timetablers Nightmare
In this section we show that an optimum for the ODPESP from Section 2.5 using
the frequency_as_attribute Lines Roll Outmodel does not necessarily have
to yield a global optimum for the ODPESP with frequency_as_multiplicity

model. Only depending on the frequency of one line involved, performing a Pe-

riodic Rollout and rerouting passengers according to shortest paths does not
fix this issue, independend of solver characteristics and the shortest paths method
used and the error generally has a magnitude of T . Even worse, the slack of the
suboptimal solution may be zero and the actual optimum can only be reached
by increasing the duration of a drive activity. This totally breaks intuition, and
in case it breaks common practices in timetabling, it may be considered as the
timetablers nightmare. And there seems to be no awakening.

Theorem 5.14. In general, the ODPESP optimum is conceptionally invisible to
the frequency_as_attribute model, i.e. no matter how nonnegative coefficients
are chosen for a PESP objective function, no choice guarantees that ODPESP
optimality is reached in the rolled out network.

Proof. This holds for the example network in this section, see Lemmata 5.16 and
5.17.

Since we cannot prevent the optimum from being chosen by chance for a
zero objective, we cannot strengthen the statement that way. This states that
even if coeffcients are not from an OD derived passenger distribution, the fre-

quency_as_multiplicity ODPESP optimum generally cannot be found with
the frequency_as_attribute model and the way we model change activities.

The difference of this approach to the one from Section 5.13 before is that
the OD derived passenger distribution is not unique and the ODPESP objective
function has to decide which to pick to get into a global optimum. One could as-
sume that if one somehow knew a distribution in the frequency_as_attribute
construction model that leads to the ODPESP global optimum, then the prob-
lem is somehow reducible to PESP for the frequency_as_multiplicity model.
However, this is not possible (or at least not in an obvious way).

To have some picture of the situation in mind when reading the relatively
technical lemmata and proofs, have a look at Figure 5.12.

As in the section before, we use a very simple PTNX, LCX and ODX from
Figure 5.13, and consider an associated event activity networks with our two
different construction models. The period length T , the frequency f1 and a lower
bound for a drive activity ld are parameters.

Lemma 5.15. Let T be the period length, PTNX, LCX, ODX, be as in Figure
5.13 and EANX

FA an associated event activity network with the Lines Roll Out

model frequency_as_attribute as in Figure 5.14 with objX∗
FA as the optimal
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ODPESP objective value. Let further f1 > 1, f2 = 1, τ = T/f1, l
d = τ . It holds

objX∗
FA = τ + 6 ≥ 7 . (5.45)

Proof. There is only one (nontrivial) cycle C in Figure 5.14 that yields the con-
straint

xc + 1 + x′
c − 1− xd − 1 = zT ,

xc, x
′
c ∈ {2, . . . , T + 1}, xd ∈ {τ + 2, . . . , T + 2}, z ∈ Z, (5.46)

where xc, x
′
c, xd as depicted in the Figure. There are only two ODX derived

passenger distributions possible: either changing from line ℓ1 to ℓ2 and back or
staying in line ℓ1. This yields the following objective function

objXFA(xc, x
′
c, xd) = min(xd + 4, xc + x′

c + 3) . (5.47)

Since the sum xc + x′
c occurs both in the objective as in the only cycle, it makes

sense to substitute it by x̃c = xc + x′
c. Therefore, C looks like

x̃c−xd−1 = zT , x̃c ∈ {4, . . . , 2T+2}, xd ∈ {τ+2, . . . , T+2}, z ∈ Z, (5.48)

and the objective like

objXFA(x̃c, xd) = min(xd + 4, x̃c + 3) , (5.49)

from which arises the limitation x̃c ∈ {4, . . . , T + 3}, since this still spans T and
on the other hand values greater than T +3 do not make sense for the objective.
It holds

⌈

1

T
− 1

⌉

= 0 ≤ z ≤

⌊

T + 3− 1− τ − 2

T

⌋

=

⌊

1−
τ

T

⌋

= 0 , (5.50)

thus z = 0 and
x̃c = 1 + xd (5.51)

which simplifies the objective to

objXFA(xd) = min(xd + 4, xd + 4) = xd + 4 = τ + 6 . (5.52)

A frequency_as_attribute ODPESP optimum is therefore reached iff

xd = τ + 2 (5.53)

and the lemma follows.

Lemma 5.16. For Lemma 5.15, no choice of the coefficients in an PESP objec-
tive function prevents xd = τ + 2 from being an optimum.
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Proof. The most general objective function is

min α̃xd + β̃xc + γ̃x′
c + C̃ (5.54)

with α̃, β̃, γ̃, C̃ ≥ 0. Without the substitution, (5.51) writes as

xc + x′
c − 1 = xd (5.55)

and thus the objective transforms into

min(β̃ + α̃)xc + (γ̃ + α̃)x′
c + (C̃ − α̃) . (5.56)

With β = β̃ + α̃ and γ = γ̃ + α̃ which can still be chosen freely and without
constant there is

min βxc + γx′
c . (5.57)

If β and γ are both zero, then xd = τ+2 is still optimal as in Lemma 5.15 before.
Let w.l.o.g. γ > 0. It remains

minαxc + x′
c , (5.58)

with α = β
γ
. There are four possibilities: α = 0, α = 1, α ∈ (0, 1) and α > 1.

Lemma 5.15 already considered the case α = 1, for α = 0 it holds x′
c = 2, so still

xd = τ + 2 would be optimal, the latter two are equivalent trough permutation
of xc and xc′ . Therefore, only α > 1 remains, which yields xc = 2 and since then
x′
c = xd + 3 again xd = τ + 2 may take on its lower bound.

Lemma 5.17. Let T be the period length, PTNX, LCX, ODX, be as in Figure
5.13 and EANX

FM an associated event activity network with the Lines Roll Out

model frequency_as_multiplicity as in Figure 5.15 with objX∗
FM as the optimal

ODPESP objective value. Let further f1 > 1, f2 = 1, τ = T/f1, l
d = τ + 2. It

holds

objX∗
FM = 7 . (5.59)

Proof. In Figure 5.15 there is only one nontrivial cycle C that yields the constraint

xc + 1 + x′
c − kτ − 1− xd − 1 = 0 mod T ,

xc, x
′
c ∈ {2, . . . , T + 1}, xd ∈ {τ + 2, . . . , T + 2}, k ∈ {0, . . . , f1 − 1}, (5.60)

with xc, x
′
c, xd as displayed in the Figure and after Lemma 1.6 may be reduced

to

xc + 1 + x′
c − 1− xd − 1 = 0 mod τ ,

xc, x
′
c ∈ {2, . . . , T + 1}, xd ∈ {τ + 2, . . . , T + 2}, (5.61)
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Again, there are only two passenger ODX derived distributions possible: either
staying in line ℓ1 or changing between lines, which yields the objective function

objXFM(xc, x
′
c, xd) = min(xd + 4, xc + x′

c + 3) . (5.62)

This time substitute xc+4 = xc+x′
c, xc ∈ {0, . . . , 2T −2}, which can in a similar

way as in the proof before be limited to xc ∈ {0, . . . , τ − 1}. The cycle constraint
thus looks like

xc = xd − 3 mod τ , xc ∈ {0, . . . , τ − 1}, xd ∈ {τ + 2, . . . , T + 2}. (5.63)

For the lemma to be true is now needed that τ +3 ∈ {τ +2, . . . , T +2}, which is
equivalent to 3 ∈ {2, . . . , (f1 − 1) T

f1
+ 2} ⊃ {2, 3}, since f1 ≥ 2 and T

f1
≥ 1 since

f1|T . Therefore xd = τ + 3 may be chosen and leads to

xc = 0 mod τ , (5.64)

which is satisfied for xc = 0, i.e. xc + x′
c = 4 and thus

objX∗
FM = 7 , (5.65)

which is always attained if passengers change from ℓ1 to ℓ2 and back.

Lemma 5.18. The ODPESP objective function value from Lemma 5.15 can not
be improved by a sequence of Periodic Rollout, rerouting passengers by dura-
tion shortest paths and PESP timetabling, independend of solver characteristics
and shortest paths methods.

Proof. If objX∗
FA = 7, then as per Lemma 5.17 the ODPESP optimum for the rolled

out network is attained and nothing can be improved anyway. Otherwise, shortest
duration rerouting considers 1+f1 possible paths after Periodic Rollout: one
that uses the xd and f1 that use the change provided by line ℓ2, parametrized by
k. This is equivalent to calculate

min(xd + 4, [xc + x′
c](k) + 3) . (5.66)

By Equation (5.53) xd = τ +2 with τ = T/f1 is given and the f1 cycles constrain
the possible values of [xc + x′

c](k) to

xc + x′
c − kτ − xd − 1 = 0 mod T , (5.67)

xc + x′
c = xd + 1 = τ − 1 mod τ , (5.68)

after Lemma 1.6, so any shortest path that uses ℓ2 is still as long as staying in ℓ1.
If rerouting picks the ℓ1 path, PESP timetabling cannot improve the objective,
since xd is already on its lower bound. Otherwise, the PESP is

min xc + x′
c + 3 (5.69)

s.t. xc + x′
c − xd − 1 = zT , (5.70)

xc, x
′
c ∈ {2, . . . , T + 1}, z ∈ Z , (5.71)
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which is just a subproblem from Lemma 5.15, Lines Roll Out model fre-
quency_as_attribute, i.e. the old schedule stays optimal and therefore again
no improvement. The lemma follows.

Theorem 5.19 (Timetablers Nightmare Worst Case Error Lower Bound). Let
EANFA and EANFM be two event activity networks that satisfy the bounded by
period property from Definition 5.1, latter with optimal ODPESP objective func-
tion value obj∗FM derived from a common PTN = (S,E), LC(f1) = (~L, F (f1)),
OD and common period length T with only different Lines Roll Out mod-
els, i.e. frequency_as_attribute resp. frequency_as_multiplicity, where
f1 > 1, f2 = 1 ∈ F , f1|T are the frequencies of two lines ℓ1 and ℓ2 that cross
at least at one station s ∈ S and T/f1 is maximal among all crossing lines. Let
further EAN′

FM be the Periodic Rollout of EANFA with objective function
obj∗FA after shortest durations rerouting and PESP timetabling. Independent of
the solver characteristics and shortest paths methods, it holds

max
PTN,

LC(f1),OD

obj∗FA
obj∗FM

≥
T
f1

+ 6

7
, ∀ f1 ∈ {2, . . . , T}. (5.72)

Numbers for Theorem 5.19 see Table 5.5.

Table 5.5: ODPESP after rollout worst case relative error lower bounds for dif-
ferent period lengths T and different f1, see Theorem 5.19.

Period Length T

f1 2 5 15 30 60 120 600 1200 2400

2 1.00 3.00 5.14 9.43 43.71 86.57 172.29
3 1.57 2.29 3.71 6.57 29.43 58.00 115.14
4 1.93 3.00 5.14 22.29 43.71 86.57
5 1.00 1.29 1.71 2.57 4.29 18.00 35.14 69.43
6 1.21 1.57 2.29 3.71 15.14 29.43 58.00
12 1.04 1.21 1.57 2.29 8.00 15.14 29.43
15 1.00 1.14 1.43 2.00 6.57 12.29 23.71
20 1.07 1.29 1.71 5.14 9.43 18.00
30 1.00 1.14 1.43 3.71 6.57 12.29
60 1.00 1.14 2.29 3.71 6.57
120 1.00 1.57 2.29 3.71
600 1.00 1.14 1.43
1200 1.00 1.14
2400 1.00
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ODPESP Method

Frequency as
Attribute

Frequency as Attribute,
Rollout, Reroute,
PESP Timetabling

Frequency as
Multiplicity

t ℓ1 ℓ2 ℓ1,1 ℓ1,2 ℓ2 ℓ1,1 ℓ1,2 ℓ2

0 s1, dep s1, dep • s1, dep •

1 s2, arr s2, arr s2, arr

2 s2, dep s2, dep s2, dep

3 s2, dep s2, dep s2, dep

4 s3, arr s3, arr s3, arr s3, arr

5 s3, dep s3, arr

6 s4, arr s3, dep

7 s4, arr

8

9

10 s1, dep s1, dep

11 s2, arr s2, arr

12 s2, dep s2, dep

13

14 s3, arr s3, arr

15 s3, dep s3, dep s3, arr

16 s4, arr s4, arr s3, dep

17 s4, arr

18

19 • •

Figure 5.12: An actual timetable for Lemma 5.18 that shows the different solution
methods, T = 20, f1 = 2. Solid lines denote the optimal solution if passengers
stick to ℓ1, while dashed lines if they use ℓ2.
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s1

s2 s3

s4
ℓ1
ℓ2

[1,1]

[1,1]

[ld, T + 2]

[1,1]

change ∈ [2, T + 1],

wait ∈ [1, 1],

ODX
ss′ =

{

1 (s, s′) = (s1, s4)

0 otherwise
,

∀s, s′ ∈ S.

Figure 5.13: A public transportation network PTNX = (S,E) that has four
stations S = {s1, s2, s3, s4} and five edges E = {e13, e23, e23 , e34, e35}, most with
equal lower and upper bounds l13 = u13 = l34 = u34 = l35 = u35 = 1, l23 = ld,
u23 = T+2 together with a line concept LCX = (L, F ) with two lines L = {ℓ1, ℓ2},
F = {f1, f2}, f1, f2|T where T is the period length as well as an asymmetric
origin destination ODX matrix that states that there is only one passenger in the
network: one that wants to go from s1 to s4.

dep arr dep arr dep arr ℓ1

dep arr ℓ2

s1 s4

s3s2

change
xc

change
x′

c

drive

[1, 1]

wait drive, xd

[ld, T + 2]

wait drive

[1, 1]

wait

Figure 5.14: The frequency as attribute EANX
FA = (A, E) that belongs to the

PTNX from Figure 5.13, frequency_as_attribute construction model. Since
change times span a period length, we consider only those change activities rel-
evant to the origin destination ODX matrix. The only cycle possible is dashed;
only one direction per line for simplicity purposes.

dep arr dep arr dep arr ℓ1,1

dep arr dep arr dep arr ℓ1,k

dep arr dep arr dep arr ℓ1,f1

dep arr ℓ2

s1 s4

s3s2

sync
k T

f1

sync
k T

f1

sync
k T

f1

sync
k T

f1

sync
k T

f1

sync
k T

f1

change xc

change
x′

c

drive

[1, 1]

wait drive, xd

[ld, T + 2]

wait drive

[1, 1]

drive

[1, 1]

wait drive, xd

[ld, T + 2]

wait drive

[1, 1]

drive

[1, 1]

wait drive, xd

[ld, T + 2]

wait drive

[1, 1]

wait

Figure 5.15: The frequency as multiplicity EANX
FM = (A, E) that belongs to

the PTNX from Figure 5.13, frequency_as_multiplicity construction model.
Since change times span a period length, we consider only those change activities
relevant to the origin destination ODX matrix. The only cycle possible is dashed;
only one direction per line for simplicity purposes.
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5.7 Always Best Changes
One could assume that in an event activity network with Lines Roll Out

model frequency_as_attribute passengers may always use the change with the
shortest duration among all changes between a pair of lines at each station, as
in Lemma 3.4. As usually however, this is not correct in general and again may
lead to suboptimal timetables. The reason for this effect is the passenger distri-
bution being inconsistent, i.e. passengers needed to beam between two frequency
instances of a line and thus are generally not able to take every shortest change
between every pair of lines on their way from one station to another, which can be
seen in Figure 5.17 in the second column, where the dashed line is not connected.

Using best changes is like introducing an extended ODPESP based on the
EPESP. However, since in the example network we consider there are only two
distributions possible, we simply have a look at both instead of formulating a
new model.

Attention: this time we are using the PTNX from the Section 5.6 before. The
author highly recommends Figure 5.17 for a visualization of the actual issue.

Lemma 5.20. Let T be the period length, PTNX, LCX, ODX, be as in Figure
5.13 and EANX

FA an associated event activity network with the Lines Roll Out

model frequency_as_attribute as in Figure 5.14 with objX∗
FA as the optimal

ODPESP objective value with the assumption that change durations take their
best change duration in objX∗

FA as in Lemma 3.4. Let further f1 = 1, f2 > 1,
τ = T/f2 and ld = τ + 3. It holds

objX∗
FA = 7 . (5.73)

Proof. In Figure 5.14 there is only one nontrivial cycle that yields the constraint

xc + 1 + x′
c − 1− xd − 1 = zT ,

xc, x
′
c ∈ {2, . . . , T + 1}, xd ∈ {τ + 2, . . . , T + 2}, z ∈ Z, (5.74)

with xc, x
′
c, xd as in the Figure 5.17. With only two ODX derived passenger

distributions possible and durations of best changes xc, x
′
c, the objective function

looks like
objXFA(xc, x

′
c, xd) = min(xd + 4, xc + x′

c + 3) . (5.75)

Since there always are representations xc = xc+iτ , x′
c = x′

c+jτ , i, j ∈ {0, . . . , τ−
1} the cycle constraint writes as

xc + iτ + x′
c + jτ − xd − 1 = 0 mod T , (5.76)

is after Lemma 1.6 equivalent to

xc + x′
c = xd + 1 mod τ , (5.77)



5.7. ALWAYS BEST CHANGES 95

and after substitution x̃c + 4 = xc + x′
c the variable x̃c is limitable to x̃c ∈

{0, . . . , τ − 1} since it still spans τ and bigger values do not make sense for the
objective. Thus

x̃c = xd − 3 mod τ . (5.78)

The equation
xd = 3 + (f2 − 1)τ (5.79)

is needed for Lemma 5.22 later and therefore must 3+(f2−1)τ ∈ {τ+3, . . . , T+2},
which with τ = T/f2 given is equivalent to

3
!
∈ { T

f2
+ 3− (f2 − 1) T

f2
, . . . , T − (f2 − 1) T

f2
+ 2} (5.80)

= {3− T + 2 T
f2
, . . . , T

f2
+ 2} ⊃ {3− T + 2⌈T

2
⌉, . . . , 3} (5.81)

= {3− ⌈T
2
⌉+ ⌊T

2
⌋, . . . , 3} ⊃ {3} (5.82)

and thus always ensured and with Equation (5.79) holds x̃c = 0 from which the
lemma follows.

Lemma 5.21. Let T be the period length, PTNX, LCX, ODX, be as in Figure
5.13 and EANX

FM an associated event activity network with the Lines Roll Out

model frequency_as_multiplicity as in Figure 5.17 with objX∗
FM as the optimal

ODPESP objective value. Let further f1 = 1, f2 > 1, τ = T/f2 and ld = τ + 3.
It holds

objX∗
FM = τ + 7 (5.83)

and all timetables yield the same objective for the two ODX derived passenger
distributions possible.

Proof. The cycle equation this time is

xc + 1 + x′
c − 1− xd − 1 = zT ,

xc, x
′
c ∈ {2, . . . , T + 1}, xd ∈ {τ + 2, . . . , T + 2}, z ∈ Z, (5.84)

just as the proof for Lemma 5.15, so this time with slightly different bounds for
xd and z it holds

⌈

1

T
− 1

⌉

= 0 ≤ z ≤

⌊

T + 3− 1− τ − 3

T

⌋

=

⌊

1−
τ + 1

T

⌋

= 0 , (5.85)

and thus
xc + x′

c = xd + 1 , (5.86)

so both paths possible take equal duration for any timetable and the objective

objX∗
FM(xc, x

′
c, xd) = min(xc+x′

c+3, xd+4) = xc+x′
c+3 = xd+4 = τ+7 , (5.87)

from which the lemma follows.
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Lemma 5.22. Let objX+
FA be the objective from Lemma 5.20 after a Periodic

Rollout and shortest duration passenger rerouting. Depending on the solver
characteristics

objX+
FM = 7 + (f2 − 1)τ (5.88)

is possible. However, an additional PESP timetabling step reduces this to the
ODPESP optimum from Lemma 5.21.

Proof. As in Equation (5.79) from Lemma 5.20,

xd = 3 + (f2 − 1)τ (5.89)

yields an optimal solution. However Lemma 5.21 states that in the rolled out
network both paths possible have the same duration, therefore a change does not
improve this value, but PESP timetabling does, because

xd = 3 + τ (5.90)

is better for both ODX derived passenger distributions. The lemma follows.

Theorem 5.23 (Always Best Changes Worst Case Error Lower Bound). Let
EANFA and EANFM be two event activity networks, latter with optimal ODPESP
objective function value obj∗FM derived from a common PTN = (S,E), LC(f2) =

(~L, F (f2)), OD and common period length T with only different Lines Roll Out

models, i.e. frequency_as_attribute resp. frequency_as_multiplicity,
where f1 = 1, f2 > 1 ∈ F , f2|T are the frequencies of two lines ℓ1 and ℓ2 that
cross at least at one station s ∈ S and T/f2 is maximal among all crossing lines.
Let further EAN′

FM be the Periodic Rollout of EANFA with objective function
obj∗FA after shortest durations rerouting. Depending on the solver characteristics,
it holds

max
PTN,

LC(f2),OD

obj∗FA
obj∗FM

≥
7 + (f2 − 1) T

f2

7 + T
f2

, ∀ f2 ∈ {2, . . . , T}. (5.91)

For Theorem 5.23 in numbers see Table 5.6.
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ODPESP Method

Frequency as
Attribute,

“Best Changes”

Frequency as Attribute,
Rollout, Reroute

Frequency as Attribute,
Rollout, Reroute,
PESP Timetabling

t ℓ1 ℓ2 ℓ1 ℓ2,1 ℓ2,2−4 ℓ1 ℓ2,1 ℓ2,2−4

0 s1, dep s1, dep s1, dep

1 s2, arr s2, arr s2, arr

2 s2, dep s2, dep s2, dep

3 s2, dep s2, dep s2, dep

4 s3, arr s3, arr s3, arr

5

6

7

8 s2, dep s2, dep s2, dep

9 s3, arr s3, arr s3, arr

10 s3, arr

11 s3, dep

12 s4, arr

13 s2, dep s2, dep s2, dep

14 s3, arr s3, arr s3, arr

15

16

17

18 s2, dep s2, dep s2, dep

19 s3, arr s3, arr s3, arr

20 s3, arr s3, arr

21 s3, dep s3, dep

22 s4, arr s4, arr

Figure 5.16: An actual timetable for Lemma 5.22 that shows the different solution
methods, T = 20, f2 = 4. Solid lines denote the optimal solution if passengers
stick to ℓ1, while dashed lines if they use ℓ2.
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Table 5.6: ODPESP after rollout worst case relative error lower bounds for dif-
ferent period lengths T and different f1, see Theorem 5.19.

Period Length T

f1 2 5 15 30 60 120 600 1200 2400

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.42 1.59 1.74 1.85 1.97 1.98 1.99
4 2.03 2.36 2.62 2.91 2.95 2.98
5 1.38 1.90 2.38 2.89 3.32 3.83 3.91 3.96
6 2.05 2.67 3.35 3.96 4.74 4.86 4.93
12 2.52 3.63 5.17 6.88 9.77 10.35 10.66
15 2.63 3.89 5.73 7.93 12.06 12.95 13.46
20 4.18 6.40 9.31 15.59 17.12 18.01
30 4.50 7.22 11.18 21.74 24.83 26.75
60 8.25 13.89 35.12 43.96 50.36
120 15.75 50.17 70.41 88.41
600 75.75 133.89 218.45
1200 150.75 267.22
2400 300.75

dep arr dep arr dep arr ℓ1,1

dep arr ℓ2,1

dep arr ℓ2,k

dep arr ℓ2,f2

s1 s4

s3s2

sync
k T

f1

sync
k T

f1

change
xc change

x′

c

drive

[1, 1]

wait drive, xd

[ld, T + 2]

wait drive

[1, 1]

wait

wait

wait

Figure 5.17: The frequency as attribute EANX
FM = (A, E) that belongs to

the PTNX from Figure 5.13, frequency_as_multiplicity construction model.
Since change times span a period length, we consider only those change activities
relevant to the origin destination ODX matrix. The only cycle possible is dashed;
only one direction per line for simplicity purposes.
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5.8 Summary
In this section, we summarize the results of Chapter 5 mainly in table 5.7.

From an analytical point, Theorem 5.2 yields an upper bound for the worst
case error

obj1
obj2

≤
wmaxkmax

wminlmin
‖OD>0 ‖|Ap|T resp.

obj1
obj2

∈ O(‖OD>0 ‖|Ap|T ) .

A worst case overestimation lower bound for the frequency_as_attribute

vs. the frequency_as_multiplicity Lines Roll Out model with only one
passenger distribution possible in former network is

1+⌊lcm(f1,f2)/T ⌋
lcm(f1,f2)

T + 6

T + 6
.

Table 5.7: A summary for Chapter 5.

Property

Section O
n
ly

on
e
p
as
se
n
ge
r

d
is
tr
ib
u
ti
on

p
os
si
b
le
/

ap
p
li
ca
b
le

to
P
E
S
P

W
or
st

ca
se

re
la
ti
ve

er
ro
r
lo
w
er

b
ou

n
d
af
te
r

ro
ll
ou

t
an

d
re
ro
u
ti
n
g

In
d
ep

en
d
en
d
of

li
n
e
fr
eq
u
en
ci
es

In
d
ep

en
d
en
d
of

in
it
ia
l

p
as
se
n
ge
r
d
is
tr
ib
u
ti
on

In
d
ep

en
d
en
d
of

O
D
P
E
S
P
so
lu
ti
on

A
d
d
it
io
n
al

P
E
S
P

ti
m
et
ab

li
n
g
st
ep

In
d
ep

en
d
en
d
of

ti
m
et
ab

li
n
g
so
lu
ti
on

Fixed
Passengers

✘
T + 2

3
✔ ✘ ✔

T + 2

3
✘

Fixed
Moduli

✔
T

6
+ 1 ✔ ✔ ✔ 1 ✔

Line
Concept

✔
T + 6

8
✔ ✔ ✔

T + 6

8
✔

Timetablers
Nightmare

✘
T/f1 + 6

7
✘ ✔ ✔

T/f1 + 6

7
✔

Alw. Best
Changes

✘
7 + (f2−1)T

f2

7 + T
f2

✘ ✔ ✘ 1 ✔
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Chapter 6

Computational Results

6.1 Test Instances

We work with four LinTim1 test instances:

Spiel A tiny test network.

Athens Metro Network of Athens, capital of Greece. Integrated with K. Gk-
oumas in February 2010. The line pool is derived from splitting lines in a
default line concept, therefore lL = lLC. There are no headways since in our
line concept no two lines share an edge in the PTN. Moderate size.

Bahn-klein/gross Based on Germany’s intercity railway network.

Every instance consists of a public transportation network PTN, an origin des-
tination matrix OD as well a line pool L and a line concept LC = (~L, F ) with
~L ⊂ L as well as bounds required to construct event activity networks with meth-
ods from Sections 2.3 and 3.1, like lwait, uwait, lchange and uchange. See Table 6.1
for a detailed listing.

We do not use the option to evaluate different line concepts and focus on the
average traveling time for a fixed PTN, LC and OD setup. Our evaluation starts
at EAN construction level. The line concepts of Bahn-klein and Bahn-gross differ
in that in the former there are less lines, but with higher frequencies, which as a
large scale network makes it more interesting for frequency_as_attribute vs.
frequency_as_multiplicity comparisons.

1http://lintim.math.uni-goettingen.de/
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Figure 6.1: Illustration of used LinTim instances.
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Table 6.1: Properties of the LinTim datasets. Cyclebases widths with fundamen-
tal improvement from [Lie03]. Feasibility refers to a network where all activities
that span a period have been removed while Objective keeps those with more than
zero passengers, numbers obtained by taking a random feasible timetable, rerout-
ing passengers and formulating the PESP for the resulting OD derived passenger
distribution.

Dataset

Property Spiel Athens Bahn-klein Bahn-gross

Stations 8 51 250 319
Edges 8 52 326 452

PTN
Line Pool 8 481 132 2770
Line Concept 5 4 53 86
OD passengers 2620 63323 3147382 4183088
OD pairs > 0 44 2385 48842 77878

lPTN 12560 7797809 4.8271E8 6.6780E8
Lower lwaitPTN 14540 9061697 5.0234E8 6.9445E8
Bounds lL 15460 9371511 5.0800E8 7.0024E8

lLC 15940 9371511 5.0887E8 7.0345E8

Events 52 208 3664 4932
Actvities 182 234 24670 33446
Drive 26 104 1832 2466
Wait 16 96 1722 2294

EAN
Change 64 34 14636 22418
Headways 76 0 6480 6268
t/Minute 1 10 1 1
Period T 60 600 60 60
[lwait , uwait ] [1, 3] [ 3, 6] [1, 5] [1, 3]
[lchange, uchange] [3, 62] [10, 609] [3, 62] [3, 62]

P
E
S
P

Feasibility
Activities 118 200 10034 10928
Cyclebase 20.82 0.0 2012.26 1387.66

Objective
Activities 126 226 11340 13157
Cyclebase 24.05 7.67 2551.71 2118.14
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6.2 Test Environment
Our computational evaluations took place on two machines.

laptop A 13.3" MacBook Pro from mid 2010, 2.4 GHz Intel Core 2 Duo Proces-
sor, 4 GB main memory and running the 10.6.7 version of Mac OS X.

c3 A 4 core Intel Xeon E5520, 2.27GHz, 24 GB main memory running the server
edition of Ubuntu 10.04.2 LTS.

6.3 Test Set-Up
In table 6.1, the cyclebase width is of particular importance, since it is an indica-
tor for the runtime for solving the PESP. For Spiel and Athens it is low, but for
Bahn-klein and Bahn-gross it is astronomical compared to the numbers in [Lie03],
where the greatest width was 88.4. This leads us to have the primal-dual gap
stuck at 75% for maybe the next billion years. Ignoring headways would solve
that problem but is not an option, since it makes the timetable effectively infea-
sible. Only for Spiel we succeeded in evaluating the ODPESP optimum while in
general we rely on using a Retimetabling (ReTim, Definition 3.21) based heuristic
approach and compare our results to lLC, which at least gives us an idea on how
far our ODPESP global optimum may be away.

Definition 6.1 (Average Traveling Time Gap to lLC). For a timetable π and
w obtained by Passenger Distribution Algorithm 4, shortest paths w.r.t. π
derived durations, the average traveling time gap to lLC in percent is

gapπATT = 100

[

ATTπ
w

lLC
− 1

]

, (6.1)

where ATTπ
w is the average traveling time from Definition 2.12.

Definition 6.2 (Periodic Rollout Gap Quotient). Let π = πFA be a timetable and
πFM its Periodic Rollout as well as wFA and wFM obtained by Passenger

Distribution, shortest paths w.r.t. πFA resp. πFM derived durations. Then the
periodic rollout gap quotient in percent is defined as

QFM
π = 100

[

ATTπFA
wFA

ATTπFM
wFM

− 1

]

. (6.2)

Thanks to abscon2 we can obtain feasible timetables within seconds, even for
our large networks. However, although it is able to provide multiple solutions
for one problem, they are too similar and often differ just in one variable. To

2May be found on http://www.cril.univ-artois.fr/~lecoutre/software.html. Great
thanks to Marc Goerigk for this discovery!

http://www.cril.univ-artois.fr/~lecoutre/software.html
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obtain a higher diversity, we apply a random permutation to the events index
set, find a feasible PESP solution and permute it back. With this procedure, ten
initial timetables were generated per dataset, some properties in Table 6.2. The
randomness seems to be reasonably high, since the ReTim results vary heavily.
Of course, a sample size of ten is too small to make strong statements about the
underlying sample space, but still better than just relying on a single timetable.

Table 6.2: Properties of the ten initial timetables used. Values obtained after a
Periodic Rollout and Passenger Distribution.

Dataset

Property Spiel Athens Bahn-klein Bahn-gross

ga
p
π
0

A
T
T

∅ 26.08 27.97 11.86 11.45
σ 4.28 6.56 0.45 0.25
best 20.58 17.92 11.06 10.93
worst 34.76 35.47 12.35 11.84

Q
F
M

π
0

∅ 52.22 87.99 2.81 0.82
σ 14.51 17.65 0.20 0.11
best 26.86 62.79 2.57 0.70
worst 81.17 117.38 3.20 1.01

6.3.1 Modulo Simplex

In our ReTim approach we use and evaluate the modulo simplex [GS11] as well.
Roughly said, it uses properties of the space

Q = conv.hull

({(

π
z

)

: la ≤ πε′−πε+Tza ≤ ua, (ε
′, ε) = a, z ∈ Z

|A|, π ∈ R
|E|

})

to heuristically improve a given timetable. It is set up to use multi node cuts since
they perform best in [GS11]. The only thing we need to know for our purposes
is that the modulo simplex for an initially given timetable π never yields worse
results than solving the PESP for modulo parameters fixed to those of π.

6.3.2 Retimetabling

ReTim consists of two steps: timetabling with a fixed passenger distribution
and rerouting with a fixed timetable. In this section we go into detail on which
configurations we evaluate. A summary may be found in Table 6.3.

We use randomized shortest paths, i.e. when constructing the shortest path
tree in Algorithm 4 in each step we take a (pseudo)random node with minimal
distance and not a fixed node predetermined by a heap structure. Therefore, we
obtain different passenger routes even for the same timetable, which prevents the
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ReTim iteration from getting stuck too soon. Also, for the timetabling step we
reuse only modulo parameters and not the whole previous timetable as initial
solution to avoid situations as in the example network in Section 5.2. We want
to evaluate the influence of randomness as well and thus perform three runs for
every initial timetable and configuration. Tables 6.4 to 6.7 contain the average ∅
and maximum of the gap span ∆max

min (of ATT over an) initial timetable, where
∆max

min = max(S)−min(S) with S = {ATT1, . . . ,ATTn} being the set of average
traveling times of the n = 3 runs for an initial timetable.

If shortest paths are randomized and timetables not guaranteed to repeat,
how then to ultimately know that the average traveling time ATT converged?
It is impossible, we can never know. Therefore, we talk of convergence if ATT
does not improve in three consecutive ReTim steps. However, we do not give
up and, depending on the configuration, try different heuristics to break through
and further improve ATT.

The event activity network on which ReTim takes place can either be modeled
with the frequency_as_attribute or the frequency_as_multiplicity Lines

Roll Out model. We evaluate both, but since the average traveling time in
the latter is less-equal to that in the former by Theorem 3.2 resp. the other way
round if we assume always best changes as in Section 5.7 and we want to compare
both models, after each rerouting step, we back up the event activity network,
passenger distribution and timetable, perform a Periodic Rollout, reroute
passengers, measure ATT in the rolled out network w.r.t. actual durations, i.e. all
frequency instances visible and without always-best-changes assumption, restore
our backup and continue the iteration. We substract the time needed to perform
this rollout peek from the runtime, since this step is for evaluation purposes only,
does not affect the outcome and could thus be skipped in production systems,
but only at the first glance, as we can be seen in the test results for Spiel and
Athens in Sections 6.4.1 resp. 6.4.2.

In consecutive timetabling and passenger rerouting steps thePeriodic Roll-

out would give the same result, since the rolled out timetable stays the same. To
make our iteration plots like in Figure 6.2 richer in information, in timetabling
steps, we use the passenger distribution from the previous rollout peek and do
not reroute passengers, which yields a generally higher gap for the peek and gives
us an idea of how the new rolled out timetable would have performed for the old
rolled out distribution.

We evaluate our both Lines Roll Out models as initial ReTim configura-
tions. Since our initial timetables are for frequency_as_attribute, we perform
a Periodic Rollout to get a respective feasible frequency_as_multiplicity
timetable. In latter case the rollout peek does not make sense since the network
already is in a periodically rolled out state and we just measure the ATT directly.

As linear models we have a look at the PESP as in Linear Program 2.4 and
the EPESP as in Linear Program 2.25. For latter, we chose Ta = T/ lcm(f1, f2)
and [la, ua] = [lchange, lchange + Ta − 1] for all a ∈ Achange, which yields the best
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change between two lines at one station as by Lemma 3.4. To ensure ReTim
convergence, we thus also have to set shortest path weights to the best change as
in Lemma 3.4, which is why we call the EPESP a change model as well, like in
Table 6.4. For headway activities, we set [la, ua] = [ha, Ta−ha] for all a ∈ Aheadway

where ha := hedgea is the headway of the corresponding edge in the PTN, which
ensures feasibility in the periodically rolled-out network by Corollary 3.9. Waits
and drives keep their bounds and remain as in the PESP.

If frequency_as_attribute is the Lines Roll Out model, we apply a
Periodic Rollout once ATT converges, the so called convergence rollout. This
does not worsen ATT if the linear model is PESP, as by Theorem 3.2. In case
we used the EPESP, this step may increase ATT, but since it occurs only once,
it does not influence convergence. The ReTim iteration continues using PESP
for timetabling and shortest paths w.r.t. to actual durations in the rolled out
network until ATT converges again, which we denote by final convergence like in
Table 6.4.

By Theorem 3.22 we may apply heuristics that do not increase the average
traveling time in the PESP timetabling step and ReTim still converges. In our
case it is the modulo simplex [GS11] and we evaluate three ways of using it.

No Modulo Simplex, NoMs Also denoted as fixed modulo timetabling, as in
Tables 6.4 to 6.7. Chose the PESP or EPESP as linear model, obtain
modulo parameters from the previous timetable, solve the problem for fixed
parameters. Since we have no other heuristic for the modulo parameters of
the EPESP, this is the only choice that case.

Modulo Simplex on Convergence, MsConv At iteration start, set a mod-
ulo simplex usage state modulo_simplex_used=false. If fixed modulo
timetabling and randomized shortest paths rerouting cannot improve the
objective in three consecutive ReTim steps, use the modulo simplex in the
timetabling step with the modulo parameters of the previous timetable as
initial solution and set modulo_simplex_used=true. Set it back to false

again if any consecutive ReTim step further reduces ATT, to denote that
the modulo simplex may be used again. A Periodic Rollout or termi-
nation may only be performed if we assume that another modulo simplex
iteration cannot further improve ATT, i.e. modulo_simplex_used is true.

Modulo Simplex Only, MsOnly Use the modulo simplex as heuristic in every
timetabling step, initial solution from previous timetable.

Every configuration we evaluate at may thus be summarized by three attributes:

Initial Frequency Model Either Frequency as Attribute or Multiplicity.

Linear Model/Change Model Can be PESP or EPESP.
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Modulo Simple Model Either NoMs, MsConv or MsOnly.

To save computation time but also to compare results, we may reduce the
NoMs case to MsConv, for frequency_as_multiplicity being the initial fre-
quency model, i.e. former would have stopped anyway before the first application
of the latter or if the linear model is EPESP, since there is no modulo simplex
available before Periodic Rollout. This is the reason why column two to four
in Tables 6.4 to 6.7 the rows one and two as well as seven and eight contain the
same values. In other cases however, it is unclear to what iteration the rollout
would have occured, since the Modulo Simplex delays convergence and therefore
the reduction then is impossible. A comparison of ATT for MsConv vs. NoMs for
PESP and frequency_as_attribute shows different values after the first ReTim
step, although the timetabling method is the same, which happens because of the
randomized passenger distribution.

Our goal is not only to minimize gapπ,w
ATT, and thus the average traveling time,

but also to evaluate the error from Chapter 5.
Table 6.3 gives an overview over the configuration space. With reductions and

removal of meaningless/not converging setups, there remain six configurations we
run on ten timetables three times, which makes 180 ReTim tests per instance and
720 in total.
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Table 6.3: An overview over the possible configurations.
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✘ ✘ ✔ R
✘ ✘ ✔✔ ✘

✘ ✔ ✘ ✔

✘ ✔ ✔ ✔

✘ ✔ ✔✔ ✔

✔ ✘ ✘ ✘

✔ ✘ ✔ ✘

✔ ✘ ✔✔ ✘

✔ ✔ ✘ S
✔ ✔ ✔ ✔

✔ ✔ ✔✔ ✔
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6.4 Test Results
This section contains results of the test from Section 6.3 instancewise with short
reviews that refer to subsections of next Section 6.5, where the overall analysis is
done. When reading, instances should not be skipped, since we basically do not
mention effects that occur in all networks twice.

6.4.1 Spiel

Since the Spiel network is small enough, we may evaluate the ODPESP optimum

obj∗ODPESP = lLC = 15940 , (6.3)

already for the frequency_as_attribute Lines Roll Out model and can in-
deed be verified by solving the PESP and rerouting passengers, i.e. our imple-
mentation of Linear Program 3.23 actually works. However, this global optimum
could not be reached by any ReTim configuration in our test run.

An interesting aspect shows up when studying Table 6.4 and Figure 6.2. For
frequency_as_attribute, PESP, NoMs the best gap to lLC on final convergence
is worse than after the first run. The reason for this is that the mentioned
configuration does not operate on a periodically rolled out network, thus is not
aware of what happens there and can increase the average traveling time by
accident as can be seen in Section 5.6 as well and we discuss in Section 6.5.4.

Also noteworthy about Table 6.4 is that for the Lines Roll Out model
frequency_as_multiplicity, the ATT average on final convergence and after
first ReTim step is worse for the MsOnly model than for MsConv resp. the
subtest NoMs and ∆max

min over the initial timetable rises higher than some average
gap to lLC sizes after the first ReTim step. Both effects occur because of the
shortest paths randomization which we discuss in Section 6.5.3.

The EPESP and frequency_as_multiplicity models perform rather bad
in final convergence and after the first ReTim step compared to PESP with
frequency_as_attribute. This may be observed in all other networks as well
and we discuss in Sections 6.5.6 resp. 6.5.4.

Figure 6.3 shows a ReTim run in which the EPESP change model underesti-
mated ATT, which can happen as stated Section 5.7. Further, after a Periodic

Rollout, ATT drops even below the already underestimated value. This hap-
pens to networks as small as Spiel and all other instances as well, which we discuss
this effect in Section 6.5.6.
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Figure 6.2: Spiel better ATT peek than final convergence, timetable 4, third run,
frequency_as_attribute, PESP, NoMs. This is not the least peek from Table
6.4, but the easiest to spot in the plot. Be reminded that in the timetabling step
rollout peek, we measure the ATT w.r.t. the new timetable, but the old rolled out
old passenger distribution, which explains the gigantic peek in iteration three.
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Figure 6.3: Spiel EPESP run, timetable 5, first run, PESP, MsConv. As stated in
Section 5.7, ATT may be underestimated by the EPESP model, since passengers
in general can not take all best changes along their route. Note that after a
Periodic Rollout, ATT drops below the already underestimated value of the
EPESP change model.
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Table 6.4: Results for the Spiel instance, machine: laptop.

Average Traveling Time Gap to lLC
measured in rolled-out network with rerouted passengers

Configuration
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M
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S
im
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best ∅ max ∅ best ∅ best ∅ max ∅

E
P
E
S
P NoMs 1.38 8.66 0.25 0.03 7.53 13.43 7.53 13.21 58 44.90

F
re
q
u
en
cy

as
A
tt
ri
b
u
te

MsConv 1.38 8.60 0.25 0.03 7.53 13.43 7.53 13.21 87 62.80

P
E
S
P

NoMs 1.00 4.24 6.27 1.22 0.50 5.26 1.25 4.58 74 47.57

MsConv 0.50 2.99 1.13 0.23 0.50 5.28 0.50 3.32 134 96.83

MsOnly 0.50 2.42 3.01 0.90 0.50 3.50 0.50 2.51 42 34.80

∅ step in sec 3.42 1.69 2.26

F
re
q
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en
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E
S
P

NoMs 1.38 8.91 1.94 0.19 3.14 9.35 - - 39 23.00

MsConv 1.38 8.85 1.94 0.19 3.14 9.35 - - 60 40.67

MsOnly 1.51 9.50 3.64 0.56 3.76 9.90 - - 30 16.63

∅ step in sec 3.60 1.88 2.30
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6.4.2 Athens

After days of computation, Cplex 12.1.0 could not get the primal-dual gap of
the ODPESP from Linear Program 3.23 below 18% for Athens even when using
the smaller frequency_as_attribute Lines Roll Out model. Although in
our test we obtained 0.84% as the smallest gap to lLC, this may still not be the
ODPESP optimum, as seen for the Spiel instance in the previous Section 6.4.1,
where we came as close as 0.5% with our best ReTim run.

For Athens, the ATT deviation in Table 6.5 is the lowest among all networks,
that means that randomized paths have the least influence on the ATT value on
final convergence compared to other instances.

As it is the case for Spiel, there are test runs for which the rollout peek yields
a better ATT than on final convergence. However, for Athens, that peek yields
the best ReTim timetable in the whole test and can be seen in Figure 6.4.
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Figure 6.4: Athens, timetable 6, first run, frequency_as_attribute, PESP,
Modulo Simplex only. In iteration number two the rollout peek drops to 0.84%,
which is more than half below average traveling time gap to lLC on final conver-
gence. A similar scenario occurs to Spiel as can be seen in Figure 6.2, where the
visibility of the difference between the peek and the final convergence value is
better.
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Table 6.5: Results for the Athens instance, machine: laptop.

Average Traveling Time Gap to lLC
measured in rolled-out network with rerouted passengers

Configuration
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best ∅ max ∅ best ∅ best ∅ max ∅

E
P
E
S
P NoMs 1.71 3.62 0.09 0.01 4.10 13.09 4.10 13.08 135 86.90

F
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q
u
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A
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b
u
te

MsConv 1.71 3.62 0.09 0.01 4.10 13.09 4.10 13.08 218 169.60

P
E
S
P

NoMs 1.32 2.05 0.10 0.01 1.53 2.16 1.39 2.14 111 72.07

MsConv 1.30 1.81 0.04 0.00 1.53 2.16 1.30 1.81 219 192.33

MsOnly 1.45 1.80 0.04 0.00 0.84 1.76 1.51 1.85 383 219.83

∅ step in sec 3.71 2.29 2.70

F
re
q
u
en
cy
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u
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P
E
S
P

NoMs 1.71 3.58 0.09 0.01 1.71 3.61 - - 106 52.87

MsConv 1.71 3.58 0.01 0.00 1.71 3.61 - - 266 139.03

MsOnly 1.71 3.64 0.00 0.00 1.71 3.64 - - 242 217.47

∅ step in sec 6.98 4.22 52.36
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6.4.3 Bahn Instances

Bahn-klein is the first instance which is already too large for the PESP to be
solved to full optimality, as stated in Section 6.3, so solving the ODPESP for it
is rather utopic, for Bahn-gross as well. However, with ReTim we could reduce
the gap to lLC to 6.52% for former resp. 6.90% for the latter network.

Unlike in Spiel and Athens in Sections 6.4.1 resp. 6.4.2 before, the rollout
peek is never better than ATT on final convergence, but sometimes better than
before convergence rollout, as summarized in Section 6.5.4.

The EPESP underestimation happens in Bahn-klein as well, but can be ob-
served among all runs unlike in Spiel or Athens, where only certain runs are
affected. After a Periodic Rollout, ATT drops below the underestimated
value as well, which is visualized in Figure 6.7.

What can not be seen in this section but catches the eye when flying through
the iteration plots is that for Bahn-klein timetable 5 performs much better then
all other initial timetables throughout all configurations. We have a closer look
at this in Section 6.5.1. The ReTim iteration loop of the best result is depicted
in Figure 6.5.

Interestingly, although MsOnly performs best in average, for Bahn-klein we
obtained the overall best timetable with MsConv, at which we again have a look
in Section 6.5.5.

A
v
er

a
g
e 

T
ra

v
el

in
g
 T

im
e

A
v
er

a
g
e 

T
ra

v
el

in
g
 T

im
e 

G
a
p
 t

o
 l

L
C

Number of Iterations

Runtime in Seconds

Timetabling
Rerouting

Rollout Peek
Traveling Time

Convergence Rollout
Modulo Simplex

5.421E8

5.567E8

5.652E8

5.832E8

0 81 137
6.52%

9.40%

11.06%

14.61%

0 2334 4511

Figure 6.5: Bahn-klein overall best run, frequency_as_attribute, timetable 5,
second run, PESP, MsConv. Actually, all methods perform very well for that
initial timetable as can be seen in Figure 6.8 in Section 6.5.1.
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Figure 6.6: Bahn-klein best frequency_as_multiplicity run, timetable 5,
first run, PESP, MsConv. This figure is an example plot for a typical fre-
quency_as_multiplicity ReTim iteration loop.
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Figure 6.7: Bahn-gross best EPESP run, timetable 7, second run, Modulo Sim-
plex on Convergence. As in Figure 6.3 the EPESP underestimates ATT, but a
Periodic Rollout allows to get it even below the underestimation.
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Table 6.6: Results for the Bahn-klein instance, machine: c3

Average Traveling Time Gap to lLC
measured in rolled-out network with rerouted passengers

Configuration
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best ∅ max ∅ best ∅ best ∅ max ∅

E
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S
P NoMs 7.10 7.80 0.05 0.02 9.31 9.89 9.12 9.75 731 356.10

F
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te

MsConv 6.93 7.55 0.14 0.06 9.31 9.89 9.12 9.75 5621 2906.50

P
E
S
P

NoMs 6.72 7.39 0.04 0.02 7.29 7.86 7.05 7.67 673 403.37

MsConv 6.52 7.18 0.12 0.06 7.29 7.86 6.73 7.36 5075 3198.73

MsOnly 6.61 7.15 0.19 0.10 7.06 7.65 6.78 7.32 16438 9157.00

∅ step in sec 7.92 5.45 257.82
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P

NoMs 7.03 7.75 0.06 0.02 7.25 7.97 - - 355 228.60

MsConv 6.86 7.47 0.24 0.08 7.25 7.97 - - 5779 3033.70

MsOnly 6.74 7.42 0.17 0.08 7.06 7.79 - - 11105 7026.50

∅ step in sec 9.53 6.48 482.20
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Table 6.7: Results for the Bahn-gross instance, machine: c3

Average Traveling Time Gap to lLC
measured in rolled-out network with rerouted passengers

Configuration
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best ∅ max ∅ best ∅ best ∅ max ∅
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P NoMs 7.17 7.66 0.09 0.03 8.88 9.44 8.70 9.36 1149 592.80
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MsConv 7.08 7.51 0.18 0.06 8.88 9.44 8.70 9.36 6255 3778.83

P
E
S
P

NoMs 7.11 7.59 0.05 0.02 7.39 7.86 7.14 7.67 1162 575.57

MsConv 7.03 7.45 0.07 0.03 7.39 7.86 7.09 7.52 7802 4554.03

MsOnly 6.90 7.41 0.09 0.03 7.27 7.76 6.97 7.48 23754 12463.17

∅ step in sec 12.27 8.22 418.87
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P

NoMs 7.13 7.68 0.05 0.02 7.41 7.87 - - 737 314.40

MsConv 7.01 7.56 0.08 0.05 7.41 7.87 - - 5479 2702.43

MsOnly 7.00 7.50 0.10 0.05 7.28 7.77 - - 17437 8716.03

∅ step in sec 12.97 8.62 490.96
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6.5 Review
In this section we discuss inter-instance observations. Be reminded that when we
talk of the ATT gap to lLC, we mean the one of rollout peek resp. in the rolled
out network, since this makes outcomes of different models comparable.

6.5.1 Initial Timetable

What influence does the initial timetable have on ATT on final convergence? In
Figure 6.8, although we cannot really distinguish between single configurations,
in all except the small Spiel network, there seem to exist a pattern: if ATT is low
on final convergence, it has already been low initially. However, a good initial
timetable does not guarantee a good final outcome.
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Figure 6.8: Per timetable results, initial timetable and average over three runs
per configuration.
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6.5.2 Eightfold Improvement

On page 10 the author wrote

Further, we introduce a scaleable, extensible and iterative heuristic
method that for practice-relevant large scale networks can improve
results more than an additional threefold in average and more than an
additional eightfold if combined with a statistic framework compared
to what had been possible before with state-of-the-art methods for
timetabling [GS11].

However, in Tables 6.6 and 6.7 there is no eightfold improvement in direct
sight. So where is that magniude from? The modulo simplex, considered as
state-of-the art, improves the ATT no less then fixed modulo parameters, which
may be considered as the trivial method. Average values reduce the effect of the
initial timetable choice and for our both large scale networks Bahn-klein as well as
Bahn-gross, using MsOnly performs best in average, both on final convergence as
well as after the first ReTim step for the frequency_as_attribute initial Lines
Roll Out model. For latter network, i.e. Bahn-gross, the difference ∆MsOnly

NoMs

between lLC gaps for using resp. not using the modulo simplex in the first ReTim
step is

∆MsOnly
NoMs = 7.86− 7.76 = 0.10 , (6.4)

which we call the average timetabling heuristic lLC gap improvement. On the
other hand ∆final

first , the average iteration lLC gap improvement, i.e. the difference
between the average lLC gap after the first ReTim step using modulo simplex and
on final convergence with MsOnly is

∆final
first = 7.76− 7.41 = 0.35 , (6.5)

where the more than an additional threefold improvement comes from, because
∆final

first /∆
MsOnly
NoMs > 3 and ∆final

first we obtained w.r.t. Modulo Simplex in a single
timetabling step. On the other hand, working with several initial timetables and
configurations and taking the best performance over all of them may be considered
as a method by itsself. The statistic framework lLC gap improvement ∆best

mean is the
difference between the lLC gap of the overall best timetable on final convergence
and the average lLC gap after the first Modulo Simplex ReTim step and takes on

∆best
mean = 7.76− 6.90 = 0.86 , (6.6)

which, since ∆best
mean/∆

MsOnly
NoMs > 8, ismore than an additional eightfold. A summary

of those lLC gap improvements for all instances may be found in Table 6.8.
From Table 6.8 also arises one question: How can it be that ∆MsOnly

NoMs and ∆final
first

of Spiel and Athens are negative? The reason for this effect is the shortest paths
randomization we discuss in the next Section 6.5.3.
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Table 6.8: Absolute and relative lLC gap improvements of different methods,
obtained from Tables 6.4 to 6.7.

Dataset

Timetabling Spiel Athens Bahn-klein Bahn-gross

F
re
q
u
en
cy

as
A
tt
ri
b
u
te

∆MsOnly
NoMs 1.763 0.401 0.215 0.101

∆final
first 1.083 -0.035 0.499 0.352

∆best
mean 2.999 0.460 1.125 0.862

∆final
first/∆

MsOnly
NoMs 0.614 -0.086 2.316 3.478

∆final
first/∆

best
mean 1.701 1.146 5.221 8.526

F
re
q
u
en
cy

as
M
u
lt
ip
li
ci
ty ∆MsOnly

NoMs -0.554 -0.034 0.181 0.760

∆final
first 0.406 0.003 0.373 0.760

∆best
mean 8.524 1.934 0.926 0.760

∆final
first/∆

MsOnly
NoMs -0.732 -0.094 2.059 2.753

∆final
first/∆

best
mean -15.381 -56.960 5.115 7.766

6.5.3 Randomized Shortest Paths

The maximum max∆max
min over all configurations of the maximal deviation ∆max

min

over an initial timetable caused by randomized shortest paths in Tables 6.4 to
6.7 looks small, but in fact is gigantic when compared with ∆MsOnly

NoMs , i.e. average
timetabling heuristic lLC gap improvement.

Table 6.9: Deviation over initial passenger distributions in comparison to ∆MsOnly
NoMs ,

frequency_as_attribute Lines Roll Out model.

Dataset

Quantity Spiel Athens Bahn-klein Bahn-gross

∆MsOnly
NoMs 1.763 0.401 0.215 0.101

max∆max
min 6.274 0.097 0.238 0.178

∆MsOnly
NoMs /max∆max

min 3.559 0.242 1.104 1.762

Why do we compare max∆max
min with ∆MsOnly

NoMs ? It gives us an idea on how
much influence randomized shortest paths have compared to solving the PESP in
a single ReTim step, i.e. the classical way and Table 6.9 states that for large scale
networks running the ReTim iteration on the same initial timetable another time
with different randomized shortest paths may improve ATT by the same amount
a state-of-the art PESP heuristic heuristic does in average, which shows how
cruical the passenger distribution is in the process of timetable optimization.
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On the other hand, Table 6.8 from Section 6.5.2 states that for the fre-

quency_as_multiplicity model, Spiel and Athens have a negative ∆MsOnly
NoMs .

Does this not contradict the property of the Modulo Simplex to always perform
better than just using fixed modulo parameters? There are ten initial timetables,
but since the test runs for NoMs and MsOnly are independent of each other, the
shortest paths randomization yields different initial passenger distributions and
therefore changes the PESP solution. The author double checked this and indeed,
when using Modulo Simplex on the initial timetables plus passenger distributions
of the NoMs runs, it does not yield a worse ATT, so this is not a bug, but states
that our sample of ten timetables times three runs is too small and thus our
average values differ strongly from the true average of the timetable/passenger
distribution sample space. We could fix the numbers by resuing the passenger
distributions of the NoMs run in the MsOnly run, but the significance does not
get better if we do not increase the sample size drastically, which increases run-
times drastically as well, especially if we incorporate our large networks. Further,
we cannot judge whether our shortest paths randomization resp. initial timetable
randomization as described in Section 6.3 are unbiased, i.e. all passenger distri-
butions/timetables have the same chance of being chosen, which they most likely
are not. Therefore conclusions about their distribution seem generally difficult to
make. What our results definitely show is that even if we take a feasible timetable
π and derive w and w′ by a randomized version of Passenger Distribution

Algorithm 4, i.e. by shortest paths w.r.t. π, PESP solutions may still vary heav-
ily for w and w′, even if the network is not one of the worst case scenarios from
Chapter 5, which again points out the importance of the passenger distribution.

What happens to the eightfold improvement from Section 6.5.2? There is
nothing wrong about that our methods can improve results an additional eight-
fold, since we observed it in out test, but of course they do not have to. Especially,
this is not a statement about the distribution of feasible timetables and passenger
distributions.

6.5.4 Rollout

The rollout peek can be better than ATT before convergence rollout. This hap-
pens to all networks and for Spiel and Athens, it occurs that for some runs it is
even less than the ATT on final convergence as can be seen in Sections 6.4.1 and
6.4.2, while for Bahn-klein and Bahn-gross the improvement after the Periodic
Rollout is always greater than the losses through ignoring frequencies and in
the ReTim steps before as can be seen in Table 6.10.

In all instances, frequency_as_multiplicity has a worse performance than
frequency_as_attribute as initial Lines Roll Out model, especially in the
average ATT gap to lLC, which can be seen in Table 6.11.

Since this effect occurs for fixed modulo timetabling as well, an explanation
could be that ReTim iteration generally gets stuck too soon or just because of
our small sample size. However, by Theorem 3.2 there is an improvement of ATT
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after a Periodic Rollout, which is shown in Table 6.12.

Table 6.10: Minimal rollout peek gap to lLC divided by ATT gap to lLC on
convergence rollout resp. on final convergence, minimum over all test runs with
frequency_as_attribute as initial Lines Roll Out model.

Dataset

Step Spiel Athens Bahn-klein Bahn-gross

rollout 0.226 0.479 0.992 0.995
final 0.226 0.479 1.010 1.001

Table 6.11: PESP change model, ∅ frequency_as_attribute ATT gap to lLC
divided by ∅ frequency_as_multiplicity ATT gap to lLC.

Dataset

Timetabling Spiel Athens Bahn-klein Bahn-gross

NoMs 2.102 1.750 1.049 1.011
MsConv 2.955 1.974 1.041 1.015
MsOnly 3.929 2.026 1.038 1.012

6.5.5 Timetabling Step

How well does the Modulo Simplex perform w.r.t. solving Linear Program 2.4 to
full optimality? By the data we have we cannot judge that aspect. However, some
findings indicate that additional improvement beyond solving the fixed modulo
PESP in the timetabling step does not guarantee a better overall outcome, as is
the case for Bahn-klein in Table 6.6, where the overall best lLC gap of 6.52% we
obtained with MsConv, although MsOnly performs better in average and in every
timetabling step. The distance to the best MsOnly solution of 6.61% is 0.09%
and thus almost half of ∆MsOnly

NoMs = 0.215. For Bahn-gross however, MsOnly yields
better results in both average and almost a whole ∆MsOnly

NoMs improvement in the
best case w.r.t. MsConv. For Spiel and Athens the situation is similar with results
being unclear. Therefore, increasing the sample size strategically as proposed in
Section 6.5.1 may be considered as an alternative to modulo parameter tuning in
a single ReTim step.

6.5.6 Change Model

For all networks, ATT after a periodic rollout is generally even lower than the
underestimation by EPESP resp. always best changes, which as effect is even
worse than the theory developed in Section 5.7 from a qualitative point of view.
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Table 6.12: ∅ ATT gap to lLC on final convergence divided by ∅ ATT gap to lLC
before rollout.

Dataset

Timetabling Spiel Athens Bahn-klein Bahn-gross

NoMs 0.655 0.277 0.800 0.819

EPESP MsConv 0.651 0.277 0.774 0.803

∅ 0.653 0.277 0.787 0.811

NoMs 0.926 0.955 0.963 0.990

PESP
MsConv 0.901 1.000 0.976 0.991
MsOnly 0.962 0.971 0.977 0.990

∅ 0.929 0.975 0.972 0.990

This could have the reason that passengers take more changes, since their duration
is low, making the timetable more difficult to optimize. Nevertheless in quantity,
the ATT gap to lLC is less than hundred, thus the quotient with lLC is less than
two, i.e. we do not have an error magnitude of T ≥ 2.

However, results on final convergence obtained with the EPESP as change
model are as bad as those with frequency_as_multiplicity as initial Lines
Roll Out model, which indicates that before the Periodic Rollout hap-
pened, the timetable could not be improved, as summarized in Table 6.13.

Table 6.13: ∅ ATT gap to lLC of the EPESP divided by the ∅ ATT gap to lLC,
both on final convergence.

Dataset

Method Spiel Athens Bahn-klein Bahn-gross

NoMs 0.972 1.010 1.006 0.998
MsConv 0.972 1.011 1.011 0.994

When it comes to which ATT is taken on (in the rollout peek) before con-
vergence rollout, the EPESP performance may be six times worse than that of
PESP, see Table 6.14.

Due to these findings, the author discourages from using the EPESP resp.
always best changes for modeling different frequencies.
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Table 6.14: ∅ ATT gap to lLC of the EPESP divided by the ∅ ATT gap to lLC
of the PESP, both before convergence rollout.

Dataset

Method Spiel Athens Bahn-klein Bahn-gross

NoMs 2.552 6.054 1.258 1.201
MsOnly 2.545 6.054 1.258 1.201

6.5.7 Recommendation

We derive a ReTim strategy to solve the ODPESP for heuristically from the
observations in Section 6.5.

The PESP is preferable in favor of the EPESP as discussed in Section 6.5.6.
We use frequency_as_attribute as initial Lines Roll Out model, as re-

sults from Section 6.5.4 propose. We perform the convergence rollout on the
timetable with the best rollout peek before we continue the iteration with fre-

quency_as_multiplicity.
The findings in Section 6.5.1 suggest to generate a large pool T of initial

timetables the same way we obtained our initial ten as described in Section 6.3
and select those that have a low initial average traveling time into a filtered
timetable pool Tf.

To all timetables in Tf we then apply the fast running NoMs ReTim with
randomized shortest paths and randomized PESP timetabling in every step with
a single run only, since for Athens and the Bahn instances, the maximal NoMs
deviation δmax

min is rather low. The best e.g. ten timetables w.r.t. ATT on final
NoMs convergence we keep in the final pool Tf and start over with both MsConv
and MsOnly, using a larger number of runs per initial timetable, e.g. hundred.

Over all timetables we obtain during the process we select the one with the
best ATT as our final solution.
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Chapter 7

Conclusion

Why do we simply ignore frequencies in the event activity network?
Why is the passenger distribution in the PESP fixed? Are these le-
gitimate simplifications? If not: how can classical methods ever yield
good average traveling times?

Indeed, the author had lots of doubts when he started his work in the LinTim
team and even was about to switch to pure mathematics. Passion for applied
problems returned when he was able to formulate a linear program that incorpo-
rates line planning and periodic timetabling, since he saw a way to finally make
things optimal. However, with it having astronomic dimensions, he started to
study its ODPESP subproblem, which was still too large for practice-relevant
instances, no matter how hard he tried to simplify it, so he finally ended with
retimetabling.

The planning steps lower bounds, as simple as they are, turned out to be a
valuable tool in the ODPESP analysis and ReTim could reduce the gap to lLC to
6-7% for large scale networks.

Initial doubts about classical methods turned out to be justified. Qualita-
tively, the errors predicted in synthetical worst case networks occur in our test
instances as well, from tiny to large scale networks. For Athens Metro, the best
solution could only be found by evaluating a quantity initially considered as a
test-only waste product: the rollout peek. Indeed, a timetablers nightmare.

However, frequency_as_multiplicity remains a double-edged sword: on
the one hand it is the only way to identify good timetables, on the other it has a
bad ReTim performance as initial Lines Roll Out model so that the Periodic
Rollout turns out to be more than just an evaluation tool and, in a ReTim
framework, can improve the average traveling time as much as state-of-the-art
timetabling heuristics.

Surprisingly, the EPESP performs very poor, but is widely mentioned in lit-
erature. So there is either something wrong with our test or nobody actually
checked it out.

127
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All in all, the ODPESP seems not to be understood very well, since its overall
performance seem to depend more on randomness than the actual methods used.
It also remains unclear whether the average traveling time still may or may not be
improved much further. However, statistical retimetabling can improve solutions
an eightfold compared to classical approaches, which may be considered as a
success.

Indeed, from a practical point of view and given that our observations extrap-
olate smoothly enough to real world networks, the results are stunning, make the
author agree with [Lue09] and let him state

Never, ever, even think about taking some arbitrary passenger distri-
bution, optimize a feasible timetable by tuning modulo parameters,
getting a low slack, stop and say it’s optimal. Timetables obtained
that way, no matter whether for small or large networks are gener-
ally highly suboptimal and may be significantly improved by means as
simple as fixed modulo retimetabling.

Why using such drastic words? The answer may be found on Page 7:

Public transportation affect the daily life of billions of people and be-
sides ineffectiveness producing more costs and wasting more resources
on the operators side, it wastes billions of hours of valueable time on
the customers side and therefore is of global economical as well as
ecological interest.

Therefore, we may talk of responsibility in mathematics, which in our case
lies in analysing problems conscientiously and not making too many assumptions
about their nature. To the authors point of view, this is the actual achievement of
this work and he hopes that his contributions may help to find better timetables.
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