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Chapter 1

Introduction

1.1 Motivation

Public transportation affects the daily life of billions of people worldwide and
besides ineffectiveness producing more costs and wasting more resources on the
operators side, it wastes billions of hours of valueable time on the customers side
and therefore is of global economical as well as ecological dimension.

Traditionally, the construction and maintainance of a public transporation

network, like for busses, metro or intercity trains, consists of the following plan-
ning steps

1.

2.

A A

Network Design Where to put the stations and infrastructure?
Line Planning How to layout the lines, i.e. the vehicle paths?
Passenger Routing Which paths will passengers take?
Timetabling At which times will lines arrive/depart at the stations?
Vehicle Scheduling How should the lines be served by vehicles?
Crew Scheduling How should the crew circulate within the vehicles?

Delay Management What to do in case of delays? How to prevent them?

Usually, the steps are done in the order above by hand and heuristics. But
questions arise:

Of what quality will our network be? How far is it away from the
optimum? Can we do it better?
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These are difficult questions. In fact, politicians, transportation man-
agers, customers, taxpayers, etc. frequently employ judgments such
as “good” and “efficient”, but nobody can give a definition what this
exactly means. Since almost every public transportation system in
the world is in the red, the cheapest system is no public transporta-
tion at all. On the other hand, the most convenient system for the
passenger - a stop in front of every house with direct connections to
everywhere — is much too expensive. What is the right compromise?
Operations Research has no good answer either - so far. But OR can
improve aspects of public transportation significantly .. .|

[BGPO6]
There is evidence for the last statement:

In December 2006, Netherlands Railways introduced a completely new
timetable. Its objective was to facilitate the growth of passenger and
freight transport on a highly utilized railway network and improve the
robustness of the timetable, thus resulting in fewer operational train
delays. Modifications to the existing timetable, which was constructed
in 1970, were not an option; additional growth would require signif-
icant investments in the rail infrastructure. Constructing a railway
timetable from scratch for about 5,500 daily trains was a complex
problem. To support this process, we generated several timetables
using sophisticated operations research techniques. Furthermore, be-
cause rolling-stock and crew costs are principal components of the
costs of a passenger railway operator, we used innovative operations
research tools to devise efficient schedules for these two resources.

The new resource schedules and the increased number of passengers
resulted in an additional annual profit of €40 million ($60 million);
the additional revenues generated approximately €10 million of this
profit. We expect this profit to increase to €70 million ($105 mil-
lion) annually in the coming years. However, the benefits of the new
timetable for the Dutch society as a whole are much greater: more
trains are transporting more passengers on the same railway infras-
tructure, and these trains are arriving and departing on schedule more
than they ever have in the past. In addition, the rail transport system
will be able to handle future transportation demand growth and thus
allow cities to remain accessible to more people. Therefore, we ex-
pect that many will switch from car transport to rail transport, thus
reducing the emission of greenhouse gases.

[KHA*09]
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LinTim!, a project by Prof. Schébel, is a collection of methods to perform
some of the planning steps above automatically. With LinTim we can e.g. eval-
uate the impact of different line planning methods on the average traveling time
or the delay robustness.

“Why can we not simply compute the optimum?”

There are two problems:

1. It is hard to define what that optimum should actually be. However a low
average traveling time seems to be desireable when it comes to efficiency.

2. Computing space and time. Problems related to public transportation are
usually NP hard and models that incorporate several levels of planning
grow astromically in their sizes.

Therefore, traditional planning uses simple models. Let us have a look at the
timetabling objective function:

min E WeLq,

acA

where w, is a fixed number of passengers that take the activity a (drive, wait or
change) and z, its duration.

In that model, the number of passengers is fized per activity. If we assume
that passengers will take the shortest path in time to get from one station to
another, lets say they looked it up at reiseauskunft.bahn.de, their number is
actually not fized. As expected: in general, the average traveling time decreases,
if we reroute the passengers and recalculate the timetable. This holds for both
tiny and gigantic networks and means that the traditional model only delivers an
approzimation of unknown overall quality to the possible optimum.

If we follow the traditional traffic planning workflow, another problem arises:
some steps at the beginning actually depend on data we only get at the end, as we
have seen for the timetabling where we need to perform some initial guess. But
this goes down much further: At the line planning step we also made assumptions
about how many passengers will use certain links within the network, which we
only know after timetabling.

http://lintim.math.uni-goettingen.de
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1.2 Overview

In this Chapter we introduce the basic formalism used throughout the work,
which is most basic notation of graph theory, a collection of later useful number
theoretical lemmata and our notation of public transportation.

The next Chapter 2, Classical Models, builds on the definitions from this
chapter, introduces the default methods of the LinTim framework, which should
mostly correspond to what is used in research practice. Further it introduces the
widely used periodic event scheduling problem PESP.

Chapter 3, Beyond Classical Models, the author introduces his extensions to
LinTim, subject to comparison with classical models and base for later theoretical
and computational results.

In Chapter 4, Planning Steps Lower Bounds we work on lower bounds for the
average traveling time at different stages of planning.

Besides lower bounds we face the Worst Case Error in Chapter 5, which is
a collection of various example networks, parametrized by the period length T°
as well as line frequencies and facing different common simplification techniques
and sequential planning.

Finally, Chapter 6, Computational Results, compares the worst case findings
with what happens in actual networks. Further, we introduce a scaleable, exten-
sible and iterative heuristic method that for practice-relevant large scale networks
can improve results more than an additional threefold in average and more than
an additional eightfold if combined with a statistic framework compared to what
had been possible before with state-of-the-art methods for timetabling [GS11].
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1.3 Prerequisites

The reader should be familiar with optimization in public transportation, math-
ematical programming as well as elementary number, graph and complexity the-
ory. For the former one, [Sch04] is our main source, for the latter one, the author
proposes [GJ79] and for the others arbitrary lecture notes should do it.

To the taste of the author, this work could be less formal. However, one big
issue is that most of the formalism is result of the work on LinTim, so that it is
hard to judge to which amount definitions intersect with those of the reader, even
if he or she is involved in the subject. On the other hand, many proofs require
precise, if not pedantic formulations of the actual problem, since by itsself it
usually spans several levels of planning in public transportation and often involves
an aspect changed in between.

In this section we introduce the most basic preliminaries for this work.

1.3.1 Number Theory

This section is for reference purposes but should be read as a whole. Without
reading the main text however it is most likely meaningless to the reader.

Definition 1.1 (Periodic Interval). Let a,b,7 € N\ {0}. A periodic interval
la, bl is defined as

0,07 = | Jla+ 2T, b+ 2T] = [a,0] + ZT . (1.1)
2€7Z
For example, [1,2]gp = ...[—59,—58] U[1,2] U [61,62]U.. ..

Lemma 1.2. Let a,b € Z with constraints a,b € [l,u], where l,u € Z and T € N
withl <wuw andu—1<T —1. Thena=0>b mod T iff a =0.

Proof. a =b mod T is defined by: there exist z € Z such that a = b+ 2T

“=": For z holds
a—2>b B

7 z . (1.2)
Using the lower and upper bounds yields
l—u u— T-1
< | — 1 <2z< =|— = .
o< wea - ] on
therefore z =0
“<": Chose z = 0. 0

Note that Lemma 1.2 is not true if e.g. | —u > T — 1. Therefore consider
a,b € [0,60]. Then both a =0 and 60 yield a —b =0 mod T with b = 0.

Theorem 1.3 (Bézout’s Identity). Let a,b € N\ {0}. Then there exist x,y € Z:
za + yb = ged(a,b) . (1.4)
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Proof from Wikipedia. Let S = {na+mb > 0:n,m € Z}. Since S is not empty
and S C N, there exists a minimal element d = xa + yb with d < s, for all s € S.

By division with remainder a = gd 4+ r with r € {0,...,d — 1}. Solving for r
yields r = a — gd = a — g(xa + yb) = a(l — qz) + b(—yq). If r > 0 it must be in
S, which would contradict the fact that d is minimal in S. Therefore » = 0 and
d|a. The same argument yields d|b. If ¢ is another common divisior of a and b, it
divides za + yb = d, since it divides every summand and thus c¢|d and d must be

the greated common divisor. O
Lemma 1.4. Let T, fi, fo € N\ {0}, f1|T, fo|T. It holds that
T T T
cd =— . 1.5
w7 7) = T (15)
Proof. By the fundamental theorem of arithmetic, every positive integer has a
unique decomposition into a product of prime powers. Let p,...,p,, be prime

divisors of T'. Since f1|T and fo|T, fi and fy can be represented as a product of
prime powers of T

T=1]»" . T, e N\ {0}, (1.6)
i=1
Np , np )
A=l . R=1I . L fredo,... T}, (1.7)
i=1 =1
and thus
T 1% 7-p T 11 onep
=TI, =T 1.8
7 =1» 5 =11 (18)

i=1 1=1

Further, lem can be expressed by prime power products

min(f}, 2
1cm f17f2 H Uit ) (19)

and ged as well

n

o max(Ti—f} Ti—f?) T T —min(f},f7) _ r
ed (110
g <f1 f2> H =1I» “ gy - Y

= i=1
O

Lemma 1.5 (Division With Negative Remainder). Let x € Z, T' € N\ {0}. Then
there are unique ki, ke € Z and x1,xo € {0,...,T — 1} with

xr = ]flT +x1 = ]{ZQT — Ty . (111)
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Proof. Division with remainder yields z = kT + x; with unique k; € Z and
x1 €{0,...,T — 1}. If &y = 0, then select ky = k1 and 25 = 0. Otherwise select
ks = k; + 1 and obtain

T=koT —x9g=kT+T —29 . (1.12)

The lemma follows with xo =T — 21 € {1,...,T — 1}. O
Lemma 1.6 (Modulus Reducibility). Let 7,7 € N\ {0} with 7|T and a € Z.

Jke{0,....,.2-1}:a+kr=0 modT < a=0 mod7 . (1.13)

Proof. Equivalent are

a+kr=0 modT (1.14)

dz2eZ: a+kr=zT (1.15)
T

a= (Z——k:)r . (1.16)
T

It remains to show that for all 2’ € Z there exists z € Z and k € {0,...,L — 1}

such that T
Z=z2=—k . (1.17)

-
Division with negative remainder as in Lemma 1.5 yields

/ —
z =z

al

-k zeZ ke{0,....,L-1} . (1.18)

Choose k = k and z = Z to obtain the lemma. O
Theorem 1.7 (A Periodic lem Representation). Let T, f1, fo € N\ {0}, f1|T,
f2|T. Then there exist & € {0,..., f1 — 1}, & € {0,..., fo — 1} with

T T T

— —&f—=———— modT . 1.19
&fl €2f2 lem(f1, f2) ( )

Proof. From Bézout’s Identity (Theorem 1.3) with a = %, b = % follows that

there exist z,y € Z with
T T T T
r— +y—=ged| —,— | . 1.20

() (1:20)

Devision with (negative) remainder yields

x:k1f1+£1 s ]fl EZ, 51 E{O,...,fl—l}, (121)
y=rkofo—& ko €Z, &€ 40,..., fo — 1} (1.22)
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and hence - - -
kifi+&)— + (kafs — &)— = ged| —, — 1.23
(&) + taf -8 f = sed( 7 7 ) (1:29)
which is equivalent to
T T T T
— —&—=gcd|—,— | - T(k1 + k 1.24
flfl §2f2 g (f1 f2) (K1 2) ( )
T
- modT , 1.25
lcm(flan) ( )
by Lemma 1.4. O
Lemma 1.8. Let T fi, fo € N\ {0}, AT, fo|T. For all k € N there are i €
{0,,f1 —1} O/ﬂdj S {O,,fg—l} with
T T - T
i——j—=k——— modT . 1.26
fi 7R Nem(fi ) (20
Proof. Let ¢ :=lcm(f1, f2). As per Theorem 1.7 there are & € {0,..., f1 — 1},
52 S {0,,f2—1} with
T T T
——&—=— modT . 1.27
SRR 127
Thus, for a given keN
- T - T kT
1 f2 L
By devision with remainder
k& =kifi+i . kie€Z,ie{0,..., f1—1}, (1.29)
k€ =kafo+3 ko €7, j€{0,..., fo—1}. (1.30)
It follows that
T T kT - T
i——j—=—+4+T(ks—k)=k———— mod T . 1.31
fi ]f2 4 (F: 2 lem(f1, fa) ( )
U

Lemma 1.9 (Representation of lem). Let T, f1, fo € N\ {0}, f1|T, foT. For

each k € N there exists k € K
~ T

:=40,...,lem(f1, fo) — 1} so that

T
=k

mod T . (1.32)

em(h. o)

lem(f1, f2)

K is a smallest set with the property from equation (1.32).
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Proof. Let € :=lem(fi, f2). Devision with remainder yields

k=kl+k | ki€Z, ke{0,....0—1} (1.33)
and thus
-T kT + kT kT T
S S5 LT dT . 1.34
& 7 T T e ) M (1.34)

The greatest multiple of % which is still in [0,7) is w Therefore, for given

K1, ke € {0,..., 0 —1} with k1 # Ky also # + % mod T is satisfied. It follows
that K is a smallest set with the property from equation (1.32). O

Theorem 1.10 (Compact Representation of lem). Let T fi, fo € N\ {0}, f1|T,
fo|T. For all k € {0,...,lem(f1, fo) — 1} there are i € {0,...,f1 — 1} and
Ge{0,.. ., fo— 1) with

T T T
I——j—=k—+——— modT . 1.35
iR T e 1) (1:35)
Proof. Combine Lemma 1.8 and 1.9. O

Theorem 1.11 (Compact Representation by lem). Let T fi, fo € N\ {0},
AT, fo|T. For alli € {0,...,f1 — 1} and j € {0,..., fo — 1} there exists
ke {0, cey 1C1’I1(f1, fg) - 1} with

T T i T
i——j—=k—r——
fi 7R Nem(fi )
Proof. Let € :=lem(f, f2). Then there are ky = ¢/ f1, ko = £/ f5 so that

mod T" . (1.36)

T T T T

i = (iky — ko) = = k= dT 1.37
Zfl ]f2 (Z 1 ] 2) g E mo ) ( )

where k = ik, — ko € Z. With help of Lemma 1.9 follows that

T T T

i——j—=k——— modT , 1.38
fi jf2 lem(f1, f2) ( )
with k& € {0, . .,1C1’I1(f1, fg) - 1} [

Corollary 1.12 (Iem Representation Map). Let T, f1, fo € N\ {0}, fi|T, f2|T.
The lecm Representation Map

k: {077f1_1} X {077f2_1}_> {07"'7lcm(f17f2)_1}
T T T
Lij)—kii——j—=k————
.9) J1 ]fz lem(f1, f2)
1s well-defined and surjective. Further, © and j together with f; and fo may be
swapped.

mod T



16 CHAPTER 1. INTRODUCTION

Proof. Well-definedness follows from theorem 1.11 and surjectivity from Lemma
1.9 and Theorem 1.11. Swapping ¢ and ¢ together with f; and f5 is possible due
to the symmetry of lem. O

Corollary 1.13. With ¢ = lem(fi, f2), the lem representation map from Corol-
lary 1.12 may be represented as

14 14
k=i——j— mod/{ . 1.39
i (1.39)
Proof. 1t holds
T T T
dz:Z: 1——j—=k—+2T , 1.40
TR (1-40)
which is equivalent to
32:7Z: iﬁ—jﬁzk—i-zﬁ, (1.41)
1 2
from which the corollary follows. O

1.3.2 Graph Theory

Definition 1.14 (Graph). An directed G = (V, E) is a tuple of a finite set V
called vertices and E, a finite subset of V- x V x N, called edges. An element
(v,v',1) € E is called edge from v to v' resp. edge from vertex v and to vertex
v' and the notation (v,v") = e means that the tuple (v,v") contains the from and
to vertices of e. Forv,v' € V the set E, ,» = {(v,v',i) € E} is called the set of
edges between nodes v and v'. G = (V| E) is an undirected graph, if the edges
are sets {v,v'} and thus not oriented, but for simplicity reasons still denoted by

(v, ).

Definition 1.15 (Subgraph). A subgraph G' = (V', E’) of G = (V, E) has the
property V! C V, E' C E and is a graph by itsself, i.e. for all (v,v") € E' it holds
v, v e V.

Definition 1.16 (Connected Edge Sequence, Path, Cycle). Let G = (V, E) be a
directed graph. A connected edge sequence of length k — 1 is a finite sequence of
edges

S = [(vl, v), (v2,v3), . .., (Vg_1, vk)} (1.42)

with mutually distinct edges (vj, vj1q) € E or (Vj11,v5) € Eforallje{1,... k-
1} with the sets ST = {(vj,vj41) : (vj,vj41) € E} and 5~ = {(vjt1,v5) :
(v;,v;41) € E} being forward arcs resp. backward arcs of P.

If all nodes in S are mutually distinct, then S is denoted by P and called
undirected path from vy to v. If P~ = &, then P s called directed path. If for
S holds v, = vy it is called a cycle, denoted by C' instead of S and if additionally
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C™ = @ it is called a circle. A cycle resp. circle for which all nodes besides the
first and the last one are mutually distinct is called simple.

For an undirected graph G = (V, E) a structure P as above is just called path.
Connected edge sequences and cycles keep their names.

Definition 1.17 (Connected). Let G = (V, E) be a directed graph. G is called
weakly connected resp. strongly connected if for all vi,ve € V', v # vy there is
a undirected resp. directed path from vy to vs.

An undirected graph G = (V, E) s called connected if for every vi,vs € V
there is a path from vy to vs.

Definition 1.18 (Connected Component). Let G = (V, E) be a directed graph
and vy € V. The weakly resp. strongly connected component of vy is a subgraph
Go = (W, EO) of G that consists of the mazimal set of vertices v € V' so that there
is an undirected resp. directed path from vy to v together with all edges e € E
that are contained in any path from vy.

For undirected graphs analogously despite there is no destinction between undi-
rected and directed paths.

For all graphs we work with we assume that they are (strongly) connected. If
they are not, our results still hold for every connected component.

Definition 1.19 (Tree). A tree is a (directed) graph G = (V, E) that satisfies
one of the equivalent conditions

o (G is (weakly) connected and has no cycles.

o G is (weakly) connected and if one edge is removed from E, it is not (weakly)
connected anymore.

o For any two vi,ve € V there is a unique (undirected) path from vy to vs.

Definition 1.20 (Spanning Tree). For a graph G = (V, E) a spanning tree is a
subgraph G' = (V' E') that is a tree and satisfies V' =V, i.e. it is spanning.

Definition 1.21 (Shortest Path). Let G = (V, E) be a (directed) graph, w : E —
R>( edge weights and vq, v € V. A shortest path P from v; to vy w.r.t. w is a
(directed) path from vy to vy minimizes

> we. (1.43)

eeP

Definition 1.22 (Shortest Path Tree). Let G = (V, E) be a directed graph and
w: E — Rsq edge weights and vy € V. A (directed) shortest path tree from vy
w.r.t. w is a spanning tree that contains vy, called root and every (directed) path
to other v € V, vy # vy is a shortest (directed) path from vy to v;.
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Note that in this context, a directed tree refers to the underlying graph being
directed and strong connectivity.

For nonnegative edge weights as above shortest paths trees and therefore
shortest paths as well may be computed in polynomial time, e.g. O(E+ V' log V')
with Dijkstras algorithm with Fibonacci Heaps.

1.3.3 Public Transportation

Public Transportation is ubiquitous and there is no one who never used a bus or
a train at least once in his or her lifetime. Therefore, the intention of this section
is not to introduce anything new to anyone, but to link the perceived reality with
a concrete formalism.

Athens Metro
MeTpo ABrivac

sssssss

sssssss

Sepolia

Larissa Station,

eeeee

sssss

Aghios Antonios - Aghios Dimitios / Al. Panagoulis
E Lines

Egaleo - Doukissis Plakentias - Airport

o Interchange Koropi

Figure 1.1: Athens Metro, a dataset in LinTim.
Image Source: http://en.wikipedia.org/wiki/Athens_Metro

This section are many repetitions that could easily be avoided but actually
are indented, since they allow a quick look up.

Most of the defintions arise from the implementation in the LinTim project
which is based on [Sch04].

Definition 1.23 (Public Transportation Network). A Public Transportation
Network PTN = (S, F) is an undirected resp. PTN = (S, E) a directed graph
that has a set of stations S as vertices and a set of edges E with possibly multiple
edges.


http://en.wikipedia.org/wiki/Athens_Metro
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Edges represent physical connections like roads or rails between bus stops or
train stations.

If the PTN = (S, E) graph is undirected this means that all edges may be
used in both directions, while a directed PTN = (.5, E) may have one-way roads,
e.g. as they occur for bus networks in inner cities like it is the case in Gottingen.

For our purposes, we consider undirected edges as two identical directed edges,
one pointing in one and one in the other direction, like the two lanes of a road or
two parallel railway tracks. Therefore we effectively work with directed networks
only.

Definition 1.24 (Time). Time is an integral number given in a time unit t.

For example, t = 1 min for intercity rail traffic like in Bahn Gross or t = 6s
for rapid transit as in the Athens Metro dataset.

Definition 1.25 (Edge Lower and Upper Bounds). Given a PTN = (S, E), a
lower bound map [ : E — N assigns every edge ¢ € E a lower bound [.. An
upper bound map u : £ — N assigns every edge e € E a upper bound u, > [.
Both are given in time units t.

This implies that our networks are limited to only a single kind of vehicle. A
lower bound [, is engineerically given by the minimal time a vehicle needs to pass
an edge e, whereas an upper bound wu, is a more or less arbitrary maximal time
to pass e, with [, < u,.

The edge e € E could for example be a road of one kilometer length. If the
speed limit on that road is 60km/h and the vehicle can go that fast, then [, = 1.
Since passengers can walk with around 6km/h, u, = 10 would be a reasonable
upper bound.

Definition 1.26 (Edge Headway). Given a PTN = (S, FE), a headway map
h: E — Z assigns every edge e € E a headway h, in time units t.

Roughly speaking, a headway h. is a minimal safety time distance for every
pair of vehicles that use e to make sure that vehicles do not crash. To be more
precise, see headway activities in Definition 1.42.

A headway of h, = 2 for some e € E, means that if two vehicles v; and vy use
he, that every departure of v; must be at least two time units later than that of
V9 and vice versa.

We defined lower bounds, upper bounds and headways on undirected public
transportation networks, which works out that way for directed networks as well.
Since we expect our edges to be identical in both directions, bounds and headways
persist in the case of a switch to the directed representation.

Definition 1.27 (Vehicle Capacity). The Vehicle Capacity is an integral number
cVehicle given in passengers.
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In case of several vehicles, we would need a map, but since our networks are
limited to one kind of vehicle, we can denote its capacity with ¢Vehicle,

The vehicle capacity must not necessarily be the maximal number of passen-
gers that fit into the vehicle and may be reduced for travel comfort reasons.

Definition 1.28 (Period Length). The Period Length T' € N is an integer given
i time unaits t.

Departure and arrival times of lines from Definition 1.32, i.e. the timetable
(Section 2.5) repeats every period length.

For all our example datasets, the period length is one hour, i.e. T = 60 for
Bahn Gross and T' = 600 for Athens Metro.

Definition 1.29 (Origin Destination Matrix). Let PTN = (S, E) be a public
transportation network and T a period length. An origin destination matrix OD =
(Wsy55) 51,5065 ASSigns an origin destination pair ws,s, > 0, for all s1, sy € S, which
1s the number of travelers from station si to so within T, given in passengers.

In our datasets we interpolate ws, s, from the number of passengers per day
between s; and ss, for all s1, so € S and thus we do not account for rush hours
or idle times. In our model, the passenger distribution stays uniform throughout
a period and thus throughout the day.

Definition 1.30 (PTN Passenger Route). Let PTN = (S, E) be a public trans-
portation network. For a given pair of stations sy, ss € S, a PTN passenger route
s a path in the PTN from sy to ss.

Definition 1.31 (Passenger Load, Vehicle Demand, Maximal Vehicle Load).
Given a PTN = (S, E) and a period length T, a passenger load map p : £ — N
assigns every edge e € E a passenger load p., given in passengers. A vehicle
demand map fV : E - N assigns every edge e € E an edge vehicle demand
flow = [p,/cVehicle] = 4 maximal vehicle load map f* : E — N assigns every edge
e € E a maximal vehicle load fi > flow,

Since we do not have data on maximal vehicle loads, our f!'* is arbitrary, for
alle € E.

Definition 1.32 (Line). Let PTN = (S, E) be a public transportation network.
A line £ is a path £ = (e, ... €f,) in the PTN.

A line can be thought as a bus or metro line. However, lines exist also for
intercity rail traffic.

We cannot define a line by the stations it passes, since there can be multiple
edges in the PTN.

The only reason why we limit lines to be paths is that our current formalism
does not allow a station to be passed twice. This happens to some lines, especially
in bus networks. Introducing an additional index to characterize departures and
arrivals would fix that issue, but is not of conceptional interest for this work.
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Definition 1.33 (Frequency). A frequency f; € N is the number of times a line
occurs within a period length T. This implies that f,|T.

If f,|T is not explicitly stated, it still holds. However, for recalling purposes
or formal clarity, we mention it occasionally.

The frequency f, € F, is roughly the number of vehicles used on ¢ equally dis-
tributed within the period length. Directed lines inherit f, from their undirected
representation.

Definition 1.34 (Line Concept). A line concept LC = (L, F') is a set of lines L
and a frequencies map F' : L — NU{0} that assigns a frequency f, to every line
e L.

We may derive line concepts from an initial set of lines, a so-called line pool
£ or be generated in some other fashion. As for the PTN, although lines are
undirected, we can represent LC in a directed manner: in (E, F) for each ¢ € L
we assign two lines; one that heads in one direction of the edge sequence, one in
the other.

To do timetabling, we need to combine a public transportation network PTN
with a line concept LC and an origin destination matrix OD. We give a quick
overview about the most basic aspects. For a visualization of event activity
networks and their construction, consult Sections 2.3 and 3.1.

Definition 1.35 (Event Activity Network). Let PTN = (S, E) be a public trans-
portation network and LC = (E, F) be a line concept. An associated Event
Activity Network EAN = (&, .A) is a directed graph that has a set of events &
as vertices and a set of activities A as edges. Events ¢ € £ are either depar-
tures (dep) or arrivals (arr) and have a unique representation e = (s, ¢, arr/dep, i)
withs € S, €L and a frequency instance i € {0, ..., fy — 1}. A representative
event has a frequency instance © = 0.

An event € = (s, 4, arr/dep, i) with s € S, £ € L and i € Z can be thought as
an arrival/depature of the vehicle that serves the line ¢. But strictly speaking,
it only means that some vehicle serves it, which is to be determined by vehicle
scheduling, which is not part of this work.

The term event activity network refers to periodic event activity network, since
we work with the periodic version only anyway. Besides the pure graph, an EAN
is assumed to have lower and upper bounds for activities as well as a period length
attached, so we only mention them explicitly on usage.

Definition 1.36 (Timetable). Let EAN = (€, A) be an event activity network.
A timetable is a map 7 : £ — 7.

The only information at this point is: a timetable maps from the events to
the integers. For more details on periodic timetabling see Section 2.5.
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Definition 1.37 (Activitiy Lower and Upper Bounds). Given an EAN = (€, A),
a lower bound map [ : A — N assigns every activity a € A a lower bound [,.
An upper bound map u : A — N assigns every activity a € A a upper bound
Uq > lo. Both are given in time units t.

The diversity among activities a = (e,¢’) € A is greater than that of events.

Definition 1.38 (Drive Activity). Let PTN = (S, E) be a public transportation
network, LC = (L, F) be a line concept and EAN = (€, A) an associated event
activity network. A drive activity leads from a departure ¢ = (dep, ¢, s,i) € € at
some station s € S to an arriwal e’ = (arr,(,s',i) € € of the same line ¢ € L at
a different station s’ # s but same frequency instance i and is called drive from
s to s'. The drive activity edge map edge : A — E assigns every drive activity a
an edge, = (e, s,5') € E. To every event e € & there is only one unique assigned
drive activitiy drive. € A, that is outgoing of € if it is a (dep) or incoming, if
€ is an (arr). It inherits a lower bound l, = leqge, as well as an upper bound
Uq = Uedge, from its assigned edge, € E and induces edge, := edge,, := edge, as
the event’s assigned edge. The set of all drive activities is denoted by Agrive-

Definition 1.39 (Wait Activity). Let PTN = (S, E) be a public transportation
network, LC = (L, F) be a line concept and EAN = (€, A) an associated event
activity network. A wait activity leads from an arrival e = (arr, ¢, s,i) € € to a
departure €' = (dep, ¥, s,i) € € of the same line { € L at the same station s with
same frequency instance i. The set of all wait activities is denoted by Ayait -

In our datasets, I, = [ u, = " for all a € A, with [¥3® < ¢3! being
some arbitrary global constants, typically [*#® = 1 and «"®' = 3.

Definition 1.40 (Change Activity). Let PTN = (5, E) be a public transportation
network, LC = (L, F) be a line concept and EAN = (€, A) an associated event
activity network. A change activity leads from an arrival ¢ = (arr,?,s,i) € €
to a departure ¢’ = (dep,?',s,j) € & of different lines ¢, ' € L, 0+ at the
same station s € S but arbitrary frequency instances i € {0,...,f1 — 1},j €
{0,..., fo — 1}. If for (e1,€) = drive., (s1,¢,dep,i) = ¢, (¢/,e9) := drive.,
(89,0 arr, 7) := €9 holds s; = s, then the change a is called local station loop.
The set of all change activities is denoted by Achange-

In our datasets, [, = [Page g, = yPanee for all a € Achange, With [change <
uhange heing some arbitrary global constants, e.g. [V = 4 and u"* = T + 3,
where T is the period length.

To take a local station loop basically means that that one travels from some
station s; to s and changes into some line that brings one back to station s;.
Since we consider traveling time only, such changes may be ignored?.

2From a comfort point of view, this may be an issue if vehicles are air-conditioned and
stations are not.
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Definition 1.41 (Passenger Usable Activities). For an EAN = (£, A) the union
of all drive, wait and change activities Aqrive U Await U Achange 15 denoted by A,
and called the set of passenger usable activities.

But there are also activities passengers can not utilize.

Definition 1.42 (Headway Activity). Let PTN = (5, E) be a public transporta-
tion network, LC = (L, F) be a line concept and EAN = (£, A) an associated
event activity network. For every ordered pair of departures 1 = (dep, ¢, s,1),
eo = (dep, ', s,j) € € at the same station s € S of different lines ¢, 0" € L there
is a headway activity a if the associated drive activities share the same edge, i.e.
edgedmes1 = edgedriveEQ. It inherits a lower bound l, = heqge, from its assigned

edge, € E. The set of all headway activities is denoted by Ancadway -

Our headway definition is not the most general case, since we only require
headways between departures. In practice, especially in train networks, there are
also headways between arrivals and between departures and arrivals for single-way
tracks.

To get more information about the influence of the frequency instances ¢ and
7, consult Sections 2.3.3 and 3.1.4.

Definition 1.43 (EAN Passenger Route). Let PTN = (S, E) be a public trans-
portation network, LC = (L, F) be a line concept and EAN = (€, A) an associated
event activity network. For a given pair of stations sy, sy € S, a EAN passenger
route is a path from si to sy in the EAN and can utilize passenger usable activi-
ties, i.e. drive, wait and change. Its first activity has to be a drive from s, and
its last activity a drive to ss.

Definition 1.44 (PTN Passenger Route Trace). Let PTN = (S, E) be a public
transportation network, LC = (L, F) be a line concept, EAN = (£, .A) an associ-
ated event activity network, s1, s, € S a pair of stations and P C A, an EAN pas-

senger route. A PTN passenger route trace is the image PN = edge( PN Agrive),
i.e. the set of edges in the PTN that the path P uses.

Lemma 1.45. PP™ from Definition 1.44 contains a path from s, to ss.

Proof. Every passenger path in an EAN can either follow a line with drive and
wait activities, of which the trace yield a path in the PTN or take a change and
since both departure and arrival of every change must be at the same station,
connectivity between s; and s; can not be broken. OJ
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Chapter 2

Classical Models

In this chapter we introduce actual models to get from a line concept to an event
activity network, mostly relying on [Sch04] and perform timetable optimization,
for which we use [Lie02]. The term classical refers to the popularity in teaching
and research rather than to whether a model is state-of-the-art.

2.1 Passenger Load

Let a PTN = (S, E) with lower time bounds [, for all e € E. For line planning
as in the subsequent Section 2.2, for every edge e € E we need a to calculate
the edge vehicle demand fl°V = [p./cVebice] from Definition 1.31. Therefore, we
need passenger loads p. for all e € E, as in [Sch04]. Without any line concept
available, a first estimation is that passengers travel along the edges E of PTN
on shortest paths with /. being the weight for all e € E.

2.2 Line Planning

In [Sch04] the author introduces a cost minimizing line concept linear formulation.

Linear Program 2.1 (Cost Minimizing Line Concept). Let a PTN = (S, E), a
line pool £ as well as costs ¢y for all £ € £ and a period length T be given.

We use an inclusion representation

£= ([ez)eeE,ZG): ’

[, — {1 line ¢ contains link e | Vleg eek, 2.1)

0 otherwise

as well vehicle demands and maximal vehicle loads from definition 1.31
i, 1 e 0, TNz (2:2)

25
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and we want to determine the frequency
foelo, TINZ | Vieg. (2.3)

Our objective is to minimize the cost

min Z fece (2.4)

lel

while satisfying the edge bounds

Flor <> et < VecE. (2.5)

lel

Finding a feasible line concept for the Linear Program 2.1 is generally NP-
complete, since the exact cover by 3-sets problem may be reduced to it as shown
in [Sch04]. However, without upper bounds feasibility can easily be checked by
simply using all lines from £ with some global upper bound frequency.

2.3 Event Activity Network

Let a PTN = (S5, E) and a LC = (E, F) be given. Our Event Activity Network
Construction consists of the following steps:

1. Roll Out Lines,
2. Generate Change Activities,

3. Generate Headways.

2.3.1 Lines Roll Out

In this step we construct an initial base for an event activity network: departures,
arrivals, drive and wait activities for all lines in the line concept. Note that our
public transportation network PTN = (S, E) as well as line concept LC = (E, F)
are supposed to be directed or in case they still are undirected need to be made
directed.

The classical lines roll out model we call frequency_as_attribute, which
iterates through every line and creates one arrival and one departure per edge,
no matter what the frequency of that line is, see Algorithm 1 and Figure 2.1 for
illustration.
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Figure 2.1: Illustration of frequency_as_attribute LINES RoLL OUT: line ¢
consists of three edges: e;, e; and e with bounds ranged in [4, 5], [6, 10] resp.

[4,6]. The minimal and maximal waiting times are ["*® = 1 resp. u

Algorithm 1 LINES RoLL OUT, frequency_as_attribute

Input:

e PTN = (S, E), LC = (L, F),

e bounds [, u,] for all e € E,

e bounds for wait activities [["™ ¢¥it].
Output:

o EAN = (&, Aarive U Ayait ),

e bounds [l,, u,] for all a € A.

1: for all £ = (e, ..., e,,) € L do

2 if f, # 0 then

3: (u,v) :=ey

4: Add &1 := (u, ¢, dep,0), €3 := (v, ¢, arr,0) to €

5: Add a := (g1, &9, drive) to A with [ly, ug) := [le, te

6: for all e = (u,v) € (eg,...,e,,) do

7 Add &1 := (u,¢,dep,0) to €

8: Add a := (9,1, wait) to A with [l,, u,] := [, u™]
9: Add &5 := (v, 4, arr,0) to €

10: Add a := (g1, &9, drive) to A with [ly, us) := [le, ue)
11: end for

12 end if

13: end for
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2.3.2 Change Activities

When two lines ¢, /0y € L cross at a station s € S , passengers may use change
activities to get from one line into another. Basically, we could allow all changes,
but some do not make sense, e.g. the local station loops from Definition 1.40,
therefore we skip them.

Note that the simple GENERATE CHANGES model inserts change activities
also between different frequency instances. For the frequency_as_attribute
LiNneEs RoLL OUT model, there is only one frequency instance visible, however,
for the frequency_as_multiplicity LINES ROLL OUT model to be introduced
in Section 3.1.1, all are visible and thus simple has a different outcome then.

Algorithm 2 GENERATE CHANGES, simple

Input:
e PTN = (S, E), LC = (L, F),
e EAN = (&, A) without changes,
e bounds for change activities [[henee ychanse]
(typically: uchanse = 7' — 1 4 [change)
Output:
e EAN = (&, A) with changes.

1. for all ey = (s,¢1,dep,1),e9 = (8,0, arr,j) € £ do

2: (&1,e1) :=drive,,, (s1,01,dep,i) =&

3: (&9,89) :=drive,,, (S2,l,arr, j) := &9

4:  if 51 # s9 (i.e. no local station loop changes) then

5: Add a := (1, &9, change) to A with [l,, u,] := [[hanee qchanee]
6: end if

7: end for
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2.3.3 Headways

Let PTN = (S, E), T be a period length and h. headways, for all e € E. We
want to construct an EAN = (£, A) and because of periodicity and us working
on representants, events cannot be ordered in time. Therefore we must ensure
that between every pair of departures e1,e9 € £ which use the same edge e =
edge,, = edge,., headways are enforced: A timetable 7 : &€ — {0,...,7 —1} must
thus satisfy

Tey — ey € [he, T — 17 and Tey — Tey € [he, T — 17 (2.6)

which is equivalent to define two durations x,z’ € {h,...,T — 1} as depicted in
Figure 2.4. They form a single cycle (cycles in timetabling introduced in Section
2.5) that yields the constraint z + 2’ =0 mod 7.

WS
[he,Tf 1] xT €
— [he, T — he]
d d > dep —d
ep ~— ep ep ep
e
[he, T — 1]

Figure 2.4: A Headway Reduction.

However, one duration does the trick as well:

Lemma 2.2. Let h,T € N, h <T and x,2’ € {h,...,T — 1} then the constraint
x+2' =0 mod T is equivalent to x € {h,...,T — h} and ' may be omitted.

Proof. As a linear constraint z + 2’ =0 mod T writes

r+2 =kT | v,x' €{h,...., T -1}, ke Z. (2.7)
Solving for k yields
2h 2
— | =1<k<|2—=|=1 2.
2] uc o3 o
and thus k£ = 1. We further obtain
r=T—-2" |, ¥=T-—x (2.9)

and therefore, for each x € {h,...,T — h} there is an 2’ € {h,...,T — h} that
satisfies x + 2’ = 0 mod T and 2z’ may be omitted, since it passengers cannot
use them and they thus do not occur in the timetabling objective function from
equation (2.20) in section 2.5. O

It follows that algorithm 3 constructs the headways required, if all lines have
frequency one and when using frequency_as_attribute for LINES RoLL OUT.
We call it the GENERATE HEADWAYS model simple. In Section 3.1.4 we see that
for frequencies greater than one frequency_as_multiplicity may be needed.
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Algorithm 3 GENERATE HEADWAYS, simple

Input:

e PTN = (S, E), LC = (L, F),

e headways h, for all e € F,
e period length T

Output:

e EAN = (£, A) with headways.

EAN = (€, A) without headways,

1. for all ey = (s,¢1,dep,1),e9 = (8,02, dep, j) € € do

2:  edge := edge,,
3:  if edge = edge,_, then
4: Add a := (&1, €9, headway) to A with [l,, ] := [Pedges T — Pedge)
5. end if
6: end for
(- f | AR (- f | AR
dep rive arr wait dep rive arr fl dep rive arr wait dep rive arr gl
/
S9 II S92
drive wait drive / I drive wait drive /
arr dep arr dep | 4} larr dep arr dep | ¢}
51 \\ h[eladwf]y ’/
| | | Vo |
dep drive arr wait dep drive arr 62 dep drive :arr wait dep drive arr 62
54 \ T S4
drive wait drive / drive v wait drive /
arr dep arr dep | 45 arr dep arr dep | 4,
J s JU) T WL s JU

(a) After LINES RoLL OuT

(b) After GENERATE HEADWAYS

Figure 2.5: Illustration of GENERATE HEADWAYS for the PTN from Figure 2.2.
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2.4 Passenger Distribution

In this section we introduce both the concept of a passenger distribution as well
as a method to compute one.

Definition 2.3 (Passenger Distribution). Let EAN = (&£, .A) be an event activity
network with PTN = (S, E) as an underlying public transportation network. A
passenger distribution w : A — R, assigns to every activity a € A a passenger
weight w, > 0 that statisfy the property that it is the sum of coefficents from a
linear combination of EAN passenger routes (Def. 1.43) from arbitrary tuples
(s1,82) € S x S. If for a given origin destination matric OD = (wWg,s,)s,.s0e5
coefficients of the linear combination for every tuple (s1,s2) are ws,s,, then the
passenger distribution is derived from OD.

Indeed, we use the same letter w for both passenger distribution and origin
destination matrix entry. However since former uses an activity and latter two
stations as indices, we can always distinguish between them.

The requirement that the w, should be linear combinations of EAN passen-
ger routes in Definition 2.3 actually poses limitations to the possible passenger
distributions, since every path must start and end with a drive activity and thus
not all passenger weights yield passenger distributions as can be seen in Figure
2.6. Especially, w, = 0 for all A\ A,, i.e. those activities that are not passenger
usable, since by Definition 1.43 these activities may not be passed.

0 1 0
(sla f, dep) drive (SQa f, arr) wait (527 Ea dep) drive (83, f, aI'l")

Figure 2.6: Not a passenger distribution.

An evident way to compute an OD derived passenger distribution is to dis-
tribute passengers along shortest paths. Therefore let EAN = (£, .4) be an event
activity network derived from PTN = (S, E) and LC with passenger usable ac-
tivities A, = Adrive U Await U Achange C A and further OD = (ws,s,)s,s0e5- We
introduce source and sink events as well as enter and leave activities

gsource = {ESOurce HEAS S} ’ (
gsink = {Ezink HERS S} ) (

Aenter = {0 = (€5, 00 €) 1€ = (8,0, dep), L € L, s€ S} | (2.12
(

Aleave = {a = (g,6% ) e = (s,,arr), L € L, s€ S} |

sink
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the passenger usable origin destination closure EAN = (€, A)

g =&U 5.source U 5.sink ) (214)
Z = Ap U Aenter U Aleave (215)

and furthermore an initial duration assumption
7 A — Ry . (2.16)

We set 2™ = 0, for all @ € Aenter U Aleave, since we discard enter and leave
activities for timetabling anyway. We can obtain z™® from an arbitrary choice
or some feasible timetable from Definition 2.5 and the passenger distribution by
Algorithm 4.

Algorithm 4 PASSENGER DISTRIBUTION

Input:
e PTN = (Sa E)’ OD = (ws152)s1,5265> EAN = (sz)>
e initial duration assumption z™, for all a € A.
Output:
e passenger distribution w, > 0, for all a € A.

1: for all a € AU Aepter U Ajeave do

2 w, =0

3: end for

4: for all s; € S do

5. Compute shortest path tree ¢ from £ w.r.t. 2 on A
6: for all s € S do

7: if wg,5, > 0 then

8: Compute path p in ¢ from 5" to &k
9: for all a € A do

10: W = Wq + PaWsyso

11: end for

12: end if

13:  end for

14: end for

To save computing time, we reuse the shortest paths tree ¢ instead of calcu-
lating the shortest paths for every pair si, s, € S, since widely used methods
compute that tree anyway or simply stop once s, is reached. Further, we do
not need to calculate shortest paths for all pairs of events; passengers only travel
between stations, shortest paths between source and sink events suffice. For large
scale networks Bellman-Ford based methods like Floyd-Warshall need hours while
Dijkstra based methods with Fibonacci Heaps only seconds, which should be con-
sidered in an actual implementation.
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2.5 Timetabling

In this section, we introduce the linear program of the Periodic Fvent Scheduling
Problem PESP.

In its original formulation by [Ser89] the PESP is about finding a feasible pe-
riodic timetable for all lines occuring within the period T exactly once and widely
used according to [Lie02], from which wide parts of this section are taken. We
adapt to our notation and add some small results we make use of in the chapters
later. For different line frequencies, [Ser89] proposed the Eztended Periodic Event
Scheduling Problem EPESP, which we have a look at later in this section.

Throughout the section we assume that any event activity networks as graphs
are connected. If they are not, our results still hold for connected components.

For our purposes, we add the objective to minimize the average traveling time
which is basically the sum over activity duration times passengers that uses the
activity! and when we refer to PESP we not only mean constraints, as some
sources do, but include the average traveling time objective.

Linear Program 2.4 (Periodic Event Scheduling Problem PESP). Let T be
a period length and EAN = (€, A) an event activity network with passenger
distribution wg > 0, a € A.

We introduce times

. el0,T—-1NZ , Veek, (2.17)
and modulo parameters

€T, Vae A, (2.18)
want periodic interval constraints or time windows to be satisfied

lo <mo—me+ 2,T <y, Vae A (2.19)

and to minimize the average traveling time

min Z Wo (e — e + 2,1 . (2.20)

acA

(e,e")=a

I Actually, the term average would imply that we take the average over some domain, e.g.
divide by the total number of passengers in an additionally given OD matrix or the average in
time over a longer term. However, we skip it since in our model the number of passengers is
constant and the timetable keeps repeating.
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Definition 2.5 (Feasible Timetable). Let T' be a period length and EAN = (€, A)
an event activity network. A timetable 7., € € £ s called feasible if it is feasible
for Linear Program 2.4 resp. the equivalent Linear Program 2.15.

To illustrate what the PESP is about, take some activity (e,&’) = a € A and
let us have a look at Inequation (2.19). Without the 2,7 term it writes

lo < 7o — 7. < u, (2.21)

which basically states that event ¢’ should take at least [, and at most u, time
units after ¢, e.g. m. = 5 and 7 = 10 would mean that ¢ happens 5 time units
after ¢ and which would be feasible for {, = 3, but not for [, = 7, analogously
for upper bounds. However, in a periodic timetable ¢ and &’ represent infinitely
many events that keep repeating every 1" and the interval constraints have to be
satisfied for just one tuple of actual events being represented by € and €', e.g. if
T = 60, then 7. = 57 and 7w, = 2 still satisfy the lower bound [, = 3, since for
z =1 holds 2 — 57+ 60 = 5.

In Equation (2.19) it looks like as if bounds like [l,,u,] = [2,7 + 1] do not
make sense, since the constraint is always satisfied. However, note that it makes
a difference in the objective function. Let T" = 60, then for (¢,&’) = a € A with
7. =0 and 7., = 1 and w, = 1 it holds that

2<1—042T<T+1 (2.22)

implies z, = 1 and thus the objective gets an additional T'+ 1 while for [l,, u,] =
[1,T] we obtain

1<1-0+42T<T , (2.23)
thus z, = 0 and just an extra summand of 1. If @ had been a change activity,
then [, = 2 means that passengers need at least two time units to change and if
the time difference is 1, they cannot take the transfer and have to wait a whole

period.
Note that (2.19) is actually equivalent to

There must be some representant x, in
Ty =mo —m, mod T
for which holds
Zq € [la, Ua Vac A

Theorem 2.6. The PESP is N'P-complete.

In their paper [Ser89] showed N P-completeness for even finding a feasible so-
lution to the PESP by reducing the Hamiltonian Circuit Problem to it. Although
being NP-complete, advances in solving constraint satisfaction problems allow to
find feasible periodic timetables for large networks (80k activities) within seconds,
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e.g. with [Lec08]. This thus does not ease the task to find an optimal timetable.
However, if one fixes the modulo parameters z,, for all a € A the problem trans-
forms into an aperiodic event scheduling problem and is polynomially solveable,
since its constraint matrix is totally unimodular [Sch04].

There are some meaningless time windows, i.e. if u, — [, > T, since then
Ug — lo — |(ug — 1o)/T|T would still be in u, — l,, thus the constraint is still
satisfied and since w, > 0 for all a € A the simplication u, — [, < T — 1 does not
worsen the objective function.

If A forms an undirected tree, PESP has a trivial solution by simply setting
2, =0, for all (¢,¢') = a € A, m., = 0 for an arbitrary ¢y € £ and determining the
remaining 7. € £ by summing up [, along undirected paths, addition if the path
has the same orientation as a, substraction otherwise. Therefore, cycles pose the
actual challange, from which arises the next formulation. A function that maps
from the vertices of a graph into the reals is often referred to as potential, like
our timetable 7. For a potential, one usually defines a tension as well.

Definition 2.7 (Tension, Feasible Durations). A function x : A — Z is a peri-
odic tension with period T if there is a potential 7., € € £ and there are modulo
parameters z,, a € A so that it holds

To =T — 7+ 2,1, V(e,e')=ac€ A (2.24)

If the potential 7 is a timetable, then x,, a € A is called duration of activity a.
If 7 is feasible and for x, holds |, < x, < uq, for all a € A then z,, a € A are
feasible durations or feasible duration set.

Lemma 2.8 (Modulo Parameter Uniqueness). For a given feasible timetable ©
modulo parameters and durations are unique iff for every activity a € A it holds
Ug — L, <T — 1.

Proof. Apply Lemma 1.2, where a and b are two durations for an activity. O

Therefore, assuming u, — [, < T — 1 for all a € A is not only a lossless
simplification w.r.t. the PESP objective, but also allows us to reconstruct modulo
parameters and durations from a feasible timetable 2.

Definition 2.9 (Derived Timetable). Let x,, a € A be feasible durations. A
timetable that is a potential m for x is called periodic tension derived timetable
or derived timetable for short.

A derived timetable is not unique since all times may be shifted by 7" and
may be obtained by setting 7. = 0 for some ¢ € £ and summing up durations
along a spanning tree, as in the proof of Theorem 2.14.

2Note that this is not possible if for some (g,¢’) = a € A it holds u, — l, > T, e.g. 7. =0
and m.» = 1 could then either mean x, =1 or z, =T + 1.
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Definition 2.10 (Derived Modulo Parameters). Let m be as in Lemma 2.8. The
unique modulo parameters that belong to ™ are called derived modulo parameters.
Ifu,—1, <T—1 foralla € A is not explicitly stated, then it is assumed to hold.

Definition 2.11 (Derived Durations). Let w be as in Definition 2.10 with derived
modulo parameters z,, a € A. Then x, = 7o — 7. + 2,1, a € A are called
durations derived from .

Note that if v, —, < T — 1 for all a € A does not hold derived durations
from a derived timetable may differ from the original durations?®.

This allows us to formally define an average traveling time that depends only
on the timetable and passenger distribution but not on the modulo parameters.

Definition 2.12 (Average Traveling Time). Let T' be a period length, EAN =
(€, A) and 7., € € € be a feasible (derived) timetable with derived durations x,,
as well as w, > 0, a € A a passenger distribution. Then

ATT], = ATTS, == > w,z, (2.25)
acA

1s called the average traveling time w.r.t. 7 and w resp. w.r.t. x and w.

Corollary 2.13 (PESP Average Traveling Time). The PESP minimizes the av-
erage traveling time ATT for a fived passenger distribution w.

Proof. As per definition of the PESP in Linear Program 2.4. 0

Let us get back to the potentials and tensions: Every solution of the PESP is
a potential and therefore yields a periodic tension. However, to really profit from
it we also have to be able to do the reverse, i.e. checking whether a function is
a periodic tension without having to solve the PESP, for which we formulate a
necessary and sufficient condition.

A cycle C € €, where € denotes the set of all cycles in A is said to have the
cycle periodicity property if it satisfies

Jge€Z: Y wa— > xa=Tqc . (2.26)

acCt aceC—

Theorem 2.14. Let T be a period length and EAN = (£, A) and € the set of
cycles in A. A function m : A — R is a periodic tension with period T if and
only if each cycle C = CTUC™ € € has the cycle periodicity property.

3Same reason as for modulo parameters being ambiguous: e.g. if 2, = 61, T = 60, z, €
[1,61]. A derived timetable 7 could look like 7. = 0, m7» = 1 for (g,&’) = a. However, after
deriving x from 7 it may hold z, = 1.
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Proof from [Nac9j]. “=": Let z : A — R be a periodic tension. Taking the sum
of values x, = 7 — m. + Tz, along a cycle according to orientation, the 7. cancel
out, which yields

Z Ty — Z — Z 2T — Z 2T (2.27)

acCt aceC— acCt aceC—
- T(Z We Y ) —Te . (2:)
acCt aceC—

where q¢ is called the modulo parameter of C' and since T'q¢ is an integral multiple
of T, one way of the equivalence follows.
“«<". Suppose x,, a € A satisfies

> we— > m=Tqc, vV C e A (2.29)

acCt aceC—

To construct a corresponding solution (7, z) for the PESP, choose an arbitrary
spanning tree H C A and set z, = 0, for all @ € H and some arbitrary ¢y € &,
for which 7., := 0. For all other events ¢ € £, € # ¢¢ set

e = Z Ty — Z Tq (2.30)

a€P. a€P;.

with P.,. being the path from ¢y to ¢ w.r.t. H. A tree edge (e,') =a € H, 7
thus satisfies

Mer — T = Z Ty — Z xa/—( Z Ty + Z a:a/) =z, , (2.31)

a’erOE, aeP_, a/€P . a’€Pz,c
since both paths P.,.» and P.,. just differ in a. For a non tree edge (¢,¢') =a €
A\ H, adding a to H creates a cycle C. If C' contains &

To + < R x) — ( P xa/) =Tqo , (2.32)
a/€P, a'€P). a’erOE, a’ePE:)E,

since C' consists of P..., a = (g,¢), Po.,. If C' does not contain ¢y, then the

common part of P, and P.., cancels out in the above expression. Therefore, it

holds z, — m. + 7. = Tqc and setting p, = q¢ therefore yields x, = 7., — 7. =

ch. [

The method with the spanning tree from Theorem 2.14 allows us to obtain a
feasible timetable 7 from durations, given they are a periodic tension.

As a consequence of Theorem 2.14 we can introduce the Cyclic Periodicity
Formulation CPF as an equivalent alternative to PESP.



2.5. TIMETABLING 39

Linear Program 2.15 (Cyclic Periodicity Formulation CPF). Let a PTN =
(S, E) and an EAN = (&€, A) be given, as well as € the set of all cycles in A and
wy > 0 a passenger distribution, a € A.

We introduce durations
Tq € [layug) NZ Vae A (2.33)

We want to minimize the average traveling time

min Z Walq (2.34)

acA

subject to periodicity being satisfied

Zxa— Zxa:zCT , vVCecd (2.35)

acCt aeC—

The PESP has an obvious lower bound, which is Zae 4 Walq and can be ob-
tained by setting all durations to their lower bounds.

Definition 2.16. Let z, € [l,,uq|, a € A be durations and w, a passenger
distribution, a € A. The slack of a is defined by x, —,. The weighted slack sum

> walre — 1) (2.36)

acA

We call the weighted slack sum simply slack as well. It cannot be mixed up
since one refers to an activity and the other to a whole PESP.

Lemma 2.17. Minimizing the weighted slack sum is equivalent to minimize the
PESP objective.

Proof. Since the CPF is equivalent to PESP, take (2.34) as objective. It holds
Z Walyq = Z We(Te — 1) + Zwala , (2.37)
acA acA acA

where Zae A Walg is constant and thus does not affect minimization. O

Lemma 2.18 (PESP Lower Bound). For the PESP,

lprsp = Z Walg (2.38)
acA

1s a lower bound.
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Proof. Since every term in ) ., wa(%4 — l,) is nonnegative, the PESP objective
cannot be less than l[pgsp. OJ

In the PESP, if the weighted slack sum is zero, it is impossible to further
improve the average traveling time, but for variable passenger distributions this
is delusive as can be seen in Section 5.6.

However, there is still a significant drawback in the CPF': for nontrivial graphs,
the number of cycles in a graph grows exponentially with the number of activities,
e.g. the complete graph on n nodes has ), _, (Z) (k;m simple cycles and therefore
we get exponentially many variables go. For comparison, the PESP only has
m = |A| time windows and modulo parameters. From the set of all cycles, some

may always be removed.

Definition 2.19 (Period Spanning Activity). An activity a € A spans a period
if ug — 1, >T — 1.

Period spanning activities may still play a role when it comes to objective
functions, but may be ignored when searching for a feasible timetable.

Lemma 2.20. Let EAN = (£, A) be an event activity network, T' a period length
and a € A a period spanning activity as well as m a feasible timetable for EAN' =
(€, A\ {a}). Then 7 is also feasible for EAN.

Proof. With u, =T — 1 the the constraint induced by (g,¢’) = a is the tightest
dkeZ: e —Ter + kT € [lo,l, +T —1)NZ (2.39)
which is equivalent to
dkeZ: me—mo+ kT —1,€[0,T—-1NZ , (2.40)

with Ug > l,+T —_1. Let A = . — 7 — I, € Z. By division with remainder
A =kT + 0, where k € Z and 6 € {0,...,T — 1}. Thus

dkeZ: . —70 +kT =(k+k)T+5€[0,T—-1]NZ (2.41)

may be satisfied with £ = —k. O

For example, change activities a with [, = 4 and u, = 63 are periodically
unbounded for 7" = 60.

Definition 2.21. A trivial cycle is a cycle that contains a period spanning activity
a € A as in Definition 2.19 with no passengers using it, i.e. w, = 0 in the
objective function. All other cycles are called nontrivial cycles.

Lemma 2.22. Trivial cycles may be ignored in CPF.



2.5. TIMETABLING 41

Proof. Since w, = 0 the activity a has only influence on feasibility, but not on
the objective. However, with Lemma 2.20 it has even no influence on feasibility
as well. Therefore, it may be removed from A and every cycle that contains a
gets broken that way, so it does not occur in the constraints (2.35). O

For some small networks we consider in Chapter 5 there is usually only one
nontrivial cycle due to the passenger distribution, so that we can apply the CPF
directly.

Let us establish an estimation for q¢.

Theorem 2.23 (Theorem of Odijk [0di96]). A PESP instance defined by a given
EAN = (€, A) and period length T is feasible if and only if there exists an integer
vector z,, a € A that satisfies the cycle inequalities

ac< Y z— Y z<be (2.42)

acCt aceC—

for all (simple) cycles C € €, where € denotes the set of all cycles in A and ac
and be are defined by

ac:[%(zza_zuaﬂ | bc:{%<2ua—21a)J (2a)

acCt acC— acCt aceC—

Lemma 2.24 (Lemma of Odijk). Let ac and be be from Theorem 2.23. In
equation (2.35) the cycle periodicity variables qc are bounded by ac < qo < be.

Proof. In the constraint (2.35) divide by T". The feasible time windows [l,, u,]| of
T, may be used to get a lower and upper bounds for zo. Due to the integrality
of z¢, floor and ceil may be applied to the bounds and yield ac and b¢. O

We also use Lemma 2.24 extensively in Chapter 5, but even for the big issue
with exponentially many variables there is a solution: instead of taking all cycles,
one can use an integral cycle base that reduces the number of cycle to k =
|E| — |V] + 1 for an directed, connected graph G = (V, E). However, although
the implementation makes use of it, we do not use it directly in this work and
therefore skip it. For a brief review see [Lie02] and for a broader survey see
[KLM™09].

Let us have a look at the EPESP announced at the beginning of the section.
Introduced by [Ser89], especially [Nac96] is cited by different authors. As for
PESP, the EPESP is only about feasibility in its original form, but when we refer
to it we think of minimizing some sort of average traveling time as objective,
which we detailed out in Section 3.1.
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Linear Program 2.25 (Extended Periodic Event Scheduling Problem EPESP).
Let EAN = (&£, A) be an event activity network with activity periods T, and

passenger distribution w, > 0, a € A.

We introduce times

N T e0,T-1NZ ,

and modulo parameters

Za €L

want periodic interval constraints to be satisfied
lagﬂs’_ﬂs"i_ZaTaSua

and to minimize the average traveling time

min Z We(mer — e + 241%)

acA
(e,e")=a

Veck, (2.44)
VaeA, (2.45)
Vae A (2.46)

(2.47)

If T, =T, for all a € A for some T, then the EPESP obviously transforms into
PESP. However, the question arisies what different 7, may even mean. Again
answer can be found in Section 3.1. The intention of the EPESP is to circumvent
the necessity of the frequency_as_multiplicity LINES ROLL OUT model to
be introduced in Section 3.1.1, therefore it only make sense with the already

introduced frequency_as_attribute model.



Chapter 3

Beyond Classical Models

In this chapter we mainly deal with how frequencies may be considered in event
activity networks and how passenger routing affects timetabling. Therefore, we
not only introduce new models but also compare with the EPESP, which as a
classical model is intended to account for frequencies.

The term beyond refers to extensions the author made during his work on
LinTim, which is based on classical models from [Sch04].

Some results the author has been able to find in literature as well, e.g. in
the widely cited [Nac96], from which he took the results for 3.1.3 and wants
to thank Marie Schmidt for providing him [KinO8] and [Lue09], who worked on
integrating timetabling and rerouting as well and introduced models similar to
ours. However, they did neither take different line frequencies nor headways
into account. The author aquired [Nac98] when Section 3.1.4 had already been
written, which he does not consider as a disadvantage, since he could use the
number theoretic methods he deployed for Chapter 5 as well.

3.1 Event Activity Network

This section introduces the frequency_as_multiplicity LINES RoLr OuT
model, the PERIODIC ROLLOUT transformation that allows to map timetables
from the classical frequency_as_attribute model, an estimation for the best
change between two lines given a feasible timetable as well as three headway
models to fix a feasibility issue.

3.1.1 Frequency as Multiplicity

We introduce a new kind of activity.

Definition 3.1 (Sync Activity). Let PTN = (S, E) be a public transportation
network, LC = (L, F') be a line concept and EAN = (€, A) an associated event

activity network. A sync activity connects two departures e; = (dep, ¢, s,1),e9 =
(dep, ¥, s,i+ 1) € € at the same station s that use the same line { and belong to

43
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consecutive frequency instances, for all i € {0,..., f — 2} and has a lower and
upper bound l, = u, =T/ fo.

The sync activities ensures that departures of the same line are equally dis-
tributed throughout the period. Note that it is not necessary to connect instances
fe— 1 and 0, since f,|T by Definition 1.33.

In the frequency_as_attribute model from Section 2.3.1 we did not account
for frequencies. Now, we do so by iterating through every line ¢ € L and create
fe arrivals and f, departures per edge, i.e. as many as the frequency f, and add
sync activities in between, see algorithm 5 and Figure 3.1 for illustration!.

ey €2 €3 7 —
ol =45 927 [awal=1610] 93 [gusl=1a6 % tel, fe=3,
rive ( :
dep——c1 4—5 T AT code lines 1-7,
d drive ( T wait d drive ( walt d _dr_lvi T 2 d lln 8 15
€D S w5 ¢ AT Tra 9P e 107 AIT P Giq 1 2 x code lines 8-15,
drive ( wait \ drive ( wait \ drive
d(lap T AT Ty dep S0 AT g dep o arr
sync .
120,20 ‘ code lines 15-20,
dep ! drive >
\ ) 15l J _ J ___J
de drive (arr wait de \ drive (arr wait de \ drive arr
P a3 1, 3] P 776,10 1, 3] |p [, 6]
sync sync sync .
[20,20(]i ) (20, QO]l W [20, 201} W 2x code lines 21—28,
dep ! rive arr wait dep rive arr _w_alt dep _drive > arr
) [4,5] L [1,3] ) [6,10] L ) [4,6] |\
d drive ( wait d \ drive ( wait d \ drive
€p 3 5] arr L3 ep [6,10] arr €p 2,6 arr
sync sync s nc .
l[20y, 2031 ) [gtoy, 20]1 o [2§ 20]1 " code lines 15—20,
! drive wal rive wai rive .
de 1 [4,5] arr [1,3] dep [6,10] arr dep [4, 6] arr 2x code lines 21—28,
sync sync anC
1[20, 2031 [2?, 20]1 4 [28 20]1 4 ﬁnal output.
' drive wai rive wai rive
dep-—i5 T AT depJ 6,107 L AT T dep) Go L arr

Figure 3.1: Illustration of frequency_as_multiplicity LINES RoLL OUT.

!The frequency_as_attribute model is not to be confused with the X-PESP model from
[Kin08]. In his model, the network size grows with the period length while our network size
grows with the line frequencies.
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Algorithm 5 LINES ROLL OUT, frequency_as_multiplicity

Input:

PTN = (S, E), LC = (L, F),

bounds [l., u.] for all e € E,
e bounds for wait activities [[V ¢Vait],
e period length T'.

Output:
e EAN = (87 A= Adrive U Await U Async)a
e bounds [l,, u,] for all a € A.

1: for all £ = (e, ..., e,,) € L do

2: if f, # 0 then

3: m:{l,...,ng}—HS'

4: (s,8'):=ey

5: Add € := (s,¢,dep,0), &’ := (&', £, arr,0) to €

6: my = €1

7 Add a := (g,¢,drive) to A with [l,, ug] = [, u]

8: for all e; = (s,5') € (e2,...,en()) do

9: Add € := (s,/,dep,0) to &€

10: Add a := (¢, e, wait) to A with [l,, ug] := [V, u™2it]
11: m; ‘= €&

12: Add ¢ := (¢, 4, arr,0) to &

13: Add a := (g,¢,drive) to A with [l,, us] := [, u.]

14: end for

15: forall je(1,...,f,—1) do

16: (s,8):=e1

17: Add e := (s,¢,dep, j) ' := (¢, ¢,arr,j) to €

18: Add a := (my, €, sync) to A with [l,, u,] := [T/ fi, T/ fi
19: my:=¢

20: Add a := (e,¢, drive) to A with [l,, us] = [, u.]

21: for all e; = (s,5') € (e2,...,en() do

22: Add e := (s,¢,dep, j) to €

23: Add a := (¢, g, wait) to A with [I,, u,] := [V u™ai?]
24: Add a := (my, e,sync) to A with [l,, us] :== [T/ fo, T/ fi]
25: m; == ¢€

26: Add &' := (¢, ¢, arr, j) to €

27 Add a := (g,¢,drive) to A with [lo, us] := [lc, u.]

28: end for

29: end for

30:  end if

31: end for
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3.1.2 Periodic Rollout

An EANga = (Epa, Apa) constructed with the frequency_as_attribute fre-
quency model seems more attractive for periodic timetabling since it yields less
variables and constraints than an event activity network with LINES RoLL OuT
model frequency_as_multiplicity. However, the former is less complete and
thus there are some pitfalls as can be seen in Chapter 5, where we extensively
use the concept of a periodic rollout or just rollout for short, which constructs
an EANpy = (€, Arm) and especially maps the timetable 7 into 7™ with
Algorithm 6.

Algorithm 6 PERIODIC ROLLOUT

Input:
e PTN = (S, E), LC = (L, F), EANpa (Ea, A),
e bounds [l., u.] for all e € E, wait activity bounds [[™, "]
e period length 7', timetable 7.
Output:
e EANpy = (Epyp, A'), timetable 7™M,
e bounds [l,, u,] for all a € A.

Y

run LINES ROLL OUT, frequency_as_multiplicity (Algorithm 5)
for all (s, ¢, arr /dep,i) = ¢ € Epy do
WEM = 71-%::91,\21,&1"1"/dep,i) + Z%
end for
run GENERATE CHANGES (Algorithm 2)

run GENERATE HEADWAYS (Algorithm 3)

We may take over an old passenger distribution w by embedding it as w into

“ e A
w, = v “ FA , Vac AFM, (3.1)
0 otherwise

where (€,¢') = a € Apa N Apy if both € and €’ have a frequency instance of zero.

However, redistributing passengers in the rolled out network generally de-
creases the average traveling time as can be observed in Chapter 6 or at least
never increases it.

Theorem 3.2 (Periopic RorLrouT ATT). Let EANgy = (Epa, Ara) be an
event activity network on PTN = (S, E) with LINES RoLL OUT model fre-
quency_as_attribute and feasible timetable Tpa, OD = (ws,s,)s,s0es AN 0TigIN
destination matriz and w,, a € A an OD derived passenger distribution as well
as EANgy = (Epu, Arpn) the PERIODIC ROLLOUT of EANga with timetable mpy
and w!, obtained by PASSENGER DISTRIBUTION w.r.t. mpy derived durations as
shortest paths weights. Then it holds

ATT™M < ATTT (3.2)
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Proof. Since EANpy with 7gy derived durations zpy contains EANpy with s
derived durations zga, for the embedded distribution w it holds

ATTTNM = ATTT (3.3)

where ATT is the average traveling time from Definition 2.12. By the upcoming
Corollary 3.18, replacing w by w’ does not increase the average traveling time
and thus

ATT™M < ATTIM — ATTTFA (3.4)
O

3.1.3 Change Activities

After a PERIODIC ROLLOUT not only departures, but also arrivals are synchro-
nized by construction of the rolled out timetable. This allows us to estimate the
duration of the newly introduced inter frequency changes, since they form a nice
pattern as can be seen in Figure 3.2.

S, N
dep .
i h 7=0
:15
¥
dep ‘
1=0 7 2 20 1=1
s
17
_ dep .
1=1 35 1=2
s
dep .
75 0 50 J=3
- J

Figure 3.2: Detail of an EAN = (&, .A) with period length 7" = 60 associated to a
PTN = (S, E) and a LC = (E, F), two lines {1, (5 € L that cross at station s € S,
have frequencies (f1, f2) = (2,4) and a timetable 7. Note that the durations are
five plus a multiple of fifteen.

The question arises whether or not there is some simple way to obtain and
characterize the durations of all changes between two lines only knowing a ref-
erence duration z, from the frequency_as_attribute model. And indeed, it is
possible.
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Lemma 3.3 (Change Duration Pattern). Let T' be a period length, PTN = (S, E),
LC = (E, F) and EAN = (&, A) an associated event activity network, further
g; = (arr, (1, 5,1),¢; = (dep, la, 8, j) € €, with {y # {3, a;; € A a change activity
between €; and 53-, x;; be the duration of a;; for a feasible timetable 7, with x, :=
xgo defined as the reference duration and further ["a"&¢ the lower bound as well
as uhanse = [change L T 1 the upper bound for all change activities, fi and f,
the frequencies of {1 resp. Uy as well as T = T/lem(f1, fo). The possible change
durations x;; satisfy the property

xy; =x, —k(i,7)7 mod T (3.5)
where k(i,7) is the lem representation map from Corollary 1.12.

Proof. By the PERIODIC ROLLOUT durations between events g, ..., €1 as
well as e, ..., €}, are fixed as if there had been sync activities, not only for
departures but also for arrivals. The duration of x;; may be obtained by the cycle

it shares with z,

T T
i—+x;—j——2,=0 modT (3.6)
fi f2

which, with the lem representation map is equivalent to
Ty =2, — k(i,j)7 mod T (3.7)
and thus the lemma follows. O
From Lemma 3.3 we already see what is the shortest change activity.

Lemma 3.4 (Best Change Activity). The shortest change or best change activity
an actwity between €; and ; from Lemma 3.8 has a duration that satisfies

T,=z, modT |, (3.8)
where T, € {[hanee | [change 4 o 1},
Proof. In Equation (3.5), apply Lemma 1.6. O

For change activities a € Agpange between lines of frequencies f; and fs, setting
T, = 7 yields the best change activity duration for a in the objective of EPESP
from Section 2.5, which is stated in [Nac96] as well. Further, the upper bound
may be reduced to u, = 7 + [h"#¢ in that case. However, although a passenger
may be able to take the best change at some station, in general it is not possible
to take all best change activities on the way from one station to some other,
which is shown in Section 5.7.
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3.1.4 Headways

The simple HEADWAY GENERATION model does not necessarily yield a PERI-
oDIC ROLLOUT feasible timetable, when we perform the LINES ROLL OUT with
frequency_as_attribute?, as we can see in Figure 3.3.

S
e N
dep  headway  dep
S U1 = rr] %
: m: 0 [5,55] 1y : 30
/ dep  headway  dep 0 sync j
1 m 20 [5,55] 9 : 30 2 30, 30] headway
dep [5,55]
b9 .
IR 30
\ J
(a) Event Activity Network Detail, (b) Event Activity Network Detail,
frequency_as_attribute frequency_as_multiplicity,

after PERIODIC RoLLOUT

Figure 3.3: Detail of an EAN = (€, .A) with period length 7" = 60 associated to
a PTN = (S,E) and a LC = (L, F), two lines ¢,, 0, € L that cross at station
s € S, have frequencies (f1, fo) = (2,1) and a timetable 7. In (a), i.e. when
using the frequency_as_attribute model, m; = 0 and m, = 30 satisfy the
only headway constraint. However, when extrapolating the EAN in (b) with a
PERIODIC ROLLOUT, a second headway arises and is violated, i.e. m3 —m =0 ¢
[5, 55]r and therefore m becomes infeasible.

However, there is a solution: We copy the headways from the rolled-out net-
work®. Instead of one headway per departure pair with same associated edge the
product_of_frequencies HEADWAY GENERATION model adds, as the name
says, product f;fo many headways, where f; and fy are the frequencies of the
lines.

2When headways were introduced to LinTim, Michael Schachtebeck was working on ape-
riodically rolled out periodic event activity networks, which were constructed with the fre-
quency_as_attribute model and wondered he why his delay management did not work any-
more, thus he discovered that the initial periodic timetable was already infeasible.

3Marc Goerigk was working on periodic timetabling and wanted to create aperiodic rollout
feasible timetables without the effort to solve the periodically rolled out problem. Therefore
the product_of_frequencies HEADWAY GENERATION model is one of his many contributions
to LinTim.
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Algorithm 7 HEADWAY GENERATION, product_of_frequencies

Input:
e PTN = (S, E), LC = (L, F),
EAN = (€, A) without headways,
e headways h, for all e € E,
e period length T'.
Output:
e EAN = (&, A) with headways.
1: for all €1 = (s, /1,dep,0),e9 = (s,¢5,dep,0) € £ do
2:  e:=edge,
3: if e = edge_, then
4 for all (i,5) € {0,..., fo,} x {0,..., fs,} do
5: 0 := jT/ fo, —iT/ fu,
6
7
8
9:

Add a := (g1, €2, headway) to A with [l,, us) := [he + 0, T — he + 0]
end for
end if
end for

Theorem 3.5 (product_of_frequencies Feasibility). Let mpa be a timetable
for the event activity network EANgy = (Epa, Apa) with LINES RoLL OuT
model frequency_as_attribute and as HEADWAY GENERATION model prod-
uct_of_frequencies. Let EANgy = (Epum, Arm) be the PERIODIC ROLLOUT
of EANgs with timetable mpy and simple as HEADWAY GENERATION model.
Then mpa is feasible for EANga iff mpy is feasible for EANgy.

Proof. Let T be the period length, ¢; = (dep, {1, s,4),; = (dep, {a, s,7) € Erm,
edge,, = edgesg, f1, fo frequencies of ¢ and fy, Iy # ly, m = wpm(e;) and
7 = mpm(e}) for alli € {0,..., fi =1}, j €{0,..., fo — 1}. Then, by PERIODIC
RoLrouT

mo = Tem(€0) = mralen) ,  mh = mrm(eg) = TralEy) (3.9)

and T T
=T +i— =T+ j—. 3.10
°T' i Ty (3.10)

Therefore EANpgy; poses the constraints

El!lfijE{h,...,T—h}Z
T T T
7T6—7T0:7T;—7Tz+jg—lz:IU—ZE—FJE modT,
Vie{0,...,i—1%5€{0,....fo—1}, (3.11)
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thus (3.11) is equivalent to

EIZIS'UE{}L—‘—(SU,,T—]’L—I—(SU} 7T6—7T0:Zl§'ij mod T s
T T
0ij =j——1i—, Vie{0,...,fi—1},7€{0,..., fo — 1}, (3.12)
f2 S
as stated in Algorithm 7, lines 5 and 6. U

Generally however, fewer constraints as generated by Algorithm 8 already
ensure feasibility.

Algorithm 8 HEADWAY GENERATION, lcm_of_frequencies

Input:

PTN = (S, E), LC = (L, F),
EAN = (&, A) without headways,
headways h, for all e € E,
period length T

Output:
e EAN = (&, .A) with headways.

1: for all €1 = (s,/1,dep,0),e9 = (s,¢5,dep,0) € £ do

2:  e:=edge,

3: if e = edge,, then

4 for all k € {0,...,l—1} do

5: 0= ]{?T/ lcm(fl, fg)

6 Add a := (g1, €9, headway) to A with [l,, us| := [he + 6, T — h + 0]
7 end for

8 end if

9: end for

Theorem 3.6 (lcm_of_frequencies Equivalence). Let m be a timetable for
the event actiwvity networks EAN = (£, A) and EAN' = (&, A’) with LINES
RoLL OUT model frequency_as_attribute and GENERATE HEADWAYS mod-
els product_of_frequencties resp. lem_of_frequencies. Then 7w is feasible

for EAN' iff 7 is feasible for EAN.

Proof. Let T be the period length, ¢ = (dep,ly,s,0),e’ = (dep,ls,s,0) € &,
edge. = edge.,, fi1, fo frequencies of |y and ly, ¢ = lem(fi, f2), mo := 7(e) and
7y = m(¢’). In the product_of_frequencies HEADWAY GENERATION model
holds

i+
iR
ViE{0,...,f1—1},j€{0,...,f2—1}, (313)
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where Z;; € {h+d;5,....,T — h+ 0;;} with d;; = jT/fo — i1/ f1 are the headway
activities constructed by Algorithm 7. Let

k{0, fi— 1y % {0, fa—1} = {0,....0—1}

T T T
,J))—k:j——i—=k— mod T 3.14
(4,7) kL (3.14)

be the swapped lem representation map, which, as per Corollary 1.12 is well-
defined and surjective, i,7' € {0,...,f1 — 1} and j,5' € {0,..., fo — 1} with
k(i,7) = k(i',5"). Then

T, T kL LT
Tii — i— + j— = Ty 1,])— =T — Mg = Tjrjr — & — —
ST T TR T e e ey
./ ., T . . T
=z + k(i j )? = zyp + k‘(l,])? mod T, (3.15)
therefore z;; = x;;; mod T and since x;;, xy; are both in {h,..., T —h} Lemma

1.2 yields z;; = zyj. It follows that if ¢ # i’ or j # j' the variable z;; together
with its constraint are redundant and, since k is surjective, the constraints from
equation (3.13) are equivalent to

T
Ja,ed{h,....,T—h}: 7n,—my=ap+k—-—~ modT |,
L€ oo = et M )

Vke {O, cee ,lcm(fl, fg) - 1}, (316)

which just is the lcm_of _frequencies HEADWAY GENERATION model from Al-
gorithm 8. O

Corollary 3.7 (1cm_of _frequencies Feasibility). Let mpa be a timetable for the
event activity network EANga = (Epa, Apa ) with LINES ROLL OUT model fre-
quency_as_attribute and lecm_of_frequencies as GENERATE HEADWAYS
model. Let EANpy = (Epum, Arum) be the PERIODIC ROLLOUT of EANga with
timetable mpy and simple as HEADWAY GENERATION model. Then mgy is fea-
sible for EANpa iff mpm is feasible for EANgy.

Proof. Direct consequence from theorem 3.5 and 3.6. 0
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t area t area t area t area t area t area
0 X 10 X 20 X 0 X 10 X 20 X
1 11 21 1 11 21

2 12 22 2 12 22

3 13 23 3 13 23

4 14 24 4 14 24

5! 15 25 5 X 15 25

6 16 26 6 16 26

7 17 27 7 17 27

8 18 28 8 18 28

9 19 29 9 19 29

(a) Infeasible Area Induced by ¢4, ... (b) ...by 3' Frequency Instance of ¢; and
15¢ of £y, ...

t area t area t area t area t area t area
0 X 10 X 20 X 0 X 10 X 20 X
1 11 21 1 11 21

2 12 22 2 12 22

3 13 23 3 13 23

4 14 24 4 14 24

5 X 15 X 25 5 X 15 X 25 X
6 16 26 6 16 26

7 17 27 7 17 27

8 18 28 8 18 28

9 19 29 9 19 29

(c) ...by 15 of £1 and 15¢ of 45 ... (d) ...and by 2°4 of ¢; and 1% of /o

Figure 3.4: Lines ¢, € L and fy € L from LC = (E, F) with frequencies f; = 3
resp. f» = 2 using the same edge e € E from PTN = (S, E) with headway h, = 2,
and T" = 30. The time of the representative departure event of ¢; w.l.o.g. is zero.
Gray areas show the infeasible area to place any departure of /5 and X denotes
that either there is a departure of ¢; or a time which may not be used for /5

because of another X. Note that in (d) the white area may be parametrized by
t € [2,3] 4+ 5k with k € {0,...,5}.
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Theorem 3.6 and Figure 3.4 let us already suggest that periodic headways
between lines of different frequencies f; and f; have a regular structure. And
indeed, this is the case: regardless what frequencies f; and f, are, we only need
one activity and two variables to ensure rollout feasibility.

Algorithm 9 HEADWAY GENERATION, lcm_representation

Input:

PTN = (S, E), LC = (L, F),
EAN = (€, A) without headways,
e headways h, for all e € E,

e period length T'.
Output:
e EAN = (&, .A) with headways.

1: for all €1 = (s, /1,dep,0),e9 = (s,¢5,dep,0) € £ do

2. e:=edge,

3: if e = edge,_, then

4: [ :=lem(fy, fo), 7:=T/I

5: Add a := (g1, €9, headway) to A with [l,, us] := [he, T — he]

6: In the periodic timetabling step, state x, = T, + kT,
where T, € {he,..., 7 —he}, k €{0,...,1—1}

7. end if

8: end for

Theorem 3.8 (lcm_representation Equivalence). Let 7 be a timetable for
the event activity networks EAN = (£, A) and EAN' = (£, A") with LINES
RoLL OUT model frequency_as_attribute and GENERATE HEADWAYS mod-
els lem_of_frequencies resp. lcm_representation. Then w is feasible for

EAN’ iff 7 is feasible for EAN.
Proof. Let ¢ = (dep,ly,s,0),e" = (dep,ls,s,0) € &, edge. = edge., fi, fo fre-
quencies of Iy and ly, £ = lem(fy, fo), 7 =T/l, mo := w(e) and 7, := m(e’).
The 1cm_of_frequencies model yields
Japedh,...,.T—h}: =z, :=my—m9o=2ap=ax+kr modT |,
Vke{0,...,0—1}, (3.17)

where 7, € {h+ 0k,..., T — h+ 0}, 0 = kT and z, € {0,...,T — 1} is the
reference duration. From division with remainder follows

T, =T+ KT zed{0,...,7—1}, ke {0,...,0—1} (3.18)
and

Vike{0,....0—1}y:3x,€{h,...., T —h}, 2€{0,...,7—1}:
r+ kKT =x,+kr modT . (3.19)
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With substituting k — k — k, equations from (3.17) write as

Vke{s—0+1,....5}:Fare{h,....,T—h}, x€{0,...,7—1}:
=2+ (k—(k—k))rT=x+kr modT , (3.20)

and since /7 =T =0 mod T the range k € {x —( +1,..., K} is equivalent to
ke{0,...,0—1}

Vike{0,....0—1}y:Fape{h,...., T —h}, z€{0,...,7—1}:
rp=x+kr modT . (3.21)

It must further hold that h < x < 7 — h: Assume that x < h, then x;, < h for
k=0. Forx >7—h,ie. e =7—h+a,a>0 with k=/{¢—1 follows

T
th=7—hta+(~Or=l;—h+ta=T-h+a>T~h . (322

Thus both assumptions contradict h < x, < T — h and therefore h < x < 7 — h,

which also yields
o2h<T | (3.23)

a necessary condition for a feasible timetable to exist at all, so let h and 7 be
such that (3.23) is valid. Yet was shown that every reference duration x, must
have the 1lcm_representation representation

T, =2+ KT zed{h,...,T—h} , ke{0,...,0—1}. (3.24)

to satisfy the lcm_of_frequencies model, i.e. necessity. To show sufficiency,
consider

Vke{0,....0—1}: 3z, €{h,....,T—h}, x€f{h,....Tt—h},2€Z:
v —x—kr =21 | (3.25)

equivalent to lcm_of _frequencies constraints (3.21) with

h—71+h—Fkr T—h—h—kr
<z < . 2
R e B e ey (@20

For the lower bound, k = 0 poses the greatest restriction, for the upper bound
k =/¢ — 1. Further

2h — 7| (3.23) T —2h—(-1)% —2h+ 7| (323
[ - W 0<z2< { - - 0, (3.27)

thus the lcm_representation representation (3.24) always satisfies the model
lcm_of _frequencies, i.e. it is sufficient and therefore the theorem follows. [
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Corollary 3.9 (lcm_representation Feasibility). Let mpa be a timetable for
the event activity network EANgy = (Epa, Apa) with LINES ROLL OUT model
frequency_as_attribute and lem_representation as HEADWAY GENERA-
TION model. Let EANgy = (Epn, Apm) be the PERIODIC ROLLOUT of EANga
with timetable gy and simple as HEADWAY GENERATION model. Then mga i
feasible for EANga iff mpym is feasible for EANgy.

Proof. Direct consequence from Theorem 3.8 and Corollary 3.7. O

In terms of the EPESP from Section 2.5, Corollary 3.9 states that if a head-
way @ € Aneadway Detween lines of frequencies f; and f, with minimum du-
ration h is to be satisfied, then T, = 7 := lem(f1, fo) bounds [, = h and
u, = T — h does the trick, which [Nac98] found out as well. Therefore, using
the lcm_representation actually transforms the PESP into an EPESP, besides
that by the representation x, = T, + xk7 the advantages of the CPF may still be
used. The lcm_of_frequencies model, since it reduces the problem size com-
pared to the initial product_of_frequencies is interesting for heuristic methods
that rely on the PESP model, like the modulo simplex from [GS11].

Corollary 3.10 (A Timetable Feasibility Criterion for Line Concepts). Let T' be
a period length, PTN = (S, E) be a public transportation network, LC = (E, F)
a line concept, l1,0s € L two lines with frequencies fi|T resp. fo|T, h : E -
{0,..., T —1} a headway map, EANga an event activity network and EANpy its
PERIODIC ROLLOUT with timetable w. Then

T
max he<|——| . 3.28
eefﬂ'wzCE \‘2lcm(flvf2)J ( )

Proof. Let 7 := T/lem(f1, f2). For every e € ¢; N ¢, HEADWAY GENERATION
creates a headway activity with duration z, for which in EANgy;, trough the
lcm_representation representation as per corollary 3.9 must hold

Tg =T+ KT | x €{hey...,T—he} ke€{0,...,0—1}, (3.29)

where the existance of a valid x implies that the set {he,...,7 — h.} is nonempty
and therefore h, < 7 — h, or h, < 7/2 and since h, is integral

T

he < EJ (3.30)

and thus the corollary follows. O
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3.2 Timetabling and Routing

57

In this section, we introduce both quadratic and linear models for an extension
of the PESP, namely the Origin Destination Aware Periodic Fvent Scheduling

Problem ODPESP*.

Quadratic Program 3.11 (Quadratic ODPESP). Let a PTN = (S, E) and an
EAN = (&£, A) be given, A, C A the passenger usable activities as well as an
integral cycle basis or just the set of all cycles C, a € A and an origin destination

matriz OD = (Ws, s, )s;.50€5-

We use an incidence matrix

A= (aae)aEA,aES 5

1 de&:
a= (¢ e)

Auer = _1 deé:
a=(g¢&)

0 otherwise
introduce path decision variables

path from sy to so

Dassy = uses activity a
0 otherwise

and durations

n Tq € [la,Ua) NZ

We want to minimize the average traveling time

min E WsysoPasisala

817826S7
Wsqsg >0,
a€Ay

subject to periodicity being satisfied

Zxa—Zxa:ch,

acCt aceC—

VaeA,
e ef,

Vaec Ay,
S1, 89 € S,
Weys, > 0,

Vace A.

vV CecC,

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

4Independent of our results, [Lue09] also worked out that model in his diploma thesis and

called it IntMod.
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and the path are connected

Veek,
> GePasis = 0, s €8, (3.36)
e Waroa > 0,
U drivel™)
Veel,
> Gepassm = 1, 51,0 €8, (3.37)
a€driveds? Wey sy > 0,
Veel,
> GuPasis = —1 51,9 € 58, (3.38)
a€drivel” Weys, > 0.

Quadratic Program 3.11 is based on the PESP cyclic periodicity formulation
CPF. A feasible timetable thus may be derived from the durations z,, a € A,
proofs for feasibility and all kind of equivalences below. From a classification
point of view, the ODPESP is a minimum cost multi-commodity flow problem?.

Theorem 3.12 (ODPESP Shortest Paths Subproblem). For an ODPESP opti-
mum the paths pus,s,, a € A are shortest paths w.r.t. x, for all s1,s9 € S with
Ws,s, > 0. Especially, replacing p with shortest paths w.r.t. x does not increase
the objective function.

Proof. Assume some path p,y g, @ € A, for a tuple (s}, s5) € S? with Wy g >0
is not a shortest path w.r.t. z,, i.e. there exists a path p,y s, a € A, with

'ws’ls’2 E ﬁas’lséxa<ws’ls’2 E pas’lséxa . (339)

acAy acAy

The ODPESP objective function (3.34) then writes as

Z Wsys9Pas1saXa = |i Z ws182pa8152xa:| +ws’13’2 Z pas’ls’zIa (340)

$1,82€8, $1,82€8, acA,
w3152>07 w5132>07
a’e’AP (81 752)7&(5/1 75/2)7
acAp

> [ Z w5182pa8182xa:| +ws’15’2 Z ﬁasﬁséza (341)

51,52€8, ac€Ap
Wsqsg >07
(51,82)7#(87,85),
ac€Ap

°http://en.wikipedia.org/wiki/Multi-commodity_flow_problem
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and therefore contradicts optimality. Iterating over all (s7,s5) € S x S with
Ws, s, > 0 yields that every non-shortest path may be replaced by a shortest path,
which reduces the objective function and in case all paths are already shortest,
(other) shortest paths do not change the objective. Therefore, replacing paths
by shortest paths cannot increase the ODPESP objective function. O

Thus, finding shortest paths w.r.t. a given timetable may be considered as a
subproblem of ODPESP.

Theorem 3.13 (ODPESP Feasible Timetable). A timetable = from ODPESP is
feasible iff it is feasible by Definition 2.5.

Proof. Constraint (3.35) is the same as (2.35) in the CPF and the z, is defined
with the same bounds as well. Since no other constraints limit the choice of z,
in neither ODPESP nor the CPF, the theorem follows. O

Theorem 3.14 (ODPESP N 'P-completeness). The ODPESP is N'P-complete.

Proof. By Theorem 3.13 a timetable 7 from ODPESP is feasible iff it is feasible
by Definition 2.5, i.e. iff it is feasible for PESP. Since finding feasible solutions
for the PESP is N'P-complete, so is ODPESP. O

ODPESP and PESP have in common than just timetable feasbility.

Theorem 3.15 (PESP Subproblem of ODPESP). Let EAN = (£, A) be an
event activity network, w,, a € A be an OD = (wg,s,)s; s,es derived passenger
distribution with paths pes,s,, @ € A, for all si,s5 € S with ws,s, > 0 and
ODPESP and PESP two problem instances for EAN and OD with fixed pys,s, =
Dasy s, 0 Equation (3.32) resp. for EAN and w. Then the problems are equivalent.

Proof. 1t holds

min Z Wsys9Pas1soLa = Z < Z wslszpaslsg>xa = Z WaTq (342)

51,52€58, aE-Ap 51,52€8, aeAp
11;315;2>07 Wsq sy >0
acAyp

with w, := 2517826 g Wsys5Pas; s, 1-€. fixing the passenger paths not only removes
variables, but converts the ODPESP it into a PESP with OD derived passenger
distribution. O

Thus solving the PESP for an OD derived passenger distribution may be
considered as a subproblem of ODPESP.

Corollary 3.16 (ODPESP Optimum Recoverability). If from an ODPESP opti-
mum the durations x,, a € A are known, then the passenger paths can be obtained
by pairwise shortest paths w.r.t. x. If on the other hand the ODPESP optimal
passenger distribution w,, a € A is known, then solving the PESP for w, recovers
the durations from the ODPESP optimum.
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Proof. Combine Theorems 3.15 and 3.12. O

Therefore, the actual difference between ODPESP and PESP (compare Corol-
lary 2.13) is the way the passengers are modeled in the objective function.

Corollary 3.17 (ODPESP Average Traveling Time). The ODPESP minimizes
the average traveling time ATT;, from Definition 2.12 over the domain of feasible
duration sets x (resp. timetables) and OD derived passenger distributions w.

In other words: the ODPESP objective function actually is the average trav-
eling time from Definition 2.12.

Proof. In the Quadratic Program 3.11 the passenger paths are arbitrary EAN
passenger routes as in Definition 1.43 and the objective is to minimize the average
traveling time over a derived passenger distribution as per Theorem 3.15. O

Corollary 3.18 (Shortest Paths Average Traveling Time). For a given feasible
duration set x (resp. timetable) an OD derived passenger distribution w may be
replaced by w' obtained from the PASSENGER DISTRIBUTION Algorithm 4 with x
as shortest path weights and it holds

ATT?, < ATT?, . (3.43)

Proof. By Corollary 3.17, the ODPESP objective is the average traveling time,
which by Theorem 3.12 cannot be increased by replacing paths with shortest
paths. O

Theorem 3.19 (Aperiodic ODPESP N 'P-completeness). The ODPESP stays
NP-complete, even with fized modulo parameters in equation (3.35).

A proof for Theorem 3.19 may be found in [SS10], where the authors reduce
the Minimum Cover problem to aperiodic timetabling with even only one origin
destination pair and thus show that it is strongly N'P-hard, which also covers
NP completeness.

Compared to the PESP the ODPESP is gigantic in its dimensions and since
it is already hard in practice to solve the PESP for large instances, fully solv-
ing the ODPESP seems to be utopic. However, there is an evident heuristic:
Retimetabling®.

Definition 3.20 (Retimetabling Step). Let OD = (wsy)s ses an origin destina-
tion matriz, EAN = (£, A) an event activity network and w,, a € A a passenger
distribution derived from OD. Solving the PESP for w with timetable ™ and
rerouting passengers along shortest paths w.r.t. derived durations from 7 is called
Retimetabling step w.r.t. EAN and OD or ReTim step for short.

SIndependently of us, in his diploma thesis [Kin08] worked on this heuristic as well. We and
[Lue09] use his naming.
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Definition 3.21 (Retimetabling). A loop of ReTim steps, i.e. solving the PESP
and distributing passengers along shortest paths w.r.t. the last timetable yields a
sequence of passenger distributions and timetables w® = w, 7, w?, w3, w*, ... and
is called Retimetabling or ReTim for short. Let ATT" be the average traveling
time w.r.t. 7% and the passenger distribution w™ if 2|n and w.r.t. 7™ and w

otherwise. The ReTim limit is defined as

n—1

lim := lim ATT" . (3.44)
ReTim n—00
Theorem 3.22 (Retimetabling Convergence). Let EAN = (£, .A) be an event
activity network, OD = (wsy)s,ses an origin destination matriz. For ReTim on
EAN and OD the average traveling time, already if never increasing by (subopti-
mally) solving the PESP, decreases monotonically and converges with imgerim >

objopprsps Where objopprsp S the objective function of the ODPESP optimum
for EAN and OD.

Proof. By Corollary 3.16, fixing the passenger distribution transforms ODPESP
into a PESP and fixing the durations into an all pairs shortest paths problem.
Therefore, ReTim only solves subproblems and if it converges it holds limgeriy, >
objopprsp- If an instance of ODPESP is feasible, there exist some initial feasible
P s To With s1,50 € S, a € A, with modulo parameters z{ derived from 9,

¢ € C for C and objective function value obj’. Let p° w.l.o.g. be shortest paths
and ¢°, a € A be the derived passenger distribution, i.e.

W= P, . VacA, (3.45)

51,52€8
Ws159>0

A timetabling iteration provides a new z' (and z') that by the requirements from
the theorem has the property

ATT?, < ATTY, . (3.46)

By Corollary 3.18 the average traveling time cannot increase by rerouting passen-
gers along shortest paths w.r.t. 2! and since it did not increase by the preceding
timetabling step, this makes ReTim monotonic decreasing. Since it has a lower
bound as well, i.e. objopprsp, it converges. O

Theorem 3.22 allows for heuristics for the timetabling step. The simpliest
one could think of is just fixing the modulo parameters to those of the previous
timetable or more elaborated methods like the modulo simplex [GS11].

Nowadays linear solvers like CPLEX are capable to find optimal solutions to
quadratic programs. However, therefore the objective function must be convex,
which is not the case for ODPESP, as shown in [Lue09]. Therefore, we introduce
a linearization with integral auxiliary variables.
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Linear Program 3.23 (Linear ODPESP). Let the Quadratic Program 3.11 of
the ODPESP be given.

We introduce auziliary variables

1 VaeA,
dys,s, = {‘C Pasisa =5 g so€ S, (3.47)

0  otherwise
Wy, > 0

that have to satisfy their definition

VaeA,

0 < dusysy < g $1,82 € S, (3.48)
Wep sy > 0,

VaeA,

Zq — Ug(1 = Pasisy) < dasiss < Dasisola 51,52 € 5, (3.49)
Wy sy > 0

and linearize the formulation by modifying the objective function

min Y Wesdass, - (3.50)

51,52€5,
Wsqsg >0,
acA

Theorem 3.24. Linear Formulation 3.23 is equivalent to 3.11.
Proof. 1f the auxiliary variables satisfy their Definition 3.47, then the objective

function
Z w5132da8182: Z wslsgpa3132$a 9 (351)

51,52€8, 51,52€85,
w5152>07 w3132>07
acA acA

which would prove the theorem. Therefore it suffices to show that Equations
(3.48) and (3.49) ensure it. Let pus,s, = 0, then Inequation (3.49) states

Tg — Uq S da8182 S 0 P (352)

which is always possible since z, — u, < 0 and since d,s,5, > 0 by Inequation
(3.48) it holds dgs,s, = 0. Let on the other hand p,s,s, = 1. Then (3.49) writes
as

To < dagysy < Uq (3.53)

which is again always feasible, since z, < u, and d,s,s, = ¥, since by Inequation
(3.48) it holds dys,s, < 4. O



Chapter 4

Planning Steps Lower Bounds

In Section 1.1 we gave an overview about the traditional planning steps in public
transportation. In this chapter, we deal with four of them:

1. Network Design Where to put the stations and infrastructure?

2. Line Planning How to layout the lines, i.e. the vehicle paths?

3. Passenger Routing Which paths will passengers take?

4. Timetabling At which times will lines arrive/depart at the stations?

For the timetabling step our objective is to minimize the average traveling time
w.r.t. a feasible timetable 7 resp. feasible durations z and a passenger distri-
bution w as in Definition 2.12. However, to obtain x and w, we started with a
public transportation network PTN, an origin destination matrix OD as well as
line pool £, from which we derived a line concept LC and constructed an event ac-
tivity network EAN on top of this LC. All these preliminary steps have an effect
on the average traveling time and in this chapter we estimate it quantitatively
by introducing easy-to-compute lower bounds w.r.t. a given origin destination
matrix OD = (ws,s,)s;.s0e5-

Throughout the chapter we assume that for all s1, s, € S with ws,,, > 0 in
OD = (ws,s,)s1,s0es there are paths in the PTN = (5, E) that lead from s; to s,
as well as line pools resp. line concepts always ensure connectivity between those
s; and sg. If this is not the case, the model is broken anyway and something
needs to be fixed first.

4.1 Public Transportation Network

Given a public transportation network PTN = (S, E), what is the best line
concept LC = (L, F') one could think of from the traveling time point of view?
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4.1.1 General Lower Bound

Vehicles would never need to pay attention to each other, i.e. no headways. Fur-
thermore, every passenger has a line that goes directly from origin to destination,
so that changes are not needed at all and there are no stopovers. The only re-
striction: vehicles need is to pass the minimal driving time on the edges they
use!. To obtain the average traveling time we then could simply take minimal
driving times as weights for the PTN graph, compute pairwise shortest paths

lengths dEIN for all sysy € S with ws,s, > 0 in OD = (wq,s, )s; ses and look at

5182 )

§ : PTN

ZPTN = dslsz Wgis9 - (41)
$1,52€8
w3152>0

We call lpry the General Public Transportation Network Average Traveling Time
Lower Bound or General PTN ATT Lower Bound for short.

Theorem 4.1 (General PTN ATT Lower Bound). Let PTN be a public trans-
portation network and OD an origin destination matriz. For every feasible dura-
tion set x and OD derived passenger distribution w that can be obtained for PTN
and OD by constructing an EAN with methods from Sections 2.3 or 8.1 on top
of any line concept LC holds

lprny < ATTS (4.2)
where ATTS is the average traveling time from Definition 2.12.

Proof. Theorem 4.2 with [W2it = [change — (), O

4.1.2 Wait Aware Lower Bound

If additionally to the Section 4.1.1 before we take minimal stopover times into
account, i.e. global minimal waiting times ["® in our case, we can further increase
this bound. Therefore, we replace every station s € S by an incoming station sy,
which gets the incoming edges of s, an outgoing station so. analogously and add
edge™™", an virtual wait edge in between, as in Figure 4.1. We introduce In, = sy,
and Outy, = sou as the incoming station map resp. outgoing station map as well
as Im(In(S)) = Sy, and Im(Out(S)) = Sout as the set of incoming stations resp.
set of outgoing stations. Let further Eyaie == {edge™" : s € S} the set of
virtual wait edges. We call this expanded graph PTN = (Sp, U Sou, EU Ewait)
wait expanded public transportation network. We take minimal driving times as
weights for all e € E and [™t as weight for all e € Ewait, compute pairwise

—PTN
shortest paths lengths d, ,, , for all Out,, € Soy, In,, € Sty and
wai —PTN
P%‘I;I = Z dslsz w5152 (43)
81,52€8,
Wsqsg >0

"We could also think of passengers with walk speed as fast as vehicles and never interfere.
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wait

~— @< > @ edge,

Figure 4.1: Station wait expansion.

out

/
\

where wg, s, is an entry from the origin destination matrix OD for all 51,59 € S.
We call I3 the Wait Aware Public Transportation Network Average Traveling
Time Lower Bound resp. Wait aware PTN ATT Lower Bound for short.

Theorem 4.2 (Wait aware PTN ATT Lower Bound). Let PTN be a public trans-
portation network, [V the minimal wait time, °P*€° the minimal change time
with [t < [hange QD an origin destination matriz. For every feasible duration
set x and OD derived passenger distribution w that can be obtained for PTN and
OD by constructing an EAN with methods from Sections 2.3 or 3.1 on top of any
line concept LC holds

Bk < ATTS, (4.4)

with ATTS, being the average traveling time from Definition 2.12.

Proof. By Definition 2.3, every OD derived passenger distribution w has the
property that w,, a € A is the sum of coefficients from OD of a linear combination
of EAN passenger routes pPAN, 51, sy € S, w,,s, > 0. Every such passenger route

5182 7
posesses a PTN route trace PY'TN which, after Lemma 1.45 is connected and

5182

thus contains a path p. .Y from s; to sy in the PTN. By the LINES RoLL OUT
methods from Sections 2.3 and 3.1 drive activities in the EPAT1§ inherit their lower
bounds from edges in the PTN. Therefore, if d, ., and d, ,, are the lengths of
the shortest path between s; and s, in the PTN resp. of pP N both w.r.t. the

. 5182 7
minimal driving times and wait times [¥** < [hange at every station as well as

dls’lES‘;N and dﬁiEfN the lengths of psEl‘EQN w.r.t. the activity lower bounds resp. =z,

then it holds

s, < 7 N < JLEAN < g BAN (4.5)

5182 5182 5182

for all sy, 59 € S with ws,5, > 0 and thus

wait __ § 3 § z,EAN _ T
lPTN - d8182w8182 S dslsz Wsys9 = ATTw ’ (46)
81,82€5, 81,82€5,
Wsqs9>0 Wsy 59 >0
which yields the theorem. O

Theorem 4.3. It holds lprx < [P

Proof. For I"** = 0 it holds lppn = Ip§x and since " > 0 compared to I = 0
does not decrease dy,,, for any s, s, € S it does not decrease [Fa and thus the
theorem follows. O
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4.2 Line Planning
4.2.1 Line Concept Lower Bound

For an actually given LC = (E, F') the best scenario for the average traveling
time would be if all lines were taken and never interfered, i.e. no headways
influence timetables later. Therefore we run the classical LINES RoLL OuT
with frequency_as_attribute model, GENERATE CHANGES, which yields an
event activity network EANy ¢ = (Ec, ALc), take the activities lower bounds as
initial duration assumption, i.e. z"® = [, for all @ € Arc in the PASSENGER

DISTRIBUTION Algorithm 4, obtain pairwise distances? d-<  and sum up
LC
he= Y diS,ws., (4.7)
51,52€5,
Wsq sg >0

where wg, s, is from OD = (wg,s,)s;s0e5. We call I ¢ the Line Concept Average
Traveling Time Lower Bound or LC ATT Lower Bound for short.

Theorem 4.4. For event activity networks as constructed by a combination of
methods from Sections 2.3 or 3.1, the line concept average traveling time lower
bound lyc is a lower bound for the ODPESP objective function.

Proof. Let EAN = (£, A) be an event activity network derived from PTN =
(S,E),LC = (L,F), 0D = (Wsy55)s1.50e5 and I, being lower bounds, for all a € A
as well as 4, C A the passenger usable activities. In the Quadratic Program 3.11
of the ODPESP the objective function objopprsp may be estimated by

Z wslsgpaslszxaz Z wslsgpaslszla: Z Ws, sy Zpaslsgla (48)

$1,82€585, $1,82€85, $1,82€58, acA,
w5132>0, w5132>0, w3132>0
acA, ac€Ap

and since pgs,s, Must satisfy path constraints

Z paslsgla 2 Czslsg 3 vsla S9 € 57 Wy, s9 > Oa (49)

a€Ay

where cism is the length of a shortest path from s; to s, w.r.t.> the weights I,.
Further it holds

Czslsg - dLC 5 \V/Sl, S9 € S, Wsys9 > O> (410)

5182

2Note that dlglcsz is not a distance in a line concept, but in EANy,q, therefore wait and change
activities are considered.

3Note that in general, ZaeAp Dasysala F CZSISz, since the pgs,s,, @ € A, in a feasible ODPESP
solution are arbitrary paths resp. shortest paths w.r.t. feasible durations in an optimal solution
as stated in Theorem 3.12 and not necessarily shortest paths w.r.t. lower bounds as can be
seen in Figure 5.12, frequency_as_attribute model to the left.
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since headway activities are not passenger usable and thus negliable and the
frequency_as_multiplicity LINES ROLL OUT model, if used for EAN, does
only introduce parallel paths with equal lower bounds compared to the fre-
quency_as_attribute model. Therefore

: B LC _
objopprsp = Z WsysoPasisala = Z dgio,Wsys, = lLe (4.11)
51,52€5, 51,52€5,
u;slSQ>07 w5152>0
a€Ay
U

Theorem 4.5 (LC ATT Lower Bound). Let PTN be a public transportation
network, OD an origin destination matriz and LC a line concept for PTN. For

every feasible duration set x and OD derived passenger distribution w that can
be obtained for PTN, LC and OD by constructing an EAN with methods from
Sections 2.3 or 3.1 on top of LC holds

Ie < ATTS (4.12)
where ATT? is the average traveling time from Definition 2.12.

Proof. By Corollary 3.17 the ODPESP minimizes the average traveling time over
the domain of feasible timetables and OD derived passenger distributions. Latter
implies that there is a fixed, underlying EAN. Theorem 4.4 shows that [;¢ is a
lower bound for ODPESP, independent of how that EAN was obtained from LC
and therefore the theorem follows. O

Theorem 4.6. Let LC' = (L', F'), LC = (L, F) be two line concepts with the
property that L C L' and that if fy > 0 in F, then f, > 0 in F'. Then it holds

e <lic - (4.13)

Proof. By construction through the frequency_as_attribute LINES RoLL OUT
model, the event activity network EAN’ derived from LC’ contains EAN derived
from LC. Therefore, all passenger routes from EAN are contained in EAN as
well and thus ;o < lpc. O

Theorem 4.7. Let PTN be a public transportation network, OD an origin desti-
nation matriz and LC a line concept for PTN and [ < [hanee  yhere [V gnd
[havge gre the minimal wait resp. change times. Then it holds

B <o - (4.14)

Proof. By Theorem 4.2 [32% is a lower bound for the average traveling time for
arbitrary line concepts on PTN, if [Vait < [change and therefore for LC as well. O
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4.2.2 Line Pool Lower Bound

Let £ be a line pool. Since the set of lines L in a line concept LC = (E, F)
used later is taken from £, the best scenario for the average traveling time would
be if all lines were taken, which can be seen as a maximal extension of the line
concept from the preceding Section 4.2.1, in the sense of Theorem 4.6. We thus
define LC = (&, F), where F = {¢ — 1 :V ¢ € £}. Further, we construct a
dummy event activity network EAN¢ = (&g, Ag) on top of LC, by using classical
methods LINES ROLL OUT and GENERATE CHANGES as described in Section
2.3. Since we are only interested in lower bounds the frequency_as_attribute
LiNEs RoLL OuT model is sufficient. Again, we compute shortest paths lengths
ds . for all s1,55 € S, Wy, > 0 this time with lower bounds from Ag as weights

S$182
and therefore

o= Y df W (4.15)
$1,82€8,

Wsq sy >0

with wg, s, being the origin destination matrix OD entry for all s1,s, € S and
delivers the Line Pool Average Traveling Time Lower Bound or for short Line
Pool ATT Lower Bound for a given line pool £.

Corollary 4.8 (Line Pool ATT Lower Bound). Let PTN be a public transporta-
tion network, OD an origin destination matriz and £ a line pool for PTN. For
every feasible duration set x and OD derived passenger distribution w that can be
obtained for PTN, £ and OD by constructing an EAN with methods from Sections
2.3 or 3.1 on top any LC derived from £ holds

le <ATT, (4.16)
with ATTS, being the average traveling time from Definition 2.12.

Proof. The line pool £ may be considered as an extension of a line concept LC
derived from that pool, therefore Theorem 4.6 is applicable. O

4.3 Summary

Let ODPESP be a problem instance with optimal objective function objopprsp
on an origin destination matrix OD and an event activity network EAN, derived
from a line concept LC, derived from a line pool £ on a public transportation
network PTN as well as [Wait < [hange  This chapter yields lower bounds lpr,

I3ait I as well as I, and shows that they satisfy

lprn < Iy <le <lic < 0bjopprsp - (4.17)

An evaluation for our large scale networks yields that [§3% [q and I are close
together, while [ppy is rather low. With Retimetabling we get as close as 6 to

7% to li,c. For more details see Chapter 6.



Chapter 5

Worst Case Error

Event Activity Networks can be modeled in different ways, if we compare Chap-
ters 2 and 3. All classical models are simplifications to the actual ODPESP
problem with frequency_as_multiplicity LINES ROLL OUT model mentioned
in Sections 3.2 resp. 3.1.1 and we want to know how large the relative error can
get if we simplify. An initial analytic estimation from Section 5.1 is very rough.
Can that gigantic error really occur in some real network? Therefore, we con-
struct parametrized example networks from public transportation network level
on and consider different scenarios to at least get an estimate for the lower bound
of the worst case.

Although we consider the general ODPESP, some results are independend of
the passenger distribution and thus directly applicable to PESP as well, about
which the reader will be informed. If passengers can take different paths, we have
a look at what happens after an iteration of PESP timetabling. Since we compare
objective functions in the rolled out and rerouted network, rerouting is included
before the additional PESP step. However, for the Section Owerestimation 5.5
we make an exception and compare two different ODPESP objective functions:
One of the EAN with frequency_as_attribute LINES ROLL OUT model, the
other with frequency_as_multiplicity.

To distinguish between actual example and general quantities, we use the
superscript X, e.g. PTN¥ is a public transportation network depicted in some
figure in this chapter, while PTN is some arbitrarily given, general PTN.

5.1 Analytic Point

In our event activity network, the only passenger usable drive, wait and change
activities limit the average traveling time by their lower and upper bounds [, resp.
uq. However, are these u, arbitrary large? Generally yes, but, e.g. u, —l, > T
does not make sense from an average traveling time point of view, as seen in
Section 2.5, which makes us take a closer look at [,. For wait, change and drive
activities, [, is determined by the passengers/vehicle enter/vehicle leave/walk
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speed and distances within stations resp. the vehicles speed and edge length.
Every public transportation network has some longest edge, longest walk distance,
slowest vehicle and slowest passenger, which are all network intrinsic and are, a
priori, independend of the choice of the period length or can at least be bound
by a fixed multiple of T" and thus u, may also be limited.

Definition 5.1 (Bounded By Period Property). Let T' be a period length. An
EAN = (&, A) with upper bounds u, satisfies the bounded by period property, if
with A, C A being the set of passenger usable activities, it holds

I e Niug <E™™T |,  VYacA, . (5.1)

An activity that does not satisfy the bounded by period property has bounds
of e.g. [la,us] = [T? —1,T?). Since u, — I, = 1, this actually influences feasibility.
However, at least to the author no szenario in public transportation is know in
which such a bound parametrization would be useful.

For an actual EAN = (£, A) we can calculate

MmaXgeA, Ua
jomax — | 0TacAy Fa | 2
[ = ] (5.2

Let us find an estimation for the maximal error magnitude.

Theorem 5.2 (Objective Values Quotient Estimation). Let T be the period
length, PTN = (S, E), LC = (L, F), OD = (ws,s,)s,.s5es and EAN = (&, A)
an associated event activity network with A, C A being the passenger usable ac-

tivities as well as lower and upper bounds l, resp. u,, for all a € A. Further
EAN satisfies the bounded by period property from Definition 5.1 with k™. Let

w™ = min ws, ™= min [, ,
51,5265, a€Ap,la>0 B
Wsy59>0 || OD>0 || - E L,
max. _ max. _ 51,52€5,
w = Imax w u = max Uu
s1,s268, 2 a€Apa>0 " Wsys9>0
wsls2>0
(5.3)

as well as obj; and obj, two nonvanishing objective function values for two solu-
tions of ODPESP. It then holds

max k,max

obq1 < WETER
ObJ2 - wmlnlmm

obj
| OD<o |[|A,|T resp. le € O(|| ODso ||| A, T) . (5.4)
2
Proof. Let pus,s,, o With s1, 89 € S, w5, > 0, a € A be solution for the ODPESP
problem with nonvanishing objective function

Z Wsys9Pas1soLa - (55)

$1,52€85,
Wsqsg >07
acAp
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Since the sum does not vanish and all summands are nonnegative, at least one
summand therefore must be positive. It holds

min jmin
Wsis9Pas1sala = Ws1s9La Z w l (56)

!
for all 51,55 € S, wy,5, > 0, a € A, for which wy, 5,D4s,5,%a > 0 and therefore

D WasPasisnta = W (5.7)

51,52€5,
Wsqsg >0,
ac€Ap

On the other hand

> WanPasisnTa Y WawPanslla < Y Wesla (5.8)

51,52€8, 51,52€8, 51,52€8,
’Ll)3132>0, ’Ll)3132>0, ’Ll)3132>0,
acAp ac€Ap acAp

— Z We, s Z U < WU OD5g ||| A, (5.9)

51,52€8, acAyp
w5132>0
< WM ODsg ||| AT, (5.10)

so for two different solutions with different objective function values obj, and
obj, holds

Objl wmakaax wmakaax
< OD AT < ——||OD AT 511
ot < | 0D 4T < S 0D AT (5.1
and thus the theorem follows. O

We basically need Theorem 5.2 for the fact that errors cannot grow more
than linearly in 7. Under different conditions, this error magnitude is reached
and gives reason to talk about an unbounded error for practical application, at
least when it comes to public transportation. Therefore, we vary only 7" and
line frequencies but not the number of nonzero OD entries or passenger usable
activities which, by Theorem 5.2 could basically also affect the worst case error.

For the networks we shall consider, for the variable k™** from Defintion 5.1 it
holds k™ < 2, since the greatest upper bound used is T+ 2 for a drive activity
derived from an edge in Figure 5.13.

5.2 Fixed Passengers

The PESP as in Section 2.5 uses a fixed passenger distribution w,, a € A in
its objective function. But since the traveling time is a major criterion to the
passengers, their distribution may change as soon as the network operator uses
a different timetable. This effect can and empirically will, as we shall see in
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Chapter 6, lead to our timetable to not be in a ODPESP optimum if we use
PESP timetabling.

In this section, we use a very simple PTN*, LC* and OD* from Figure 5.1,
and consider an associated event activity network EAN* as in Figures 5.2a and
5.3a with frequency_as_attribute as LINES ROLL OUT model, since for the
actual estimation frequencies are negligible. The period length is a parameter
and figures see below text.

Let us consider the public transportation network PTN* = (V, E) as depicted
in Figure 5.1 and assume that there is only one passenger in total, traveling from
s9 to s1. The line ¢; needs a whole period length 7" to get from s3 to s;, while /5
needs only one time unit. Our passenger must definitely take ¢, to get from s
to s3 and then either stay in ¢; or change to ¢5 to get from s3 to s;.

Lemma 5.3. Let T be the period length, PTNX, LC* and OD* as in Figure
5.1, EAN® an associated event activity network as in Figure 5.2 and obj;fl* the

optimal ODPESP objective value for a fired OD* derived passenger distribution
p1 (effectively PESP ). It holds

obj * =T +2 (5.12)

and there exist timetables which cannot attain a better objective by an iteration
of shortest duration rerouting and PESP timetabling, if the solver used operates
determainistially.

Proof. Since all timespans are fixed, obj;fl* =T + 2 is the only objective function
value possible for p;. Let the timetable 7, as in Figure 5.2b be obtained by a
linear solver. There are only two OD* derived passenger distributions possible:
p1 and py as depicted in 5.2 resp. 5.3, where p; takes passengers T+ 2 and p, uses
T + 3 time units. Therefore duration shortest paths rerouting does not change
the passenger distribution. Thus, an additional PESP timetabling step in the
iteration yields m,, again if the solver operates deterministically. O

Lemma 5.4. Let T be the period length, PTN*, LC* and OD* as in Figure
5.1, EAN® an associated event activity network as in Figure 5.3 and obj;i* the

optimal ODPESP objective value for a fired OD* derived passenger distribution
pa (effectively PESP) and obj™* the global ODPESP optimum. It holds

obj** = obj** =3 . (5.13)

JIps
Proof. See caption of Figure 5.3. 0

Theorem 5.5 (Fixed Passengers Worst Case Relative Error Lower Bound). Let
EAN be an event activity network that satisfies the bounded by period property
from definition 5.1 and derived from PTN, LC, OD and period length T. Let
further obj™ be the ODPESP global optimum objective function value resp. obj;
the ODPESP optimum for a fized OD derived passenger distribution p (effectively
PESP). It holds
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objr T +2
1. max Jf ZL
PTN, 0Db] 3
LC,0D

2. The error magnitude is maximal in T'.

Proof. 1. EANZ satisfies the bounded by period property with &A™ = 2, since
the greatest upper bound is 7'+ 1. Therefore, Lemmata 5.3 and 5.4 may
be combined to

sk < Xx < Xx
obj, S obj,, _ obj, T +2

max ——; > — < < = (5.14)
L%T,gb ob] obj,,  obj 3
2. Apply Theorem 5.2.
]

Table 5.1: Fixed passengers worst case relative error lower bounds for different
period lengths T', see Theorem 5.5.

T 2 5 15 30 60 120 600 1200 2400

% 1.33 233 5.67 10.67 20.67 40.67 200.67 400.67 800.67

@ L 51 change € [2,T + 1],
- :[1 , ? wait € [1,1],
) I )
I oD _ 1 (878/) = (82781)
@ LY 710 otherwise ’

Vs, s’ € S.

Figure 5.1: A public transportation network PTN* = (V, E) that has three
stations V' = {s, s2,s3} and three edges £ = {é13, €33, €13 }, each with equal
lower and upper bounds loys = g3 = 1, lis = w3 = T and l;3 = U3 = 1
together with a line concept LC* = (L, F) with two lines L = {1, ¢} as well as
an asymmetric origin destination OD* matrix that states that there is only one
passenger in the network that wants to go from s, to s;.
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s N 7 ) N s N ( N (
drive wait drive
d 5 aIT d oo AT 2 0 —— 0 T 1 — 2 | 4
| || = 82
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depﬁ arr 62 0 -1 1 62
| change A
drive ! /
arr <——dep 14 3 = 2 14
1,1] 2 1 2
N\ /[ N 53 J N\ ) N\ 53 J
(a) Passenger Distribution p; (b) An Optimal Timetable mp,

for Passenger Distribution p;

Figure 5.2: (a) depicts the EAN® = (A, &) that belongs to the PTN* from
Figure 5.1, together with an OD* derived passenger distribution p; (dashed line).
Since change times span a period length, we consider only those change activities
relevant to OD*. (b) shows a timetable 7,, (with durations) that minimizes the
average traveling time obj;i* = T + 3 for p;. Note that rerouting passengers by
duration shortest paths and solving the PESP for the resulting distribution only
allows to find a better timetable as in Figure 5.3 if the solver operates (pseudo-
Jnondeterministically.

N A N\ mYe N ([
drive wait drive
d o AT d o arr A 0 —— 0 T 1 — 2 | 4
| || = %
arr == dep <— arr <=dep | £ 2 — 2 «—— 1 -0 |4
/ /
7/ /
| | / 51 /
drive / /
depﬁ arr  / ly 0 — 1 K Uy
chan e/ /
| h g/ /2
e ; l. 4 3 lL
1,1]
N\ /[ N 53 J ) \ 53 J
(a) Passenger Distribution ps (b) An Optimal Timetable 7,

for Passenger Distribution po

Figure 5.3: (a) depicts the EAN* = (A, &) that belongs to the PTN® from
Figure 5.1, together with an OD* derived passenger distribution p, (dashed line).
Since change times span a period length, we consider only those change activities
relevant to OD*. (b) shows a timetable 7, (with durations) that minimizes the
average traveling time for p, and yields the global optimum obj™* = obJX* =3,
since pl from Figure 5.2 and p, are the only OD* derived distributions possible
and ObJ < obJp* for T > 1.
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5.3 Fixed Moduli

When we have a feasible periodic timetable, we can fix the modulo parameters
z. from Section 2.5. This effectively turns the periodic event scheduling into
an aperiodic event scheduling problem, which can be solved in polynomial time.
However, this affects the average traveling time objective.

As in the section before, we use a very simple PTN*, LC* and OD* from
Figure 5.4, and consider an associated event activity network EAN* as in Figure
5.5 with frequency_as_attribute as LINES ROLL OUT model, since for the
actual estimation frequencies are negligible. Figures see below text.

Lemma 5.6. Let T be the period length, PTN™, LC* and OD* as in Figure 5.4
and EAN® an associated event activity network as in Figure 5.5 with obj™* as
the ODPESP global optimum objective value as well as objff* and objX* being
optimal for z = 0 resp. z = 1 in Figure 5.5b. Independent of a ODX derived
passenger distribution, i.e. also for PESP, it holds

obj™ =objg* =6 ,  obji*=T+6 (5.15)
and z € {0,1} are the only feasible modulo parameters.

Proof. In EANX there is only one nontrivial cycle, which gives the constraint
xp—1+axy—1=2T | x1, 09 €{2,..., T+ 1}, z € {0,1}, (5.16)

with z1 and x5 being the change durations and the modulo parameter z € {0,1}
due to bounds of z; and x5, Lemma 2.24 (Odijk). Further

obj™(xy, 29) = 21 + 19 + 4 (5.17)

is the ODPESP objective function from Section 3.2 since there is only one OD*
derived passenger distribution possible and therefore coincides with the PESP
objective. Setting z = 1 leads to obji( =T+ 6, so the global optimum is 2z = 0
with obj™* = objy* = 6. O

Theorem 5.7 (Fixed Moduli Worst Case Relative Error Lower Bound). Let EAN
be an event activity network that satisfies the bounded by period property from
Definition 5.1 derived from PTN, LC, OD and period length T. Let further obj*
be the ODPESP global optimum objective function value resp. obj: the ODPESP

optimum for fixed moduli. Independend of a OD derived passenger distribution,
i.e. also for PESP, it holds

b T
1. max 2 ‘]i > —+1
PTN, obj 6
LC,0D

2. The error magnitude is maximal in T'.
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3. After an iteration of PESP timetabling non-fived moduli, the error van-
ishes.

Proof. 1. The greatest upper bound is T + 1, therefore EAN satisfies the
bounded by period property with £™** = 2. Lemma 5.6 holds

obij* b bit* T+6 T
e o > N I SR (5.18)
PTN, 0b] objg obj 6 0
LC,0D

2. Theorem 5.2 is applicable.

3. The error vanishes by definition, since in the PESP model, modulo param-

eters are variables.
O

Table 5.2: Fixed moduli worst case relative error lower bounds for different period
lengths 7', see Theorem 5.7.

T 2 5 15 30 60 120 600 1200 2400
%+1 1.33 183 35 6 11 21 101 201 401




5.3. FIXED MODULI 7

change € [1,T + 1],

[1,1] _
wait € [1,1],
@ [1,1] @_ IS _ < 1 (s, 8") = (82, 54)
[1 1]: ODSS' - <37 3,) = (357 51) )

| 0 otherwise

@ Vs, s € S.

Flgure 5.4: A public transportation network PTN* = (.9, F) that has five stations

= {51, 82, S3, 84, S5} and four edges F = {e13, €23, €34, €35}, all with equal lower
and upper bounds l13 = U113 — 123 = U923 — lg4 = U34 — l35 = U3y = 1 together with
a line concept LC* = (L, ') with two lines L = {/1,{,} as well as an asymmetric
origin destination OD* matrix that states that there is only two passengers in
the network: one that wants to go from s, to s4 and one from s5 to s;.

drive wait drive
dep T+ arr dep7= arr | £
31|| | $2 T — 141z —1=2T
drive wait drive /
arr T dep dep 0 ‘ \
— ;}
| \ / | arTl grive wait drive dep /
N Y <—rdep<==-arr - 14
d drive wait drlvc £ @81 [1,1] ~ a [1,1] @52
€p o arr (1, 1] 2 N
chan% &ange change / \\ change
4 . d arr drive d pf_wait N arr drive dep e/
rive wai rive / < -~
arr ==-d 7 dep | 45 Qs, 11 s LU Qs 2
/O / \ J k 3 )
(a) Event Activity Network, (b) Nontrivial Cycles

Frequency as Attribute

Figure 5.5: (a) depicts the frequency as attribute EANy, = (A, £) that belongs to
the PTN™ from Figure 5.4. Since change times span a period length, we consider
only those change activities relevant to the origin destination OD* matrix. The
only cycle possible is shown in (b).
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5.4 Line Concept

One may assume: the less and longer lines, the lower the ODPESP objective,
since passengers have to change between lines less frequently and save valuable
time by taking the, usually lower, waiting time. However, this is not true in
general. The reason for this effect on the traveling time are bounds being too
stiff. Especially, the line concept is cruical for timetabling.

As before, we use a very simple PTN*, LC* and OD* from Figure 5.6, and
consider an associated event activity network EANX as in Figure 5.7 with fre-
quency_as_attribute as LINES ROLL OUT model, since for the actual estima-
tion frequencies are negligible. Unless we refer to the Section 5.3 before, figures
see below text.

Lemma 5.8. Let T be the period length, PTN®, LC* and OD* as in Figure 5.6
and EAN® an associated event activity network as in Figure 5.7 with obj™* as
the ODPESP global optimum objective value. Independend of an OD* derived
passenger distribution, i.e. also for PESP, it holds

obj™* =8 . (5.19)

Proof. In EANX there is not a single nontrivial cycle, i.e. no constraints. There-
fore, all activities attain their lower bounds and therefore the objective value
is

objX (21, ) =a) + 20 +4=2+2+4=8 | (5.20)

since there is only one OD® derived passenger distribution possible. O

Theorem 5.9 (Line Concept Worst Case Relative Error Lower Bound). Let
EAN, EAN’ be two event activity networks for which holds the bounded by period
property from Definition 5.1 and both derived from PTN, LC resp. LC', OD and
period length T'. Let further obj™ be the ODPESP optimal objective function value
for EAN resp. obj™ for EAN'. Independend of the passenger distribution, i.e.
also for PESP, it holds

obj* ~ T+6
1. max —5 > ———
PTN,LC, obj 8
LC’,0D

2. The error magnitude is maximal in T'.

Proof. 1. Lemmata 5.6 and 5.8 together hold the theorem, since k™ = 2 for
the bounded by period property.

2. Apply Theorem 5.2.
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Table 5.3: Line concept worst case relative error lower bounds for different period
lengths T', see Theorem 5.9.

T 2 5) 15 30 60 120 600 1200 2400
% 1 1375 2625 4.500 8.25 15.75 75.75 150.75 300.75
— 0
@ -t
. i ________ by change € [2,T + 1],
I ]5 wait € [1,1],
—_ (89— — — — — N —
) 1] @ ] . | (887 = (s2,54)
I ODss’ = (87 8,> = (857 Sl) ’
(L)1

| 0 otherwise
@ Vs, s’ € S.

Flgure 5.6: A public transportation network PTN™ = (S, E) that has five stations

= {51, 82, S3, 84, S5} and four edges F = {e13, €23, €34, €35}, all with equal lower
and upper bounds l13 = U113 — 123 = U923 — lg4 = U34 — l35 = U3y = 1 together with
a line concept LC™ = (L, F) with this time three lines L = {¢;, (5, {3} as well as
an asymmetric origin destination OD* matrix that states that there is only two
passengers in the network: one that wants to go from s, to s4 and one from s5
to sy.

( N\ N\ 7 )

drive drive
5 dep 7 arr dep 7 arr 04
81 | | 52
/ drive dI‘lVC / arr (CL ep arr (d)li dep 6,
63 arr ﬁd L1 dep 61 @81 [1,1] [1,1] @82 1
s \d 4 s N change &hangc d
rive wait rive arr v wai v e
dep ma At Py arr ly a ?1 17 dep — arr ([11 He @ p f/z
S4 | | chun% &ange | Sk Sq 7k S3 )’ S5
drive wait drive /
[1,1] dep S3 [1,1] dep €2
/ \ AN
(a) Event Activity Network, (b) No Nontrivial Cycles

Frequency as Attribute

Figure 5.7: (a) depicts the frequency as attribute EANy, = (A, £) that belongs to
the PTN® from Figure 5.6. Since change times span a period length, we consider
only those change activities relevant to the origin destination OD* matrix. There
are no nontrivial cycles, take (b) as comparison to 5.5b.
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5.5 Overestimation

Unlike in the other sections, this time we compare two different ODPESP objec-
tive functions: the one of the EAN with frequency_as_attribute LINES ROLL
OUT model, the other with frequency_as_multiplicity and show that the
ODPESP timetabling objective in the former case overestimates the actual aver-
age traveling time obtained from the latter case. The example in this section has
two nice properties to evaluate overestimation: In the frequency_as_attribute
case, there is only one passenger distribution possible and the requirements are
very low, since we need just two lines with arbitrary frequencies that cross at
some station.

Therefore, throughout the section, we use a very simple PTN*, LC* and
OD* from Figure 5.8, and consider an associated event activity networks EANR,
and EAN?UC2 as in Figures 5.9 resp. 5.11 with frequency_as_attribute resp.
frequency_as_multiplicity as LINES ROLL OUT models, frequencies fi, fo
and period length being parameters. PTNX is identical to that of Section 5.3,
but for self-containment purposes we mention it again. Figures see below text.

Lemma 5.10. Let T be the period length, PTNX, LCX and OD* as in Figure 5.8
and EANg, an associated event activity network with the LINES ROLL OUT model
frequency_as_attribute as in Figure 5.9 with objax as the optimal ODPESP
objective value. Independent of an OD* derived passenger distribution, i.e. also
for PESP, it holds

objrx =T +6 . (5.21)

Proof. In EANS, there is only one OD* derived passenger distribution possible
and only one nontrivial cycle, which gives the constraint

r1— 142y —1=2T | 1’1,$2€{2,...,T—|—1},26{1,2}, (522)

where x; and z5 are the change durations. Further, z € {1,2} due to bounds of
x1 and x5 or more generally the Lemma 2.24 (Odijk). Let

obj?A(:)sl, To) =11+ 19+ 4 (5.23)

be the ODPESP objective function from Section 3.2. Since z = 2 leads to obja, =
2T + 6, the choice is z = 1 with objps = T + 6. O

Let us have a look at fixed line frequencies for introductory purposes.

Lemma 5.11. Let T be the period length, PTNX, LC* and OD* as in Figure
5.8 and EANf2 an associated event activity network with the LINES RoLL OuT

model frequency_as_multiplicity asin Figure 5.10 with objfz as the optimal
ODPESP objective value. It holds

objis=3T+6 . (5.24)
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Proof. There are only four OD* derived passenger distributions possible, of which
two have the same cycle as the former Figure 5.9b, and two are equivalent to
Figure 5.10b. In the latter case, there is again is only one (nontrivial) cycle that
yields the constraint

T
1’1+§—1—|—£L’2—1:ZT s $1,1’2€{2,---,T+1}>Z€{1>2}a (525)

where 1 and x5 are the change durations, and again z € {1, 2} due to the bounds
of x1 and x5. The objective function still looks same

objia (w1, 5) = x1 + 25 + 4 (5.26)
and since z = 2 gives objf2 = %T + 6 the choice is z = 1 and at the end
objiy = 3T +6. O

We confront the general case.

Lemma 5.12. Let T be the period length, PTNX, LCX and OD* as in Figure
5.8 and EANiflf2 an associated event activity network with the LINES ROLL OuUT

model frequency_as_multiplicity asin Figure 5.11 with obj}i”}Q as the optimal
ODPESP objective value and | = lem(fy, fo). It holds

X 1+ |4
ob;;}if2=( ZLTJ)

T+6 . (5.27)
Proof. The frequencies of lines ¢; and ¢, are f; resp. fo, so there are up to
(f1f2)? possible OD* derived passenger distributions, depending on which of the
f1fo changes at s3 the passenger from s, to s4 resp. from sz to s; takes. Without
loss of generality the change from ¢; to {5 may be fixed as depicted in Figure
5.11. The remaining distributions can be parametrized by the second change, i.e.
1 and j as in Figure 5.11a which yields the only nontrivial cycle C

T T
xl_jg_1+x2+iﬁ_1:zT , r1,22 €{2,..., T+ 1}, z€Z, (5.28)

where x; and x, are again the change durations and bounds for z are yet to be
determined. This is equivalent to the modulo equation

T T
1’1—|—1L'2—2—|—’lf——]f—:0 mod T’ s Il,l'QE{Q,...,T—I—l}, (529)
1 2

which the compact representation by lem (Theorem 1.11) with [ := lem(fi, fa),
k€ {0,...,1—1} rewrites as

i— —j—=— mod T (5.30)
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and thus

kT
LL’1—|—SL’2+T—2:ZT , LL’l,SL’QG{Q,...,T—i‘l},ZGZ, (531)

A lower bound estimation a¢ for z yields

acz[““ﬁ_ ]:[%ﬂzl . (5.32)

The upper bound be for z in a similar fashion
bcz{TjLHTHJr#_ J:{Q%—ﬁJ:Q. (5.33)

T [
The objective function again looks same

objiflf2 (x1,m0) =1 + 22+ 4 (5.34)

and replacing x; + xo with constraint C gives
obj}ih(:zl,xg) = (z — ?)T +6 . (5.35)

On the first sight, K =1 — 1 and 2z = 1 are the most desirable. However, it is not
always possible, because certain k£ can make ac = 2 and force z = 2. A closer
look at the final term in the ceil function Equation (5.32) unveils that

2k
—4+-<1 .
7t7< (5.36)

must be satisfied for ac = 1. Substituting k =1 —k, k € {1,...,1} yields

l—k

% =<1 (5.37)
which is the case iff B
1< kTT : (5.38)
Therefore, k = 2 i.e. k =1 — 2 always works and k = [ — 1 functions iff
[ < g ; (5.39)

which is only violated for very high frequencies, i.e. since two is the smallest
prime divisor, iff [ = T". Thus for latter case

) T
obﬁflh =7 +6 (5.40)
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for the former
2T

X
obj} s, = - +6 (5.41)
generally
o _ (L+ )T
obj}, = — 6 (5.42)
O

Theorem 5.13 (Overestimation Worst Case Error Lower Bound). Let EANgy
and EANg\ be two event activity networks that satisfy the bounded by period prop-
erty from Definition 5.1 with optimal ODPESP objective function values objg,
resp. objiy derived from a common PTN = (S,E), LC(I) = (L, F(l)), OD
and common period length T with only different construction models, i.e. fre-
quency_as_attribute resp. frequency_as_multiplicity, where fi, fo € F,
f1, fo| T are the frequencies of two lines {1 and ly that cross at least at one station
s € S and l =lem(f1, f2) is mazimal among all crossing lines.

bipye - ST+ 6
max —DIEMT o T

PTN, ODbjpax T+6 ’
LC@).0D | IFA +

Vi=lem(fy, fo) € {1,...,T}.  (5.43)

Proof. The greatest upper bound is T+ 1, thus EANS, and EANY,; both satisfies
the bounded by period property with £™* = 2. Therefore combine Lemmata 5.10
and 5.12

- <X l
objfy o obiyy, ST 46 V1 =lem(fy, f)
Lomop OPiEa objy
]

For Theorem 5.13 in numbers see Table 5.4.

Please note that we just compare objective function values. After a PERIODIC
ROLLOUT and rerouting passengers the objective most likely improves drastically,
but not necessarily in general. Therefore, have a look at Section 5.6.
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Table 5.4: Frequency representation worst case relative error lower bounds for
different period lengths 7" and different maximal lem(f1, fo), see Theorem 5.13.

Period Length T
lem(fy, fo) 2 5 15 30 60 120 600 1200 2400

2 1.00 171 1.83 191 1.98 1.99 2.00
3 1.91 225 254 274 294 2.97 2.99
4 267 314 350 3.88 3.94 3.97
3 1.38 233 3.00 3.67 420 4381 4.90 4.95
6 247 327 413 485 5.72 5.85 5.93
12 290 424 6.00 7.88 10.82 11.38 11.68
15 2.63 4.50 6.60 9.00 13.17 14.02 14.49
20 4.80 7.33 10.50 16.83 18.27 19.10
30 450 825 12.60 23.31 26.22 27.98
60 8.25 15.75 37.88 46.38  52.30
120 15.75 55.09  75.38  92.54
600 75.75 150.75 240.60
1200 150.75  300.75
2400 300.75

change € [2,T + 1],

[1,1] i
wait € [1,1],
@—[1,1] ()~ ] (9 L (8:8) =(s2,54)
[ ]I OD?S' = (87 S/) = (857 sl) )
1,11

| 0 otherwise
@ Vs,s' € S.

Figure 5.8: A public transportation network PTN* = (S, E) that has five stations
S = {s1, 89, S3, 84, S5} and four edges F = {e13, €23, €34, €35}, all with equal lower
and upper bounds l13 = U3 = log = Uog = l34 = uzy = l35 = uzs = 1 together with
a line concept LC* = (L, F) with two lines L = {/1,{} as well as an asymmetric
origin destination OD™ matrix that states that there is only two passengers in
the network: one that wants to go from s, to s4 and one from s5 to s;.
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(b) Nontrivial Cycles

Figure 5.9: (a) depicts the frequency as attribute EANg, = (A, £) that belongs to
the PTN™ from Figure 5.8. Since change times span a period length, we consider
only those change activities relevant to the origin destination OD* matrix. The

only cycle possible is shown in (b).
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(b) Nontrivial Cycles

Figure 5.10: (a) depicts the frequency as multiplicity EANf2 = (A, ) that be-
longs to the PTN* from Figure 5.8 with line frequencies F' = (f1, fo) = (1,2).
Since change times span a period length, we consider only those change activities
relevant to the origin destination OD* matrix. The besides permutation only
nontrivial cycle different from the one in Figure 5.9b is shown in (b).
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Frequency as Multiplicity

Figure 5.11: (a) depicts the frequency as multiplicity EANY ;, = (A, €) that
belongs to the PTN* from Figure 5.8 with line frequencies F' = (fi, f»). For
space reasons, only one direction per line is visible. Since change times span
a period length, we consider only those change activities relevant to the origin
destination OD* matrix. (b) shows the only cycle possible, parametrized by i
and j.
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5.6 Timetablers Nightmare

In this section we show that an optimum for the ODPESP from Section 2.5 using
the frequency_as_attribute LINES ROLL OUT model does not necessarily have
to yield a global optimum for the ODPESP with frequency_as_multiplicity
model. Only depending on the frequency of one line involved, performing a PE-
RIODIC ROLLOUT and rerouting passengers according to shortest paths does not
fix this issue, independend of solver characteristics and the shortest paths method
used and the error generally has a magnitude of 7. Even worse, the slack of the
suboptimal solution may be zero and the actual optimum can only be reached
by increasing the duration of a drive activity. This totally breaks intuition, and
in case it breaks common practices in timetabling, it may be considered as the
timetablers nightmare. And there seems to be no awakening.

Theorem 5.14. In general, the ODPESP optimum is conceptionally invisible to
the frequency_as_attribute model, i.e. no matter how nonnegative coefficients
are chosen for a PESP objective function, no choice guarantees that ODPESP
optimality 1s reached in the rolled out network.

Proof. This holds for the example network in this section, see Lemmata 5.16 and
5.17. ]

Since we cannot prevent the optimum from being chosen by chance for a
zero objective, we cannot strengthen the statement that way. This states that
even if coeffcients are not from an OD derived passenger distribution, the fre-
quency_as_multiplicity ODPESP optimum generally cannot be found with
the frequency_as_attribute model and the way we model change activities.

The difference of this approach to the one from Section 5.13 before is that
the OD derived passenger distribution is not unique and the ODPESP objective
function has to decide which to pick to get into a global optimum. One could as-
sume that if one somehow knew a distribution in the frequency_as_attribute
construction model that leads to the ODPESP global optimum, then the prob-
lem is somehow reducible to PESP for the frequency_as_multiplicity model.
However, this is not possible (or at least not in an obvious way).

To have some picture of the situation in mind when reading the relatively
technical lemmata and proofs, have a look at Figure 5.12.

As in the section before, we use a very simple PTN*, LC* and OD* from
Figure 5.13, and consider an associated event activity networks with our two
different construction models. The period length 7', the frequency f; and a lower
bound for a drive activity [¢ are parameters.

Lemma 5.15. Let T be the period length, PTNX, LCX, OD*, be as in Figure
5.13 and EANR, an associated event activity network with the LINES ROLL OUT
model frequency_as_attribute as in Figure 5.14 with obj)F(X as the optimal
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ODPESP objective value. Let further fy > 1, fo=1, 7 =T/f,, 14 = 7. It holds
objpr=7+6>7 . (5.45)

Proof. There is only one (nontrivial) cycle C in Figure 5.14 that yields the con-
straint

Tet+1l+a,—1—2q—1=2T |,
et €2, T+1), za€{r+2,... ., T+2}, z€Z, (546)

where ., x., zq as depicted in the Figure. There are only two OD* derived
passenger distributions possible: either changing from line /; to ¢ and back or
staying in line ¢;. This yields the following objective function

Objia (Te, 2%, 2a) = min(zq + 4, 2 + 2, +3) . (5.47)

Since the sum z. + &/, occurs both in the objective as in the only cycle, it makes
sense to substitute it by . = x. + .. Therefore, C looks like

Te—Tq—1=2T , Te€{4,...,2T+2}, xqg € {7+2,...,T+2}, z € Z, (5.48)
and the objective like
obji (T, 7a) = min(zq + 4,7 +3) (5.49)

from which arises the limitation &, € {4,...,T + 3}, since this still spans T" and
on the other hand values greater than 7'+ 3 do not make sense for the objective.
It holds

E_ﬂ:ogzg{TH’_;_T_QJ:P—%J:O, (5.50)

thus z = 0 and

Fo =14 x4 (5.51)

which simplifies the objective to
objma(2q) = min(zq + 4,24 +4) =24 +4=7+6 . (5.52)
A frequency_as_attribute ODPESP optimum is therefore reached iff
Tq=T+2 (5.53)
and the lemma follows. O

Lemma 5.16. For Lemma 5.15, no choice of the coefficients in an PESP objec-
tive function prevents x4 = T + 2 from being an optimum.
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Proof. The most general objective function is
min &g + fa. + ol + C (5.54)
with &, 5,4, C' > 0. Without the substitution, (5.51) writes as
Tet+ a2l —1=ux4 (5.55)
and thus the objective transforms into
min(f + &)z, + (5 + @)z, + (C —a) . (5.56)

With 8 = B4 & and v = 7 + & which can still be chosen freely and without
constant there is
min Sz, + vzl . (5.57)

If 8 and v are both zero, then x4 = 7+ 2 is still optimal as in Lemma 5.15 before.
Let w.l.o.g. v > 0. It remains

min oz, + 2! (5.58)

c )

with & = £. There are four possibilities: @ =0, « = 1, o € (0,1) and a > 1.
Lemma 5.15 already considered the case a = 1, for o = 0 it holds 2z, = 2, so still
xrq = 7 + 2 would be optimal, the latter two are equivalent trough permutation
of . and x.. Therefore, only o > 1 remains, which yields x. = 2 and since then
xl, = xq + 3 again xq = 7 + 2 may take on its lower bound. O

Lemma 5.17. Let T be the period length, PTNX, LCX, OD*, be as in Figure
5.13 and EANY,; an associated event activity network with the LINES ROLL OUT

model frequency_as_multiplicity as in Figure 5.15 with objmy; as the optimal
ODPESP objective value. Let further fi > 1, fo=1, 7 =T/f;, Y =7 +2. It
holds

obja =7 . (5.59)

Proof. In Figure 5.15 there is only one nontrivial cycle C that yields the constraint

Te+1+a2—kt—1—24—1=0 modT ,
T, 2. €{2,...., T+ 1}, zqe{r+2,...,T+2}, ke {0,...,f1 —1}, (5.60)

with z., 2, x4 as displayed in the Figure and after Lemma 1.6 may be reduced
to

Te+1+a2.—1—24—1=0 modr7 ,
e, €{2,...,T+ 1}, zac {r+2,...,T+2}, (5.61)
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Again, there are only two passenger OD* derived distributions possible: either
staying in line ¢; or changing between lines, which yields the objective function

objin (e, 2, wa) = min(wa + 4, 7 + 2L +3) . (5.62)

This time substitute T. +4 = z.+ 2., T, € {0,...,27 —2}, which can in a similar
way as in the proof before be limited to T, € {0,...,7—1}. The cycle constraint
thus looks like

T.=2x4—3 modrT |, T.€{0,...,7—1}, zg e {7 +2,..., T+ 2}. (5.63)

For the lemma to be true is now needed that 7+3 € {7+ 2,..., T+ 2}, which is
equivalent to 3 € {2,...,(f1 — 1)% + 2} D {2,3}, since f; > 2 and % > 1 since
f1|T. Therefore zq = 7+ 3 may be chosen and leads to

Zo=0 modrT , (5.64)

which is satisfied for . = 0, i.e. z.+ 2. = 4 and thus
objmr =7 | (5.65)
which is always attained if passengers change from ¢; to ¢ and back. O

Lemma 5.18. The ODPESP objective function value from Lemma 5.15 can not
be improved by a sequence of PERIODIC ROLLOUT, rerouting passengers by dura-
tion shortest paths and PESP timetabling, independend of solver characteristics
and shortest paths methods.

Proof. 1f obj:}(; = 7, then as per Lemma 5.17 the ODPESP optimum for the rolled
out network is attained and nothing can be improved anyway. Otherwise, shortest
duration rerouting considers 1+ f; possible paths after PERIODIC ROLLOUT: one
that uses the x4 and f; that use the change provided by line /5, parametrized by
k. This is equivalent to calculate

min(zq + 4, [z. + 2] (k) + 3) . (5.66)

By Equation (5.53) xq = 7+ 2 with 7 = T'/ f; is given and the f; cycles constrain
the possible values of [z, + x.](k) to

Tet+a,—kr—24—1=0 modT |, (5.67)

To+a,=z4+1=7—1 modr |, (5.68)

after Lemma 1.6, so any shortest path that uses /5 is still as long as staying in /.

If rerouting picks the ¢; path, PESP timetabling cannot improve the objective,
since xq is already on its lower bound. Otherwise, the PESP is

min z. + . + 3 (5.69)
st xet+al,—wqg—1=2T |, (5.70)
T, 2L €{2,....,T+1}, 2€7Z , (5.71)
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which is just a subproblem from Lemma 5.15, LINES ROLL OUT model fre-
quency_as_attribute, i.e. the old schedule stays optimal and therefore again
no improvement. The lemma follows. O

Theorem 5.19 (Timetablers Nightmare Worst Case Error Lower Bound). Let
EANps and EANgpy be two event activity networks that satisfy the bounded by
period property from Definition 5.1, latter with optimal ODPESP objective func-
tion value objiy, derived from a common PTN = (S, E), LC(f1) = (L, F(f1)),
OD and common period length T with only different LINES RoLL OUT mod-
els, i.e. frequency_as_attribute resp. frequency_as_multiplicity, where
fi > 1, fo =1¢€F, filT are the frequencies of two lines {1 and ly that cross
at least at one station s € S and T/ f1 is maximal among all crossing lines. Let
further EANg,; be the PERIODIC ROLLOUT of EANps with objective function
objpa after shortest durations rerouting and PESP timetabling. Independent of
the solver characteristics and shortest paths methods, it holds

" T
Ob.]FA > fl+6
PTN, objty 7 ’
Lo )op  JFM

V fief{2,...,T). (5.72)

Numbers for Theorem 5.19 see Table 5.5.

Table 5.5: ODPESP after rollout worst case relative error lower bounds for dif-
ferent period lengths T" and different f;, see Theorem 5.19.

Period Length T

fi 2 3 15 30 60 120 600 1200 2400
2 1.00 3.00 5.14 943 43.71 86.57 172.29
3 1.57 229 3.71 6.57 29.43 58.00 115.14
4 1.93 3.00 5.14 2229 43.71 86.57
D 1.00 1.29 1.71 2.57 4.29 18.00 35.14 69.43
6 1.21 157 229 3.71 1514 2943 58.00
12 1.04 121 157 229 8.00 15.14 2943
15 1.00 1.14 1.43 2.00 6.57 1229 23.71
20 1.07 129 1.71 514 943 18.00
30 1.00 1.14 143 3.71 657 1229
60 1.00 1.14 229 3.71 6.57
120 1.00 1.57 229 3.71
600 1.00 1.14 1.43
1200 1.00 1.14

2400 1.00
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ODPESP Method
Frequency as Attribute,
Frequency as Frequency as
Attribut Rollout, Reroute, Multinlicit
rbute PESP Timetabling L
t 2 Uy 014 1 9 Uy 014 1 9 s
0 s1,dep s1,dep s1,dep ’
o S oy S R S s N I
> o) | | 1
3 (52, dep‘| fs2, ep\| fs2, dep\|
4 (s, a7 ) (s, arr ] (3, )
5 ! sz, dep ! S3, arr '
: | :
6 | S4, arr | 153, dep1<-7
7 | : Sy, arr
8 | |
| |
9 | !
10 : s1,dep : s1,dep
|
11 : Sg, arr : So, arrT
|
0 : |
|
13 I :
|
|
14 | s3, arr ! S3, arr !
| |
151 s3,depi<=-~ 153, depr<——|-——-—- /
16 s4, arr S4, arT s3, dep
17 S4, arT
18
19 ° ®

Figure 5.12: An actual timetable for Lemma 5.18 that shows the different solution
methods, T" = 20, f; = 2. Solid lines denote the optimal solution if passengers
stick to ¢1, while dashed lines if they use /5.
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— !
@ _——— g; change € [2,T + 1],

@ 1 1 ODZ(S/ _ 1 (87 S/) : (817 84) :
0 otherwise

ldT+2 Vs, s’ € S.
Figure 5.13: A public transportation network PTN* = (S, E) that has four
stations S = {s1, 9, 53,54} and five edges E = {e13, €23, €23, €34, €35}, most with
equal lower and upper bounds l13 = U13 = l34 = U3q — lg5 = U3y — 1 123 = l
T3 = T+2 together with a line concept LC* = (L, F) with two lines L = {/1, EQ},
F = {f1, fo}, f1, fo|T where T is the period length as well as an asymmetric
origin destination OD™ matrix that states that there is only one passenger in the
network: one that wants to go from s; to sy.

S1 S4
N\ N\
d drive _ lva_ d 1 _dr&/c;zg ( _ lvait d drive £
ep i arr 7= > dep 1 g+ arr = dep 7y anr 1
\ v
change\ \ Zchange
b dep~—-*% -~ arr - ¢
_____ 2
S2 ) L S3

Figure 5.14: The frequency as attribute EANy, = (A, &) that belongs to the
PTN* from Figure 5.13, frequency_as_attribute construction model. Since
change times span a period length, we consider only those change activities rel-
evant to the origin destination OD* matrix. The only cycle possible is dashed;
only one direction per line for simplicity purposes.

Sl——  r 3 ( N 4
dep 25 arr -2 dep~ S2%4 > arr - ¥ dep =% arr 14
P P77 Ip[11 1,1
sync - \ sync . sync
T - I : 3l
T \ k7 Kt
Y drive wait drive, x4 wait ¢ (Iirive
de TV dep T AIT d oo AT g,
sync \ sync / gynlc
R VR R
d drive a wait dé drive, x4 a wait de drive a £
oy At \ P+ = Py alr 1,f1
\ / \ J
/
change\zL L/
) y; change
dep~—-~=-- arr 2
L 52 ) L 53

Figure 5.15: The frequency as multiplicity EANY,; = (A, &) that belongs to
the PTN™ from Figure 5.13, frequency_as_multiplicity construction model.
Since change times span a period length, we consider only those change activities
relevant to the origin destination OD* matrix. The only cycle possible is dashed;
only one direction per line for simplicity purposes.
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5.7 Always Best Changes

One could assume that in an event activity network with LINES RoLL OuT
model frequency_as_attribute passengers may always use the change with the
shortest duration among all changes between a pair of lines at each station, as
in Lemma 3.4. As usually however, this is not correct in general and again may
lead to suboptimal timetables. The reason for this effect is the passenger distri-
bution being inconsistent, i.e. passengers needed to beam between two frequency
instances of a line and thus are generally not able to take every shortest change
between every pair of lines on their way from one station to another, which can be
seen in Figure 5.17 in the second column, where the dashed line is not connected.

Using best changes is like introducing an extended ODPESP based on the
EPESP. However, since in the example network we consider there are only two
distributions possible, we simply have a look at both instead of formulating a
new model.

Attention: this time we are using the PTN® from the Section 5.6 before. The
author highly recommends Figure 5.17 for a visualization of the actual issue.

Lemma 5.20. Let T be the period length, PTNX, LCX, OD*, be as in Figure
5.18 and EANy, an associated event activity network with the LINES RoLL OUT
model frequency_as_attribute as in Figure 5.1/ with objms as the optimal
ODPESP objective value with the assumption that change durations take their

best change duration in objax as in Lemma 3.4. Let further fi = 1, fo > 1,
T=T/fy and 1Y =7+ 3. It holds

objmx =7 . (5.73)
Proof. In Figure 5.14 there is only one nontrivial cycle that yields the constraint

Tet+l+a, —1—zq—1=2T |,
T, 2L €{2,..., T+ 1}, ;g€ {7 +2,...,T+2}, z€Z, (5.74)

with z., o, 24 as in the Figure 5.17. With only two OD* derived passenger
distributions possible and durations of best changes ., 7., the objective function
looks like

objms (Te, T, 2q) = min(zq + 4, T + 7, +3) . (5.75)

Since there always are representations x. = T.+i7, 2, = Z.+j71,4,7 € {0,...,7—
1} the cycle constraint writes as

Te+iT+T.+j7—24—1=0 mod T , (5.76)
is after Lemma 1.6 equivalent to

Te+T.=2zq+1 modrT | (5.77)
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and after substitution . + 4 = T. + T, the variable Z. is limitable to Z. €
{0,...,7 — 1} since it still spans 7 and bigger values do not make sense for the
objective. Thus

Te=x4—3 modT . (5.78)

The equation
Tq = 3+ (fg - 1)7’ (579)

is needed for Lemma 5.22 later and therefore must 3+(fo—1)7 € {7+3,...,T+2},
which with 7 = T'/ f2 given is equivalent to

!
3e{f+3—(f—D%,....T—(fo—1)F +2} (5.80)
={3-T+2%,....,. 2 +2} D {3-T+2[F],...,3} (5.81)
={3-[31+15),...3} O {3} (5.82)
and thus always ensured and with Equation (5.79) holds . = 0 from which the
lemma, follows. ]

Lemma 5.21. Let T be the period length, PTNX, LCX, OD*, be as in Figure
5.13 and EAN3,; an associated event activity network with the LINES ROLL OUT
model frequency_as_multiplicity as in Figure 5.17 with objmy; as the optimal
ODPESP objective value. Let further fi =1, fo > 1, 7 =T/fy and 14 = 7 + 3.
It holds

objay =7+ 7 (5.83)

and all timetables yield the same objective for the two OD™ derived passenger
distributions possible.

Proof. The cycle equation this time is
Te+1l+a—1—2q—1=2T |,
T, 2L €{2,...., T+ 1}, ;g€ {7 +2,...,T+2}, z€Z, (584)

just as the proof for Lemma 5.15, so this time with slightly different bounds for
zq and z it holds

1 T+3—-1—7-3 T+1
[T 1-‘ 0<2< { T J {1 T J 0, (5.85)
and thus
Te+a,=xq+1 , (5.86)

so both paths possible take equal duration for any timetable and the objective
objaai(Te, 71, 2q) = min(ze+2,+3, 2q+4) = T+ 2 +3 = 2q+4 =747 , (5.87)

from which the lemma follows. O
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Lemma 5.22. Let objiﬂ([;F be the objective from Lemma 5.20 after a PERIODIC
RorLLouT and shortest duration passenger rerouting. Depending on the solver
characteristics

objpm =74+ (fo =17 (5.88)

1s possible. However, an additional PESP timetabling step reduces this to the
ODPESP optimum from Lemma 5.21.

Proof. As in Equation (5.79) from Lemma 5.20,
rq=3+(fo—1)7 (5.89)

yields an optimal solution. However Lemma 5.21 states that in the rolled out
network both paths possible have the same duration, therefore a change does not
improve this value, but PESP timetabling does, because

Tg=3+T (5.90)
is better for both OD* derived passenger distributions. The lemma follows. [

Theorem 5.23 (Always Best Changes Worst Case Error Lower Bound). Let
EANpa and EANgpy be two event activity networks, latter with optimal ODPESP
objective function value objg, derived from a common PTN = (S, E), LC(fy) =
(E, F(f2)), OD and common period length T" with only different LINES ROLL OUT
models, i.e. frequency_as_attribute resp. frequency_as_multiplicity,
where fi = 1,fa > 1 € F, fo|T are the frequencies of two lines {1 and ly that
cross at least at one station s € S and T/ fo is maximal among all crossing lines.
Let further EANgy; be the PERIODIC ROLLOUT of EANga with objective function

objpa after shortest durations rerouting. Depending on the solver characteristics,
it holds

ity T+ (fa—1)E
max ObJFA > (f2 )f2

PTN, obijty 7T+ L
LC(fa),0D  JFM T

, VY foe{2,.... T} (5.91)

For Theorem 5.23 in numbers see Table 5.6.
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ODPESP Method

Frequency as Attribute,
Rollout, Reroute,
PESP Timetabling

Frequency as
Attribute,
“Best Changes”

Frequency as Attribute,
Rollout, Reroute

3 ! ly 0 l21 lao-4 ! 21 lao4
0 sp,dep s1,dep s1,dep
- - - = - - - = CT T T TN
1 rsg, arr 1--~ 1S9, AIT 1= =~ 1S9, aIT 1——~
\_ \_ \ —— —— 1
| |
2 | s9,dep ' S9,dep ' S9, dep ‘
S | r— T T A [ |
S92 | 2 | S92 |
3 1S9, de 1S9, de 1Sy, de
4 S3, arr | 53, AIT | 1S3, aIr |
E—— \
| |
i) | |
| |
6 ! |
| |
| |
7 | |
| |
8 S9, dep | S9, dep | S, dep
| |
9 S3, arr : S3, arr : S3, arr
| |
10 | S3, arT |
| ===
11 | 153, depi1<—7~
| =
12 : S4, arr
|
13 S9, dep | So, dep s9, dep
|
14 S3, arr : S3, arr S3, arr
|
15 |
|
16 !
|
17 :
|
18 S9, dep I S9, dep S, dep
S |
r 3
19 | 53, AIT | : S3, arr §3, arr

90 | |
20 | s3, arr | S3, arr |
]

21183,dep|<—-’ 133,dep|<—’

[ — [ —

22 4, arr Sy, arr

Figure 5.16: An actual timetable for Lemma 5.22 that shows the different solution
methods, T' = 20, fo = 4. Solid lines denote the optimal solution if passengers
stick to £1, while dashed lines if they use /5.
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Table 5.6: ODPESP after rollout worst case relative error lower bounds for dif-

CHAPTER 5. WORST CASE ERROR

ferent period lengths T" and different f;, see Theorem 5.19.

Figure 5.17: The frequency as attribute EANZ,,

Period Length T

fi 2 5 15 30 60 120 600 1200 2400
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 142 159 174 185 197 1.98 1.99
4 203 236 262 2091 2.95 2.98
5 1.38 1.90 238 289 3.32 3.83 3.91 3.96
6 2.05 2.67 335 396 4.74 4.86 4.93
12 252 3.63 5.17 688 9.77 10.35 10.66
15 263 389 5.73 793 12.06 1295 13.46
20 418 6.40 9.31 1559 17.12 18.01
30 450 722 11.18 21.74 24.83 26.75
60 825 13.89 35.12 43.96 50.36
120 15.75 50.17 70.41 88.41
600 75.75 133.89 218.45
1200 150.75 267.22
2400 300.75
S1 S4
d\rlvcf wait \ drive, x4 ( W \drl\g
dep? arr ———»dep——ld—T—Q]-» arr ———»dep? arr 014
\ /
Chdnge\ / change
\ .
\ dep—=— arr a4
\ :synlc /
\\ k% //
A2 N /
dep—| - — > arr o
Yo )
dep —=— arr ¢
o TP L ) »52

(A, E) that belongs to

the PTN* from Figure 5.13, frequency_as_multiplicity construction model.
Since change times span a period length, we consider only those change activities
relevant to the origin destination OD* matrix. The only cycle possible is dashed:;

only one direction per line for simplicity purposes.
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5.8 Summary

In this section, we summarize the results of Chapter 5 mainly in table 5.7.
From an analytical point, Theorem 5.2 yields an upper bound for the worst
case error

ObJ 1 wmakaax
<

Obj2 — wminlmin

obj
|OD-o [|4,|T vesp. it € O] ODo || 4,/7)
2

A worst case overestimation lower bound for the frequency_as_attribute
vs. the frequency_as_multiplicity LINES ROLL OUT model with only one
passenger distribution possible in former network is

lem(f1,f2) T'+6

T+6

Table 5.7: A summary for Chapter 5.

Property
g
) STy = 9 -
8= gg’é R = 2
2Zm =2 =2 8 &g =
8 ®BZ2L Vo BT EE R w2
2 A <88 & % = B 2
< 8 o Q= o) QC:) .5 O o (el e}
“85. g&g=T EEET EF ¥ g
o g = %g% = 2 T 8 T A 8= T g
£ =2 <85 S T 2% 2®n oo e
S o = - v L O 4 UM =T (SR
%.:,2 %2 oE 3T A B o o
= =23 = o 9 <) O »n QO = @ o QD
. SE2 28572 TETZE2ER S E OEA
Section OCE &% =ZBE E£E E£328 .50 <2 E=
Fixed T+ 2 T+2
e 0 - 0o o o —X2£ 0O
Passengers 3 3
Fixed T
. 0 —+1 O O O 1 O
Moduli 6
Li T+6 T+6
e 0 " o 0o o X O
Concept 8 8
T%metablers C T/fi+6 0 0 0 T/fi+6 0
Nightmare 7 7
(fo—D)T
Alw. B 7+
w. best o —%2 o o o 1 0
Changes 74+ L

f2
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Chapter 6

Computational Results

6.1 Test Instances

We work with four LinTim! test instances:
Spiel A tiny test network.

Athens Metro Network of Athens, capital of Greece. Integrated with K. Gk-
oumas in February 2010. The line pool is derived from splitting lines in a
default line concept, therefore l¢ = l;,c. There are no headways since in our
line concept no two lines share an edge in the PTN. Moderate size.

Bahn-klein/gross Based on Germany’s intercity railway network.

Every instance consists of a public transportation network PTN, an origin des-
tination matrix OD as well a line pool £ and a line concept LC = (E, F) with
L C £ as well as bounds required to construct event activity networks with meth-
ods from Sections 2.3 and 3.1, like [Vt qWait  change gpnd g change  See Table 6.1
for a detailed listing.

We do not use the option to evaluate different line concepts and focus on the
average traveling time for a fixed PTN, LC and OD setup. Our evaluation starts
at EAN construction level. The line concepts of Bahn-klein and Bahn-gross differ
in that in the former there are less lines, but with higher frequencies, which as a
large scale network makes it more interesting for frequency_as_attribute vs.
frequency_as_multiplicity comparisons.

thttp://lintim.math.uni-goettingen.de/
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) Spiel

a

(

(d) Bahn-gross

Bahn-klein

()

Figure 6.1: Hlustration of used LinTim instances.

Draw by Neato: http://www.graphviz.org/
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Table 6.1: Properties of the LinTim datasets. Cyclebases widths with fundamen-
tal improvement from [Lie03]. Feasibility refers to a network where all activities
that span a period have been removed while Objective keeps those with more than
zero passengers, numbers obtained by taking a random feasible timetable, rerout-
ing passengers and formulating the PESP for the resulting OD derived passenger
distribution.

Dataset

Property Spiel ~ Athens Bahn-klein Bahn-gross

Stations 8 51 250 319

Edges 8 52 326 452

Line Pool 8 481 132 2770

PIN Line Concept 5 4 53 86

OD passengers 2620 63323 3147382 4183088

OD pairs > 0 44 2385 48842 77878

IpTN 12560 7797809  4.8271ES 6.6780E8

Lower [ 14540 9061697  5.0234ES8 6.9445E8

Bounds lo 15460 9371511  5.0800E8 7.0024E8

lLc 15940 9371511  5.0887ES8 7.0345E8

Events 52 208 3664 4932

Actvities 182 234 24670 33446

Drive 26 104 1832 2466

Wait 16 96 1722 2294

EAN Change 64 34 14636 22418

Headways 76 0 6480 6268

t/Minute 1 10 1 1

Period T 60 600 60 60

[[vait et 11 3] [3, 6] 1, 5] 1, 3]

[[change g change] 13 62] 10, 609 (3, 62] (3, 62]

Feasibilit Activities 118 200 10034 10928

o P Cyclebase 20.82 0.0 201226  1387.66

E .. Activities 126 226 11340 13157
Objective

Cyclebase 24.05 7.67 2551.71 2118.14
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6.2 Test Environment

Our computational evaluations took place on two machines.

laptop A 13.3" MacBook Pro from mid 2010, 2.4 GHz Intel Core 2 Duo Proces-
sor, 4 GB main memory and running the 10.6.7 version of Mac OS X.

c3 A 4 core Intel Xeon E5520, 2.27GHz, 24 GB main memory running the server
edition of Ubuntu 10.04.2 LTS.

6.3 Test Set-Up

In table 6.1, the cyclebase width is of particular importance, since it is an indica-
tor for the runtime for solving the PESP. For Spiel and Athens it is low, but for
Bahn-klein and Bahn-gross it is astronomical compared to the numbers in [Lie03],
where the greatest width was 88.4. This leads us to have the primal-dual gap
stuck at 75% for maybe the next billion years. Ignoring headways would solve
that problem but is not an option, since it makes the timetable effectively infea-
sible. Only for Spiel we succeeded in evaluating the ODPESP optimum while in
general we rely on using a Retimetabling (ReTim, Definition 3.21) based heuristic
approach and compare our results to Iy, which at least gives us an idea on how
far our ODPESP global optimum may be away.

Definition 6.1 (Average Traveling Time Gap to I c). For a timetable m and
w obtained by PASSENGER DISTRIBUTION Algorithm 4, shortest paths w.r.t. w
derived durations, the average traveling time gap to Iy ¢ in percent is

ATT, 1} , (6.1)

gapZTT = 100[
LC

where ATT? is the average traveling time from Definition 2.12.

Definition 6.2 (Periodic Rollout Gap Quotient). Let m = mwga be a timetable and
mem its PERIODIC ROLLOUT as well as wga and wpy obtained by PASSENGER
DISTRIBUTION, shortest paths w.r.t. mpa 1esp. wpy derived durations. Then the
periodic rollout gap quotient in percent is defined as

ATTTEM

WFEM

ATTTEA
Q™ =100 {# - 1} : (6.2)

Thanks to abscon? we can obtain feasible timetables within seconds, even for
our large networks. However, although it is able to provide multiple solutions
for one problem, they are too similar and often differ just in one variable. To

2May be found on http://www.cril.univ-artois.fr/"lecoutre/software.html. Great
thanks to Marc Goerigk for this discovery!
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obtain a higher diversity, we apply a random permutation to the events index
set, find a feasible PESP solution and permute it back. With this procedure, ten
initial timetables were generated per dataset, some properties in Table 6.2. The
randomness seems to be reasonably high, since the ReTim results vary heavily.
Of course, a sample size of ten is too small to make strong statements about the
underlying sample space, but still better than just relying on a single timetable.

Table 6.2: Properties of the ten initial timetables used. Values obtained after a
PERIODIC ROLLOUT and PASSENGER DISTRIBUTION.

Dataset

Property Spiel Athens Bahn-klein Bahn-gross

@ 2608 2797 11.86 11.45
<5 o 428 6.56 0.45 0.25
S hest 2058 17.92 11.06 10.93
* worst 34.76  35.47 12.35 11.84
o 5222 87.99 2.81 0.82

=- o 14.51  17.65 0.20 0.11
O best  26.86  62.79 2.57 0.70
worst 8117  117.38 3.20 1.01

6.3.1 Modulo Simplex

In our ReTim approach we use and evaluate the modulo simplex [GS11] as well.
Roughly said, it uses properties of the space

0= conv.hull({ (7;) g <=7+ T 2, < Ug, (e,6) =a, 2z € Z\A\’ e ]le})

to heuristically improve a given timetable. It is set up to use multi node cuts since
they perform best in [GS11]. The only thing we need to know for our purposes
is that the modulo simplex for an initially given timetable 7 never yields worse
results than solving the PESP for modulo parameters fixed to those of 7.

6.3.2 Retimetabling

ReTim consists of two steps: timetabling with a fixed passenger distribution
and rerouting with a fixed timetable. In this section we go into detail on which
configurations we evaluate. A summary may be found in Table 6.3.

We use randomized shortest paths, i.e. when constructing the shortest path
tree in Algorithm 4 in each step we take a (pseudo)random node with minimal
distance and not a fixed node predetermined by a heap structure. Therefore, we
obtain different passenger routes even for the same timetable, which prevents the
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ReTim iteration from getting stuck too soon. Also, for the timetabling step we
reuse only modulo parameters and not the whole previous timetable as initial
solution to avoid situations as in the example network in Section 5.2. We want
to evaluate the influence of randomness as well and thus perform three runs for
every initial timetable and configuration. Tables 6.4 to 6.7 contain the average &
and maximum of the gap span AT (of ATT over an) initial timetable, where
AP — max(S) — min(S) with S = {ATT?,..., ATT"} being the set of average
traveling times of the n = 3 runs for an initial timetable.

If shortest paths are randomized and timetables not guaranteed to repeat,
how then to ultimately know that the average traveling time ATT converged?
It is impossible, we can never know. Therefore, we talk of convergence if ATT
does not improve in three consecutive ReTim steps. However, we do not give
up and, depending on the configuration, try different heuristics to break through
and further improve ATT.

The event activity network on which ReTim takes place can either be modeled
with the frequency_as_attribute or the frequency_as_multiplicity LINES
RoLL OuT model. We evaluate both, but since the average traveling time in
the latter is less-equal to that in the former by Theorem 3.2 resp. the other way
round if we assume always best changes as in Section 5.7 and we want to compare
both models, after each rerouting step, we back up the event activity network,
passenger distribution and timetable, perform a PERIODIC ROLLOUT, reroute
passengers, measure ATT in the rolled out network w.r.t. actual durations, i.e. all
frequency instances visible and without always-best-changes assumption, restore
our backup and continue the iteration. We substract the time needed to perform
this rollout peek from the runtime, since this step is for evaluation purposes only,
does not affect the outcome and could thus be skipped in production systems,
but only at the first glance, as we can be seen in the test results for Spiel and
Athens in Sections 6.4.1 resp. 6.4.2.

In consecutive timetabling and passenger rerouting steps the PERIODIC ROLL-
ouT would give the same result, since the rolled out timetable stays the same. To
make our iteration plots like in Figure 6.2 richer in information, in timetabling
steps, we use the passenger distribution from the previous rollout peek and do
not reroute passengers, which yields a generally higher gap for the peek and gives
us an idea of how the new rolled out timetable would have performed for the old
rolled out distribution.

We evaluate our both LINES ROLL OUT models as initial ReTim configura-
tions. Since our initial timetables are for frequency_as_attribute, we perform
a PERIODIC ROLLOUT to get a respective feasible frequency_as_multiplicity
timetable. In latter case the rollout peek does not make sense since the network
already is in a periodically rolled out state and we just measure the ATT directly.

As linear models we have a look at the PESP as in Linear Program 2.4 and
the EPESP as in Linear Program 2.25. For latter, we chose T, = T'/lem(fi, f2)
and [l,,u,) = [Ihamee hange 1T — 1] for all @ € Achange, Which yields the best
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change between two lines at one station as by Lemma 3.4. To ensure ReTim
convergence, we thus also have to set shortest path weights to the best change as
in Lemma 3.4, which is why we call the EPESP a change model as well, like in
Table 6.4. For headway activities, we set [l,, ug| = [ha, T, —he] for all a € Apeadway
where h, := heqge, is the headway of the corresponding edge in the PTN, which
ensures feasibility in the periodically rolled-out network by Corollary 3.9. Waits
and drives keep their bounds and remain as in the PESP.

If frequency_as_attribute is the LINES ROLL OUT model, we apply a
PERIODIC ROLLOUT once ATT converges, the so called convergence rollout. This
does not worsen ATT if the linear model is PESP, as by Theorem 3.2. In case
we used the EPESP, this step may increase ATT, but since it occurs only once,
it does not influence convergence. The ReTim iteration continues using PESP
for timetabling and shortest paths w.r.t. to actual durations in the rolled out
network until ATT converges again, which we denote by final convergence like in
Table 6.4.

By Theorem 3.22 we may apply heuristics that do not increase the average
traveling time in the PESP timetabling step and ReTim still converges. In our
case it is the modulo simplex [GS11] and we evaluate three ways of using it.

No Modulo Simplex, NoMs Also denoted as fized modulo timetabling, as in
Tables 6.4 to 6.7. Chose the PESP or EPESP as linear model, obtain
modulo parameters from the previous timetable, solve the problem for fixed
parameters. Since we have no other heuristic for the modulo parameters of
the EPESP, this is the only choice that case.

Modulo Simplex on Convergence, MsConv At iteration start, set a mod-
ulo simpler usage state modulo_simplex_used=false. If fixed modulo
timetabling and randomized shortest paths rerouting cannot improve the
objective in three consecutive ReTim steps, use the modulo simplex in the
timetabling step with the modulo parameters of the previous timetable as
initial solution and set modulo_simplex_used=true. Set it back to false
again if any consecutive ReTim step further reduces ATT, to denote that
the modulo simplex may be used again. A PERIODIC ROLLOUT or termi-
nation may only be performed if we assume that another modulo simplex
iteration cannot further improve ATT, i.e. modulo_simplex_used is true.

Modulo Simplex Only, MsOnly Use the modulo simplex as heuristic in every
timetabling step, initial solution from previous timetable.

Every configuration we evaluate at may thus be summarized by three attributes:
Initial Frequency Model Either Frequency as Attribute or Multiplicity.

Linear Model/Change Model Can be PESP or EPESP.
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Modulo Simple Model Either NoMs, MsConv or MsOnly.

To save computation time but also to compare results, we may reduce the
NoMs case to MsConv, for frequency_as_multiplicity being the initial fre-
quency model, i.e. former would have stopped anyway before the first application
of the latter or if the linear model is EPESP, since there is no modulo simplex
available before PERIODIC ROLLOUT. This is the reason why column two to four
in Tables 6.4 to 6.7 the rows one and two as well as seven and eight contain the
same values. In other cases however, it is unclear to what iteration the rollout
would have occured, since the Modulo Simplex delays convergence and therefore
the reduction then is impossible. A comparison of ATT for MsConv vs. NoMs for
PESP and frequency_as_attribute shows different values after the first ReTim
step, although the timetabling method is the same, which happens because of the
randomized passenger distribution.

Our goal is not only to minimize gapjrr, and thus the average traveling time,
but also to evaluate the error from Chapter 5.

Table 6.3 gives an overview over the configuration space. With reductions and
removal of meaningless/not converging setups, there remain six configurations we
run on ten timetables three times, which makes 180 ReTim tests per instance and
720 in total.
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Table 6.3: An overview over the possible configurations.

Property
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6.4 Test Results

This section contains results of the test from Section 6.3 instancewise with short
reviews that refer to subsections of next Section 6.5, where the overall analysis is
done. When reading, instances should not be skipped, since we basically do not
mention effects that occur in all networks twice.

6.4.1 Spiel

Since the Spiel network is small enough, we may evaluate the ODPESP optimum
Obj*ODPESP - lLC - 15940 5 (63)

already for the frequency_as_attribute LINES ROLL OUT model and can in-
deed be verified by solving the PESP and rerouting passengers, i.e. our imple-
mentation of Linear Program 3.23 actually works. However, this global optimum
could not be reached by any ReTim configuration in our test run.

An interesting aspect shows up when studying Table 6.4 and Figure 6.2. For
frequency_as_attribute, PESP, NoMs the best gap to Iy ¢ on final convergence
is worse than after the first run. The reason for this is that the mentioned
configuration does not operate on a periodically rolled out network, thus is not
aware of what happens there and can increase the average traveling time by
accident as can be seen in Section 5.6 as well and we discuss in Section 6.5.4.

Also noteworthy about Table 6.4 is that for the LINES RoLL OuUT model
frequency_as_multiplicity, the ATT average on final convergence and after
first ReTim step is worse for the MsOnly model than for MsConv resp. the
subtest NoMs and A% over the initial timetable rises higher than some average
gap to [y ¢ sizes after the first ReTim step. Both effects occur because of the
shortest paths randomization which we discuss in Section 6.5.3.

The EPESP and frequency_as_multiplicity models perform rather bad
in final convergence and after the first ReTim step compared to PESP with
frequency_as_attribute. This may be observed in all other networks as well
and we discuss in Sections 6.5.6 resp. 6.5.4.

Figure 6.3 shows a ReTim run in which the EPESP change model underesti-
mated ATT, which can happen as stated Section 5.7. Further, after a PERIODIC
RoLrout, ATT drops even below the already underestimated value. This hap-
pens to networks as small as Spiel and all other instances as well, which we discuss
this effect in Section 6.5.6.
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Figure 6.2: Spiel better ATT peek than final convergence, timetable 4, third run,
frequency_as_attribute, PESP, NoMs. This is not the least peek from Table
6.4, but the easiest to spot in the plot. Be reminded that in the timetabling step
rollout peek, we measure the ATT w.r.t. the new timetable, but the old rolled out
old passenger distribution, which explains the gigantic peek in iteration three.
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Figure 6.3: Spiel EPESP run, timetable 5, first run, PESP, MsConv. As stated in
Section 5.7, ATT may be underestimated by the EPESP model, since passengers

in general can not take all best changes along their route.

Note that after a

PEeRrIODIC ROLLOUT, ATT drops below the already underestimated value of the
EPESP change model.
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Table 6.4: Results for the Spiel instance, machine: laptop.

Average Traveling Time Gap to Ij,¢
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6.4.2 Athens

After days of computation, Cplex 12.1.0 could not get the primal-dual gap of
the ODPESP from Linear Program 3.23 below 18% for Athens even when using
the smaller frequency_as_attribute LINES ROLL OUT model. Although in
our test we obtained 0.84% as the smallest gap to [ ¢, this may still not be the
ODPESP optimum, as seen for the Spiel instance in the previous Section 6.4.1,
where we came as close as 0.5% with our best ReTim run.

For Athens, the ATT deviation in Table 6.5 is the lowest among all networks,
that means that randomized paths have the least influence on the ATT value on
final convergence compared to other instances.

As it is the case for Spiel, there are test runs for which the rollout peek yields
a better ATT than on final convergence. However, for Athens, that peek yields
the best ReTim timetable in the whole test and can be seen in Figure 6.4.

Runtime in Seconds

0 25 191 o)

L664ET T T 77.54% £
Timetabling C—— S

g Rerouting —— o
- Rollout Peek 3
o0 Traveling Time ©
= Convergence Rollout o g
B f .
S L2BET e 36.62% 2
2 E
& =
g =
> )
-
9.451F6 L B 0.84% ¢

0 11 17 <

Number of Iterations

Figure 6.4: Athens, timetable 6, first run, frequency_as_attribute, PESP,
Modulo Simplex only. In iteration number two the rollout peek drops to 0.84%,
which is more than half below average traveling time gap to I, on final conver-
gence. A similar scenario occurs to Spiel as can be seen in Figure 6.2, where the
visibility of the difference between the peek and the final convergence value is
better.
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Table 6.5: Results for the Athens instance, machine: laptop.
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6.4.3 Bahn Instances

Bahn-klein is the first instance which is already too large for the PESP to be
solved to full optimality, as stated in Section 6.3, so solving the ODPESP for it
is rather utopic, for Bahn-gross as well. However, with ReTim we could reduce
the gap to lr,c to 6.52% for former resp. 6.90% for the latter network.

Unlike in Spiel and Athens in Sections 6.4.1 resp. 6.4.2 before, the rollout
peek is never better than ATT on final convergence, but sometimes better than
before convergence rollout, as summarized in Section 6.5.4.

The EPESP underestimation happens in Bahn-klein as well, but can be ob-
served among all runs unlike in Spiel or Athens, where only certain runs are
affected. After a PERIODIC RoLLouT, ATT drops below the underestimated
value as well, which is visualized in Figure 6.7.

What can not be seen in this section but catches the eye when flying through
the iteration plots is that for Bahn-klein timetable 5 performs much better then
all other initial timetables throughout all configurations. We have a closer look
at this in Section 6.5.1. The ReTim iteration loop of the best result is depicted
in Figure 6.5.

Interestingly, although MsOnly performs best in average, for Bahn-klein we
obtained the overall best timetable with MsConv, at which we again have a look
in Section 6.5.5.
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Figure 6.5: Bahn-klein overall best run, frequency_as_attribute, timetable 5,
second run, PESP, MsConv. Actually, all methods perform very well for that
initial timetable as can be seen in Figure 6.8 in Section 6.5.1.
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Figure 6.6: Bahn-klein best frequency_as_multiplicity run, timetable 5,
first run, PESP, MsConv. This figure is an example plot for a typical fre-
quency_as_multiplicity ReTim iteration loop.
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Figure 6.7: Bahn-gross best EPESP run, timetable 7, second run, Modulo Sim-
plex on Convergence. As in Figure 6.3 the EPESP underestimates ATT, but a
PERIODIC ROLLOUT allows to get it even below the underestimation.
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Table 6.6: Results for the Bahn-klein instance, machine: ¢3
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Table 6.7: Results for the Bahn-gross instance, machine: ¢3
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6.5 Review

In this section we discuss inter-instance observations. Be reminded that when we
talk of the ATT gap to Iy, we mean the one of rollout peek resp. in the rolled
out network, since this makes outcomes of different models comparable.

6.5.1 Initial Timetable

What influence does the initial timetable have on ATT on final convergence? In
Figure 6.8, although we cannot really distinguish between single configurations,
in all except the small Spiel network, there seem to exist a pattern: if ATT is low
on final convergence, it has already been low initially. However, a good initial
timetable does not guarantee a good final outcome.
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Initial Timetable Number Initial Timetable Number
Initial Timetable
FA, EPESP, NoMs ----- FA, PESP, MsOnly ------
FA, EPESP, MsConv ------- FM, PESP, NoMs -- -- --
FA, PESP, NoMs - FM, PESP, MsConv -—--—--
FA, PESP, MsConv —-—-—: FM, PESP, MsOnly ---- ---

Figure 6.8: Per timetable results, initial timetable and average over three runs
per configuration.
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6.5.2 Eightfold Improvement
On page 10 the author wrote

Further, we introduce a scaleable, extensible and iterative heuristic
method that for practice-relevant large scale networks can improve
results more than an additional threefold in average and more than an
additional eightfold if combined with a statistic framework compared
to what had been possible before with state-of-the-art methods for
timetabling [GS11].

However, in Tables 6.6 and 6.7 there is no eightfold improvement in direct
sight. So where is that magniude from? The modulo simplex, considered as
state-of-the art, improves the ATT no less then fixed modulo parameters, which
may be considered as the trivial method. Average values reduce the effect of the
initial timetable choice and for our both large scale networks Bahn-klein as well as
Bahn-gross, using MsOnly performs best in average, both on final convergence as
well as after the first ReTim step for the frequency_as_attribute initial LINES
ROLL OuT model. For latter network, i.e. Bahn-gross, the difference Ay
between [, gaps for using resp. not using the modulo simplex in the first ReTim
step is

AP = 7.86 — 7.76 = 0.10 (6.4)

which we call the average timetabling heuristic lyc gap improvement. On the
other hand Afnal " the average iteration lpc gap improvement, i.e. the difference
between the average I gap after the first ReTim step using modulo simplex and
on final convergence with MsOnly is

Afmal — 776 — 741 =035 | (6.5)

where the more than an additional threefold improvement comes from, because
Afinal  AMSONY 3 and Afinal we obtained w.r.t. Modulo Simplex in a single
timetabling step. On the other hand, working with several initial timetables and
configurations and taking the best performance over all of them may be considered
as a method by itsself. The statistic framework lpc gap improvement APt is the
difference between the I gap of the overall best timetable on final convergence
and the average ;¢ gap after the first Modulo Simplex ReTim step and takes on

APSt— 776 —6.90 = 0.86 (6.6)

mean

which, since APt JAMSOMW 8 is more than an additional eightfold. A summary

of those Iy gap improvements for all instances may be found in Table 6.8.

From Table 6.8 also arises one question: How can it be that ANSo™ and Afinal
of Spiel and Athens are negative? The reason for this effect is the shortest paths
randomization we discuss in the next Section 6.5.3.
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Table 6.8: Absolute and relative [ ¢ gap improvements of different methods,
obtained from Tables 6.4 to 6.7.

Dataset
Timetabling Spiel Athens Bahn-klein Bahn-gross
o ANy 1.763  0.401 0.215 0.101
>) = na.
= 2 Afinal 1.083  -0.035 0.499 0.352
= E AN 2.999  0.460 1.125 0.862
£ A/ANON 0614 0086 2.316 3.478
Afinal / Abest 1.701  1.146 5.221 8.526
2 A -0.554  -0.034 0.181 0.760
= Afinal 0.406  0.003 0.373 0.760
= &
SE AN 8.524  1.934 0.926 0.760
= % Afinal  ANMSORY 0,732 -0.094 2.059 2.753
S Afmal/Abest 15381 -56.960 5.115 7.766

6.5.3 Randomized Shortest Paths

The maximum max An2* over all configurations of the maximal deviation An2*

over an initial timetable caused by randomized shortest paths in Tables 6.4 to

6.7 looks small, but in fact is gigantic when compared with AI\N/Igﬁgly, i.e. average

timetabling heuristic [;,¢ gap improvement.

.. Lo L. . . . MsOnl
Table 6.9: Deviation over initial passenger distributions in comparison to Ay .,

frequency_as_attribute LINES ROLL OUT model.

Dataset
Quantity Spiel Athens Bahn-klein Bahn-gross
AN 1.763  0.401 0.215 0.101
max A 6.274  0.097 0.238 0.178
A Jmax A2 3559 (.242 1.104 1.762

Why do we compare max A2 with ANSO"™™? Tt gives us an idea on how
much influence randomized shortest paths have compared to solving the PESP in
a single ReTim step, i.e. the classical way and Table 6.9 states that for large scale
networks running the ReTim iteration on the same initial timetable another time
with different randomized shortest paths may improve ATT by the same amount
a state-of-the art PESP heuristic heuristic does in average, which shows how

cruical the passenger distribution is in the process of timetable optimization.



122 CHAPTER 6. COMPUTATIONAL RESULTS

On the other hand, Table 6.8 from Section 6.5.2 states that for the fre-
quency_as_multiplicity model, Spiel and Athens have a negative AN>.
Does this not contradict the property of the Modulo Simplex to always perform
better than just using fixed modulo parameters? There are ten initial timetables,
but since the test runs for NoMs and MsOnly are independent of each other, the
shortest paths randomization yields different initial passenger distributions and
therefore changes the PESP solution. The author double checked this and indeed,
when using Modulo Simplex on the initial timetables plus passenger distributions
of the NoMs runs, it does not yield a worse ATT, so this is not a bug, but states
that our sample of ten timetables times three runs is too small and thus our
average values differ strongly from the true average of the timetable/passenger
distribution sample space. We could fix the numbers by resuing the passenger
distributions of the NoMs run in the MsOnly run, but the significance does not
get better if we do not increase the sample size drastically, which increases run-
times drastically as well, especially if we incorporate our large networks. Further,
we cannot judge whether our shortest paths randomization resp. initial timetable
randomization as described in Section 6.3 are unbiased, i.e. all passenger distri-
butions/timetables have the same chance of being chosen, which they most likely
are not. Therefore conclusions about their distribution seem generally difficult to
make. What our results definitely show is that even if we take a feasible timetable
7 and derive w and w’ by a randomized version of PASSENGER DISTRIBUTION
Algorithm 4, i.e. by shortest paths w.r.t. 7, PESP solutions may still vary heav-
ily for w and w’, even if the network is not one of the worst case scenarios from
Chapter 5, which again points out the importance of the passenger distribution.

What happens to the eightfold improvement from Section 6.5.27 There is
nothing wrong about that our methods can improve results an additional eight-
fold, since we observed it in out test, but of course they do not have to. Especially,
this is not a statement about the distribution of feasible timetables and passenger
distributions.

6.5.4 Rollout

The rollout peek can be better than ATT before convergence rollout. This hap-
pens to all networks and for Spiel and Athens, it occurs that for some runs it is
even less than the ATT on final convergence as can be seen in Sections 6.4.1 and
6.4.2, while for Bahn-klein and Bahn-gross the improvement after the PERIODIC
ROLLOUT is always greater than the losses through ignoring frequencies and in
the ReTim steps before as can be seen in Table 6.10.

In all instances, frequency_as_multiplicity has a worse performance than
frequency_as_attribute as initial LINES ROLL OUT model, especially in the
average ATT gap to l,c, which can be seen in Table 6.11.

Since this effect occurs for fixed modulo timetabling as well, an explanation
could be that ReTim iteration generally gets stuck too soon or just because of
our small sample size. However, by Theorem 3.2 there is an improvement of ATT



6.5. REVIEW 123

after a PERIODIC ROLLOUT, which is shown in Table 6.12.

Table 6.10: Minimal rollout peek gap to [ divided by ATT gap to lc on
convergence rollout resp. on final convergence, minimum over all test runs with
frequency_as_attribute as initial LINES ROLL OUT model.

Dataset
Step Spiel Athens Bahn-klein Bahn-gross
rollout 0.226  0.479 0.992 0.995
final 0.226 0.479 1.010 1.001

Table 6.11: PESP change model, & frequency_as_attribute ATT gap to I ¢
divided by @ frequency_as_multiplicity ATT gap to lrc.

Dataset

Timetabling Spiel Athens Bahn-klein Bahn-gross

NoMs 2.102 1.750 1.049 1.011
MsConv 2.955 1.974 1.041 1.015
MsOnly 3.929 2.026 1.038 1.012

6.5.5 Timetabling Step

How well does the Modulo Simplex perform w.r.t. solving Linear Program 2.4 to
full optimality? By the data we have we cannot judge that aspect. However, some
findings indicate that additional improvement beyond solving the fixed modulo
PESP in the timetabling step does not guarantee a better overall outcome, as is
the case for Bahn-klein in Table 6.6, where the overall best I1,c gap of 6.52% we
obtained with MsConv, although MsOnly performs better in average and in every
timetabling step. The distance to the best MsOnly solution of 6.61% is 0.09%
and thus almost half of AI\N/I;SI?Y = 0.215. For Bahn-gross however, MsOnly yields
better results in both average and almost a whole AXSO™ improvement in the
best case w.r.t. MsConv. For Spiel and Athens the situation is similar with results
being unclear. Therefore, increasing the sample size strategically as proposed in
Section 6.5.1 may be considered as an alternative to modulo parameter tuning in
a single ReTim step.

6.5.6 Change Model

For all networks, ATT after a periodic rollout is generally even lower than the
underestimation by EPESP resp. always best changes, which as effect is even
worse than the theory developed in Section 5.7 from a qualitative point of view.
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Table 6.12: @ ATT gap to lyc on final convergence divided by @ ATT gap to Ii¢
before rollout.

Dataset
Timetabling Spiel Athens Bahn-klein Bahn-gross
NoMs 0.655  0.277 0.800 0.819
EPESP MsConv 0.651  0.277 0.774 0.803
%) 0.653  0.277 0.787 0.811
NoMs 0.926  0.955 0.963 0.990
MsConv  0.901 1.000 0.976 0.991
PESP \gonly 0962 0.971 0.977 0.990
%) 0.929  0.975 0.972 0.990

This could have the reason that passengers take more changes, since their duration
is low, making the timetable more difficult to optimize. Nevertheless in quantity,
the ATT gap to lr¢ is less than hundred, thus the quotient with I is less than
two, i.e. we do not have an error magnitude of T" > 2.

However, results on final convergence obtained with the EPESP as change
model are as bad as those with frequency_as_multiplicity as initial LINES
RoLL OuT model, which indicates that before the PERIODIC ROLLOUT hap-
pened, the timetable could not be improved, as summarized in Table 6.13.

Table 6.13: @ ATT gap to I ¢ of the EPESP divided by the @ ATT gap to lrc,
both on final convergence.

Dataset
Method  Spiel Athens Bahn-klein Bahn-gross
NoMs 0.972 1.010 1.006 0.998
MsConv  0.972 1.011 1.011 0.994

When it comes to which ATT is taken on (in the rollout peek) before con-
vergence rollout, the EPESP performance may be six times worse than that of
PESP, see Table 6.14.

Due to these findings, the author discourages from using the EPESP resp.
always best changes for modeling different frequencies.



6.5. REVIEW 125

Table 6.14: @ ATT gap to I ¢ of the EPESP divided by the @ ATT gap to l.¢
of the PESP, both before convergence rollout.

Dataset
Method Spiel Athens Bahn-klein Bahn-gross
NoMs 2.552  6.054 1.258 1.201
MsOnly 2.545 6.054 1.258 1.201

6.5.7 Recommendation

We derive a ReTim strategy to solve the ODPESP for heuristically from the
observations in Section 6.5.

The PESP is preferable in favor of the EPESP as discussed in Section 6.5.6.

We use frequency_as_attribute as initial LINES ROLL OUT model, as re-
sults from Section 6.5.4 propose. We perform the convergence rollout on the
timetable with the best rollout peek before we continue the iteration with fre-
quency_as_multiplicity.

The findings in Section 6.5.1 suggest to generate a large pool ¥ of initial
timetables the same way we obtained our initial ten as described in Section 6.3
and select those that have a low initial average traveling time into a filtered
timetable pool T;.

To all timetables in Ty we then apply the fast running NoMs ReTim with
randomized shortest paths and randomized PESP timetabling in every step with
a single run only, since for Athens and the Bahn instances, the maximal NoMs
deviation 022 is rather low. The best e.g. ten timetables w.r.t. ATT on final
NoMs convergence we keep in the final pool T; and start over with both MsConv
and MsOnly, using a larger number of runs per initial timetable, e.g. hundred.

Over all timetables we obtain during the process we select the one with the
best ATT as our final solution.
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Chapter 7

Conclusion

Why do we simply ignore frequencies in the event activity network?
Why is the passenger distribution in the PESP fixed? Are these le-
gitimate simplifications? If not: how can classical methods ever yield
good average traveling times?

Indeed, the author had lots of doubts when he started his work in the LinTim
team and even was about to switch to pure mathematics. Passion for applied
problems returned when he was able to formulate a linear program that incorpo-
rates line planning and periodic timetabling, since he saw a way to finally make
things optimal. However, with it having astronomic dimensions, he started to
study its ODPESP subproblem, which was still too large for practice-relevant
instances, no matter how hard he tried to simplify it, so he finally ended with
retimetabling.

The planning steps lower bounds, as simple as they are, turned out to be a
valuable tool in the ODPESP analysis and ReTim could reduce the gap to lj¢ to
6-7% for large scale networks.

Initial doubts about classical methods turned out to be justified. Qualita-
tively, the errors predicted in synthetical worst case networks occur in our test
instances as well, from tiny to large scale networks. For Athens Metro, the best
solution could only be found by evaluating a quantity initially considered as a
test-only waste product: the rollout peek. Indeed, a timetablers nightmare.

However, frequency_as_multiplicity remains a double-edged sword: on
the one hand it is the only way to identify good timetables, on the other it has a
bad ReTim performance as initial LINES ROLL OUT model so that the PERIODIC
ROLLOUT turns out to be more than just an evaluation tool and, in a ReTim
framework, can improve the average traveling time as much as state-of-the-art
timetabling heuristics.

Surprisingly, the EPESP performs very poor, but is widely mentioned in lit-
erature. So there is either something wrong with our test or nobody actually
checked it out.

127
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All in all, the ODPESP seems not to be understood very well, since its overall
performance seem to depend more on randomness than the actual methods used.
It also remains unclear whether the average traveling time still may or may not be
improved much further. However, statistical retimetabling can improve solutions
an eightfold compared to classical approaches, which may be considered as a
success.

Indeed, from a practical point of view and given that our observations extrap-
olate smoothly enough to real world networks, the results are stunning, make the
author agree with [Lue09] and let him state

Never, ever, even think about taking some arbitrary passenger distri-
bution, optimize a feasible timetable by tuning modulo parameters,
getting a low slack, stop and say it’s optimal. Timetables obtained
that way, no matter whether for small or large networks are gener-
ally highly suboptimal and may be significantly improved by means as
simple as fixed modulo retimetabling.

Why using such drastic words? The answer may be found on Page 7:

Public transportation affect the daily life of billions of people and be-
sides ineffectiveness producing more costs and wasting more resources
on the operators side, it wastes billions of hours of valueable time on
the customers side and therefore is of global economical as well as
ecological interest.

Therefore, we may talk of responsibility in mathematics, which in our case
lies in analysing problems conscientiously and not making too many assumptions
about their nature. To the authors point of view, this is the actual achievement of
this work and he hopes that his contributions may help to find better timetables.
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