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Chapter 1

Introduction

Scheduling is the allocation of shared resources over time to competing activ-

ities. One of the applications that motivated research in this area is machine

scheduling: Jobs describe activities and machines processing at most one

operation at a time represent resources. Motivated by a machine schedul-

ing problem provided by a manufacturer of vacuum chambers, this master

thesis is concerned with a special case of machine scheduling, namely the

�exible job shop scheduling problem. Order-speci�c production requires ac-

curate scheduling in order to ensure e�cient manufacturing. Furthermore,

the manufacturing of a vacuum chamber consists of a sequence of individual

operations, each occupying shared machines or resources, and additionally,

each operation can be allocated to a subset of valid machines. This environ-

ment is appropriately modeled by the �exible job shop scheduling problem.

In the course of this thesis, the modeling and optimal solving of the �ex-

ible job shop scheduling as well as approximation algorithms for the �exible

job shop scheduling problem are covered. Due to the complexity of the prob-

lem, most of the literature concerned with �exible job shop scheduling focuses

on heuristic approaches such as genetic algorithms, tabu search or other lo-

cal search algorithms. In contrast to this, the modeling of the �exible job

shop scheduling problem plays an essential role in this thesis. Furthermore,

this thesis brings LP-based heuristics grounded on the developed models into

focus.

In Chapter 2, the �exible job shop scheduling problem is formally de�ned,

its complexity is discussed, and an outline of the existing literature concerned

with the �exible job shop scheduling problem is given. Thereupon, Chap-
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2 Introduction

ter 3 is devoted to the modeling of the �exible job shop scheduling problem

aiming for an optimal solution. Di�erent modeling approaches are developed

and evaluated. In order to improve the performance of the models, several

structural improvements are presented and compared to the basic models.

In Chapter 4, approximation algorithms for the �exible job shop scheduling

problem are discussed. First of all, a performance guarantee is given and sub-

sequently, LP-based heuristics are examined. Here, two di�erent approaches

are being pursued. First, an LP-based heuristic utilizing the convex hull of

feasible solutions is presented and a performance ratio is derived. Second,

the mixed integer programming formulations given in Chapter 3 are modi�ed

in order to serve as a basis for another LP-based heuristic. In the latter case,

empirical performance evaluations are constituted and additionally, a prac-

tical application of the LP-based heuristic to the actual scheduling problem

provided by the manufacturer mentioned above is presented in Chapter 5.

Furthermore, for the reader's convenience, Appendix A lists frequently

used notation.
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Chapter 2

Preliminaries

This chapter is devoted to the introduction and formal de�nition of the �ex-

ible job shop scheduling problem. Additionally, its complexity is discussed

and existing literature concerned with the problem is reviewed. Initially,

some basic concepts of combinatorial optimization are refurbished in order

to familiarize the reader with the mathematical notions used throughout this

thesis.

2.1 Combinatorial Optimization

The modeling techniques for scheduling problems involve the formulation

of mixed integer linear programming problems. A mixed integer linear pro-

gramming problem in standard form is given by vectors c ∈ Qn, h ∈ Qp,

and b ∈ Qm, and matrices A ∈ Qm×n and G ∈ Qm×p, where Qn is the set

of rational n-dimensional vectors. The data sets are assumed to be rational

due to the inability of digital computers to deal with real numbers. The

objective is to �nd vectors x = (x1, . . . , xn) and y = (y1, . . . , yp) being the

optimal solution to the problem

min cTx+ hT y (MIP)

s.t. Ax+Gy ≤ b

x ∈ Zn+
y ∈ Rp+,

3



4 Preliminaries

where Zn+ is the set of nonnegative integral n-dimensional vectors and Rp+
is the set of nonnegative real-valued p-dimensional vectors. The function

cTx+ hT y is called the objective function and the set

S := {x ∈ Zn+, y ∈ Rp+ |Ax+Gy ≤ b}

is called the feasible region. Mixed integer linear programming in general is

NP-hard [NW88, p. 133]. For a detailed introduction of integer program-

ming it is referred to [NW88].

Various solution approaches for integer programs exist and usually several

methods are combined in mathematical optimization software. For a better

understanding of the solution process of (mixed) integer programs the ba-

sic techniques are reviewed in the following. First of all, many techniques

are based on linear relaxations of the (mixed) integer programs. A linear

relaxation of an integer program min{ctx |Ax ≤ b, x ∈ Zn+} is given by the

relaxation of the integrality constraints, that is min{ctx |Ax ≤ b, x ∈ Rn+}.
Furthermore, one of the most important techniques deployed in the solu-

tion process of (mixed) integer programs is the branch and cut procedure

combining a branch and bound search and cutting plane algorithms.

Branch and bound search is an implicit enumeration technique for solv-

ing (mixed) integer programs. The main problem is processed with

the aid of suitably constructed subproblems (branches) in the form

of a search tree, whereat each branch is assessed with respect to the

objective function and applied for the generation of bounds for the

objective value.

Cutting plane algorithms add linear inequalities to the relaxed linear

program of a (mixed) integer program separating the non-integer solu-

tion of the linear relaxation from the convex hull of the original feasible

set. Such inequalities are called cuts. Then, the current non-integer

solution is no longer feasible to the relaxation. This process is repeated

until an optimal integer solution is found.

Furthermore, the notion of conjunctive and disjunctive constraints is in-

troduced. Mixed integer programs only permit conjunctive constraints, that

is in a feasible solution each constraint of the system of inequalities is sat-

is�ed. As opposed to this, the choice between two alternatives is called a
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disjunction. The generalization of mixed integer programming to permitting

disjunctive constraints is called disjunctive mixed integer programming. Dis-

junctive constraints naturally arise in scheduling problems. Suppose that

two jobs must be processed on the same machine and cannot be processed

simultaneously. Let p1 and p2 be the processing times of the two jobs and

the variables t1 and t2 the corresponding starting times. This leads to the

disjunctive constraint

t1 + p1 ≤ t2 ∨ t2 + p2 ≤ t1.

Assuming 0 ≤ ti ≤ T for i = 1, 2, the disjunctive constraints can be

reformulated with the help of binary variables yi for i = 1, 2. Choose

M ≥ max{t1 + p1 − t2, t2 + p2 − t1 | 0 ≤ t1, t2 ≤ T} and take as constraints

t1 + p1 ≤ t2 +M(1− y1)

t2 + p2 ≤ t1 +M(1− y2)

y1 + y2 = 1

t1, t2 ≤ T

t1, t2 ≥ 0

y1, y2 ∈ {0, 1}.

This reformulation can be applied to general disjunctive constraints, as long

as the variables are bounded. However, these constraints signi�cantly cor-

rupt the sharpness of the linear relaxations if large constants M , so-called

Big-M constants, are chosen. Since mathematical optimization software uses

linear relaxations in the solution process of mixed integer programs, as seen

in the description of the branch and bound search, it is quite important to

choose Big-M constants as tight as possible.

2.2 The Flexible Job Shop Scheduling Problem

In this section the �exible job shop scheduling problem is now introduced

formally. Before doing so, a more commonly known scheduling problem,

the job shop scheduling problem, is stated and subsequently, the �exible job

shop scheduling problem is presented as a generalization.

The classical job shop scheduling problem can be stated as follows [BK06]:
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J1 M1 M2 M1

J2 M3 M1

J3 M2 M3 M1

J4 M1

(a)

M1 O1,1 O2,2 O1,3 O3,3 O4,1

M2 O3,1 O1,2

M3 O2,1 O3,2

(b)

Figure 2.1: Job- and machine-oriented Gantt charts

We are given a shop environment with a setM = {µ1, . . . , µm} ofmmachines

and have to process n jobs J1, . . . , Jn. Job Ji consists of ni operations Oi,j ,

j = 1, . . . , ni, which have to be processed subsequently,

Oi,1 → Oi,2 → · · · → Oi,ni .

Operation Oi,j must be processed for pi,j > 0 time units on a dedicated ma-

chine mi,j ∈ {µ1, . . . , µm} without preemption, i.e., it cannot be interrupted

during its execution. Furthermore, each machine can process at most one

job at a time.

A schedule S = (Si,j) is de�ned by the starting times of all operations.

A feasible schedule S has to respect the following constraints:

Si,j + pi,j ≤ Si,j+1 for all jobs i = 1, . . . , n, (2.1)

operations j = 1, . . . , ni − 1

Si,j + pi,j ≤ Sk,l ∨ Sk,l + pk,l ≤ Si,j for all pairs Oi,j , Ok,l of (2.2)

operations with mi,j = mk,l

Constraint (2.1) ensures that the order of operations of each job is main-

tained and constraint (2.2) assures that each machine processes at most one

job at a time. Schedules may be visualized by means of Gantt charts as

shown in Figure 2.1. In a job-oriented Gantt chart, see Figure 2.1(a), each

job is represented by one row and the operations belong to that job are posi-
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Objective Function Description

Cmax := max
i=1,...,n

Ci makespan

n∑
i=1

Ci total �ow time

n∑
i=1

wiCi weighted (total) �ow time

Table 2.1: Objective functions for the job shop scheduling problem

tioned according to their starting time and labeled by the assigned machine.

In a machine-oriented Gantt chart, see Figure 2.1(b), each machine is repre-

sented by one row and each operation is positioned according to its starting

time in the row corresponding its assigned machine.

The objective of the job shop scheduling problem is to determine a fea-

sible schedule S minimizing a given objective function. A wide class of

objective functions can be elaborated based on the completion times of the

jobs. Let Ci := Si,ni + pi,ni be the completion time of job Ji and denote by

di the due date of job Ji. In Table 2.1 some common objective functions of

practical relevance are speci�ed [Bru04]. Further objective functions can be

de�ned using other special functions such as

Ei := max{0, di − Ci} (earliness),

Ti := max{0, Ci − di} (tardiness),

Di := |Ci − di| (absolute deviation),

Si := (Ci − di)2 (squared deviation),

Ui :=

0 if Ci ≤ di
1 otherwise

(unit penalty).

The selection of the objective function is obviously dependent on the

practical application of the scheduling problem as outlined by the following

examples:

Just-In-Time Just-in-time production refers to a production strategy aim-

ing for continuous material �ows along the supply chain. One of the

crucial factors is to complete the jobs according to the given deadlines,
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neither sooner nor later. Consequently, an objective function based on

the absolute deviation Di or the squared deviation Si is advisable.

High Penalty Costs If a company is obligated to pay high penalties in

case of an exceeded deadline, it is appropriate to choose an objective

function based on the lateness Li.

Hospital Another typical example for a job shop is a hospital. The patients

are modeled as jobs, that have to run through di�erent places of the

hospital such as front desk, doctor's room, X-ray room, operation room,

etc. In order to minimize the overall duration of the treatments and

to distinguish patients in their signi�cance, the weighted (total) �ow

time
∑
wiCi is an adequate choice for the objective function.

Still, since the most predominant objective for scheduling is the minimization

of the makespan, our considerations are restricted to the makespan Cmax

until further notice.

The �exible job shop scheduling problem is a generalization of the job shop

scheduling problem [Bra93]. In the �exible job shop scheduling problem, an

operation Oi,j can be processed by a set of machines Mi,j ⊆ {µ1, . . . , µm}
in contrast to the job shop scheduling problem, where each operation is

dedicated to a single machine. The processing time of operation Oi,j on

machine k ∈ Mi,j is denoted by pi,j,k. In order to simplify the notations

for the �exible job shop scheduling problem it is convenient to identify the

operations Oi,j by numbers 1, . . . , N where N :=
∑n

i=1 ni. Consequently, the

set of machines operation i ∈ {1, . . . , N} can be assigned to, is now denoted

by Mi ⊆ {µ1, . . . , µm} and the processing time of operation i on machine

k ∈Mi is denoted by pi,k.

In order to be able to classify the (�exible) job shop scheduling problem

into the wide �eld of scheduling it is made use of the classi�cation scheme

introduced by Graham et al. [GLLR79]. Accordingly, scheduling problems

are classi�ed in terms of a three-�eld classi�cation α|β|γ where α speci�es

the machine environment, β denotes the job characteristics and γ speci�es

the optimality criterion. Examples 2.1 and 2.2 give an illustration of the

three-�eld notation for two di�erent scheduling problems.

Example 2.1. R | chains, pi = 1 |Cmax is the problem of scheduling jobs with

chain precedence constraints (chains) and uniform processing times (pi = 1)
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on unrelated parallel machines (R) such that the makespan (Cmax) is mini-

mized.

Example 2.2. J2 | pmtm |
∑
wiCi is the problem of scheduling jobs preemp-

tively (pmtm) in a two-machine job shop (J2) such that the weighted total

�ow time (
∑
wiCi) is minimized.

Furthermore, in Table 2.2 important characteristics of scheduling prob-

lems considered in the course of this thesis are speci�ed. The abbrevia-

tion FJ is introduced for the machine environment of the �exible job shop

scheduling problem as described above, the remaining notation is adopted

from [Bru04]. If the processing times for each operation on the valid ma-

chines do not di�er from each other, i.e., pi,k = pi,l for all machines k, l ∈
Mi, the problem is denoted as job shop scheduling problem with multi-

purpose machines [Bru04] and labeled as JMPM . The job shop scheduling

problem with multi-purpose machines is a special case of the �exible job

shop scheduling problem. Finally, two equivalences are pointed out. First,

JMPM | |Cmax is, according to the notation used throughout this thesis,

equivalent to FJ | pi,k = pi |Cmax. Secondly, FJ | |Cmax is equivalent to the

problem of scheduling jobs with chain precedence constraints on unrelated

parallel machines, which is denoted by R | chains |Cmax. For the latter case,

each instance of R | chains |Cmax corresponds to an instance of FJ | |Cmax,

whereby the complete set of machines is valid for each operation. Equally,

each instance of FJ | |Cmax corresponds to an instance of R | chains |Cmax,

whereby the processing time of operations on invalid machines is set to in-

�nity.

2.3 Complexity

In this section the computational complexity of the �exible job shop schedul-

ing problem is discussed. The complexity theory provides a mathematical

framework for the classi�cation of computational problems with respect to

their complexity. In the following, some basic de�nitions of computational

complexity used in this section are given. For a more detailed introduction

it is referred to [GJ79].

The complexity theory is designed to be applied to decision problems. A

problem is called a decision problem if the output range is {yes, no}. Each



10 Preliminaries

Field Option Description

α J job shop machine environment

α FJ �exible job shop machine environment

α JMPM job shop machine environment with multi-purpose ma-
chines

β di job deadlines are speci�ed

β ri job release dates are speci�ed

β pi,k = pi pi,k = pi,l for all machines k, l ∈Mi

β ni = k maximum number of operations per job

γ Cmax minimize the makespan

γ
n∑
i=1

wiCi minimize the total weighted completion time

Table 2.2: Classi�cation characteristics of the (�exible) job shop scheduling
problem used in this thesis

optimization problem may be associated with a decision problem by de�ning

a threshold k for the corresponding objective function f . For a minimization

problem the decision problem is then given by: Does there exist a feasible

solution S such that f(S) ≤ k?
Complexity theory commonly distinguishes between two classes of deci-

sion problems. First, the class P contains all decision problems for which

a polynomial-time deterministic algorithm exists. Secondly, the class NP
is de�ned to be the class of all decision problems that can be solved by

polynomial-time nondeterministic algorithms. Obviously, P ⊆ NP. Fur-

thermore, it is generally conjectured that P 6= NP, but the �P versus NP�
problem is one of the major open problems of modern mathematics.

A decision problem Π is called polynomial-time reducible to a decision

problem Π′ if the following two conditions hold:

1. There exists a polynomial-time computable function f transforming

inputs for Π to inputs for Π′.

2. For all inputs I, the output of Π for instance I is yes if and only if the

output of Π′ for instance f(I) is yes.
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If Π is polynomial-time reducible to Π′, it is denoted by Π ∝ Π′. A decision

problem Π is NP-hard if Π′ ∝ Π for all other decision problems Π′ ∈ NP.
If additionally Π ∈ NP holds, then Π is called NP-complete.

By means of these basic de�nitions, the complexity of the �exible job shop

scheduling problem is now surveyed. Since the �exible job shop scheduling

problem is comprised of an assignment problem, that is each operation has

to be assigned to a machine from its set of valid machines, and a classical job

shop scheduling problem, the �exible job shop scheduling problem is more

complex than the job shop scheduling problem. The complexity of the job

shop scheduling problem has been studied intensively. In [SS95] Sotskov et

al. proved that the job shop scheduling problem with three jobs and three

machines J3 |n = 3 |Cmax is NP-hard. In [GJS76] Garey et al. proved

that the job shop scheduling problem with two jobs J2 | |Cmax is NP-hard.
Since the job shop scheduling problem is a special case of the �exible job shop

scheduling problem, these results hold for the �exible job shop scheduling

problem.

The complexity of the �exible job shop scheduling problem is further

characterized by the following results. In [Ake56] Akers Jr. presented a re-

duction of the job shop scheduling problem with two jobs J |n = 2 |Cmax to

a restricted shortest path problem in the two-dimensional plane. This reduc-

tion is brie�y outlined in the following. In Figure 2.2 a restricted shortest

path problem corresponding to a job shop scheduling problem with two jobs

and n1 = 3 and n2 = 2 is depicted. The processing times of the operations of

job J1 and job J2 are presented as intervals on the horizontal axis and verti-

cal axis respectively. The order of intervals matches the order of operations

in job J1 and job J2. Additionally, the intervals are labeled by the machine

the corresponding operation is assigned to. The region I1 × I2, where I1 is

an interval on the horizontal axis and I2 is an interval on the vertical axis,

is marked as an obstacle if the intervals correspond to the same machine. A

feasible schedule for the job shop scheduling problem equals a path from O

to F with the following properties:

1. The path consists of segments which are either parallel to one of the

axes or at a 45-degree angle.

2. The path avoids the interior of any rectangular obstacle.

During an axis-parallel segment of the path an operation of only one job is
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M1 M2 M1

M2

M1

b

O

b
F

J1

J2

Figure 2.2: Graphical representation of two feasible solutions for a job shop
scheduling problem with two jobs

processed and during a 45-degree segment of the path operations of both

jobs are processed in parallel. The avoidance of obstacles corresponds to the

fact that at most one operation at a time can be processed on each machine.

In order to determine the length of the path in conformity with the length of

the associated schedule, the projections on an axis of the 45-degree segments

are considered. Thus, the length of the path is given by

∑
horizontal segments+

∑
vertical segments+

1√
2

∑
45-degree segments.

Furthermore, Brucker et al. gave a reduction of the restricted shortest path

problem in the two-dimensional plane to an unrestricted shortest path prob-

lem in the network N = (V,A, d) [Bru04]. An optimal schedule for the

job shop scheduling problem corresponds with a shortest O-F -path in N .

Additionally, it is proved that the construction of the network and the cal-

culation of the shortest path has complexity O(N logN). Consequently,

the job shop scheduling problem with two jobs can be solved polynomially.

In [BS90] Brucker et al. presented a generalization of this approach yield-

ing a polynomial-time algorithm for the problem FJ | pi,k = pi |Cmax. More
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precisely, it is shown that for FJ |n = 2, pi,k = pi |Cmax a schedule with

minimum makespan can be found in O
(
max{n1, n2}3

)
time.

Secondly, in [BJK97] Brucker et al. proved that the job shop schedul-

ing problem with multi-purpose machines, three jobs and two machines

JMPM2 |n = 3 |Cmax is NP-hard. Since this problem is a special case

of the �exible job shop scheduling problem, JMPM2 |n = 3 |Cmax is NP-
hard, too. The proof presented in [BJK97] is based upon a reduction of the

problem PARTITION which is known to be NP-complete [GJ79, p. 223], to

an instance of the job shop scheduling problem with multi-purpose machines.

2.4 Literature Review

This section provides a review of the literature relevant for the �exible job

shop scheduling problem. Literature concerning the complexity of the �exible

job shop scheduling problem is already covered in Section 2.3, consequently

it is not mentioned here.

Due to the complexity of the �exible job shop scheduling problem, cf.

Section 2.3, mixed integer programming formulations are only sparsely cov-

ered in the literature. In [EAS+11] Elazeem et al. introduced some optimal-

ity conditions for the solution of the �exible job shop scheduling problem

and a mathematical model is presented. In [CC02] Choi et al. presented a

mixed integer programming formulation for the �exible job shop scheduling

problem. In [SMF06] Saidi-Mehradbad et al. and in [FSMJ07] Fattahi et

al. extended this formulation and speci�ed results for di�erent instances ob-

tained with a branch and bound method. Still, most of the literature related

to the �exible job shop scheduling problem is devoted to heuristics search-

ing for a �good� solution of the problem, instead of solving it to optimality.

Here, a wide range of metaheuristics for combinatorial problems is applied

to the �exible job shop scheduling problem. In order to give a well-arranged

outline, three di�erent metaheuristics are brie�y illustrated and some of the

literature applying this kind of metaheuristic is cited.

Genetic algorithms are search heuristics introduced by John Holland in

the early 1970's that mimic the process of natural evolution [Hol75].

There are two mechanisms that link a genetic algorithm to the prob-

lem it is solving. First, evolution takes place on chromosomes, which

are represented by solutions of a combinatorial problem. One of the
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determining characteristics of a genetic algorithm is the way of encod-

ing feasible solutions to the problem on chromosomes. Secondly, in

order to mimic the process of natural selection, an evaluation function

is essential, returning a measurement of the worth of any chromosome

in the context of the problem. In the following a description of the

execution of a genetic algorithm based on [Dav91, p. 5] is given.

1. Initialize a population of chromosomes, i.e., an initial set of fea-

sible solutions to the problem.

2. Evaluate each chromosome in the population.

3. Create new chromosomes by mating current chromosomes. Apply

mutation and recombination as the parent chromosomes mate.

4. Delete members of the population to make room for the new chro-

mosomes.

5. Evaluate the new chromosomes and insert them into the popula-

tion.

A genetic algorithm is applied to the �exible job shop scheduling prob-

lem for instance by Chen et al. in [CIL99]. Here, a feasible solution

to the problem is represented by an individual consisting of two chro-

mosomes, chromosome A and chromosome B. The �rst one de�nes the

routing policy, the latter one de�nes the sequence of operations on

each machine. Furthermore, the evaluation function is to compute the

makespan for each solution represented by chromosomes. The value of

the evaluation function is used to determine the survival probability of

this individual compared to the others.

Di�erent variants of genetic algorithms are for example applied by

Pezzella et al. in [PMC08] and Zhang et al. in [ZGS11]. Numerical

experiments published in the literature cited above substantiate the

e�ectiveness and e�ciency of genetic algorithms for solving the �exible

job shop scheduling problem approximately.

Tabu search is a local search technique used for combinatorial optimiza-

tion, initially formalized by Glover in [Glo89]. Consider a problem of

the form

min c(x) : x ∈ X. (P)
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Tabu search is a procedure that is characterized by a sequence of

moves that lead from one trial solution (selected x ∈ X) to another.

A move s consists of a mapping de�ned on a subset X(s) ⊆ X.

Let S be the set of all moves. Associated with x ∈ X is the set

S(x) := {s ∈ S : x ∈ X(s)} of those moves s ∈ S that can be applied

to x. The set S(x) can be viewed as a neighborhood function. Tabu

search is characterized by two key elements. First, the search is con-

strained by classifying certain of its moves as forbidden, i.e., tabu, and

secondly, the search is freed by a short term memory function that

provides strategic forgetting.

Tabu search is applied to the �exible job shop scheduling for example

by Saidi-Mehrabad et al. in [SMF06], by Brandimarte in [Bra93], and

by Mastrolilli et al. in [MG00]. Again, computational studies prove

that tabu search is e�ectively applicable for the approximate solution

of the �exible job shop scheduling problem.

Particle swarm optimization is in the �rst place attributed to Kennedy

and Eberhart [KE95], and Shi [SE98]. Particle swarm optimization is

based on the idea of resembling a school of �ying birds. Instead of

using genetic operators as described above for genetic algorithms, the

individuals are evolved by cooperation and competition among the in-

dividuals themselves through generations. Each individual is named as

a particle, representing a feasible solution to an optimization problem.

Furthermore, each particle adjusts its �ying according to its own �ying

experience and its companions' �ying experience. According to [SE98],

each particle i is characterized by a point Xi = (xi,1, . . . , xi,D) in the

D-dimensional space, the best previous position Pi = (pi,1, . . . , pi,D)

of the particle with respect to a prede�ned �tness function related to

the optimization problem, and a velocity Vi = (vi,1, . . . , vi,D), that is

the rate of position change for particle i. The basic manipulation of

particles introduced by Shi in [SE98] is given by

vi,d = vi,d + c1R1(pi,d − xi,d) + c2R2(pg,d − xi,d) (V)

xi,d = xi,d + vi,d

for d = 1, . . . , D, where g is the index of the best particle in the pop-

ulation with respect to the �tness function. Furthermore, R1 and R2
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are two random functions with values in [0, 1] and c1 and c2 are two

positive constants. The second addend of equation (V) represents the

egoistic thinking of each individual � �ying towards the position of its

own best experience. The third addend of equation (V) represents the

companionable thinking of each individual � �ying towards the position

of the group's best experience.

Particle swarm optimization is applied to the �exible job shop schedul-

ing problem for example by Girish et al. in [GJ09] and by Zhang et

al. in [ZSLG09]. In [FYL+08] Feng et al. proposed a particle swarm

optimization algorithm based on a swarm grouping mechanism for the

�exible job shop scheduling problem. The algorithm partitions the

swarm into many groups, and each group �ies toward its own group's

best particle.

The e�ectiveness of particle swarm optimization for solving the �exible

job shop scheduling problem is again veri�ed by computational studies

presented in the literature cited above.

The metaheuristics described in the course of this section can also be

combined and applied to �exible job shop scheduling as a hybrid algorithm.

For example, in [GSG08] Gao et al. combined a genetic algorithm with a vari-

able neighborhood descent, involving two local search procedures improving

the individuals before the natural selection.

Furthermore, the algorithmic approaches to the �exible job shop schedul-

ing problem can be subdivided into one level approaches and two level ap-

proaches solving the routing problem and the scheduling problem either si-

multaneously or consecutively. In [Bra93] Brandimarte applied a two level

approach based on the decomposition of the �exible job shop scheduling

problem in an assignment subproblem and a job shop scheduling subprob-

lem. Both problems are treated by tabu search heuristics. Opposed to

this two level approach, Jurisch considered the assignment problem and the

scheduling problem simultaneously in [Jur92], and proposed a tabu search

heuristic to solve it.

The literature review given in this section raises no claim to complete-

ness, but it gives an outline of the variety and complexity of algorithmic

approaches applied to the �exible job shop scheduling problem. As opposed

to the predominance of metaheuristics in the literature of the �exible job
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shop scheduling problem, in the remainder of this thesis di�erent mixed in-

teger programming formulations for the problem are featured and LP-based

heuristics relying on the intelligence inherited from the original models to

the linear relaxations are presented.





Chapter 3

Modeling Approaches

In the course of this chapter, di�erent models for the �exible job shop

scheduling problem FJ | |Cmax are developed that allow for an e�cient com-

putation of optimal solutions. First of all, the problem FJ | |Cmax is ex-

pressed as a mixed integer program with additional disjunctive constraints

which are dependent on the machine assignment in Section 3.1. Further-

more, several reformulations of this disjunctive mixed integer program are

presented in Sections 3.2 - 3.5 in order to achieve mixed integer programs

without disjunctive constraints. Additionally, several performance improve-

ments for the di�erent models are developed in Section 3.6 and �nally, com-

putational results for the di�erent models are provided and evaluated in

Section 3.7.

Whereas heuristics for the �exible job shop scheduling problem have been

studied in various forms, models that allow for a computation of optimal so-

lutions are only sparsely covered in the literature. Since the �exible job shop

scheduling problem is an NP-hard problem, there is no e�cient technique

to solve it to optimality, unless P = NP. Nevertheless, it is interesting to

follow di�erent modeling approaches and compare the performance of the

resulting models in interaction with state-of-the-art optimization software.

By doing this, the impact of various formulations on the performance of the

model is determined. Additionally, by means of the results of this chapter

an e�cient LP-based heuristic is developed, see Section 4.2.

19
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3.1 Introduction

In this section, a �rst formulation of the problem FJ | |Cmax will be pre-

sented, as proposed by Brucker in [BK06]. Let J(i) denote the job to which

operation i belongs and let P (i) be the position of operation i in the se-

quence of operations belonging to job J(i) starting with one, i.e., P (i) = 1

if operation i is the �rst operation of a job. First of all, in order to model

the assignment of operations to machines, assignment variables xi,k ∈ {0, 1}
for all k ∈Mi, i ∈ O are introduced, where

xi,k =

1, if operation i is assigned to machine k

0, otherwise.

Furthermore, Si is de�ned as the starting time for operation i, see Section

2.2. Thus, the makespan Cmax is now de�ned by the constraints

Cmax ≥ Si +
∑
k∈Mi

xi,kpi,k for all i ∈ O : P (i) = nJ(i). (3.1)

In order to ensure that each operation is assigned to exactly one machine,

constraints ∑
k∈Mi

xi,k = 1 for all i ∈ O (3.2)

are introduced. Moreover, for each job the corresponding operations have

to be processed in the given order, that is, the starting time of an operation

must not be earlier than the point at which the preceding operation in the

sequence of operations of the respective job is completed. This constraint is

imposed simultaneously on all appropriate pairs of operations, aggregated in

the set of conjunctions C given by

C := {(i, j) | i, j ∈ O : J(i) = J(j) ∧ P (j) = P (i) + 1}.

Consequently, the precedence constraints are given by

Si +
∑
k∈Mi

xi,kpi,k ≤ Sj for all (i, j) ∈ C. (3.3)

Furthermore, for each assignment x = (xi,k) the set D(x) of all pairs of

operations assigned to the same machine is de�ned as
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D(x) := {(i, j) |xi,k = xj,k = 1 for some k ∈Mi ∩Mj}.

For each pair of operations (i, j) ∈ D(x), either operation i has to be pro-

cessed before operation j or vice versa, since a machine can process at most

one operation at a time. Consequently, D(x) is also called the set of disjunc-

tions [BK06]. The disjunctive constraints arising from these requirements

are provided by

Si +
∑
k∈Mi

xi,kpi,k ≤ Sj ∨

Sj +
∑
k∈Mj

xj,kpj,k ≤ Si for all (i, j) ∈ D(x). (3.4)

Altogether, the formulation for the problem FJ | |Cmax is thus given by

min Cmax

s.t.

Cmax −
∑
k∈Mi

xi,kpi,k ≥ Si for all i ∈ O : P (i) = nJ(i)∑
k∈Mi

xi,k = 1 for all i ∈ O

Si +
∑
k∈Mi

xi,kpi,k ≤ Sj for all (i, j) ∈ C

Si +
∑
k∈Mi

xi,kpi,k ≤ Sj ∨

Sj +
∑
k∈Mj

xj,kpj,k ≤ Si for all (i, j) ∈ D(x)

Si ≥ 0 for all i ∈ O

xi,k ∈ {0, 1} for all k ∈Mi, i ∈ O.

The model for the problem FJ | |Cmax provided in this section does not

satisfy the conditions for a mixed integer program formulation. First, con-

straints (3.4) are disjunctive constraints and secondly, the set of disjunctive

constraints is dependent on the machine assignment x = (xi,k). In Sections

3.2, 3.3, 3.4, and 3.5, di�erent approaches to the transformation of the for-

mulation provided in this section into a mixed integer program formulation

are presented. It is noted, that a linear program formulation without inte-
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ger variables cannot be found for the problem FJ | |Cmax, unless P = NP.
This results from the facts that on the one hand the problem FJ | |Cmax is

NP-hard and on the other hand linear programming is solvable in polyno-

mial time, for example by means of the interior-point method introduced by

Karmarkar in [Kar84].

3.2 Model IPF: Immediate Precedence Formulation

The formulation presented in this section is based on the model of Choi et

al. [CC02]. Saidi-Mehrabad et al. [SMF06] and Fattahi et al. [FSMJ07] used

a similar formulation. Both models include sequence-dependent set up times,

which will be left out in the model presented in this section.

First of all, a dummy job J0 consisting ofm operations with zero process-

ing time is introduced. Each dummy operation marks the initial operation

for one of them machines. The dummy operations do not have any ordering,

thus P (i) = 0 for all dummy operations i. Let Õ := {1, . . . , Ñ} be the set
of all operations including the m operations of the dummy job J0, i.e.,

Ñ :=
n∑
i=0

ni,

where by de�nition n0 = m. Furthermore, the index set Ik de�ned by

Ik := {i ∈ O | k ∈Mi}

denotes the indices of operations i ∈ O that can be processed on machine

k. Analogously, the index set Ĩk := {i ∈ Õ | k ∈ Mi} is de�ned for the

extended operation set Õ. In order to transform the formulation for the

problem FJ | |Cmax developed in Section 3.1 into a mixed integer program,

the disjunctive constraints and their dependence on the machine assignment

have to be eliminated. A possible approach is to establish an order on each

machine by binary variables yi,j,k for all i 6= j ∈ Ik, k = 1, . . . ,m, where

yi,j,k =

1, if operation i precedes operation j immediately on machine k

0, otherwise.

If operation i is assigned to machine k, exactly one operation j is the imme-
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diate successor of operation i on machine k. This constraint is given by∑
j∈Ik, j 6=i

yi,j,k = xi,k for all k ∈Mi, i ∈ Õ. (3.5)

Similarly, if operation j is assigned to machine k, exactly one operation i is

the immediate predecessor of operation j on machine k. This constraint is

given by ∑
i∈Ik, i 6=j

yi,j,k = xj,k for all k ∈Mj , j ∈ Õ. (3.6)

Jointly, constraints (3.5) and (3.6) de�ne circular orderings of operations

on each machine. Thus, the following constraints ensure that each machine

processes not more than one operation at a time:

Si + pi,k −M(1− yi,j,k) ≤ Sj for all i 6= j ∈ Ik : J(j) 6= 0,

k = 1, . . . ,m. (3.7)

M is a Big-M constant chosen su�ciently large in order to guarantee con-

straints (3.7) to be valid for arbitrary values of Si and Sj if yi,j,k = 0. A

suitable choice of the Big-M constants is discussed in Section 3.6.1. In order

to de�ne the dummy operations as starting and ending point for the circular

arrangement of operations on each machine, constraints (3.7) are only intro-

duced partially for the dummy operations. Consequently, a feasible sequence

of operations on each machine starting with the dummy operation is obtained

by constraints (3.7). The remaining constraints are de�ned analogously to

Section 3.1. If necessary, the set of operations O has been replaced by the

extended set of operations Õ. Then, the mixed integer program formula-

tion IPF (Immediate Precedence Formulation) for the problem FJ | |Cmax

is denoted by

min Cmax (IPF)

s.t.

Cmax −
∑
k∈Mi

xi,kpi,k ≥ Si for all i ∈ Õ : P (i) = nJ(i)

Si +
∑
k∈Mi

xi,kpi,k ≤ Sj for all (i, j) ∈ C
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∑
k∈Mi

xi,k = 1 for all i ∈ Õ

Si + pi,k −M(1− yi,j,k) ≤ Sj for all i 6= j ∈ Ĩk : J(j) 6= 0,

k = 1, . . . ,m∑
j∈Ik, j 6=i

yi,j,k = xi,k for all k ∈Mi, i ∈ Õ∑
i∈Ik, i 6=j

yi,j,k = xj,k for all k ∈Mj , j ∈ Õ

Si ≥ 0 for all i ∈ Õ

yi,j,k ∈ {0, 1} for all i 6= j ∈ Ĩk, k = 1, . . . ,m

xi,k ∈ {0, 1} for all k ∈Mi, i ∈ Õ.

The size of a mixed integer program is determined by the number of vari-

ables denoted by V and the number of constraints denoted by C, whereas the
complexity is among other things dependent on the number of binary vari-

ables denoted by Vb and the number of constraints with Big-M constraints

denoted by CM . For the model IPF we have

V(IPF ) = 1 + |Õ|+
m∑
k=1

|Ĩk|
(
|Ĩk| − 1

)
+
∑
i∈Õ

|Mi|

= 1 + |O|+m+
m∑
k=1

|Ik| (|Ik|+ 1) +
∑
i∈O
|Mi|+m

≤ 1 +N +m+N(N + 1)m+m+Nm

= 1 + 2m+N + 2Nm+N2m,

and consequently,

Vb(IPF ) ≤ 2m+ 2Nm+N2m.

Furthermore,

C(IPF ) = n+

n∑
j=1

(nj − 1) + |Õ|+
m∑
k=1

|Ik| (|Ik| − 1) + 2
∑
i∈Õ

|Mi|

≤ n+N − n+ |O|+m+N(N − 1)m+ 2
∑
i∈O
|Mi|+ 2m

= 2m+ 2N +Nm+N2m,
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and

CM (IPF ) =
m∑
k=1

|Ik| (|Ik| − 1)

≤ N2m−Nm.

Therefore, V(IPF ), Vb(IPF ), C(IPF ), CM (IPF ) ∈ O(N2m).

3.3 Model GPF: General Precedence Formulation

In this section, another approach to deal with the disjunctive constraints and

their dependence on the machine assignment is presented. Here, the binary

variables yi,j,k for all i 6= j ∈ Ik, k = 1, . . . ,m are de�ned by

yi,j,k =

1, if operation i precedes operation j on machine k

0, otherwise.

Thus, the notion of immediate precedence is relaxed and instead, a general

precedence order is imposed. For each pair i, j of operations assigned to the

same machine k, either operation i has to be completed before operation j

starts or operation j has to be completed before operation i starts. These

constraints are given by

xi,k + xj,k ≤ 1 + yj,i,k + yi,j,k for all i 6= j ∈ Ik, k = 1, . . . ,m. (3.8)

If operation i and operation j are scheduled on the same machine, then

xi,k = xj,k = 1 for some k, and thus, yi,j,k = 1 or yj,i,k = 1 in order to obtain

a valid constraint. The additional constraints

Si + pi,k −M (1− yi,j,k) ≤ Sj for all i 6= j ∈ Ik, k = 1, . . . ,m (3.9)

ensure that each machine processes at most one job at a time. Again,M is a

Big-M constant taken su�ciently large in order to guarantee constraint (3.9)

to be satis�ed for arbitrary values of Si and Sj if yi,j,k = 0. For a discussion

concerning the suitable choice of the Big-M constants it is referred to Section

3.6.1. The remaining constraints are de�ned analogously to model IPF.

Then, the mixed integer program formulation GPF (General Precedence
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Formulation) for the problem FJ | |Cmax is given by

min Cmax (GPF)

s.t.

Cmax −
∑
k∈Mi

xi,kpi,k ≥ Si for all i ∈ O : P (i) = nJ(i)

Si +
∑
k∈Mi

xi,kpi,k ≤ Sj for all i, j ∈ C

∑
k∈Mi

xi,k = 1 for all i ∈ O

Si + pi,k −M (1− yi,j,k) ≤ Sj for all i 6= j ∈ Ik, k = 1, . . . ,m

xi,k + xj,k − yj,i,k − yi,j,k ≤ 1 for all i 6= j ∈ Ik, k = 1, . . . ,m

Si ≥ 0 for all i ∈ O

yi,j,k ∈ {0, 1} for all i 6= j ∈ Ik, k = 1, . . . ,m

xi,k ∈ {0, 1} for all k ∈Mi, i ∈ O.

Since there is no need for m dummy operations in the model GPF, the

number of (binary) variables is slightly reduced in relation to the model IPF.

However, V(GPF ), Vb(GPF ) ∈ O(N2m). The number of constraints C and
the number of constraints with Big-M constants CM of the model GPF is

given by

C(GPF ) = n+
n∑
j=1

(nj − 1) + |O|+ 2
m∑
k=1

|Ik| (|Ik| − 1)

≤ n+N − n+ |O|+m+ 2N(N − 1)m

= m+ 2N + 2N2m− 2Nm,

and

CM (GPF ) =

m∑
k=1

|Ik| (|Ik| − 1)

≤ N2m−Nm.

Consequently, C(GPF ), CM (GPF ) ∈ O(N2m), too. Regarding the num-

ber of (binary) variables and the number of (Big-M) constraints there is



3.4 Model TEF: Time-Expanded Formulation 27

no signi�cant di�erence between model IPF and model GPF. Nevertheless,

the structure of constraints (3.8) and (3.9) of model GPF is di�erent to the

structure of constraints (3.5), (3.6), and (3.7) of model IPF. The impact of

these structural di�erences on the performance of both models is evaluated

in Section 3.7.

3.4 Model TEF: Time-Expanded Formulation

Computer-based mixed integer program solvers consider linear relaxations of

a given mixed integer program in the process of solving it to optimality (see

Section 2.1). In case of modeling disjunctive constraints by means of Big-M

constants, the Big-M constraints are not completely e�ective for a feasible

solution of the linear relaxation. Due to a large value of the Big-M constant,

fractional values for the binary variables contained in the Big-M constraints

potentially lead to a valid constraint for both options of the disjunction.

Consequently, these Big-M constraints do not matter at all in the linear

relaxation.

According to the disjunctive constraints of the �exible job shop schedul-

ing problem, several operations are potentially scheduled at the same time on

the same machine. Thus, the quality of the linear relaxation is signi�cantly

decreased by the use of Big-M constraints until a feasible integer solution to

the binary variables incorporated in the Big-M constraint is found. Further-

more, a suitable choice of the Big-M constants, that is, as small as possible,

is crucial for the quality of the model. Both model IPF and model GPF

require the application of Big-M constants in order to model the disjunctive

constraints. In this section, a time-expanded model for the �exible job shop

scheduling problem is presented, that manages without any Big-M constants

and consequently avoids the di�culties described above.

The model presented in this section is based on the discretization of time.

It is always possible to transform the processing times and consequently

the starting times to integer values. Then, the size of a time unit has to

be chosen depending on the required accuracy of the resulting schedule.

The choice of the size of a time unit as the greatest common divisor of the

processing times of all operations always leads to a schedule without any loss

in accuracy. Consequently, the discretization is a reasonable assumption and

does not lead to further restrictions. In the model the time horizon 0, . . . , T
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is considered, where T is an upper bound for the makespan. Obviously, a

feasible, but in most cases not optimal choice for T is the sum of the maximal

processing times of all operations,

T :=
∑

i=1,...,N

max
k∈Mi

{pi,k}.

A better choice for T will be discussed in Section 3.6.2.

First of all, binary variables xi,k,t for all k ∈ Mi, i ∈ O, t = 0, . . . , T

are introduced marking the beginning of the processing of an operation on

a dedicated machine:

xi,k,t =

1, if operation i starts at time t on machine k

0, otherwise.

Thereupon, the makespan is now de�ned by

∑
k∈Mi

T∑
t=0

xi,k,t(t+ pi,k) ≤ Cmax for all i ∈ O : P (i) = nJ(i). (3.10)

For a pair of operations (i, j) ∈ C, that is, two consecutive operations of a

job, it has to be ensured that the starting time of operation j, given by

∑
k∈Mj

T∑
t=0

xj,k,t · t,

is not earlier than the completion time of operation i, given by

∑
k∈Mi

T∑
t=0

xi,k,t(t+ pi,k).

Consequently, the precedence constraints are given by

∑
k∈Mi

T∑
t=0

xi,k,t(t+ pi,k) ≤
∑
k∈Mj

T∑
t=0

xj,k,t · t for all i, j ∈ C. (3.11)

Furthermore, each operation has to be scheduled on exactly one machine at

exactly one point in time, which is assured by
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∑
k∈Mi

t∑
t=0

xi,k,t = 1 for all i ∈ O. (3.12)

In contrast to model IPF and model GPF, a formulation of the disjunctive

constraints without Big-M constants is possible. On each machine at every

point in time at most one operation is allowed to be scheduled. Since the

binary variables xi,k,t represent only the starting time t of operation i on

machine k, it has to be ensured that at most one operation i starts in the

time period [t− pi,k + 1, t] on machine k. The disjunctive constraints are

therefore given by

∑
i∈Ik

t∑
τ=t−pi,k+1

xi,k,τ ≤ 1 for all t = 0, . . . , T, k = 1, . . . ,m. (3.13)

Finally, the mixed integer program formulation TEF (Time-Expanded For-

mulation) for the problem FJ | |Cmax is given by

min Cmax (TEF)

s.t. ∑
k∈Mi

T∑
t=0

xi,k,t(t+ pi,k) ≤ Cmax for all i ∈ O : P (i) = nJ(i)

∑
k∈Mi

T∑
t=0

xi,k,t(t+ pi,k) ≤
∑
k∈Mj

T∑
t=0

xj,k,t · t for all i, j ∈ C

∑
k∈Mi

T∑
t=0

xi,k,t = 1 for all i ∈ O

∑
i∈Ik

t∑
τ=t−pi,k+1

xi,k,τ ≤ 1 for all t = 0, . . . , T,

k = 1, . . . ,m

xi,k,t ∈ {0, 1} for all k ∈Mi, i ∈ O,

t = 0, . . . , T.

Obviously, there are no Big-M constants in the model TEF, which is a

signi�cant advantage in comparison to the models IPF and GPF. Further-

more, except for the variable Cmax the model TEF contains solely binary
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variables. More precisely, the number of binary variables is given by

Vb(TEF ) = (T + 1)
∑
i∈O

Mi ≤ T |O|m = TNm.

Therefore, Vb(TEF ), V(TEF ) ∈ O(TNm) and it depends on the ratio of

the number of operations N and the number of points in time T whether

the number of (binary) variables of the model TEF is smaller than the num-

ber of (binary) variables of the models IPF and GPF. For T < N , the

model TEF constitutes an improvement in the number of (binary) variables.

Furthermore, the number of constraints is given by

C(TEF ) = n+
n∑
j=1

(nj − 1) + |O|+ (T + 1)m

≤ n+N − n+N + Tm

= 2N + Tm.

Consequently, C(TEF ) ∈ O(N + Tm) and again the number of constraints

in the model TEF depends on the size of T .

In Section 3.6.2 the choice of the upper bound T will be commented

further. It is evident, that the size of T is decisive for the e�ciency of the

model TEF.

3.5 Model MPF: Machine-Position Formulation

In this section an additional formulation for the �exible job shop scheduling

problem is suggested. This approach is based on the idea of weakening

the dependency of model TEF on the upper bound T . Instances of the

�exible job shop scheduling problem consisting of operations with strongly

varying processing times lead to a large model size, since each point in time

is modeled.

In order to cope with this di�culty, no longer binary variables represent-

ing the starting time of an operation on a machine are modeled, but binary

variables representing the relative position of an operation on a machine with

respect to the other operations assigned to that machine. Recall that the

index set Ik contains the indices of all operations that can be assigned to

machine k. Consequently, there are |Ik| positions on machine k. Obviously,
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on each machine at most N operations can be scheduled, and the number

of positions on each machine is therefore bounded by N . Thus, strongly

varying processing times have no in�uence on the model size.

In order to model the machine positions, binary variables xi,k,p for all

pk = 1, . . . , |Ik|, k = 1, . . . ,m, i ∈ O are introduced:

xi,k,p =

1, if operation i is scheduled for position p on machine k

0, otherwise.

The de�nition of the makespan and the precedence constraints is analogue

to the models IPF and GPF:

Cmax ≥ Si +
∑
k∈Mi

|Ik|∑
p=1

xi,k,ppi,k for all i ∈ O : P (i) = nJ(i), (3.14)

Si +
∑
k∈Mi

|Ik|∑
p=1

xi,k,ppi,k ≤ Sj for all (i, j) ∈ C. (3.15)

Furthermore, each operation has to be assigned to exactly one position,

which is ensured by

m∑
k=1

|Ik|∑
p=1

xi,k,p = 1 for all i ∈ O. (3.16)

Additionally, at most one operation can be assigned to each position, given

by the constraints∑
i∈O

xi,k,p ≤ 1 for all p = 1, . . . , |Ik|, k = 1, . . . ,m. (3.17)

The positions on each machine have to be �lled subsequently, that is, an

operation is only allowed to be assigned to a position on a machine if the

preceding position is already �lled. This condition is ensured by∑
i∈O

xi,k,p ≤
∑
i∈O

xi,k,p−1 for all p = 2, . . . , |Ik|, k = 1, . . . ,m. (3.18)

Finally, in order to interconnect the machine position variables with the

starting time variables and to enforce a feasible schedule, non-overlapping
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constraints are de�ned by

Si + pi,k −M(2− xi,k,p−1 − xj,k,p) ≤ Sj (3.19)

for all p = 2, . . . , |Ik|, i 6= j ∈ Ik, and k = 1, . . . ,m. If the operations i

and j are assigned to the same machine k for consecutive positions p − 1

and p, then the starting time Sj of operation j must not be earlier than

the completion time Si + pi,k of operation i. Again, M is a Big-M constant

taken su�ciently large in order to guarantee constraints (3.19) to be valid if

at least one of the machine position variables xi,k,p and xj,k,p−1 is zero, that

is, operations i and j are not assigned to consecutive positions on the same

machine and consequently, a non-overlapping constraint does not have to

be taken into account. Thus, the mixed integer program formulation MPF

(Machine-Position Formulation) for the problem FJ | |Cmax is given by

min Cmax (MPF)

s.t.

Si +
∑
k∈Mi

|Ik|∑
p=1

xi,k,ppi,k ≤ Cmax for all i ∈ O : P (i) = nJ(i)

Si +
∑
k∈Mi

|Ik|∑
p=1

xi,k,ppi,k ≤ Sj for all (i, j) ∈ C

∑
k∈Mi

|Ik|∑
p=1

xi,k,p = 1 for all i ∈ O

∑
i∈O

xi,k,p ≤ 1 for all p = 1, . . . , |Ik|,
k = 1, . . . ,m∑

i∈O
xi,k,p −

∑
i∈O

xi,k,p−1 ≤ 0 for all p = 2, . . . , |Ik|,
k = 1, . . . ,m

M(2− xi,k,p−1 − xj,k,p) + Sj ≥ Si + pi,k for all p = 2, . . . , |Ik|,

i 6= j ∈ Ik,

k = 1, . . . ,m

Si ≥ 0 for all i ∈ O

xi,k,p ∈ {0, 1} for all p = 1, . . . , |Ik|,

k ∈Mi, i ∈ O.
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The number of variables V(MPF ) is given by

V(MPF ) = 1 + |O|+
∑
i∈O

∑
k∈Mi

|Ik| ≤ 1 +N +N2m,

and the number of binary variables Vb(MPF ) is given by

Vb(MPF ) =
∑
i∈O

∑
k∈Mi

|Ik| ≤ N2m.

Thus, V(MPF ), Vb(MPF ) ∈ O(N2m). Furthermore, the number of con-

straints C(MPF ) is given by

C(MPF ) = n+

n∑
j=1

(nj − 1) + |O|+
m∑
k=1

|Ik|+
m∑
k=1

(|Ik| − 1)

+
m∑
k=1

((|Ik| − 1) (|Ik| (|Ik| − 1)))

= n+N − n+N + 2
m∑
k=1

|Ik| −m+
m∑
k=1

(
|Ik|3 − 2|Ik|2 + |Ik|

)
≤ 2N + 3mN −m+mN3 − 2mN2,

and the number of constraints with Big-M constants Cb(MPF ) is given by

CM (MPF ) =

m∑
k=1

((|Ik| − 1) (|Ik| (|Ik| − 1))) = mN3 − 2mN2 +mN.

Therefore, C(MPF ),CM (MPF ) ∈ O(mN3). The transformation from

points in time to positions on machines detaches the model size from the

size of processing times. However, this is already achieved for models IPF

and GPF and additionally, the number of constraints with Big-M constants

for model MPF is by a factor of N higher than the number of constraints

with Big-M constants of models IPF and GPF.

3.6 Performance Improvements

In this section the models from Sections 3.2 - 3.5 are considered again with

the intention of performance improvement. In the literature, models for the

�exible job shop scheduling problem are only sparsely covered, and further-
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V Vb C CM

IPF O(N2m) O(N2m) O(N2m) O(N2m)

GPF O(N2m) O(N2m) O(N2m) O(N2m)

TEF O(TNm) O(TNm) O(n+ Tm) 0

MPF O(N2m) O(N2m) O(N3m) O(N3m)

Table 3.1: Model sizes of the models IPF, GPF, TEF, and MPF

more, detailed discussions of di�erent models and possible approaches for

performance improvement are up to our knowledge not considered at all.

On this account and with the intention to employ one of the models as

a basis for an e�cient approximation algorithm, a detailed analysis seems

worthwhile.

In Section 3.6.3 and Section 3.6.4, structural improvements are discussed

for the model IPF and the model GPF, respectively. Furthermore, in Section

3.6.1, the choice of Big-M constants for the models IPF, GPF, and MPF is

considered in detail and in Section 3.6.2, the choice of an upper bound T for

the number of points in time is analyzed explicitly. In order to summarize

the results from the previous sections, an overview of the model sizes of the

models IPF, GPF, TEF, and MPF is given in Table 3.1. The essentially

di�erent structure of model TEF becomes obvious in the model size, too.

Furthermore, with respect to the size, model MPF is dominated by the other

models. A detailed comparison of the performance of the di�erent models is

given in Section 3.7.

3.6.1 Suitable Choice of Big-M Constants

Constraints with Big-M constants occur in the models IPF, GPF, and MPF.

As pointed out earlier, it is desirable to choose the Big-M constants as small

as possible in order to strengthen the linear relaxation. Obviously, a feasible

choice of a Big-M constant is given by

M :=
∑
i∈O

max
k∈Mi

pi,k. (3.20)
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Since the dummy operations used in model IPF have zero processing time,

this holds for all three models IPF, GPF, and MPF. Smaller Big-M constants

can be achieved by assigning an individual Big-M constant to each constraint

instead of using a single Big-M constant for all constraints. Let Mmax be an

upper bound for the makespan of the �exible job shop scheduling problem.

A possible upper bound for the makespan is given by the sum of the maximal

processing times of all operations as seen in equation (3.20). Additionally, an

upper bound for the makespan can be achieved by a list scheduling heuristic,

which is discussed in detail in Section 3.6.2. Due to the job structure, each

operation is in a sequence of operations that have to be processed before

and after the operation. By means of this basic observation, the range of

possible starting times for an operation can be narrowed down. Let Mi,j,k

denote the Big-M constant for the corresponding constraint in (3.7), (3.9),

and (3.19). After operation i is completed the operations in the sequence

of job J(i) with a position greater than P (i) still have to be processed (cf.

Example 3.1). Therefore,

Si + pi,k ≤M −
∑
j∈Ai

min
l∈Mj

pj,l + pi,k, (3.21)

where Ai := {j ∈ O | J(j) = J(i) ∧ P (j) ≥ P (i)}. Additionally, before

operation j is started, the operations in the sequence of job J(j) with a

position smaller than P (j) �rst have to be processed. Consequently,

Sj ≥
∑
i∈Bj

min
l∈Mi

pi,l, (3.22)

where Bj := {i ∈ O | J(i) = J(j) ∧ P (i) < P (j)}.

Example 3.1. Consider two jobs J1 and J2 with three operations each,

whereby each operation has unit processing time. After six time units at

the latest all six operations are completed regardless of the machines the op-

erations have to be processed on. Consequently, Mmax = 6 is a suitable

choice for an upper bound for the makespan. Furthermore, operation O1,1

has to be processed in the interval [0, 4], otherwise the processing times of the

subsequent operations O1,2 and O1,3 would lead to an overall processing time

greater than Mmax. Consequently, the individual choice of a Big-M constant

M1,1,k = 4 improves upon the initial choice of an overall Big-M constant of
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M = 6, leading to a stronger linear relaxation. In Figure 3.1, the possible

reduction of Big-M constants for job J1 is depicted.

O1,1 [0,4]

O1,2 [1,5]

O1,3 [2,6]

Figure 3.1: Reduction of Big-M constants

With the help of equations (3.21) and (3.22), better Big-M constants can

be achieved.

Si + pi,k − Sj ≤M −
∑
g∈Ai

min
l∈Mg

pg,l + pi,k −
∑
h∈Bj

min
l∈Mh

ph,l,

and therefore the Big-M constants Mi,j,k for the constraints (3.7) and (3.9)

can be de�ned by

Mi,j,k := M −
∑
g∈Ai

min
l∈Mg

pg,l + pi,k −
∑
h∈Bj

min
l∈Mh

ph,l.

For model MPF there has to be made a minor di�erentiation, since con-

straints (3.19) are given by

Si + pi,k −M(2− xi,k,p − xj,k,p−1) ≤ Sj .

Denote the individual Big-M constants for the model MPF by M ′i,j,k and

de�ne them by

M ′i,j,k :=

1
2Mi,j,k if Mi,j,k < 0

Mi,j,k otherwise.

If Mi,j,k < 0, further restrictions can be imposed. If Mi,j,k < 0, it is

ensured that operation j cannot be scheduled (immediately) before operation

i on machine k in a feasible solution. Consequently, yj,i,k is initially set to

zero for models IPF and GPF. The initial �xing of variables can lead to a

further performance improvement.

For model MPF, additional constraints given by

xi,k,p′ + xj,k,p ≤ 1 for all 1 ≤ p′ < p ≤ |Ik|
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can be introduced in case M ′i,j,k < 0, since operation i cannot be scheduled

before operation j on machine k.

3.6.2 Suitable Choice of an Upper Bound T

The time-expanded formulation of model TEF requires the choice of a �xed

time period [0, T ] in which all operations are processed. Obviously, T is

equivalent to an upper bound for the makespan and therefore

T :=
∑
i∈O

max
k∈Mi

pi,k

is a feasible choice for T . Still, it is desirable to �nd an upper bound as

small as possible leading to a reduction in the number of variables, since

V(TEF ) ∈ O(TNm). A possible approach to reduce the upper bound for

the makespan is to apply a list scheduling heuristic. The basic idea of list

scheduling is to prepare an ordered list of operations, and then schedule the

operations in this order according to a given rule.

An ordered list can be generated by solving the linear relaxation of the

model IPF or the model GPF, and then listing the operations according to

their starting times. The solution of the linear relaxation of model IPF or

model GPF provides at least a feasible ordering of the operations according

to their job sequences, since constraints (3.6) ensure that

Si ≤ Sj for all (i, j) ∈ C.

The operations are now one after another selected from the ordered list

and scheduled by the following rule. Consider all machines from the set

of available machines of the selected operation and choose the machine on

which the operation can be scheduled as early as possible. The makespan

Cmax of the resulting schedule is then assigned to T . The list scheduling

heuristic is formally summarized in Algorithm 1.

Lemma 3.2. Algorithm 1 is a polynomial-time algorithm and produces a

feasible solution to the �exible job shop scheduling problem.

Proof. Since there exist polynomial-time algorithms for linear programming

[NW88], polynomial-time algorithms for sorting (for example bubble sort

with worst case performance O(N2)) and steps 3 - 12 have complexity
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Algorithm 1 List Scheduling Heuristic for FJ | |Cmax

1: Find an optimal solution SLP to the linear relaxation of model GPF.
2: Index the operations such that SLP1 ≤ SLP2 ≤ · · · ≤ SLPN .
3: for all i = 1, . . . , N do

4: Si =
∑
i∈O

max
k∈Mi

{pi,k}

5: for all m ∈Mi do

6: Set s to the maximum of the availability of machine m and the
completion time of the operation with position P (i)− 1 of job J(i).

7: if s < Si then
8: Si = s;
9: end if

10: end for

11: end for

12: Determine the makespan Cmax and set T = Cmax.

O(Nm), the list scheduling heuristic presented in Algorithm 1 is a poly-

nomial-time algorithm.

By constraints (3.6), the ordering of operations obtained from the linear

relaxation of model GPF respects the imposed job sequence for each job.

According to step 6, each operation i is not scheduled before the preceding

operation of job J(i) is completed and a machine is available. Consequently,

each machine processes at most one operation at a time and the operations

are scheduled according to the precedence constraints. The choice of Si in

step 4 guarantees that the condition in step 7 is satis�ed at least once and

therefore, each operation is assigned to exactly one machine. As a result,

Algorithm 1 generates a feasible solution to the �exible job shop scheduling

problem.

By Lemma 3.2, Algorithm 1 is applicable as preprocessing step in order

to determine an upper bound for the makespan. Additionally, with the

help of the solution from the list scheduling heuristic, a warmstart can be

performed, that is, an existing solution of a similar problem is used as a start

basis [Kal02].

Furthermore, the number of variables of the model TEF can be reduced

with the help of the considerations from Section 3.6.1. For each operation i
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the earliest possible starting time αi is given by

αi :=
∑
j∈Bi

min
l∈Mj

pj,l.

In addition, the subsequent operations of job J(i) cannot be processed earlier

than operation i is completed. Since T is an upper bound for the maximal

completion time, the latest starting time βi of operation i is de�ned by

βi := T −
∑
j∈Ai

min
l∈Mj

pj,l + pi,k.

Therefore, the de�nition of the binary variables xi,k,t can be reduced to

xi,k,t ∈ {0, 1} for all k ∈Mi, i ∈ O, t = αi, . . . , βi.

If each job consists of only one operation, this is the same de�nition as in

the basic model TEF.

3.6.3 Additional Constraints for IPF

Constraints (3.5), (3.6), and (3.7) of model IPF assure that on each machine

at most one operation is scheduled at a time. Since constraints (3.7) in-

corporate Big-M constants, these constraints are potentially not completely

e�ective until the binary variables yi,j,k take integer values, as described in

Section 3.4. Consequently, it is not ensured, that each machine processes

at most one operation at a time, although the constraints (3.5), (3.6), and

(3.7) are satis�ed in the linear relaxation. In the following, this situation

is illustrated by means of graph theory. For an arbitrarily chosen solution

x = (xi,k) with respect to the mixed integer programming formulation IPF,

consider for each machine k a weighted digraph Gk(x) = (Vk(x), Ek(x)), de-

pendent on the machine assignment x = (xi,k). The node set Vk(x) is given

by

Vk(x) = {i ∈ Õ |xi,k = 1},

that is, each operation assigned to machine k is identi�ed by a node. The

edge set Ek(x) is given by

Ek(x) = {(i, j) | i, j ∈ Vk(x)},
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and the weight function fk : E → R is given by

fk((i, j)) = yi,j,k.

Constraints (3.5) and (3.6) correspond to the fact that for each node the sum

of incoming edges and the sum of outgoing edges equals one. Furthermore,

constraints (3.7) ensure a closed path using only edges with weight yi,j,k > 0,

visiting each node exactly once, starting and ending at the dummy node.

With the help of this visualization, Example 3.3 illustrates the problem aris-

ing from the constraints with Big-M constants.

Example 3.3. Consider a setting with n = 6, ni = 1, i = 1, . . . , n and thus,

each of the six jobs has exactly one operation and N = 6. Denote the oper-

ations by O1, . . . , O6. Furthermore, m = 2 and M1 = · · · = M5 = {µ1} and
M6 = {µ2}. Each operation has unit processing time, pi = 1, i = 1, . . . , N

and for each machine there is an additional dummy operation O0 and O7,

respectively, with zero processing time. Consequently, M =
N∑
i=1

pi = 6. Con-

sider machine µ1. A feasible solution of the linear relaxation of the model

IPF with respect to the ordering of operations on machine µ1 is given by

yi,j,1 =

1
2 , for all (i, j) : (0 ≤ i, j ≤ 2 ∨ 3 ≤ i, j ≤ 5) ∧ i 6= j,

0, otherwise.

Constraints (3.5) and (3.6) are satis�ed, that is, the sum of outgoing edges

and the sum of incoming edges is equal to one for each node, since each node

has two outgoing edges with weight 1
2 and two incoming edges with weight 1

2 .

Furthermore, for S0 = 0, S1 = 0, S2 = 1, S3 = 0, S4 = 1, and S5 = 2,

constraints (3.7),

Si + pi,k −M(1− yi,j,k) ≤ Sj ,

are satis�ed in the linear relaxation, since the constraints are weakened by
1
2M = 3 for each edge with yi,j,k = 1

2 and by M = 6 for each edge with

yi,j,k = 0. Figure 3.3 depicts the graph V1(x).

The bottom line is that potentially the Big-M constraints are not e�ective

at all, as seen in Example 3.3. Such examples can be found for many applica-

tions of Big-M constraints. Therefore, in order to strengthen the model IPF,

additional constraints are introduced, prohibiting situations as presented in



3.6 Performance Improvements 41

O1 O3

O0 O4

O2 O5

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
1

2

1

2

1

2

1

2

Figure 3.2: Feasible solution to the linear relaxation

Example 3.3. Consider an arbitrary subset A ⊆ Õ of operations and any

machine k ∈ M . If at least one operation i ∈ A is assigned to machine k,

that is, xi,k = 1, and at least one operation j ∈ Õ \A is assigned to machine

k, then the sum of outgoing edges from the node set A to the node set Õ \A
is required to be greater than one, that is,∑

i∈A, j∈Õ\A

yi,j,k ≥ zA,k for all A ⊆ Õ, k = 1, . . . ,m, (3.23)

where zA,k ∈ {0, 1} is a binary variable and

1 + zA,k ≥ xi,k + xj,k for all i ∈ A, j ∈ Õ \A, A ⊆ Õ,

k = 1, . . . ,m. (3.24)

By means of the additional constraints (3.23) and (3.24), formulation IPF

is strengthened. In order to show that these constraints indeed present valid

inequalities tightening the formulation, Example 3.3 is considered again. The

feasible solution to the linear relaxation given in Example 3.3 is obviously no

longer feasible with the additional constraints (3.23) and (3.24). Consider the

subset of operations A = {O0, O1, O2}. Then there is at least one operation

in A assigned to machine µ1 and one operation in Õ \A assigned to machine

µ1. Therefore, by constraints (3.24) zA,µ1 = 1 and further, constraint (3.23),∑
i∈A,j∈Õ\A

yi,j,k ≥ zA,k = 1,

ensures that at least one connecting edge between the nodes from set A
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and the nodes from set Õ \ A is used. Consequently, the solution given

in Example 3.3 is no longer a feasible solution to the linear relaxation and

therefore, constraints (3.23) and (3.24) present valid inequalities tightening

the formulation.

Since these constraints are introduced for each subset A ⊆ Õ and for

each machine the number of additional constraints (3.23) and (3.24) is in

O
(
mN22N

)
and the number of additional variables zA,k is given by m2N .

Consequently, in contrast to the structural improvement achieved by the

additional constraints, the model size is now growing exponentially with

respect to the number of operations N and it may be expected that the

bene�t of the additional valid inequalities gets eaten up by the loss of speed

due to the increasing number of constraints and variables.

The linear relaxation of model IPF with constraints (3.23) and (3.24) can

be solved as follows. First, the linear relaxation is solved without constraints

(3.23) and (3.24). Secondly, it is searched for a constraint from the set of

constraints (3.23) and (3.24) that is violated for this solution. If such a

constraint is found, it is added to the linear relaxation. Now, the linear

relaxation is solved again and the process repeats until it is proved that

no constraint is violated by the current solution of the linear relaxation.

Consequently, the last solution is an optimal solution of the linear relaxation

of model IPF with constraints (3.23) and (3.24). The problem of �nding a

violated constraint or proving that no such constraint exists is also known

as the separation problem. For a formal de�nition see [GLS88, page 48].

Furthermore, Grötschel et al. proved the equivalence of optimization and

separation with respect to the polynomial time solvability [GLS88, p. 174].

Consequently, the optimal solution of the linear relaxation of model IPF

with constraints (3.23) and (3.24) can be found in polynomial time, if the

separation problem is solvable in polynomial time.

In the following, another approach for an improved formulation of model

IPF is presented with the intention of avoiding the rami�cation of the expo-

nentially many inequalities. This approach is based on the adaption of the

equivalence of optimization and separation described above to the traveling

salesman problem, cf. for example [DFJ54]. When a feasible solution for the

linear relaxation of model IPF is found, for each machine the correspond-

ing graph introduced at the beginning of this section is checked for cycles.

At this, only edges (i, j) with yi,j,k > 0 and operations i that are already
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assigned to a certain machine k, that is, xi,k = 1, are considered. Con-

sequently, a branching strategy branching �rst on the machine assignment

variables xi,k supports this approach in a positive manner. For a detailed

description of an improved branching strategy see Section 3.6.5. If for ma-

chine k a cycle exists, that does not contain all operations assigned so far to

machine k, and the sum of outgoing edges is smaller than one, an additional

constraint is introduced locally in the subtree of the branch and cut search.

More precisely, assume that on machine k there is a cycle C given by

C = {i1, i2, . . . , ic−1, ic = i1}

with yij ,ij+1,k > 0 for j = 1, . . . , c− 1, and c < n′, where n′ is the number of

operations i that are assigned to machine k. Now, if∑
i∈C,i′ /∈C

yi,i′,k < 1,

the additional constraint ∑
i∈C,i′ /∈C

yi,i′,k ≥ 1

is introduced locally in the subtree of the branch and cut search. This dy-

namic cut-adding approach is formally summarized in Algorithm 2. The

procedure stated above does not necessarily �nd all cycles, but for the sepa-

ration of the solution of the linear relaxation it is su�cient. For the practical

implementation of the developed mixed integer programming formulations,

the CPLEX environment provided by IBM ILOG [cpl10] is chosen. For a

more detailed description of the implementation, see Section 3.7. The utilized

optimizer provides the functionality to add extra cuts during the branch and

cut search in order to tighten the model formulation. Thus, the approach

presented in this section is implemented as a supporting method for the

branch and cut search of the optimizer. In Section 3.7, the performance of

the model GPF is evaluated in the �rst place without the additional con-

straints, in the second place with all additional constraints, and in the third

place with the dynamic cut-adding approach described above.
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Algorithm 2 Dynamic Cut-Adding for Model IPF

1: for all k = 1, . . . ,m do

2: Create a graph G = (V,E) with

V = {i ∈ Õ |xi,k = 1},
E = {(i, j) | i, j ∈ V ∧ yi,j,k > 0}.

3: for all nodes i in V do

4: Perform a depth �rst search starting at node i.
5: if ∃ cycle C with |C| < |V | in G then

6: if
∑

i∈C,i′ /∈C
yi,i′,k < 1 then

7: Add constraint ∑
i∈C,i′ /∈C

yi,i′,k > 1.

8: end if

9: end if

10: end for

11: end for

3.6.4 Additional Constraints for GPF

For the model GPF, additional valid inequalities are formulated, too. The

general precedence formulation allows for an exploitation of the transitivity

of the ordering. If operation i is scheduled before operation j on machine k,

that is, yi,j,k = 1, and operation j is scheduled before operation l on machine

k, that is, yj,l,k = 1, then operation i is scheduled before operation l as well,

that is, yi,l,k = 1. Consequently, the additional constraints

yi,j,k + yj,l,k ≤ 1 + yi,l,k for all i 6= j 6= l ∈ Ik, k = 1, . . . ,m (3.25)

are introduced. It remains to show that constraints (3.25) actually present

valid inequalities tightening the formulation. Consider an example with

n = 6, ni = 1, i = 1, . . . , n and thus, each of the six jobs has exactly one

operation and N = 6. Furthermore, m = 2 and M1 = · · · = M3 = {µ1}
and M4 = · · · = M6 = {µ2}. The processing times are given by pi = 1,

i = 1, . . . , 3 and pi = 2, i = 4, . . . , 6. Consequently, the Big-M constant M

is given by M = 9. The following assignment presents a feasible solution of
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the linear relaxation of model GPF.

(yi,j,1) =


− 1 0.5

0 − 1

0.5 0 −

 (yi,j,2) =


− 1 0

0 − 1

1 0 −



(xi,k)
T =

 1 1 1 0 0 0

0 0 0 1 1 1


(Si)

T =

(
0 1 2 0 2 4

)
The additional constraints (3.25) are violated, since

y1,2,1 + y2,3,1 = 2 > 1 + y1,3,1 =
3

2
.

Consequently, constraints (3.25) present valid inequalities tightening the for-

mulation of model GPF. The number of additional constraints is given by

m∑
k=1

Ik(Ik − 1)(Ik − 2) ∈ O(N3m).

In order to avoid unnecessary additional constraints, a dynamical cut-adding

method can also be applied in this case. If a feasible solution to the linear

relaxation violates one of the constraints (3.25), this particular constraint is

locally added in the subtree and removed by backtracking in the subtree. In

Section 3.7, the performance of the model GPF is evaluated in the �rst place

without the additional constraints, in the second place with all additional

constraints added initially, and in the third place with the dynamical method,

adding the constraints during the branch and cut search on demand.

3.6.5 Branching Strategy

For implementation the IBM ILOG CPLEX Optimizer is applied, which

uses a branch and cut search. As described before, a branch and cut search

is an algorithm searching the branch and bound tree of all possible solu-

tions, branching on decision variables and cutting o� those branches that do

not lead toward a better solution than the one currently known. The most



46 Modeling Approaches

important part about the branching strategy is to determine the order in

which the binary variables should be selected for branching and subsequent

�xation. The IBM ILOG CPLEX Optimizer provides the functionality to

specify a branching priority for each variable. For the models IPF and GPF,

a branching strategy for the machine assignment variables xi,k and the order

variables yi,j,k is considered. It is proposed to branch �rst on the machine

assignment variables xi,k. The explanation for this decision lies in the depen-

dence of the variables yi,j,k on the machine assignment variables xi,k. Before

the ordering of the operations on each machine is determined, it is bene�cial

to decide, which operations are actually assigned to each machine. Conse-

quently, the branching priority for the machine assignment variables xi,k is

increased in relation to the variables yi,j,k. In Section 3.7 the performance of

models IPF and GPF with respect to the branching strategy is compared.

3.7 Computational Results

The purpose of this section is to compare the performance of the models

IPF, GPF, TEF, and MPF and to evaluate the impact of the improvements

for the di�erent models discussed in Sections 3.6.1, 3.6.2, 3.6.3, and 3.6.4.

Furthermore, the in�uence of di�erent parameters de�ning the �exible job

shop scheduling problem is examined. For the practical implementation of

the developed mixed integer programming formulations IBM ILOG CPLEX

V12.1 is employed. The modeling was executed in IBM ILOG OPL V6.3

which includes the Optimization Programming Language (OPL) for devel-

oping optimization models. For the optimization, the IBM ILOG CPLEX

Optimizer was used. The IBM ILOG CPLEX Optimizer is a mathematical

programming solver for linear programming, mixed integer programming,

and quadratic programming. Additionally, external functions, implemented

in Java
TM

SE Runtime Environment (build 1.6.0_29-b11) are applied for the

dynamic adding of cuts during the branch and cut search (cf. Section 3.6.4

and Section 3.6.3). All computations were performed on a PC with a Pen-

tium Dual Core CPU E6500 2.93 Ghz, 1.96 GB RAM. The OPL source code

of the implementation of the models IPF, GPF, TEF, and MPF, and the

Java source code of the external functions can be found on the CD attached

to this thesis.

The performance of the models is in the �rst place tested on randomly
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generated instances P1, . . . , P11 of the �exible job shop scheduling problem.

Each problem is characterized by the number of jobs n, the number of op-

erations N , the number of machines m, and the �exibility f . The �exibility

is the probability that a machine is valid for an operation. The size of the

instances varies from n = 4 jobs with N = 15 operations on m = 4 machines

(P1) to n = 15 jobs with N = 48 operations on m = 7 machines (P11).

For all instances P1, . . . , P11, a �exibility f of 0.33 is chosen. Furthermore,

for the generation of the test instances, the N operations are uniformly dis-

tributed among the n jobs and machine k = 1, . . . ,m is valid for operation

i ∈ O with a probability of f . If no machine is valid for an operation after

this process, one machine is chosen randomly. The processing times for the

operations are chosen uniformly between 1 and 10. The choice of the size

of these test instances is based on the experience obtained during extensive

computational experiments and aims to cover instances ranging from easy

to solve (P1) to fairly hard to solve (P11). The instances P1, . . . , P11 and the

generating script can be found on the CD attached to this thesis.

Obviously, the solvability of the instances is not only depending on the

formulation of the model, but also on the utilized optimizer and hardware.

Thus, it is di�cult to compare the results presented in the following to

results in the literature treating optimization models of the �exible job shop

scheduling problem, for example [SMF06]. Still, it is mentioned that the

size of the instances solved to optimality with the help of the described

optimization models and optimization software exceeds, in all conscience,

the size of instances solved with an optimization software presented in the

literature. In the following the computational results for the models IPF,

GPF, TEF, and MPF and the presented performance improvements are

evaluated in detail. Table 3.2 on page 48 speci�es the abbreviations and

variables used in the tables listing the computational results and explains

them in more detail.

3.7.1 Basic Models

First of all, the basic models IPF, GPF, TEF, and MPF are compared

with the help of the instances P1, . . . , P11. In Table 3.3 on page 49, the

computational results are listed.

Model GPF outperforms the other models considerably with respect to

the processing time for each instance and even for the largest instance P11,
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Item Description

Mod model name

Per applied performance improvements:

B branching, see Section 3.6.5

M improved Big-M constants, see Section 3.6.1

T improved upper bound T , see Section 3.6.2

AC additional constraints, see Sections 3.6.4 and 3.6.3

DC dynamic cuts, see Sections 3.6.4 and 3.6.3

Pro problem

n number of jobs

N number of operations

m number of machines

f �exibility

V number of variables

C number of constraints

(LB, UB) lower and upper bound; if LB equals UB the optimality of the
objective value is proven

Cmax makespan, marked with ∗ if it is equal to the optimal objective
value

CPU processing time in seconds; if no solution is found after 3600
seconds, the solution process is aborted manually and the best
objective value is reported

Table 3.2: Structure of the computational results
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Mod Per Pro n m N f V C (LB, UB) Cmax CPU

IPF - P1 4 4 15 0.36 199 216 (32, 32) 32∗ 0.09
GPF - P1 4 4 15 0.36 147 246 (32, 32) 32∗ 0.03
TEF - P1 4 4 15 0.36 2422 470 (32, 32) 32∗ 0.52
MPF - P1 4 4 15 0.36 147 634 (32, 32) 32∗ 1.36

IPF - P2 6 4 18 0.36 262 282 (35, 35) 35∗ 0.38
GPF - P2 6 4 18 0.36 202 348 (35, 35) 35∗ 0.06
TEF - P2 6 4 18 0.36 3122 516 (35, 35) 35∗ 1
MPF - P2 6 4 18 0.36 202 1098 (35, 35) 35∗ 17.8

IPF - P3 6 4 21 0.34 326 349 (38, 38) 38∗ 1.06
GPF - P3 6 4 21 0.34 260 458 (38, 38) 38∗ 0.06
TEF - P3 6 4 21 0.34 3946 586 (38, 38) 38∗ 1.91
MPF - P3 6 4 21 0.34 260 1702 (33, 39) 39 3600

IPF - P4 8 5 24 0.35 536 563 (24, 38) 38 3600
GPF - P4 8 5 24 0.35 442 796 (34, 34) 34∗ 0.7
TEF - P4 8 5 24 0.35 7100 893 (34, 34) 34∗ 23.5
MPF - P4 8 5 24 0.35 442 3837 (23, 45) 45 3600

IPF - P5 8 5 27 0.34 597 627 (39, 39) 39∗ 196
GPF - P5 8 5 27 0.34 495 894 (39, 39) 39∗ 0.78
TEF - P5 8 5 27 0.34 8972 1029 (39, 39) 39∗ 34.1
MPF - P5 8 5 27 0.34 495 4401 (31, 54) 54 3600

IPF - P6 10 5 30 0.34 717 750 (32, 40) 40 3600
GPF - P6 10 5 30 0.34 605 1104 (35, 35) 35∗ 12.4
TEF - P6 10 5 30 0.34 10763 1115 (35, 35) 35∗ 36.3
MPF - P6 10 5 30 0.34 605 5953 (32, 52) 52 3600

IPF - P7 10 6 33 0.31 859 896 (26, 37) 37 3600
GPF - P7 10 6 33 0.31 723 1318 (34, 34) 34∗ 9.42
TEF - P7 10 6 33 0.31 15006 1518 (34, 34) 34∗ 94.5
MPF - P7 10 6 33 0.31 723 7098 (26, 40) 40 3600

IPF - P8 12 6 36 0.31 975 1015 (31, 38) 38 3600
GPF - P8 12 6 36 0.31 829 1520 (37, 37) 37∗ 715
TEF - P8 12 6 36 0.31 17489 1638 (37, 37) 37∗ 1019
MPF - P8 12 6 36 0.31 829 8442 (31, 50) 50 3600

IPF - P9 12 6 39 0.32 1251 1294 (30, 42) 42∗ 3600
GPF - P9 12 6 39 0.32 1087 2018 (42, 42) 42∗ 18.1
TEF - P9 12 6 39 0.32 20446 1692 (42, 42) 42∗ 100
MPF - P9 12 6 39 0.32 1087 13854 (30, 53) 53 3600

IPF - P10 14 7 45 0.31 1682 1732 (30, 42) 42 3600
GPF - P10 14 7 45 0.31 1470 2738 (36, 36) 36∗ 57.9
TEF - P10 14 7 45 0.31 32771 2407 (35, 36) 36∗ 3600
MPF - P10 14 7 45 0.31 1470 18315 (30, - ) - 3600

IPF - P11 15 7 48 0.31 1871 1924 (32, 48) 48 3600
GPF - P11 15 7 48 0.31 1647 3080 (37, 37) 37∗ 390
TEF - P11 15 7 48 0.31 37487 2595 (37, 37) 37∗ 1968
MPF - P11 15 7 48 0.31 1647 21771 (32, - ) - 3600

Table 3.3: Computational results for the basic models



50 Modeling Approaches

the optimizer solves model GPF to optimality in 390 seconds. In Figure 3.3

on page 51, a machine-oriented Gantt chart visualizing the optimal solution

for P11 is depicted. Operations belonging to the same job are colored equally.

In [SMF06], Saidi-Mehrabad et al. presented a mixed integer program-

ming formulation for the �exible job shop scheduling problem and speci�ed

computational results for instances generated similarly as described above,

obtained with the help of LINGO, a mathematical optimization software us-

ing a branch and bound method. Here, only instances up to a size of 3 jobs,

3 machines and 9 operations were solved to optimality within 3600 seconds.

However, this comparison should be treated with caution, since the results

do not only depend on the modeling, but also on the applied mathematical

optimization software and hardware.

Model TEF is the only model besides model GPF for which the optimizer

�nds the optimal solution to each instance. The processing times for solving

model TEF are consistently higher than for solving model GPF, but still

below 3600 seconds except for instance P10.

Furthermore, model TEF exhibits a comparatively high number of vari-

ables with respect to the other models. As discussed before, the number of

variables for model TEF is dependent on the upper bound for the makespan

T , see Table 3.1 on page 34, which is in the basic model de�ned by

T :=
∑
i∈O

max
k∈Mi

pi,k.

Since pi,k is uniformly distributed in [1, 10], T is a multiple of the number

of operations N leading to a signi�cantly higher number of variables. A

more accurate reasoning for the di�erence in the number of variables can be

established by evaluating the exact terms for the number of variables of the

di�erent models, which is left out here.

Models IPF and MPF cannot be solved to optimality by the optimizer in

the given time limit for instances P4, . . . , P11 and P3, . . . , P11, respectively.

Additionally, the number of constraints for model MPF is signi�cantly high

with respect to the other models, as expected by the analysis of the number

of constraints given in Section 3.5 (see also Table 3.1 on page 34). Notably,

the number of variables V(MPF ) of model MPF equals the number of con-
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straints V(GPF ) of model GPF, since

m∑
k=1

|Ik| =
∑
i∈O
|Mi| and

m∑
k=1

|Ik|2 =
∑
i∈O

∑
k∈Mi

|Ik|,

and therefore

V(MPF ) = 1 + |O|+
∑
i∈O

∑
k∈Mi

|Ik|

= 1 + |O|+
m∑
k=1

|Ik| (|Ik| − 1) +
∑
i∈O
|Mi|

= V(GPF ).

Finally, in order to give an overview of the performance of the di�erent

models, Figure 3.4 on page 53 depicts the processing times for the models

IPF, GPF, TEF, and MPF for all instances in a semi-logarithmic plot. Here,

it becomes evident that the processing time for solving the �exible job shop

scheduling problem is approximatively exponential with respect to the model

size, as expected by results from Section 2.3.

In the following sections, the performance improvements for the di�erent

models are added step-by-step in order to evaluate their impact.

3.7.2 Branching

In Table 3.4 on page 54, the computational results of the optimizer for the

models IPF and GPF with improved branching strategy as described in Sec-

tion 3.6.5 are listed. For the models TEF and MPF, a reasonable branching

strategy is not available due to their structure.

In order to evaluate the impact of the branching strategy, Figure 3.5 on

page 55 depicts the relative change in processing times for the models IPF

and GPF due to the improved branching strategy. For a better perception the

vertical scale is limited to 10. In fact, for problems P5 and P9 it takes 17.37

and 117.51 times longer to solve the model with improved branching strat-

egy, respectively. Thus, for some instances the improved branching strategy

accelerates the solving process, e.g. for instances P2, P4 (IPF) and P6, P8
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Figure 3.4: Processing times for the basic models

(GPF), whereas in other instances the model without the improved branch-

ing strategy are solved faster, e.g. for instances P1, P5 (IPF) and P9, P11

(GPF). The solving technique of the utilized optimizer is not restricted to

pure branch and cut search, but involves sophisticated cutting-plane strate-

gies and feasibility heuristics [cpl10]. Thus, manually added problem-speci�c

techniques can in certain circumstances either increase or decrease the over-

all performance, as seen in the results. Consequently, it is di�cult to decide

whether the branching strategy is actually an improvement for the models.

3.7.3 Upper Bounds and Individual Big-M Constants

In this section, the impact of the performance improvements presented in

Sections 3.6.1 and 3.6.2 is evaluated. For the models IPF, GPF, and MPF,

individual Big-M constants based on an upper bound for the makespan ob-

tained by a list scheduling heuristics are implemented. The Big-M constant

M chosen for the basic models and the average ∅Mi,j,k of the individual

Big-M constants obtained as described in Section 3.6.1, are listed in Table

3.5 on page 54.

Furthermore, the model TEF is now generated with a time period [0, Topt]
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Mod Per Pro n m N f V C (LB, UB) Cmax CPU

IPF B P1 4 4 15 0.36 199 216 (32, 32) 32∗ 0.13
GPF B P1 4 4 15 0.36 147 246 (32, 32) 32∗ 0.09

IPF B P2 6 4 18 0.36 262 282 (35, 35) 35∗ 0.27
GPF B P2 6 4 18 0.36 202 348 (35, 35) 35∗ 0.11

IPF B P3 6 4 21 0.34 326 349 (38, 38) 38∗ 1.34
GPF B P3 6 4 21 0.34 260 458 (38, 38) 38∗ 0.13

IPF B P4 8 5 24 0.35 536 563 (34, 34) 34∗ 388
GPF B P4 8 5 24 0.35 442 796 (34, 34) 34∗ 2.36

IPF B P5 8 5 27 0.34 597 627 (38, 39) 39 3600
GPF B P5 8 5 27 0.34 495 894 (39, 39) 39∗ 0.66

IPF B P6 10 5 30 0.34 717 750 (32, 38) 38 3600
GPF B P6 10 5 30 0.34 605 1104 (35, 35) 35∗ 3.84

IPF B P7 10 6 33 0.31 859 896 (26, 36) 36 3600
GPF B P7 10 6 33 0.31 723 1318 (34, 34) 34∗ 14.4

IPF B P8 12 6 36 0.31 975 1015 (31, 37) 37∗ 3529
GPF B P8 12 6 36 0.31 829 1520 (37, 37) 37∗ 127

IPF B P9 12 6 39 0.32 1251 1294 (30, 43) 43 3600
GPF B P9 12 6 39 0.32 1087 2018 (42, 42) 42∗ 2145

IPF B P10 14 7 45 0.31 1682 1732 (30, 41) 41 3600
GPF B P10 14 7 45 0.31 1470 2738 (36, 36) 36∗ 98

IPF B P11 15 7 48 0.31 1871 1924 (32, 43) 43 3600
GPF B P11 15 7 48 0.31 1647 3080 (33, 38) 38 3600

Table 3.4: Computational results for the models IPF and GPF with improved
branching strategy

Problem M ∅Mi,j,k(IPF ) ∅Mi,j,k(GPF ) ∅Mi,j,k(MPF ) T Topt

P1 109 22.36 19.54 19.90 109 39
P2 119 36.76 34.88 34.11 119 49
P3 135 32.71 30.71 30.17 135 48
P4 168 38.92 37.98 37.88 168 48
P5 194 32.61 31.27 31.10 194 46
P6 210 44.21 34.23 36.37 210 46
P7 241 36.63 34.62 39.73 241 47
P8 260 32.06 34.11 43.95 260 46
P9 268 41.46 40.64 44.86 268 53
P10 330 40.94 40.11 34.20 330 53
P11 356 42.10 41.38 34.37 356 53

Table 3.5: Comparison of Big-M constants and upper bounds T



3.7 Computational Results 55

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

1

2

3

4

5

6

7

8

9

10

Problem

R
el
at
iv
e
ch
an
ge

in
p
ro
ce
ss
in
g
ti
m
e

IPF (B)
IPF

GPF (B)
GPF

Figure 3.5: Relative change in processing time for the models IPF and GPF
due to improved branching strategy

based on the improved upper bound. The values for Topt are speci�ed in Ta-

ble 3.5 on page 54, too. For each instance P1, . . . , P11 the average of the

individual Big-M constants and the values for Topt improve on the values

chosen for the basic models, as depicted in Figure 3.6 on page 57. The com-

putational results for the models IPF, GPF, TEF, and MPF with improved

Big-M constants and improved upper bound T are speci�ed in Table 3.6 on

page 56.

Just the same as without the improved Big-M constants, Model MPF

is not solved to optimality for the problems P4, . . . , P11. In comparison to

the basic version of the model MPF problem P3 is solved to optimality in

addition to P1 and P2 with the help of the improved Big-M constants, but

for larger instances a feasible solution is not found. Since the decrease of the

Big-M constants leads to a reduction of the solution space for the problem,

it becomes harder to determine a feasible solution at all. In the following

evaluations, model MPF is skipped, since no further improvements for the

model are at hand and it is strictly dominated by the other models for all

test instances.
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Mod Per Pro n m N f V C (LB, UB) Cmax CPU

IPF M P1 4 4 15 0.36 199 216 (32, 32) 32∗ 0.08
GPF M P1 4 4 15 0.36 147 246 (32, 32) 32∗ 0.02
TEF T P1 4 4 15 0.36 732 190 (32, 32) 32∗ 0.19
MPF M P1 4 4 15 0.36 147 961 (32, 32) 32∗ 0.38

IPF M P2 6 4 18 0.36 262 282 (35, 35) 35∗ 1.02
GPF M P2 6 4 18 0.36 202 348 (35, 35) 35∗ 0.14
TEF T P2 6 4 18 0.36 1135 236 (35, 35) 35∗ 0.5
MPF M P2 6 4 18 0.36 202 1206 (35, 35) 35∗ 29.7

IPF M P3 6 4 21 0.34 326 349 (38, 38) 38∗ 1.41
GPF M P3 6 4 21 0.34 260 458 (38, 38) 38∗ 0.09
TEF T P3 6 4 21 0.34 1239 238 (38, 38) 38∗ 2.52
MPF M P3 6 4 21 0.34 260 1837 (38, 38) 38∗ 620

IPF M P4 8 5 24 0.35 536 563 (34, 34) 34∗ 606
GPF M P4 8 5 24 0.35 442 796 (34, 34) 34∗ 0.89
TEF T P4 8 5 24 0.35 1806 293 (34, 34) 34∗ 4.52
MPF M P4 8 5 24 0.35 442 3837 (23, - ) - 3600

IPF M P5 8 5 27 0.34 597 627 (39, 39) 39∗ 317
GPF M P5 8 5 27 0.34 495 894 (39, 39) 39∗ 0.7
TEF T P5 8 5 27 0.34 1873 289 (39, 39) 39∗ 8.77
MPF M P5 8 5 27 0.34 495 4511 (31, - ) - 3600

IPF M P6 10 5 30 0.34 717 750 (32, 38) 38 3600
GPF M P6 10 5 30 0.34 605 1104 (35, 35) 35∗ 5.69
TEF T P6 10 5 30 0.34 2083 295 (35, 35) 35∗ 6.72
MPF M P6 10 5 30 0.34 605 6058 (32, - ) - 3600

IPF M P7 10 6 33 0.31 859 896 (29, 36) 36 3600
GPF M P7 10 6 33 0.31 723 1318 (34, 34) 34∗ 3.8
TEF T P7 10 6 33 0.31 2594 354 (34, 34) 34∗ 34.7
MPF M P7 10 6 33 0.31 723 7188 (26, - ) - 3600

IPF M P8 12 6 36 0.31 975 1015 (31, 38) 38 3600
GPF M P8 12 6 36 0.31 829 1520 (37, 37) 37∗ 141
TEF T P8 12 6 36 0.31 2326 318 (37, 37) 37∗ 1787
MPF M P8 12 6 36 0.31 829 9572 (31, - ) - 3600

IPF M P9 12 6 39 0.32 1251 1294 (30, - ) - 3600
GPF M P9 12 6 39 0.32 1087 2018 (42, 42) 42∗ 28.64
TEF T P9 12 6 39 0.32 3267 372 (42, 42) 42∗ 35.1
MPF M P9 12 6 39 0.32 1087 14641 (30, - ) - 3600

IPF M P10 14 7 45 0.31 1682 1732 (30, - ) - 3600
GPF M P10 14 7 45 0.31 1470 2738 (36, 36) 36∗ 132
TEF T P10 14 7 45 0.31 3950 412 (35, 36) 36∗ 3600
MPF M P10 14 7 45 0.31 1470 18381 (30, - ) - 3600

IPF M P11 15 7 48 0.31 1871 1924 (32, - ) - 3600
GPF M P11 15 7 48 0.31 1647 3080 (37, 37) 37∗ 129
TEF T P11 15 7 48 0.31 4400 432 (37, 38) 38 3600
MPF M P11 15 7 48 0.31 1647 22606 (32, - ) - 3600

Table 3.6: Computational results for the models IPF, GPF, TEF, and MPF
with improved Big-M constants and improved upper bound T
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Figure 3.6: Improvements for Big-M constants and upper bound T

The relative change in processing time for the models IPF, GPF, and

TEF due to the improved Big-M constants and the improved upper bound

T is visualized in Figure 3.7 on page 59.

For model TEF, the impact of the improved upper bound G is evidenced

by a signi�cant decrease in the number of variables, see Table 3.6 on page

56. This reduction in the model size is re�ected in a faster processing time

for problems P4, P5, P6, P7, and P9. Still, for some problems the processing

time increases for model TEF with the improved upper bound T . For the

models GPF and IPF a similar behavior is observed, which can be explained

by the same reasoning as for model MPF above. Especially for the larger

problems P6, . . . , P11 there is no impact of the improved Big-M constants

detectable for model IPF.

3.7.4 Additional Constraints and Dynamic Cuts for IPF

In this section the additional constraints and dynamic cuts developed in

Section 3.6.3 are applied to model IPF and the impact of the improvements

is evaluated. In Table 3.7 on page 58, the computational results for problems

P1, . . . , P11 are listed.
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Mod Per Pro n m N f V C (LB, UB) Cmax CPU

IPF AC P1 4 4 15 0.37 719 8096 (32, 32) 32∗ 0.59
IPF DC P1 4 4 15 0.37 199 216 (32, 32) 32∗ 1.17

IPF AC P2 6 4 18 0.36 1694 32706 (35, 35) 35∗ 12.1
IPF DC P2 6 4 18 0.36 262 282 (35, 35) 35∗ 32.6

IPF AC P3 6 4 21 0.35 3406 84389 (38, 38) 38∗ 116
IPF DC P3 6 4 21 0.35 326 349 (38, 38) 38∗ 21.8

IPF AC P4 8 5 24 0.35 22174 970549 (23, 48) 48 3600
IPF DC P4 8 5 24 0.35 536 563 (25, 35) 35 3600

IPF AC P5 8 5 27 0.34
IPF DC P5 8 5 27 0.34 597 627 (34, 39) 39∗ 3600

IPF AC P6 10 5 30 0.34
IPF DC P6 10 5 30 0.34 717 750 (32, 52) 52 3600

IPF AC P7 10 6 33 0.31
IPF DC P7 10 6 33 0.31 859 896 (26, 52) 52 3600

IPF AC P8 12 6 36 0.31
IPF DC P8 12 6 36 0.31 975 1015 (31, 50) 50 3600

IPF AC P9 12 6 39 0.32
IPF DC P9 12 6 39 0.32 1251 1294 (30, 55) 55 3600

IPF AC P10 14 7 45 0.31
IPF DC P10 14 7 45 0.31 1682 1732 (30, 47) 47 3600

IPF AC P11 15 7 48 0.31
IPF DC P11 15 7 48 0.31 1871 1924 (32, 58) 58 3600

Table 3.7: Computational results for the model IPF with additional con-
straints (AC) and dynamic cuts (DC)



3.7 Computational Results 59

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

0

0.5

1

1.5

2

2.5

Problem

R
el
at
iv
e
ch
an
ge

in
p
ro
ce
ss
in
g
ti
m
e

IPF (M)
IPF

GPF (M)
GPF

TEF (T )
TEF

MPF (M)
MPF

Figure 3.7: Relative change in processing time for the models IPF, GPF,
MPF and TEF due to the improved Big-M constants and the improved
upper bound T , respectively

As already mentioned in Section 3.6.3, the number of additional con-

straints is growing exponentially with respect to the number of operations,

see P1, . . . , P4 in the corresponding lines in Table 3.7 on page 58. Fur-

thermore, model IPF cannot be generated with additional constraints for

problems P5, . . . , P11 since the optimizer runs out of memory. Therefore, the

respective lines are empty in Table 3.7 on page 58. But also the enhanced

approach to introduce the constraints dynamically does neither lead to an

improvement of processing times, nor to better upper and lower bounds for

the objective value, compare Table 3.3 on page 49 and Table 3.7 on page

58. The e�ort to identify the additional constraints and add them to the

model exceeds the bene�ts and consequently, this approach is not adaptable

in practice.

3.7.5 Additional Constraints and Dynamic Cuts for GPF

In this section, the additional constraints and dynamic cuts developed in

Section 3.6.4 are applied to model GPF and the impact of the improvements
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Mod Per Pro n m N f V C (LB, UB) Cmax CPU

GPF AC P1 4 4 15 0.36 147 702 (32, 32) 32∗ 0.11
GPF DC P1 4 4 15 0.36 147 246 (32, 32) 32∗ 0.16

GPF AC P2 6 4 18 0.36 202 1206 (35, 35) 35∗ 0.19
GPF DC P2 6 4 18 0.36 202 348 (35, 35) 35∗ 4.61

GPF AC P3 6 4 21 0.34 260 1856 (38, 38) 38∗ 0.22
GPF DC P3 6 4 21 0.34 260 458 (38, 38) 38∗ 32.6

GPF AC P4 8 5 24 0.35 442 4132 (34, 34) 34∗ 4.06
GPF DC P4 8 5 24 0.35 442 796 (34, 34) 34∗ 544

GPF AC P5 8 5 27 0.34 495 4734 (39, 39) 39∗ 5.92
GPF DC P5 8 5 27 0.34 495 894 (39, 39) 39∗ 294

GPF AC P6 10 5 30 0.34 605 6378 (35, 35) 35∗ 29.5
GPF DC P6 10 5 30 0.34 605 1104 (34, 38) 38 3602

GPF AC P7 10 6 33 0.31 723 7606 (34, 34) 34∗ 74.8
GPF DC P7 10 6 33 0.31 723 1318 (30, 36) 36 3601

GPF AC P8 12 6 36 0.31 829 9038 (37, 37) 37∗ 2241
GPF DC P8 12 6 36 0.31 829 1520 (34, 38) 38 3541

GPF AC P9 12 6 39 0.32 1087 14678 (42, 42) 42∗ 660
GPF DC P9 12 6 39 0.32 1087 2018 (30, - ) - 3601

GPF AC P10 14 7 45 0.31 1470 19448 (36, 36) 36∗ 1547
GPF DC P10 14 7 45 0.31 1470 2738 (30, - ) - 3600

GPF AC P11 15 7 48 0.31 1647 23060 (34, 38) 38 3600
GPF DC P11 15 7 48 0.31 1647 3080 (32, - ) - 3605

Table 3.8: Computational results for the model GPF with additional con-
straints (AC) and dynamic cuts (DC)

is evaluated. In Table 3.8 on page 60, the computational results for problems

P1, . . . , P11 are listed.

Once again, the additional constraints tighten the formulation on the one

hand, but on the other hand the model size increases due to the additional

constraints, compare Table 3.3 on page 49 and Table 3.8 on page 60. The

empirical results lead to the conclusion that the performance loss due to an

increased model size outweighs the bene�ts of a tightened formulation, as

depicted in Figure 3.8 on page 61. Here, the relative change in processing

time is plotted up to a multiple of ten. For the relative change in processing

time exceeding a multiple of ten it is referred to Table 3.8 on page 60. Fur-

thermore, the enhanced approach to introduce the constraints dynamically

leads to an increase in processing times, see Figure 3.8 on page 61. Analo-

gously to Section 3.7.4, the e�ort to identify the additional constraints and
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Figure 3.8: Relative change in processing time for the model GPF due to
additional constraints (AC) and dynamic cuts (DC)

add them to the model exceeds the bene�ts and consequently, this approach

is not adaptable in practice.

3.7.6 In�uence of Problem Parameters

In order to achieve a better understanding of the di�culties imposed by the

�exible job shop problem, the in�uence of di�erent problem parameters on

the performance of the models GPF and TEF is empirically evaluated in this

section. Models GPF and TEF are chosen due to their superior performance

with respect to the other models and their basically varying model structure.

Model GPF is applied with improved Big-M constants, see Section 3.6.1 and

model TEF is applied with improved upper bound T , see Section 3.6.2.

First of all, the in�uence of the number of operations per job on the

performance of the models is discussed. For each n = 1, . . . , 20, ten random

instances with n jobs, N = 20 operations, m = 5 machines, and �exibility

f = 0.3 are generated as described above. Consequently, the range of op-

erations per job varies from one job with 20 operations to 20 jobs with one

operation each. Due to the small size of the instances, both models can be
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Figure 3.9: In�uence of the number of operations per job on the processing
time

solved to optimality in a reasonable amount of time. For both models, the

average processing time for the ten instances for each value of n is plotted in

Figure 3.9 on page 62. The behavior with respect to an increasing number of

operations per job is the same for both models. The less operations per job,

the higher is the average processing time. It is easier to solve an instance

with few jobs consisting of many operations, since most of the ordering of

operations is already determined by the sequence of operations of each job

and basically the machine with the lowest processing time for the operation

is chosen.

Up next, the in�uence of the number of machines on the performance

of the models is discussed. For each m = 1, . . . , 10, ten random instances

with n = 5 jobs, N = 10 operations, m machines, and �exibility f = 0.3

are generated as described in Section 3.7. For both models, the average pro-

cessing time for the ten instances for each value of m is plotted in Figure

3.10 on page 63. For m = 2, . . . , 10 both models perform similar and the

in�uence of the number of machines on the processing time is negligible for

such small instances. However, for m = 1 the processing time of model GPF
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Figure 3.10: In�uence of the number of machines on the processing time

is signi�cantly higher than all other processing times. By intuition, the case

of one machine is the most simple one and is solved by scheduling all op-

erations consecutively on the single machine. For model GPF, the task is

signi�cantly more complex. In the case of one machine, an ordering of all

operations has to be established. Due to the modeling of the disjunctive con-

straints, this results basically in a traveling salesman problem complicated

by Big-M constants. The time expanded formulation of model TEF avoids

this complication. Still, it must be mentioned that this only serves as an

interpretation of the observed behavior.

Last but not least, the in�uence of the �exibility on the processing time

of both models is investigated. For each f = 0.1, 0.2, . . . , 1, ten random in-

stances with n = 5 jobs, N = 25 operations,m = 10 machines, and �exibility

f are generated as described in Section 3.7. Thus, for instances generated

with f = 0.1, each operation is executable on few machines, whereas for in-

stances generated with f = 1, each operation is executable on all machines.

For both models, the average processing time for the ten instances for each

value of f is plotted in Figure 3.11 on page 64. The performances of the

models GPF and TEF are contrary to each other. For model GPF, the
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Figure 3.11: In�uence of the �exibility on the processing time

processing time is increasing for an increasing �exibility and for model TEF

the processing time is decreasing for an increasing �exibility. The behavior

of model GPF is again attributed to the modeling of the disjunctive con-

straints. For a higher �exibility, each machine is valid for a higher number

of operations. Consequently, the complexity of ordering operations on each

machine, implicitly modeled as a traveling salesman problem, is increasing

and dominates the complexity of the model.

Due to the modeling structure, model TEF is not subject to this compli-

cation, presenting even a decrease in processing time for a higher �exibility.

As described in Section 3.6.2, the size of model TEF is dependent on the

upper bound T . Since model TEF is applied with an improved upper bound

T for the computational studies in this section, the upper bound T is de-

termined by the list scheduling algorithm presented in Section 3.6.2. For

the randomly generated instances, the makespan decreases with an increas-

ing �exibility with a high probability. For f = 0.1, 0.2, . . . , 1, the average

optimal makespan of the randomly generated instances decreases constantly

from 48.4 for f = 0.1 to 11.5 for f = 1. Consequently, the makespan of the

list scheduling algorithm producing the upper bound T is likely to be smaller
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for an increasing �exibility, leading to a decreasing model size and a faster

processing time.

In conclusion, the computational studies evaluated in this section pro-

vided a better understanding of the models GPF and TEF and pointed out

the main di�erences between them.

3.7.7 Summary of the Computational Results

In this section, the most important �ndings with respect to the modeling of

the �exible job shop scheduling problem obtained by means of the compu-

tational studies presented in the preceding sections are brie�y summarized.

1. Obviously, the way of modeling the �exible job shop scheduling prob-

lem is actually crucial for the performance of the model. In particular,

the complexity of the �exible job shop scheduling problem is for the

most part attributed to the conjunctive / non-overlapping constraints.

Thus, the modeling of these constraints is one of the decisive factors

for the performance of the model.

2. Overall, model GPF outperforms the other models. Model TEF per-

forms almost as well as model GPF, in some cases model TEF outper-

forms model GPF. In general, the ratio of the number of operations

N and the upper bound for the makespan T is decisive for the ratio

of the performances of the models GPF and TEF. For a high number

of operations and a low upper bound for the makespan model TEF

performs relatively better than model GPF and vice versa.

3. The models IPF and GPF are strictly dominated by the models GPF

and TEF.

4. Instances up to a size of 15 jobs with 48 operations on 7 machines are

solved to optimality in a reasonable amount of time. In all conscious,

this exceeds the size of instances solved with an optimization software

presented in the literature considerably.

5. An improved branching strategy, individual (smaller) Big-M constants,

and a lower upper bound T potentially increase the performance of the

models. However, in some cases these advancements have no e�ect or

corrupt the performance of the models. In order to give more explicit
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statements concerning these advancements more extensive computa-

tional studies are required, which goes beyond the scope of this thesis.

6. The additional valid inequalities tightening the formulation of the mod-

els IPF and GPF are theoretically an improvement for the models.

However, the empirical results lead to the conclusion that the perfor-

mance loss due to an increased model size (additional valid inequalities

added initially to the model) and due to the e�ort to identify the ad-

ditional constraints and add them to the model (dynamic cut-adding),

respectively, outweighs the bene�ts of a tightened formulation.



Chapter 4

Approximation Algorithms

The �exible job shop scheduling problem is an NP-hard problem and thus,

unless P = NP, there are no e�cient algorithms to �nd optimal solutions

to this problem. Consequently, this chapter deals with approximation al-

gorithms solving the �exible job shop scheduling problem approximately in

e�cient time. Formally, an approximation algorithm is de�ned as follows.

De�nition 4.1. Let OPT(I) be the value of an optimal solution to instance

I of the optimization problem P. A k-factor approximation algorithm for P
is a polynomial-time algorithm A for P such that

1

k
OPT(I) ≤ A(I) ≤ kOPT(I)

for all instances I of P [KV08]. It is said that A has performance-ratio k.

First of all, a performance guarantee for the �exible job shop scheduling

problem based on the best known approximation algorithms for the job shop

scheduling problem and the scheduling problem with restricted assignments

is given in Section 4.1. Subsequently, LP-based heuristics are covered in

Section 4.2.

LP-based heuristics are algorithms relying on solving the linear relax-

ation and exploiting the available information enclosed in the solution. On

the one hand, LP-based heuristics utilizing the convex hull of feasible solu-

tion vectors are considered in Section 4.2.1 and Section 4.2.2. This approach

allows for the derivation of further performance-ratios. On the other hand,

LP-based heuristics applying a modi�ed version of the time-expanded for-

mulation of the �exible job shop scheduling problem are treated in Section

67
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4.2.3. The latter approach leads to an e�cient algorithm for the �exible job

shop scheduling problem with a practicable empirical performance-ratio.

4.1 A Performance Guarantee for FJ |pi,k = pi|Cmax

In this section, a performance guarantee for the �exible job shop schedul-

ing with identical processing times is presented. The reasoning is based

on approximation algorithms for the job shop scheduling problem and the

scheduling problem with restricted assignments.

Theorem 4.1. For FJ | pi,k = pi |Cmax let val(OPT) be the value of an

optimal schedule. Then there exists a polynomial-time algorithm that delivers

a schedule for FJ | pi,k = pi |Cmax of makespan

O
(
ρ

(
3− 1

pmax

))
val(OPT),

where

ρ =
log(mµ)

log log(mµ)

⌈
log(min{mµ, pmax})

log log(mµ)

⌉
.

Proof. Let X be the set of all possible machine assignments and let Πmax(x)

denote the maximum machine load corresponding to the machine assignment

x ∈ X . Πmax(x) is given by

Πmax(x) = max
k=1,...,m

N∑
i=1

xi,kpi.

Furthermore, de�ne

ΠOPT
max := min

x∈X
Πmax(x)

as the minimal maximum machine load. In addition, let Pmax be the maxi-

mum job length given by

Pmax = max
j=1,...,n

∑
i=1,...,N :

J(i)=j

pi.

Both ΠOPT
max and Pmax present lower bounds for the makespan of an optimal

schedule. Thus,

max
{

ΠOPT
max , Pmax

}
≤ val(OPT). (4.1)
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The determination of a machine assignment x∗ ∈ X such that

Πmax(x∗) = ΠOPT
max

is equivalent to minimizing the makespan of N jobs on m parallel ma-

chines, where each job may be assigned to a subset of the m machines.

It is noted, that in this case a job does not consist of a sequence of oper-

ations and consequently, no precedence constraints exist. This problem is

also denoted as scheduling problem with restricted assignments. Glass et

al. proved in [GK06] that this problem is NP-hard and Gairing et al. pre-

sented in [GLMM04] a polynomial-time approximation algorithm yielding a

performance-ratio ρ with

ρ = 2− 1

pmax
,

where pmax is the maximum processing time given by

pmax = max
i=1,...,N

pi.

In all conscience, this is currently the best approximation algorithm for the

scheduling problem with restricted assignments. Let x̃ be the assignment

produced by this algorithm. Consequently,

Πmax(x̃) ≤
(

2− 1

pmax

)
ΠOPT

max . (4.2)

By means of a given machine assignment x̃ the �exible job shop scheduling

problem is reduced to a job shop scheduling problem with maximum machine

load Πmax(x̃). Let

µ = max
j=1,...,n

nj

denote the maximum number of operations per job. In [GPSS01] Goldberg

et al. presented a polynomial-time algorithm for the job shop scheduling

problem delivering schedules of makespan O ((Pmax + Πmax) ρ), with

ρ =
log(mµ)

log log(mµ)

⌈
log(min{mµ, pmax})

log log(mµ)

⌉
and Πmax denotes the maximum machine load of the job shop scheduling

problem. Let val(ALG) be the value of the schedule produced by this algo-
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rithm applied to the job shop scheduling problem resulting from the �exible

job shop scheduling problem and the machine assignment x̃. Thus,

val(ALG) ≤ O ((Pmax + Πmax(x̃)) ρ)

(4.2)

≤ O
((

Pmax +

(
2− 1

pmax

)
ΠOPT

max

)
ρ

)
(4.1)

≤ O
((

val(OPT) +

(
2− 1

pmax

)
val(OPT)

)
ρ

)

= O
(
ρ

(
3− 1

pmax

))
val(OPT).

Consequently, there exists an approximation algorithm with an identi-

cal performance guarantee as for the job shop scheduling problem up to a

constant factor of
(

3− 1
pmax

)
. A similar result is presented by Shmoys et

al. in [SSW94] for scheduling on unrelated parallel machines with chain

precedence constraints, but with a higher constant factor of 6.

4.2 LP-Based Heuristics

In this section, LP-based heuristics, i.e., algorithms using the optimal solu-

tion to a linear programming relaxation of the mixed integer programming

formulation of the �exible job shop scheduling problem, are presented. To

start with, LP-based heuristics for the problems FJ |ni = 1, pi,k = pi |Cmax

and FJ | pi,k = pi |Cmax are developed in Sections 4.2.1 and 4.2.2 respec-

tively, and performance ratios are derived. In Section 4.2.3, another imple-

mentable and e�cient LP-based heuristic based on a modi�ed version of the

model TEF for the �exible job shop scheduling problem is developed.

4.2.1 FJ |ni = 1, pi,k = pi |Cmax

In the �rst instance, the problem FJ |ni = 1, pi,k = pi |Cmax is considered.

Each job consists of exactly one operation, i.e. there are no precedence

constraints and pi,k = pi,l for all machines k, l ∈Mi. In [Sch96], Schulz pre-

sented LP-based approximation algorithms for several scheduling problems

including the problems of minimizing the total weighted completion time on
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a single-machine and on identical parallel machines. The approximation al-

gorithm for the problem FJ |ni = 1, pi,k = pi |Cmax developed in this section

is based on these investigations.

First of all, the problem of minimizing the makespan on one machine

is regarded. We are given a set J = {1, . . . , n} of n jobs to be processed

on a single machine which can execute at most one job at a time. Each

job j must be processed for pj > 0 time units without preemption. The

objective function is the makespan Cmax. According to the classi�cation

scheme introduced in Section 2.2 this problem is denoted by 1 | |Cmax.

In [Sch96], it is proven that the convex hull of feasible completion time

vectors for the problem of minimizing the weighted completion time on one

machine is completely described by the following linear inequalities:

∑
i∈S

piCi ≥
1

2

(∑
i∈S

pi

)2

+
∑
i∈S

p2i

 for all S ⊆ J. (4.3)

Obviously, the convex hull of feasible completion time vectors for the

problem of minimizing the makespan Cmax on one machine is also completely

described by the inequalities (4.3). In [Sch96], this approach is extended to

the model of identical parallel machines. Here, m identical parallel machines

are given instead of a single machine, each job must be processed by one of

these machines, and may be assigned to any of these machines.

Lemma 4.2. The completion time vector C of every feasible schedule on m

identical parallel machines satis�es

∑
i∈S

piCi ≥
1

2m

(∑
i∈S

pi

)2

+
1

2

∑
i∈S

p2i for all S ⊆ J. (4.4)

In order to extend the approach described above even further to the

problem FJ |ni = 1, pi,k = pi |Cmax, it has to be shown that the identi-

cal parallel machine problem P | |Cmax is a specialization of the problem

FJ |ni = 1, pi,k = pi |Cmax. According to the notation of the �exible job

shop scheduling problem in Section 2.2, the identical parallel machine prob-

lem can be written as follows. We are given a shop environment with a set

M = {µ1, . . . , µm} of m machines and have to process n jobs J1, . . . , Jn. Job

Ji consists of ni = 1 operation Oi,1, which can be processed by a set of ma-
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chines Mi,1 = {µ1, . . . , µm} = M . As before, it is convenient to identify the

operations Oi,j by numbers 1, . . . , N , where N =
∑n

i=1 ni = n, and consider

the set of operations O = {1, . . . , N}.
Since the identical parallel machine problem is a specialization of the

problem FJ |ni = 1, pi,k = pi |Cmax, Lemma 4.2 holds for every feasible

schedule of the problem FJ |ni = 1, pi,k = pi |Cmax and a linear relaxation

of the problem FJ |ni = 1, pi,k = pi |Cmax is given by

min Cmax

s.t.
∑
i∈S

piCi ≥
1

2m

(∑
i∈S

pi

)2

+
1

2

∑
i∈S

p2i for all S ⊆ O (4.5)

Ci ≥ pi for all i ∈ O.

In [Sch96], Schulz proves that the separation problem associated with

inequalities (4.4) can be solved in polynomial time. Thus, it follows from

the equivalence of optimization and separation with respect to polynomial

time solvability (cf. [GLS88]), that the linear relaxation (4.5) can be solved

in polynomial time.

The linear relaxation (4.5) of the problem FJ |ni = 1, pi,k = pi |Cmax is

the starting point for our approximation algorithm, formally summarized in

Algorithm 3.

Algorithm 3 FJ |ni = 1, pi,k = pi |Cmax

1: Find an optimal solution CLP to the linear relaxation (4.5).
2: Index the operations such that CLP1 ≤ CLP2 ≤ · · · ≤ CLPN .
3: for all i = 1, . . . , N do

4: Schedule operation i on the machine k ∈ Mi on which it can start
as early as possible. If more than one machine meets this condition,
operation i is by convention assigned to the machine with the smallest
index.

5: end for

6: The resulting completion time vector is denoted by CH .

The completion time vector CH resulting from Algorithm 3 satis�es by

construction

CHj ≤
∑

i∈Sj−1,k

pi + pj for all k ∈Mj , (4.6)
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where Sj−1,k is the set of operations in {1, 2, . . . , j−1} processed on machine

k in the schedule CH . Before the performance ratio of Algorithm 3 is proven,

an auxiliary property of feasible solutions to the linear relaxation (4.5) is

established.

Lemma 4.3. Every point C ∈ RN satisfying inequalities (4.4) and, w.l.o.g.

C1 ≤ C2 ≤ · · · ≤ CN , also satis�es, for each j = 1, . . . , N

m

|Mj |
2CLPj − m

|Mj |

∑j
i=1 p

2
i∑j

i=1 pi
≥ 1

|Mj |
∑
k∈Mj

∑
i∈Sj−1,k

pi. (4.7)

Proof. From inequalities (4.4) we have for S = {1, 2, . . . , j}

pjCj ≥ 1

2m

(
j∑
i=1

pi

)2

+
1

2

j∑
i=1

p2i −
j−1∑
i=1

piCi

(Ci≤Cj)

≥ 1

2m

(
j∑
i=1

pi

)2

+
1

2

j∑
i=1

p2i −
j−1∑
i=1

piCj ,

and therefore,

Cj ≥
1

2m

j∑
i=1

pi +
1

2

∑j
i=1 p

2
i∑j

i=1 pi
.

Consequently,

2Cj −
∑j

i=1 p
2
i∑j

i=1 pi
≥ 1

m

j∑
i=1

pi

≥ 1

m

∑
k∈Mj

∑
i∈Sj−1,k

pi +
1

m

∑
k∈M\Mj

∑
i∈Sj−1,k

pi,

and thus,

m

|Mj |
2CLPj − m

|Mj |

∑j
i=1 p

2
i∑j

i=1 pi
≥ 1

|Mj |
∑
k∈Mj

∑
i∈Sj−1,k

pi

+
1

|Mj |
∑

k∈M\Mj

∑
i∈Sj−1,k

pi,

implying inequalities (4.7).
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Theorem 4.4. For FJ |ni = 1, pi,k = pi |Cmax let val(OPT) be the value

of an optimal schedule and let val(Algorithm 3) be the value of the schedule

produced by Algorithm 3. Then

val(Algorithm 3) ≤

 2m

min
j
|Mj |

+ 1

1− m

max
j
|Mj |n+m

 val(OPT)

Proof. Summing up inequalities (4.6) for all k ∈Mj and dividing the result

by |Mj |, we obtain for each j = 1, . . . , N

CHj ≤
1

|Mj |
∑
k∈Mj

∑
i∈Sj−1,k

pi + pj

≤ 1

|Mj |
∑
k∈Mj

∑
i∈Sj−1,k

pi + CLPj (since CLPj ≥ pj)

≤ m

|Mj |
2CLPj − m

|Mj |

∑j
i=1 p

2
i∑j

i=1 pi
+ CLPj (Lemma 4.3)

≤ m

|Mj |
2CLPj − m

|Mj |
1

n

j∑
i=1

pi + CLPj (Cauchy-Schwarz inequality)

≤ m

|Mj |
2CLPj − m

|Mj |
1

n
CHj + CLPj (CHj ≤

j∑
i=1

pi)

=

(
2m

|Mj |
+ 1

)
CLPj − m

|Mj |n
CHj ,

implying

CHj

(
1 +

m

|Mj |n

)
≤
(

2m

|Mj |
+ 1

)
CLPj

⇔ CHj ≤
(

2m

|Mj |
+ 1

)(
|Mj |n

|Mj |n+m

)
CLPj

⇔ CHj ≤
(

2m

|Mj |
+ 1

)(
1− m

|Mj |n+m

)
CLPj .

Consequently,

CHmax ≤

 2m

min
j=1,...,N

|Mj |
+ 1

1− m

max
j=1,...,N

|Mj |n+m

CLPmax.

Let val(LP) be the optimal solution value of the linear relaxation (4.5). Since

val(LP) ≤ val(OPT), the theorem follows.
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This performance-ratio also holds for the objective function of the total

�ow time
∑
Ci, since, by the proof of Theorem 4.4,

CHj ≤
(

2m

|Mj |
+ 1

)(
1− m

|Mj |n+m

)
CLPj for each j = 1, . . . , N.

Corollary 4.5. For FJ |ni = 1, pi,k = pi |
∑
Ci let val(OPT) be the value

of an optimal schedule and let val(Algorithm 3) be the value of the schedule

produced by Algorithm 3. Then

val(Algorithm 3) ≤

 2m

min
j
|Mj |

+ 1

1− m

max
j
|Mj |n+m

 val(OPT)

Example 4.6 shows, that for an arbitrary number of operations per job

(and thus preceding constraints) the completion times produced by the list

scheduling rule used in Algorithm 3 do not satisfy inequalities (4.6) in gen-

eral.

Example 4.6. Consider a single job consisting of two consecutive operations

O1 → O2 with processing times p1 and p2. The set of machines is given by

M = {µ1, µ2} and the valid machines for operation O1 and operation O2

are constituted by M1 = {µ1} and M2 = {µ2}, respectively. Due to the

precedence constraints and according to Algorithm 3, operation O1 is sched-

uled on machine µ1 with completion time p1 and operation O2 is scheduled

on machine µ2 with completion time p1 + p2. Thus, the completion time of

operation O2 violates inequality (4.6), since

p1 + p2 = CH2 >
∑

i∈Sj−1,2

pi + p2 = p2.

4.2.2 FJ | pi,k = pi |Cmax

In this section, the approach from Section 4.2.1 is extended to the prob-

lem FJ | pi,k = pi |Cmax, that is each job consists of an arbitrary number

of operations and, consequently, precedence constraints exist. As seen in

Example 4.6, the approach from Section 4.2.1 is no longer applicable. The

complexity of this problem arises from the simultaneous presence of prece-

dence constraints and the circumstance that each operation i can only be

executed by a subset Mi ⊆ {M1, . . . ,Mm} of all machines. In order to deal
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with this di�culty, it is made use of the special structure of the �exible job

shop scheduling problem. There are only precedence constraints between

the operations of each job, so the jobs themselves are independent from each

other. Let µ be the maximum number of operations per job. The original

problem is subdivided in µ subproblems. Each subproblem s = 1, . . . , µ only

schedules the sth operation of each job consisting of at least s operations.

Since the jobs are independent from each other, a slightly modi�ed version

of Algorithm 3 can be used to �nd schedules for the subproblems. Sub-

sequently, the schedules for the subproblems are plainly stringed together,

resulting in an overall schedule for the primary problem with an estimable

objective value. A linear relaxation of subproblem s = 1, . . . , µ is given by

min Cmax

s.t.
∑
i∈S

piCi ≥
1

2m

(∑
i∈S

pi

)2

+
1

2

∑
i∈S

p2i for all S ⊆ Os (4.8)

Ci ≥ pi for all i ∈ Os,

where Os = {Oi,s | i = 1, . . . , n ∧ ni ≥ s}. For s = 1, . . . , µ let ns be the

number of jobs with at least s operations. The approximation algorithm for

the problem FJ | pi,k = pi |Cmax is now formally summarized in Algorithm 4.

Algorithm 4 Approximation Algorithm for the problem FJ | pi,k = pi |Cmax

1: for all s = 1, . . . , µ do
2: Find an optimal solution CLPs ∈ Rns

to the linear relaxation (4.8).
3: Index the operations such that CLPs

1 ≤ CLPs
2 ≤ · · · ≤ CLPs

ns .
4: for all i = 1, . . . , ns do
5: Schedule operation i on that machine k ∈Mi on which it can start

as early as possible. If more than one machine meets this condition,
operation i is assigned to the machine with the smallest index.

6: end for

7: The resulting completion time vector for the subproblem s is denoted
by Cs ∈ Rns

.
8: end for

9: The overall completion time vector CH ∈ RN is set to

CH =
(
C1, C2 + C1

max, . . . , C
µ + Cµ−1max

)
.
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Theorem 4.7. For FJ | pi,k = pi |Cmax let val(OPT) be the value of an op-

timal schedule and let val(Algorithm 4) be the value of the schedule produced

by Algorithm 4. Then,

val(Algorithm 4) ≤ µ

 2m

min
j
|Mj |

+ 1

1− m

max
j
|Mj |n+m

 val(OPT)

Proof. For the completion time vector CH resulting from Algorithm 4, we

have

CHmax =

µ∑
s=1

Csmax (Algorithm 4)

≤
µ∑
s=1

 2m

min
j
|Mj |

+ 1

1− m

max
j
|Mj |n+m

CLPs
max (Theorem 4.4)

≤
µ∑
s=1

 2m

min
j
|Mj |

+ 1

1− m

max
j
|Mj |n+m

CLPmax

= µ

 2m

min
j
|Mj |

+ 1

1− m

max
j
|Mj |n+m

CLPmax,

where CLP is the optimal solution to the linear relaxation (4.5). Let val(LP)

be the value of the optimal solution to the LP relaxation (4.5). Since

val(LP) ≤ val(OPT), the theorem follows.

This theorem also provides a guarantee for the quality of the lower bound

obtained by solving the linear relaxation (4.5), since, by the proof of Theorem

4.7 given above,

val(OPT) ≤ val(Algorithm 4)

≤ µ

 2m

min
j
|Mj |

+ 1

1− m

max
j
|Mj |n+m

 val(LP).

Taking the reciprocal of the performance-ratio yields the following corollary.

Corollary 4.8. For FJ |pi,k = pi|Cmax let val(OPT) be the value of an

optimal schedule and let val(LP) be the value obtained from solving (4.5).
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Then

val(LP) ≥ 1

µ

 min
j
|Mj |

2m+ min
j
|Mj |

1 +
m

max
j
|Mj |n

 val(OPT).

However, the performance-ratio of Algorithm 4 is considerably too large

in order to justify a practical application. Therefore, an e�cient LP-based

heuristic making use of the models developed in Chapter 3 is presented in

the next section.

4.2.3 Structured Time-Expanded Formulation

In this section, an LP-based heuristic using a modi�ed version of the model

TEF introduced in Section 3.4 is presented. In contrast to the models IPF,

GPF and MPF, model TEF does not contain any constraints using Big-M

constants. As described in Sections 3.4 and 3.6.3, constraints using Big-M

constants signi�cantly corrupt the sharpness of the linear relaxation. There-

fore, model TEF is chosen as the basis for an underlying model of the LP-

based heuristic.

In the following, the �exible job shop scheduling problem with identical

processing times, i.e., FJ | pi,k = pi |Cmax, is considered and additionally,

Assumption 1 is made.

Assumption 1. There are m̃ machine groupsM1, . . . ,Mm̃ such that

m̃⋃
k=1

Mk = M andMk ∩ Ml = ∅ for all k 6= l ∈ 1, . . . , m̃.

Furthermore, the set of valid machines Mi for operation i is given by

Mi =Mk for some k ∈ 1, . . . , m̃.

Consequently, each operation is dedicated to exactly one machine group.

From a practical point of view, this assumption is reasonable, since

manufacturing facilities are actually often subdivided into machine groups,

e.g. several (di�erent) machines for welding, lathing, or milling. Under

Assumption 1 , the problem FJ | pi,k = pi |Cmax is now modeled as follows.

Let T be an upper bound for the makespan Cmax. First of all, binary vari-
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ables are introduced marking the beginning of the processing of an operation.

The earliest possible starting time αi for operation i ∈ O is now given by

αi =
∑
j∈Bi

pj ,

and the latest possible starting time βi of operation i ∈ O is now de�ned by

βi = T −
∑
j∈Ai

pj + pi.

Consequently, for all αi ≤ t ≤ βi, i ∈ O the binary variables xi,t are intro-

duced with

xi,t =

1, if operation i starts at time t

0, otherwise.

Furthermore, the makespan is de�ned by

βi∑
t=αi

xi,t(t+ pi) ≤ Cmax for all i ∈ O : P (i) = nJ(i). (4.9)

The precedence constraints are given by

βi∑
t=αi

xi,t(t+ pi)−
βj∑
t=αj

xj,tt ≤ 0 for all i, j ∈ C, (4.10)

and furthermore, each operation has to be scheduled at exactly one point in

time, which is assured by

βi∑
t=αi

xi,t = 1 for all i ∈ O. (4.11)

For each machine group Mk, k = 1, . . . , m̃, it has to be assured that there

are not more than Mk operations scheduled at the same time. Let T̃i,t be

de�ned by

T̃i,t = {τ |αi ≤ τ ≤ βi, t− pi + 1 ≤ τ ≤ t} for all i ∈ O, t = 1, . . . , T.

If operation i ∈ O starts at time τ ∈ T̃i,t, then operation i occupies machine

group Mi at time t. Therefore, the maximal capacity of the machine group
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is preserved by∑
i∈O

∑
τ∈T̃i,t

xi,τ ≤ |Mj | for all k = 1, . . . , m̃, t = 1, . . . , T. (4.12)

Under Assumption 1, each feasible solution x = (xi,t) for the problem

FJ | pi,k = pi |Cmax satis�es constraints (4.10), (4.11), and (4.12). By

Lemma 4.9, constraints (4.10), (4.11), and (4.12) are su�cient, too.

Lemma 4.9. Let x = (xi,t) satisfy constraints (4.10), (4.11) and (4.12).

Then, x is a feasible solution to the problem FJ | pi,k = pi |Cmax under As-

sumption 1.

First of all, the following de�nitions from graph theory are needed for

the proof.

De�nition 4.2. An undirected graph G is called an interval graph if its

vertices can be put into one-to-one correspondence with a set of intervals of a

linearly ordered set such that two vertices are connected by an edge of G if and

only if their corresponding intervals have nonempty intersection [Gol80, p.

13].

I1 I2

I3 I4

I5

I1 I3

I5

I2 I4

Figure 4.1: A set of intervals and the corresponding interval graph

De�nition 4.3. A c-coloring of an undirected graph G = (V,E) is a partition

of the vertices V = X1 + X2 + · · · + Xc such that each Xi is a stable set,

i.e. a subset of vertices no two of which are adjacent. In such a case, the

members of Xi are painted with color i and adjacent vertices will receive

di�erent colors [Gol80, p. 7].

Proof. Let x = (xi,t) satisfy constraints (4.10), (4.11), and (4.12). Obviously,

each operation starts at exactly one point in time by constraints (4.11) and

the precedence constraints are satis�ed by constraints (4.10). Furthermore,
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at each point in time, at most |Mj | operations are assigned to machine group

Mj , j = 1, . . . , m̃ by constraints (4.12). Each operation i corresponds to an

interval

Ii =

 βj∑
t=αi

xi,t · t,
βj∑
t=αi

xi,t(t+ pi)

 ,
and for j = 1, . . . , m̃ machine groupMj is associated with a set of intervals

Ij given by

Ij = {Ii | i ∈ O ∧ Mi =Mj} .

For j = 1, . . . , m̃, the set of intervals Ij is now represented as an interval

graph denoted by Gj .

Now it is shown, that the interval graph Gj can be colored by an algo-

rithm in O(N log(N)) time using at most |Mj | colors. To that end, the left
edge algorithm stated in Algorithm 5 is used.

Algorithm 5 Left Edge Algorithm [HS71]

Require: A set of intervals

{[li, ri] | li ≤ ri, i = 1, . . . , N}

and a set of colors {c1, . . . , cN}
1: Sort the intervals in order of nondecreasing left end point.
2: Color the intervals in this order by assigning to each interval [li, ri] the

color with the smallest index that has not yet been assigned to an interval
overlapping [li, ri].

Suppose that the left edge algorithm uses |Mj |+1 colors. Thus, at some

point in time an interval Ii is assigned to the (|Mj |+ 1) th color. Step 2

of the left edge algorithm implies that |Mj | other intervals overlap with

interval Ii. This is a contradiction to constraint (4.12). Consequently, the

left edge algorithm uses at most |Mj | colors. Furthermore, it follows that the

operations can be assigned to the machines of machine group Mj without

overlapping and x is a feasible solution to the problem FJ | pi,k = pi |Cmax

under Assumption 1.

By Lemma 4.9, the mixed integer program formulation STEF (Structured

Time-Expanded Formulation) for the problem FJ | pi,k = pi |Cmax under

Assumption 1 is now given by
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min Cmax (STEF)

s.t.

βi∑
t=αi

xi,t(t+ pi) ≤ Cmax for all i ∈ O : P (i) = nJ(i)

βi∑
t=αi

xi,t(t+ pi)−
βj∑
t=αj

xj,t · t ≤ 0 for all (i, j) ∈ C

βi∑
t=αi

xi,t = 1 for all i ∈ O∑
i∈O

∑
τ∈T̃i,t

xi,τ ≤ |Mj | for all k = 1, . . . , m̃,

t = 1, . . . , T

xi,t ∈ {0, 1} for all i ∈ O, t = αi, . . . , βi.

An upper bound T can be achieved by a simple scheduling rule. First

of all, consider the �rst operation of each job and schedule these operations

successively according to a priority rule as early as possible. Then, consider

the second operation of each job with at least two operations and schedule

these operations successively according to a priority rule as early as possible,

and so forth, until all operations are scheduled. This procedure is formally

summarized in Algorithm 6.

Algorithm 6 Scheduling Algorithm

1: for all p = 1, . . . , µ do
2: for all operations i ∈ O with P (i) = p do
3: Schedule operation i as early as possible after the preceding opera-

tion of job J(i) is completed and a machine is available.
4: end for

5: end for

Lemma 4.10. Under Assumption 1, algorithm 6 produces a feasible sched-

ule for FJ | pi,k = pi |Cmax. Furthermore, let val(OPT) be the value of

an optimal schedule of FJ | pi,k = pi |Cmax under Assumption 1 and let

val(Algorithm 6) be the value of the schedule produced by Algorithm 6. Then

val(Algorithm 6) ≤ µ max
k=1,...,m̃

|Mk| val(OPT)



4.2 LP-Based Heuristics 83

Proof. Before an operation with position p is considered, all operations with

position p − 1 are scheduled. Additionally, an operation is not scheduled

before the preceding operation is completed. Therefore, the precedence con-

straints are satis�ed. By step 3, an operation is only scheduled when a

machine is actually available. Consequently, each machine processes at most

one operation at a time and as a result, Algorithm 6 produces a feasible

schedule.

Furthermore, let Jk be the set of operations that are assigned to machine

group Mk, k = 1, . . . , m̃, i.e. Jk = {i ∈ O |Mi = Mk}. Recall that µ

denotes the maximum number of operation per job. Then,

val(Algorithm 6) ≤ µ max
k=1,...,m̃

∑
i∈Jk

pi

= µ max
k=1,...,m̃

|Mk|
∑
i∈Jk

pi
|Mk|

≤ µ max
k=1,...,m̃

|Mk| val(OPT),

since val(OPT) ≥ max
k=1,...,m̃

∑
i∈Jk

pi
|Mk| .

Due to the model structure, a reasonable ordering of starting times of

the operations can be derived from the solution of the linear relaxation of

model STEF. The necessity of an assignment of operations to machines in

model TEF is replaced by a prede�ned assignment of operations to machine

groups in model STEF and by constraints (4.11),

βi∑
t=αi

xi,t = 1 for all i ∈ O.

Consequently, a feasible solution of the linear relaxation corresponds to a

probability distribution of starting times for each operation.

In order to achieve a feasible solution to the �exible job shop scheduling

problem, �rst a speci�c starting time for each operation is derived from the

solution of the linear relaxation. In the following, two di�erent approaches

to transforming the solution of the linear relaxation into a speci�c starting

time for each operation are presented.
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Approach 1 For each operation i ∈ O the starting time Si is de�ned as

Si :=

βi∑
t=αi

xi,t · t.

By this choice, the precedence constraints are satis�ed, since

Si + pi − Sj =

βi∑
t=αi

xi,t · t+ pi −
βj∑
t=αj

xj,t · t
(4.10)

≤ 0 for all (i, j) ∈ C.

Furthermore, the makespan corresponding to the starting times Si

equals the makespan of the solution of the linear relaxation, since

Si + pi =

βi∑
t=αi

xi,tt+ pi
(4.9)

≤ Cmax for all i ∈ O : P (i) = nJ(i).

Still, due to the machine group capacities, the schedule corresponding

to the starting times Si is in general not feasible, see Example 4.11.

Example 4.11. Consider a machine group with one machine and

two operations i and j with xi,t = xj,t = 1
2 for t = 1 and t = 3.

This is a feasible solution to the linear relaxation of model STEF.

Now, the de�ned starting times Si :=
∑
xi,t · t = 1

21 + 1
23 = 2 and

Sj :=
∑
xj,t · t = 1

21 + 1
23 = 2 violate the machine group capacity con-

straints 4.12, since both operation i and j are scheduled at the same

time on the only machine of the machine group.

Approach 2 For each operation i ∈ O, the starting time Si is de�ned as

Si := argmax
t=αi,...,βi

xi,t.

In this case, no statements can be made about the feasibility of the

de�ned starting times. Still, the choice is rational, since for each op-

eration the most likely starting time according to the solution of the

linear relaxation of the model STEF is chosen.

The operations i ∈ O are now indexed such that S1 ≤ S2 ≤ . . . ≤ SN . In

order to use the starting times as an input for a list scheduling heuristic, at

least the precedence constraints have to be satis�ed. For the �rst approach
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to de�ning the starting times, these constraints are satis�ed by de�nition.

For the second approach to de�ning the starting times, the operations have

to be rearranged with respect to a correct ordering of the positions P (i) of

the operations.

The operations are now scheduled according to the given ordering as early

as possible and the resulting schedule is denoted by SH . In the course of

scheduling the operations as early as possible, three di�erent cases have to be

distinguished. Consider scheduling operation i and let πi be the completion

time of the preceding operation, i.e., πi = SHj + pj , where j ∈ O with

J(j) = J(i) and P (j) = P (i)− 1. If P (i) = 1, then πi = 0. Furthermore, let

φik be the time when machine k becomes idle with respect to the scheduled

operations {1, . . . , i− 1}.

Case 1:

(
πi ≥ max

k∈Mi

φik

)
In case the preceding operation to operation i is

completed later than any valid machine is idle, operation i is assigned

to machine m = argmax
k∈Mi

φik and the starting time is given by SHi = πi.

By this assignment, operation i is scheduled as early as possible and

the idle time [φim, πi] is minimized.

M1

M2

M3

πi

argmax

k∈Mi

φi

k

φi

1

φi

2

φi

3

Case 2:

(
πi ≤ min

k∈Mi

φik

)
In case the preceding operation to operation i is

completed before any valid machine is idle, operation i is assigned to

machinem= argmin
k∈Mi

φk and the starting time is given by SHi = min
k∈Mi

φik.

By this assignment, operation i is scheduled as early as possible.

M1

M2

M3

πi

argmin
k∈Mi

φk

φi

1

φi

2

φi

3
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Case 3:

(
min
k∈Mi

φik < πi < max
k∈Mi

φik

)
In case the preceding operation to op-

eration i is completed later than the �rst valid machine becomes idle

and earlier than the last valid machine becomes idle, operation i is as-

signed to machine m = argmin
k∈Mi

max
{

0, πi − φik
}
and the starting time

is given by SHi = πi. By this assignment, operation i is scheduled as

early as possible, though it leads to an idle time of min
k∈Mi

{πi−φim} time

units on machine k.

M1

M2

M3

πi

argmin
k∈Mi

max {0, πi − φi

k
}

φi

1

φi

2

φi

3

Eventually, operations can be scheduled in the idle time intervals emerg-

ing in Case 1 and Case 3. Assuming operation i is scheduled according to

Case 1, machine k is idle during the interval [φik, πi]. Now, if there exists an

operation j ∈ {i+ 1, . . . , N}, such that the preceding operation to operation

j is completed early enough to schedule operation j in the idle time interval

[φik, πi] and the idle interval is long enough to schedule operation j, i.e.,

πj ≤ πi − pj and πj ≤ πi −max{πj , φik},

then operation j is scheduled on machine k at SHj = max{πj , φik}. Now,

set φik = φik + SHj + pj and repeat this process until there is either no idle

time left in the interval [φik, πi] or there exists no operation satisfying the

criteria described above. If operation i is scheduled according to Case 3, the

procedure is analogous. Obviously, the preferred scheduling of operations

during emerging idle time intervals may not deteriorate the resulting schedule

with respect to the makespan.

Algorithm 7 summarizes the LP-based heuristic for the �exible job shop

scheduling problem described above formally. Obviously, the quality of the

solutions produced by Algorithm 7 is better if there is a reasonable subdivi-

sion of the set of machines M in disjoint machine groupsMj , j = 1, . . . , m̃,

each operation is preassigned to a machine group and a subset of machines

of the assigned machine group is valid for the operation. This setting is
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approximately given for the instances in the practical situation described in

Section 5. Still, Algorithm 7 also produces feasible solutions for arbitrary

instances of the problem FJ | pi,k = pi |Cmax.

Lemma 4.12. Algorithm 7 produces a feasible schedule for the problem

FJ | pi,k = pi |Cmax.

Proof. In order to achieve a feasible setting for model STEF, each opera-

tion is assigned to exactly one of the machine groups determined in Step 1

according to the maximum cardinality of the intersection of the set of valid

machines for the operation and machines of the machine group.

In steps 8 - 31, the operations are actually scheduled. Thereby, the prece-

dence constraints are always satis�ed, since the operations are ordered such

that i < j for all i, j : J(i) = J(j) ∧ P (i) < P (j) and in any case an op-

eration is not scheduled earlier than the preceding operation is completed.

This also holds good for the operations scheduled in the emerging idle time

intervals, see Steps 23 - 26. Furthermore, each operation is scheduled at

exactly one point in time on exactly one machine and each machine pro-

cesses at most one operation at a time, since an operation is in any case not

scheduled before the machine is idle. Consequently, the resulting schedule is

a feasible solution to the problem FJ | pi,k = pi |Cmax.

The LP-based heuristic presented in Algorithm 7 is implemented using

the CPLEX environment provided by IBM ILOG (cf. Section 3.7) and the

source code of the implementation can be found on the CD attached to this

thesis. In the following, an empirical evaluation of the performance-ratio of

the LP-based heuristic is presented. First of all, 100 random instances with

N = 20 operations, n = 6 jobs, m = 4 machines, m̃ = 2 machine groups, and

�exibility f = 0.8 are generated as described in Section 3.7. Additionally,

the machines are distributed uniformly among the machine groups and each

machine group consists of at least one machine. Furthermore, each operation

is randomly assigned to exactly one machine group. The set of valid ma-

chines for each operation is chosen as a subset of the assigned machine group,

where each machine of the subset is valid for an operation with probability

f . These instances are in the following referred to as small instances and are

solvable to optimality by the optimizer in a reasonable amount of time. Con-

sequently, the solution of the LP-based heuristic described in Algorithm 7
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Algorithm 7 LP-based heuristic for the problem FJ | pi,k = pi |Cmax

1: Subdivide the set of machines M in disjoint machine groups Mj ,
j = 1, . . . , m̃ and assign each operation i ∈ O to the machine group
argmax
j=1,...,m̃

|Mi ∩Mj |.

2: Solve the linear relaxation of the model STEF with machine groupsMj ,

j = 1, . . . , m̃. Let x∗ =
(
x∗i,t

)
be the solution of the linear relaxation.

3: De�ne the starting times Si for i ∈ O by

Approach 1: Si =
βi∑
t=αi

x∗i,t · t or Approach 2: Si = argmax
t=αi,...,βi

x∗i,t

4: Index the operations such that S1 ≤ S2 ≤ · · · ≤ SN .
5: if Approach 2 is chosen then
6: rearrange the operations such that i < j for all i, j : J(i) = J(j) ∧

P (i) < P (j).
7: end if

8: for all i = 1, . . . , N do

9: if operation i is not already scheduled by Step 25 then
10: if πi ≥ max

k∈Mi

φik then

11: m = argmax
k∈Mi

φik

12: SHi = πi
13: else if πi ≤ min

k∈Mi

φik then

14: m = argmin
k∈Mi

φik

15: SHi = min
k∈Mi

φik

16: else if min
k∈Mi

φik < πi < max
k∈Mi

φik then

17: m = argmin
k∈Mi

max
{

0, πi − φik
}

18: SHi = πi
19: end if

20: Schedule operation i on machine m at starting time SHi .
21: if idle time interval [φik, πi] exists then
22: for all j = i+ 1, . . . , N do

23: if πj ≤ πi − pj ∧ pj ≤ πi −max{πj , φik} then
24: SHj = max{πj , φik}
25: Schedule operation j on machine m at starting time SHj .

26: Set φik = φik + SHj + pj .
27: end if

28: end for

29: end if

30: end if

31: end for
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Figure 4.2: Empirical performance-ratio of the LP-based heuristic using Ap-
proach 1 for small instances

can be compared to the optimal solution. In Figures 4.2 and 4.3 the quo-

tient of the solution of the LP-based heuristic CH
max using Appproach 1 and

Approach 2, respectively, and the optimal solution COPT
max is plotted for the

small instances. The results indicate an average (empirical) performance-

ratio of 1.047 and 1.082 for Approach 1 and Approach 2 respectively, and

substantiate the reasoning for the LP-based heuristic. Additionally, the av-

erage computational time for the small instances of the LP-based heuristic

amounts to 0.06 seconds for both Approach 1 and Approach 2.

In order to evaluate the LP-based heuristic in comparison to the ba-

sic scheduling algorithm presented in Algorithm 6, Figure 4.4 depicts the

quotient of the solution of the LP-based heuristic CH
max using Approach 1

and the solution of Algorithm 6 denoted by CSA
max for the small instances.

In very few instances the basic scheduling algorithm outperforms the LP-

based heuristic with respect to the makespan, but on average the LP-based

heuristic performs 7.15 % better than the basic scheduling algorithm.

As discussed in Section 3, for larger instances an optimal solution cannot

be obtained in reasonable time. Therefore, the solution of the LP-based
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Figure 4.3: Empirical performance-ratio of the LP-based heuristic using Ap-
proach 2 for small instances
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Figure 4.4: Performance of the LP-based heuristic using Approach 1 com-
pared to the basic scheduling algorithm for the small instances
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heuristic is now compared to the solution of the linear relaxation of model

TEF, which constitutes a lower bound for the optimal solution. The minimal

maximum machine load ΠOPT
max and the maximum job length Pmax constitute

lower bounds for the optimal solution, too. Still, for the larger instances

generated in the course of these computational studies, the maximum job

length Pmax is always smaller than the solution of the linear relaxation of

model TEF. On average, the solution of the linear relaxation of model

TEF is 5.60 % larger then the maximum job length Pmax. Furthermore, the

determination of the minimal maximum machine load ΠOPT
max is NP-hard,

as mentioned in Section 4.1. Thus, the linear relaxation of model TEF is a

reasonable choice as a lower bound for the purposes of these computational

studies.

In Figures 4.5 and 4.6, the quotient of the solution of the LP-based heuris-

tic using Approach 1 and Approach 2, respectively, and the solution of the

linear relaxation of model TEF is plotted for 100 instances with N = 200

operations, n = 60 jobs, m = 30 machines, m̃ = 5 machine groups, and

�exibility f = 0.7 generated as described above. These instances are in the

following referred to as large instances. The results indicate an average (em-

pirical) performance-ratio of 1.329 and 1.377 for Approach 1 and Approach 2,

respectively. The reasoning for the LP-based heuristic is substantiated fur-

ther by these results, since the performance-ratio of the LP-based heuristic

is in this case measured against a probably weak lower bound and is still in

an acceptable range. For both the small and the large instances, Approach 1

performs slightly better than Approach 2. The average computational time

for the large instances of the LP-based heuristic amounts to 0.82 seconds for

both Approach 1 and Approach 2.

The comparison of the LP-based heuristic and the basic scheduling algo-

rithm presented in Algorithm 6 is also carried out for the large instances. In

Figure 4.7, the quotient of the solution of the LP-based heuristic CH
max using

Approach 1 and the solution of Algorithm 6 CSA
max is plotted for the large

instances. Here, the LP-based heuristic always performs better than the ba-

sic scheduling algorithm and only for a few instances, the basic scheduling

algorithm achieves the same objective value than the LP-based heuristic.

On average, the LP-based heuristic performs 12.3 % better than the basic

scheduling algorithm. For the large instances, the relative performance of

the LP-based heuristic with respect to the basic scheduling algorithm is bet-
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Figure 4.5: Empirical performance-ratio of the LP-based heuristic using Ap-
proach 1 for large instances
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Figure 4.7: Performance of the LP-based heuristic using Approach 1 com-
pared to the basic scheduling algorithm for the large instances

ter than for the small instances, since the number of possibilities to arrange

the operations increases signi�cantly and the basic scheduling algorithm only

employs the ordering of operations for each job.

The computational results for the LP-based heuristic are summarized

in Table 4.1, whereat ∅ρ denotes the average empirical performance-ratio.

It is noted, that for the small instances the empirical performance-ratio is

measured against the optimal solution, whereas for the large instances it is

measured against the solution of the linear relaxation, which constitutes only

a lower bound for the optimal solution. Furthermore, ∅ CPU denotes the

average processing time in seconds.

The bottom line is that even for large instances of the �exible job shop

Approach n m m̃ N f ∅ρ ∅ CPU

1 6 4 2 20 0.8 1.047 0.06
2 6 4 2 20 0.8 1.082 0.06
1 60 30 5 200 0.8 1.329 0.82
2 60 30 5 200 0.8 1.377 0.82

Table 4.1: Computational Results for LP-based Heuristic
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scheduling problem approximately featuring a machine group structure, the

LP-based heuristic presented in this section produces schedules with a make-

span close to the optimum in e�cient time. In Figure 4.8, a machine-oriented

Gantt chart of a schedule produce with the presented LP-based heuristic for a

randomly generated large instance (60 jobs, 30 machines, 5 machine groups,

�exibility 0.7) is depicted. Operations belonging to the same job are colored

equally.

In the following chapter, the heuristic's operational capability is exam-

ined by means of actual instances of the �exible job shop scheduling problem

provided by a manufacturer of vacuum chambers.
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Chapter 5

Practical Application

This chapter focuses on the practical application of the LP-based heuristic

developed and evaluated in Section 4.2.3. The subject of this master thesis,

the �exible job shop scheduling problem, is among other things motivated

by an actual scheduling problem of Trinos Vakuum-System GmbH, a man-

ufacturer of vacuum chambers. A brief outline of the implementation of

the LP-based heuristic with respect to practical environment is given in this

chapter. In Section 5.1, a brief characterization of the company is given.

Furthermore, in Section 5.2, the data provided by Trinos Vakuum-Systeme

GmbH is speci�ed. Finally, the model of the �exible job shop scheduling

problem is adjusted in order meet the requirements of the given task and

the results of the LP-based heuristic for actual instances provided by Trinos

Vakuum-System GmbH are presented in Section 5.3.

5.1 Trinos Vakuum-Systeme GmbH

Trinos Vakuum-Systeme GmbH is a leading manufacturer of vacuum cham-

bers, vacuum systems and special components for high-end applications in

industry and research. The company's current product lines include cham-

bers, components, �ttings, feedthroughs, valves, manipulators, and complete

systems for high and ultra high vacuum applications, see Figure 5.1. The

in-house manufacturing facility is �tted with a variety of machines and pro-

duction equipment, for example 5-axis machining centers, multiple welding

stations, cleaning facilities, a clean room, assembly areas, and a leak test-

ing laboratory. Each job consists of a multitude of individual operations

97
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(a) (b)

Figure 5.1: A spherical chamber 5.1(a) and a standard cubical chamber with
custom ports 5.1(b)

that have to be executed at the di�erent stations. In order to ensure the

completion of each job within its stated period and approach full capac-

ity, a detailed planning of machine assignments and scheduling is essential.

Furthermore, the machine environment of Trinos Vakuum-Systeme GmbH

corresponds to a �exible job shop, since each operation may be processed

by any machine from a given set. For instance, several milling machines are

available in the manufacturing facility and due to the type and complexity

of an operation, all milling machines are valid for the operation or only a

subset is valid for the operation. In the following section the data provided

by Trinos Vakuum-Systeme GmbH is speci�ed.

5.2 Data

The job data provided by Trinos Vakuum-Systeme GmbH contains all im-

portant information that is necessary to solve the �exible job shop scheduling

problem. In Table 5.1, the structure of the job data is speci�ed. Each line

corresponds to an operation i, which is dedicated to a certain job J(i), a posi-

tion in the job sequence P (i) and a set of valid machinesMi. The processing

times pi assigned to the operations are based on empirical values. Addition-

ally, the set of machines is subdivided in disjunctive machine groupsMj and

each operation is associated with a certain machine group. This structure

supports the approach chosen for the LP-based heuristic in Section 4.2.3.

Finally, a deadline di for each job is given.
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J(i) P (i) pi Mi Machine GroupMj Deadline di

J1 2 64 6,8,9,54,58 Manuell Drehen 30.09.2011
J2 3 27 8,9 Manuell Drehen 15.01.2011
J3 1 50 1,32,52,59 Zuschnitt 30.03.2012
J4 4 280 22,34,55,62,63 Montage 29.02.2012
J4 5 80 43,34,55,62,63 QS (Lecksuche, Messen) 29.02.2012
J4 6 90 56,34,55,62,63 Werkstück Beschriften 29.02.2012
J4 7 90 26,34,55,62,63 Versand 29.02.2012
J5 2 138 19,20,64 Schweiÿen 31.12.2012
J5 5 192 30,29,9,54,58 Strahlen 31.12.2012
J5 6 190 28,29,9,54,58 Dicht�ächen herstellen 31.12.2012

Table 5.1: Job data

The manufacturing facility of Trinos Vakuum-Systeme GmbH comprises

146 machines and stations and several hundreds of operations are included in

the planning process. Consequently, due to the size of the actual scheduling

problem of Trinos Vakuum-Systeme GmbH, an optimal solution by means of

a mixed integer programming formulation of the �exible job shop scheduling

problem is not achievable, see Section 3.7. Thus, the LP-based heuristic

developed in Section 4.2.3 is applied to the scheduling problem.

5.3 Solution of the Scheduling Problem

In order to solve the scheduling problem with respect to the goals of Trinos

Vakuum-System GmbH, �rst of all the objective function is adjusted. Ac-

cording to the deadlines, the objective is to minimize the sum of tardinesses

given by

min
n∑
j=1

max {0, Cj − dj} , (5.1)

where Cj is the completion time of job j and dj is the deadline for job j.

The objective function (5.1) is then applied to the model STEF by changing

constraints (4.9).

Furthermore, the production at Trinos Vakuum-Systeme GmbH is orga-

nized as a shift operation and each machine is either operated during all

shifts of a day or only during a subset of the shifts of a day. In order to

incorporate this constraint in the solving processes, the shifts are optimized

consecutively. For each shift, the available machines are known and after

a shift is optimized the data set is updated with regard to the operations
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executed during the shift. If an operation is assigned to a machine and is

not �nished during the shift, the machine is set unavailable in the following

shifts until the operation is �nished.

By means of these adjustments, the LP-based heuristic presented in Sec-

tion 4.2.3 is applicable for the scheduling problem of Trinos Vakuum-Systeme

GmbH. In Figure 5.2 a schedule produced by the LP-based heuristic for a

single shift from 07:00 a.m. to 03:00 p.m. is depicted in a machine-oriented

Gantt chart. Only machines that are actually occupied are plotted and oper-

ations belonging to the same job are colored equally. Due to the information

provided by the linear relaxation, the operations are scheduled with respect

of a minimization of tardiness and simultaneously, a high occupancy rate is

achieved.
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Chapter 6

Conclusion

In the course of this thesis, the �exible job shop scheduling problem is ap-

proached from three di�erent angles. Thereby, each approach is chosen as

a direct consequence of the results from the preceding approach. Initially,

the problem is modeled and solved to optimality for instances up to a cer-

tain size. Due to the complexity, there is no e�cient technique to solve

arbitrary instances of the �exible job shop scheduling problem to optimal-

ity, unless P = NP. Consequently, approximation algorithms with provable

performance-ratios are developed. However, the derived performance-ratios

are not adequate for a practical application. Therefore, an e�cient LP-based

heuristic based on the initial models is designed in a �nal step. Each ap-

proach contributes its own share to the �eld of �exible job shop scheduling.

1. The modeling of the �exible job shop scheduling problem is intensively

studied and four di�erent models are developed. The models and sev-

eral model extensions are evaluated and compared to each other with

respect to size, structure and performance. In this way, the di�culties

with respect to the modeling of the �exible job scheduling problems

are exposed and preferable models are determined.

2. For the �exible job shop scheduling problem with identical process-

ing times FJ | pi,k = pi |Cmax, two approximation algorithms with

provable performance-ratio are developed. The �rst one is based on

approximation algorithms for the job shop scheduling problem and

the scheduling problem with restricted assignments and achieves a

performance-ratio comparable to the best known performance-ratio for

the job shop scheduling problem up to a constant factor. The second
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approximation algorithm extends an existing approach employing a

characterization of the convex hull of feasible solutions with linear in-

equalities.

3. Finally, an LP-based heuristic for the �exible job shop scheduling prob-

lem is presented and its e�ciency and e�ectiveness for the solution of

instances with practical relevance is established in computational stud-

ies.



Appendix A

Frequently Used Notation

Jobs

Ji Job i

n Number of jobs

ni Number of operations of job i

di Due date of job i

Pmax Maximum job length

Operations

O Set of operations

Oi,j Operation j of job i

Oi Operation i

N Number of operations

µ Maximal number of operations per job

J(i) Job of operation i

P (i) Position of operation i in its job J(i)

pi Processing time of operation i

pmax Maximum processing time

Ik Operations processable on machine k

Machines

M Set of machines

µi Machine i

105
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m Number of machines

Mi Set of valid machines for operation i

Mi Machine group i

Πmax Maximum machine load

Schedules

S Schedule

Si Starting time of operation i

Ci Completion time of job i

Cmax Makespan

T Time period

αi Earliest possible starting time for operation i

βi Latest possible starting time for operation i

C Set of conjunctions

D Set of disjunctions

x IPF, GPF: Machine assignment

TEF: Machine and starting time assignment

MPF: Machine and position assignment

y IPF, GPF: Sequencing variables
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