
Georg-August-Universität Göttingen
Fakultät für Mathematik und Informatik

Inertial Proximal Algorithms
in Diffusion-based Image Compression

Master’s Thesis

submitted by
Rebecca Nahme

born in Göttingen

November 2015

Supervisor:
Prof. Dr. David Russell Luke

Second Assessor:
Prof. Dr. Gerlind Plonka-Hoch

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Functions . 3
2.2 Optimization Problems . 7
2.3 Optimization Tools and Methods . 8

2.3.1 Gradient Methods . 8
2.3.2 Proximal Methods . 9
2.3.3 Projection Methods . 11

3 Linear Diffusion-based Image Compression 13
3.1 Image Compression and Inpainting . 13
3.2 Combining Diffusion and Inpainting . 14

3.2.1 Combination Approach . 14
3.2.2 Discrete Problem Formulation . 15
3.2.3 Outlook . 18

4 Optimization Algorithms 19
4.1 Inertial Proximal Algorithm for Nonconvex Optimization (iPiano) 19

4.1.1 Initial Problem . 19
4.1.2 The iPiano-algorithm . 20
4.1.3 Convergence Analysis . 21

4.2 Proximal Alternating Linearized Minimization (PALM) 22
4.2.1 Initial Problem . 22
4.2.2 The PALM-algorithm . 23
4.2.3 Convergence Analysis . 24
4.2.4 Inertial PALM (iPALM) . 25

5 Numerical Experiments 27
5.1 Notations . 27
5.2 iPiano . 28

5.2.1 Specialization to Linear Diffusion-based Image Compression . . 28
5.2.2 Initialization of Experiments . 30
5.2.3 Results . 31
5.2.4 Performance . 35
5.2.5 Commentary . 38

5.3 PALM . 39
5.3.1 Specialization to Linear Diffusion-based Image Compression . . 39

i

Contents

5.3.2 Initialization of Experiments . 42
5.3.3 Results . 42
5.3.4 Performance . 45
5.3.5 Commentary . 47

5.4 iPALM . 50
5.4.1 Specialization to Linear Diffusion-based Image Compression . . 50
5.4.2 Initialization of Experiments . 51
5.4.3 Results and Performance . 52

6 Conclusion 55

ii

1 Introduction

In the 19th century, the method of gradient descent emerged. Since then it has been im-
proved and specialized in several ways to solve smooth minimization problems. The
assumption concerning the objective function to be differentiable heavily restricts its
scope of application. Though, this classical method of gradient descent still lays foun-
dation for recent research.

A similarly good and general approach to nonsmooth problems is harder to find.
It requires additional assumptions. Beyond differentiability, there exist properties of
objective functions that make solving the corresponding minimization problem more
accessible. Back to the 1960s, the topic of convex analysis arose from nonlinear anal-
ysis ([Roc70]). Within this framework, the proximal map was originally developed
([Mor65]). It facilitates to solve the special class of nonsmooth problems minimizing a
convex objective function.

With an expansion of the proximal map to nonconvex settings, it also enables min-
imizing nonsmooth nonconvex functions [RW98, BC11]. But, its computation may be
found difficult.

In general, it stays challenging to create an efficient solver for nonsmooth noncon-
vex optimization problems. Nowadays, some approachs combine the proximal map
with gradient methods to take advantage of special structures of the initial problem
formulation.

In this thesis, we present two algorithms to solve specific classes of nonsmooth non-
convex optimization problems in Chapter 4. The first algorithm, the ”Inertial Proximal
Algorithm for Nonconvex Optimization” (iPiano), is introduced in Section 4.1. It solves
the minimization problem concerning a sum of a smooth, possibly nonconvex function
and a convex, possibly nonsmooth function. To take advantage of the properties of
each function, the algorithm performs a forward and a backward step in every iter-
ation. It combines a refinement of the gradient descent applied to the differentiable
function and the proximal map of the convex function. The algorithm iPiano assured
remarkable performance at the time of its publication in [OCBP14].

The second algorithm, the ”Proximal Alternating Linearized Minimization” (PALM),
follows in Section 4.2. It can be applied to a more general class of nonsmooth nonconvex
optimization problems than iPiano. Its basic idea is to optimize with respect to only a
group of the variables and not to all simultaneously. The variables are separated into
groups that are minimized consecutively and alternately. Each update step combines
the gradient descent and the proximal map as described in [BST14].

1

1 Introduction

In addition, we suggest a slight modification of the algorithm PALM. It is extended
by adding an inertial term to the part based on the gradient descent. This ”Inertial
Proximal Alternating Linearized Minimization” (iPALM) is introduced in Section 4.2.4.

In practice, algorithms minimizing nonsmooth nonconvex sums of finitely many
functions are of great interest for various applications. These composite minimization
problems can be found in many areas like machine learning, signal and image analysis.

The concrete example stating the initial problem for this thesis is the linear diffusion-
based image compression ([HSW13, HMH+15]). We derive and describe it in Chapter 3.
The major goal is to achieve optimal image compression with minimal loss of informa-
tion and quality.

In Chapter 5, we apply all three algorithms, iPiano, PALM and iPALM, to the prob-
lem of linear diffusion-based image compression. We express the initial problem for-
mulation in a suitable setup for each algorithm and calculate the required operators.
Afterwards, we analyze the algorithms in this framework with concrete numerical ex-
periments.

But first of all, in the following Chapter 2, we lay the general theoretical foundation
for the further work.

2

2 Preliminaries

In this chapter, we introduce notations and the theoretical foundation of this thesis. We
start by defining some properties and concepts of functions. Afterwards, we use them
to formulate the initial optimization problem for this thesis and provide optimality
conditions. In the end, we present some basic optimization tools and methods which
can be used to solve various special cases of the initial optimization problem.

2.1 Functions

Throughout the whole thesis, we work on the underlying space Rn, n ∈ N, equipped
with the 2-norm (Euclidean norm) given by ‖x‖2 :=

√
∑n

i=1 |xi| for x ∈ Rn. This setting
suffices for our later applications. Furthermore, let

R := [−∞,+∞] = R∪ {−∞} ∪ {+∞}

denote the extended real line.

Let X ⊂ Rn and Y ∈ Rm, m ∈ N, be nonempty sets. By using the familiar notation
f : X → Y for a function f from X to Y, we mean a single-valued function, i.e. every
x ∈ X is mapped to the singleton {y} ∈ Y.

Definition 2.1.1 (domain, lower level set [BC11, Def. 1.4]). Let f : X → R be a function.
The (effective) domain of f is defined by

dom f := {x ∈ X | f (x) < +∞}

and the lower level set of f at height t ∈ R is given by

lev≤t f := {x ∈ X | f (x) ≤ t}.

The function f is said to be proper, if dom f 6= ∅ and f (x) > −∞ for all x ∈ X.

Demanding a function f : X → R to be proper guarantees the existence of at least
one element x ∈ X with a finite function value f (x). This is very beneficial, especially
considering an optimization problem that aims at minimizing a given function - what
is our intention in later chapters.

The following definition provides a group of functions which is already well-ana-
lyzed. Convex functions possess nice properties with regard to continuity, differentia-
bility and other aspects. More details on convex analysis can be found in [Roc70].

3

2 Preliminaries

Definition 2.1.2 (convex set, convex function [RW98, Def. 2.1]).

1. A subset C ⊂ Rn is called convex if for every pair x, y ∈ C also their connecting line
segment [x, y] := {λx + (1− λ)y | λ ∈ [0, 1]} lies in C.

2. A function f on a convex set C is said to be convex relative to C if for every pair x, y ∈ C
it holds that

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y).

Example 2.1.3 (convexity of 1-norm). Let the 1-norm of a vector x ∈ Rn be given by the
function ‖ · ‖1 : Rn → R,

‖x‖1 :=
n

∑
i=1
|xi|.

Then, by the triangle inequality on R, the 1-norm ‖ · ‖1 is convex.

In further applications, we especially deal with nonconvex objective functions. This
makes the respective optimization problem more challenging.

But, in general, we require the objective function to be at least lower semicontinuous.

Definition 2.1.4 (lower semicontinuity [BC11, Thm. 1.24]). A function f : X → R is
called lower semicontinuous at every point in X if the lower level sets lev≤t f are closed in X
for all t.

The concept of lower semicontinuity describes a weaker form of the usual continuity.
In contrast, the following Lipschitz continuity defines stronger requirements towards a
function’s behavior.

Definition 2.1.5 (Lipschitz continuity [RW98, Def. 9.1]). Let f : Rn → Rm be a function
and D ⊂ Rn a subset. Function f is Lipschitz continuous on D if there exists a nonnegative
finite constant L ∈ R with

‖ f (x)− f (y)‖2 ≤ L‖x− y‖2 for all x, y ∈ D.

If L is the smallest real number with this property, then L is called the Lipschitz constant for
f on D.

Intuitively, Lipschitz continuity limits how fast a function can change over any inter-
val of its domain. Let us illustrate this with an example.

Example 2.1.6 (Lipschitz continuity of 2-norm). Let f : Rn → R, f (x) = ‖x‖2 be the
2-norm. Then by the triangle inequality

| f (x)− f (y)| = |‖x‖2 − ‖y‖2| ≤ ‖x− y‖2 for all x, y ∈ Rn.

Thus, f is Lipschitz continuous with Lipschitz constant L ≤ 1. Since equality is achieved for
example in the case of (x, y) ∈ Rn × {0}n, the Lipschitz constant is given by L = 1.

4

2.1 Functions

There exists a stronger property of functions than the Lipschitz continuity to describe
how fast a function decreases or increases. This leads us to the concept of gradients.
Later, we use them to find the direction of the steepest descent of a function at a given
point. Further, we can tackle optimization problems with them to minimize a function.

Definition 2.1.7 (Fréchet differentiability, gradient [BC11, Def. 2.45]). Let x ∈ Rn,
C ⊂ Rn be a neighbourhood of x and f : C → Rm. Then f is Fréchet differentiable at x
if there exists a bounded linear operator D f (x) : Rn → Rm with dom D f (x) = Rn, called the
Fréchet derivative of f at x, such that

lim
0 6=‖y‖→0

‖ f (x + y)− f (x)−D f (x)y‖2

‖y‖2
= 0.

The Fréchet gradient of f at x is the unique vector ∇ f (x) ∈ Rn which fulfills for all y ∈ Rn

the relation
D f (x)y = 〈y,∇ f (x)〉.

In the case of functions which are not Fréchet differentiable, the subgradients defined
next generalize the idea of gradients.

Definition 2.1.8 (subdifferential, subgradient [RW98, Def. 8.3]). Let f : Rn → R be a
function with x ∈ dom f . For a vector v ∈ Rn, define the following

1. The vector v is called a regular subgradient of f at x, if

lim inf
x→x,x 6=x

f (x)− f (x)− 〈v, x− x〉
‖x− x‖2

≥ 0.

The set of all regular subgradients v at x is called regular subdifferential and denoted
by ∂̂ f (x).

2. The vector v is a limiting subgradient of f at x, written v ∈ ∂ f (x), if there are sequences
xk → x and vk ∈ ∂̂ f (x) with vk → v. The set of all limiting subgradients v at x is called
the limiting subdifferential and denoted by ∂ f (x).

The regular subgradient and the regular subdifferential are sometimes also called
Fréchet subgradient and Fréchet subdifferential, respectively. From now on, if nothing else
is said or logical, we use the short terms like (sub-) differentiability to refer to Fréchet
(sub-) differentiability.

Note that, in general, the Fréchet as well as the limiting subdifferential define set-
valued mappings. This means that at least for one x ∈ dom f we have #{∂̂ f (x)} > 1 or
#{∂ f (x)} > 1.

Let us illustrate the difference of gradients and subgradients given by the Defini-
tion 2.1.7 and 2.1.8 with the following example.

5

2 Preliminaries

(a) graph of |x|

-1

1

(b) graph of ∂|x|

Figure 2.1: absolute value function |x| in R and its subdifferential ∂|x|

Example 2.1.9 (subdifferentiability of absolute value function). Let g : R → R≥0 be the
absolute value function or 1-norm in R, namely

g(x) = ‖x‖1 = |x| for x ∈ R.

Then, g is differentiable everywhere except at x = 0. There exists no gradient at this point.
But, subgradients exist everywhere for g and the corresponding subdifferential looks like

∂g(x) =

−1 , x < 0
[−1, 1] , x = 0
1 , x > 0.

Figure 2.1 shows the graphs of the absolute value function g(x) = |x| and its set-valued
subdifferential.

The next property provides a notion to bound the subgradient of a function from
below. We need this sort of functions during the presentation of the convergence theory
concerning the specific optimization algorithms.

Definition 2.1.10 (KL-property, KL-function [BST14, Def. 2.3]). Let f : Rn → R be a
proper, lower semicontinuous function.

1. The function f is said to have the KL-property at a x ∈ dom f if there exist a posi-
tive number q ∈ (0,+∞], a neighbourhood U of x and a continuous concave function
ϕ : [0, q)→ R≥0 with ϕ(0) = 0, ϕ ∈ C1(0, q) and ϕ′(y) > 0 for all y ∈ (0, q) such
that for all x with

x ∈ U ∩ [f (x) < f (x) < f (x) + q]

the following inequality holds

ϕ′(f (x)− f (x)) · dist(0, ∂ f (x)) ≥ 1.

2. If function f has the KL-property at each point of dom ∂ f , then f is called a KL-function.

6

2.2 Optimization Problems

2.2 Optimization Problems

Gradients and subgradients are closely related to optimization problems. As they de-
scribe how a function behaves, they can be used to formulate optimality conditions.

The general formulation of the initial optimization problem for this thesis is the fol-
lowing.

Definition 2.2.1 (nonsmooth nonconvex optimization problem). Let f : Rn → R and
g : Rm → R be proper, lower semicontinuous functions. Moreover, let H : Rn ×Rm → R

define a so-called coupling function for x ∈ X, y ∈ Y and nonempty sets X ⊂ Rn, Y ⊂ Rm.
Then, the nonsmooth nonconvex optimization problem with respect to f , g and H is given
by

min
(x,y)∈X×Y

f (x) + g(y) + H(x, y). (2.1)

A special case of 2.1 is the problem in one variable, i.e. x = y, with a smooth function
f : Rn → R and without coupling function, i.e. H ≡ 0,

min
x∈X

f (x) + g(x). (2.2)

In the next theorem, we provide a generalized version of Fermat’s rule to get a first-
order optimality condition. Considering the specific form 2.2 of a nonsmooth noncon-
vex optimization problem, we also implement Fermat’s rule to that case.

Theorem 2.2.2 (Fermat’s rule [RW98, Thm. 10.1]). Let h : Rn → R be a proper function
having a local minimum at x. Then

0 ∈ ∂̂h(x) and 0 ∈ ∂h(x). (2.3)

If h is convex, then 2.3 states not only a necessary but also sufficient condition for a global
minimum. If h = f + g with f being smooth, then

−∇ f (x) ∈ ∂g(x). (2.4)

Definition 2.2.3 (critical point). Let f : Rn → R be a proper and lower semicontinuous
function. A point x ∈ Rn is called critical point if 0 ∈ ∂ f (x) and limiting critical point if
0 ∈ ∂̂ f (x).

Note that, by Theorem 2.2.2, each local minimum is a critical point. But, in general, a
critical point can be a local minimum, maximum or saddle point. For more details on
optimization problems and optimality conditions see for example [Pol97].

7

2 Preliminaries

2.3 Optimization Tools and Methods

In this section, we provide basic methods to solve optimization problems. Each tool
proposed has its advantages regarding simplicity, generality or performance in compar-
ison to the others. Later, we see that a combination of the tools can compose algorithm
setups which benefit from each different framework.

2.3.1 Gradient Methods

Gradient methods are the probably most famous methods to solve an optimization
problem formulated with differentiable functions. They use the gradient of the ob-
jective function in each update step to compute the next iterate. The general initial op-
timization problem is to minimize a given proper differentiable function f : Rn → R,
formally

min
x∈Rn

f (x).

Definition 2.3.1 (gradient descent). Let f : Rn → R be differentiable, x0 ∈ Rn and
(αk)k∈N ⊂ R. The method of the gradient descent iteratively performs the following update
step for k ≥ 0

xk+1 = xk − αk∇ f (xk). (2.5)

The idea is that, for updating xk+1 as suggested in 2.5, the gradient descent step yields
f (xk+1) ≤ f (xk) for small αk. So the next iterate is never worse than the current one.
Thus it is likely that the generated sequence (xk)k∈N converges to the desired minimum
of function f . The convergence heavily depends on the choice of the parameter αk in
each step what is illustrated in the following example.

Example 2.3.2 (convergence of gradient descent for 1
2 x2). Let f : R → R be the function

defined by f (x) = 1
2 x2. Then, differentiation yields ∇ f (x) = x and substitution into the

general update step 2.5 results in xk+1 = (1− α)xk. By induction, it follows xk = (1− α)kx0

for all k ≥ 0. In the following, we fix the parameter α, but examine the method’s convergence in
case of different choices for α. For each of the three cases, the corresponding sequence of iterates
is indicated in Figure 2.2.

1. For |1− α| > 1, it is |xk| = |(1− α)kx0| = |(1− α)k| · |x0| → ∞ for k → ∞. Thus,
the sequence diverges.

2. For |1 − α| = 1, it is |xk+1| = |xk| and xk ∈ {−x0, x0} for all k ∈ N. Thus, the
sequence stagnates at x0 or alternates between x0 and −x0.

3. For |1− α| < 1, it follows that |xk+1| = |(1− α)xk| = |(1− α)k| · |x0| → 0 for k→ ∞.
Moreover, f (xk+1) = (xk+1)2 < (xk)2 = f (xk). Hence, (f (xk))k∈N → 0 for k → ∞
and the sequence of generated function values converges to the minimum.

8

2.3 Optimization Tools and Methods

x0

(a) α = 2.5 implies diverg-
ing iterates

x0

(b) α = 2 implies alternating
iterates between −3, 3

x0

(c) α = 1.5 implies converg-
ing iterates

Figure 2.2: convergence of gradient descent for f (x) = 1
2 x2 and starting point x0 = 2

There exist several modifications and improvements of the gradient descent ([BT09],
[GSJ13], [Pol97]). The variant we are interested in is the heavy-ball method ([ZK93]).
It combines the usual gradient descent as in Definition 2.3.1 with an inertial term, a
weighted difference of the current and the previous step of the generated sequence.

Definition 2.3.3 (heavy-ball method). Let f : Rn → R be differentiable, x0 ∈ Rn be some
initial point and (αk)k∈N, (βk)k∈N ⊂ R be sequences. Then, the heavy-ball method repeats
the following update step

xk+1 = xk − αk∇ f (xk) + βk

(
xk − xk−1

)
.

In physics, inertia describes the resistance of an object to any change in its state of
motion involving speed and direction or just state of rest.

The convergence theory of the heavy-ball method has already been much discussed.
In the general case, the convergence theory assumes at least that the objective function
f possesses a Lipschitz continuous gradient ∇ f . This general setting is what we are
interested in for our later applications. But then, the choice of good step sizes αn, βn
remains challenging. In the convex setting, optimal choices of parameters αn, βn can be
determined by using the Lipschitz constant as well as the (strong) convexity parameter.

2.3.2 Proximal Methods

The whole setup of gradient methods is based on the existence of the gradient of the
objective function. To overcome the assumption that the function is differentiable, we
introduce the concept of the proximal map.

Therefore, let g : Rm → R be a function which is not necessarily differentiable.

9

2 Preliminaries

Definition 2.3.4 (proximal map [RW98, Def. 1.22]). Let g : Rm → R be a proper, lower
semicontinuous function. For x ∈ Rm and α > 0, the proximal map of g is defined by

proxα,g (x) := arg min
x∈Rm

(α

2
‖x− x‖2

2 + g(x)
)

.

Note that there exist slightly different notions of the definition of the proximal map in
the literature (compare for example [Mor65], [BC11, Def. 12.23], [OCBP14]). Sometimes,
the proximal map of a function g is defined in terms of the resolvent with respect to ∂g.
We want to distinguish these two terms by defining the resolvent as follows.

Definition 2.3.5 (resolvent [BC11, Def. 23.1]). Let g : Rm → R be a proper, lower semicon-
tinuous function. For x ∈ Rm and α > 0, the resolvent of ∂g is given by (Id + α · ∂g)−1(x)
where Id denotes the identity.

Generally, the resolvent of a subdifferential of a function contains the proximal map
of this function.

Lemma 2.3.6 (relation of proximal map and resolvent [BC11, Ex. 23.3]). Let g : Rm → R

be a proper lower semicontinuous function, x ∈ Rm and α > 0. Then,

proxα,g (x) ⊂ (Id + α · ∂g)−1(x).

In fact, for a proper, lower semicontinuous function that is also convex, its proxi-
mal map and the resolvent of its subdifferential coincide. This comes along with the
correspondence of subdifferential and proximal map in the next proposition.

In the following, we present some properties of the proximal map. First of all, we
want to mention that, in general, the proximal map defines a set-valued map, i.e. for a
point x ∈ Rm, the respective proximal map proxα,g (x) could consist of more than one
element of Rm.

Since we aim at utilizing the proximal map in the context of optimization methods,
the following relation to subdifferentials may be useful. Note that the proximal map
turns out to be single-valued for convex functions. For more details on the proximal
map and a wealth of fundamental results dealing with proximal algorithms in the con-
vex setting, we refer to [BC11].

Proposition 2.3.7 (relation of proximal map and subdifferential in the convex setting
[BC11, Prop. 16.34]). Let g : Rm → R be a proper, lower semicontinuous, convex function
and u, x ∈ Rm. Then,

u = prox1,g (x) ⇔ x− u ∈ ∂g(u).

Thus, the equality prox1, f (y) = (Id + ∂g)−1(y) holds for all y ∈ Rm.

The next example illustrates what the proximal map becomes for the trivial function
g ≡ 0.

10

2.3 Optimization Tools and Methods

Example 2.3.8 (proximal map for g ≡ 0). Let g : Rm → R be a function with g ≡ 0.
Then, for every x ∈ Rm and α > 0, the proximal map of g equals the identity, i.e.

proxα,g (x) = proxα,0 (x) = x.

Concluding, we want to interpret the proximal map from Definition 2.3.4 as a gra-
dient descent step given in Definition 2.3.1. The necessary assumption is that, now,
we are given a differentiable function g with positive definite second-order derivative
∇2g(x) = ∇(∇g(x)).

Theorem 2.3.9 (convergence of proximal map to gradient descent [PB13, sec. 3.3]). Let g
be a proper lower semicontinuous function. If g is twice differentiable at x with positive definite
∇2g(x), then, as λ→ 0, it holds that proxλ,g (x) = x− λ∇g(x) + o(λ).

For further reading about alternating proximal minimization algorithms to solve
problems of Definition 2.2.1, see for example [ABRS10]. The authors assume H to be a
C1-function with Lipschitz continuous gradient ∇H on bounded subsets of Rn ×Rm.
We meet the latter assumption concerning Lipschitz continuity of the gradient ∇H on
bounded domains again when presenting the convergence analysis of one of our algo-
rithms.

2.3.3 Projection Methods

Until now, we have only introduced optimization methods that calculate a solution
over the whole domain of the objective function. But the defined nonsmooth nonconvex
optimization problem in Definition 2.2.1 also allows minimization of a function with
respect to subsets of the domain. Thus, we need an operator to realize the limitation to
a subset. This is where the following projection operator comes in.

Definition 2.3.10 (projection operator [BC11, Def. 3.7]). Let X ⊂ Rn be a nonempty closed
set. The projection operator onto X for every v ∈ Rn is defined by

PX (v) := arg min
x∈X

(‖x− v‖2) .

Note that, in the framework of this thesis, the definition of the projection operator
relies on the 2-norm of Rn. Of course, a projection can also be defined in terms of any
other norm of the underlying space.

In general, the projection operator is a set-valued map, i.e. there can exist several
points x1, x2 in X which have the same shortest distance to v, i.e.

‖x1 − v‖2 = ‖x2 − v‖2 = min
x∈X

(‖x− v‖2) .

In the special case of a nonempty closed convex set C, the projection onto C becomes
single-valued ([BC11, Thm. 3.14]). See Figure 2.3 for a visualization of projections onto

11

2 Preliminaries

v

X

x1 x2

(a) projection onto a noncon-
vex set

X

v

PX(v)

(b) projection onto a convex
set

Figure 2.3: set- and single-valued projection operators

convex and nonconvex sets. The following example shows the unique projection of a
point onto any ball in Rn.

Example 2.3.11 (projection onto ball). Let y ∈ Rn be the center of the ball Bρ(y) with radius
ρ > 0 and based on the 2-norm. Then, for any x ∈ Rn\Bρ(y)

PBρ(y) (x) = ρ
x− y
‖x− y‖2

+ y.

The projection operator can be used independently from other operators, as in al-
ternating projections (like in [HLN14]) to tackle an optimization problem. But it can
also be combined with other methods like a gradient step ([BC11, Cor. 27.10]). We
are primarily interested in the relation of projection and proximal map as well as the
combination of the proximal map with gradient methods.

Finally, we introduce the indicator function of a set. The respective proximal map of
this function reduces to the projection onto the set. This relation is used in calculations
of operators for optimization methods that are presented later in this thesis.

Definition 2.3.12 (indicator function). Let X ⊂ Rn be a set. The indicator function of X is
given by

ι(x) =
{

0 , x ∈ X
+∞ , x /∈ X.

Example 2.3.13 (proximal map of indicator function). Let C ⊂ Rn be a nonempty closed
set. For its corresponding indicator function ιC, the proximal map equals the projection operator
onto the set C, i.e. for α ∈ R and v ∈ Rn, it is

proxα,ιC (v) = PC (v) .

12

3 Linear Diffusion-based Image
Compression

This chapter outlines the idea of image analysis with a special focus on the process
of inpainting. First, this process is formulated by using the framework of diffusion.
Then, we discretize and optimize that formulation to get the homogeneous diffusion
inpainting in the form of a constrained nonsmooth nonconvex optimization problem.
The derived problem formulation serves as initial optimization problem which we want
to solve with the algorithms introduced afterwards.

The idea of linear diffusion-based image compression presented throughout this
chapter relies on the work of [HSW13] and [HMH+15].

3.1 Image Compression and Inpainting

A major challenge in data analysis is the reconstruction of a signal from a few given
data points. This procedure is called inpainting. It refills data where information about
the signal is missing for example due to interference or destructive compression.

In the digital world of images, the process of inpainting is also known as image in-
terpolation. Nowadays, we store lots of images digitally instead of keeping them in
a printed version. To save storage, they are compressed. That means that just a few
information about an image are provided to enable its reconstruction. While decom-
pressing, a gap can be refilled or interpolated by using the known information of its
surroundings. The quality of the image restored depends on the level of destruction
which comes along with compression.

The probably most famous and commonly used standard to store images are JPEG
(Joint Photographic Experts Group) and the advanced JPEG 2000. The first public re-
lease as ISO/IEC standard occured in 1992. JPEG and JPEG 2000 depend on the discrete
cosine and wavelet transform, respectively. Therefore, these well-analyzed methods are
of great interest from the theoretical as well as practical point of view ([Str09]). Modern
designs, such as JPEG 2000, provide in addition to a lossy image compression also a
lossless modus.

An overview about some more image analysis tools, image denoising and inpainting
techniques can be found in [CS05].

13

3 Linear Diffusion-based Image Compression

There are two different application approachs to optimize the process of image com-
pression. We can improve the reconstruction model or the choice of the interpolation
data. In this thesis, we focus on the choice of suitable interpolation data. To realize this,
we combine partial differential equations (PDE’s) and variational methods.

3.2 Combining Diffusion and Inpainting

In the following section, we consider PDE’s to derive our initial problem formulation.
First, we present the basic terms of Laplace interpolation based on standard partial
differential equations. Then, these terms are discretized and optimized to achieve a
suitable optimization problem for our further application.

3.2.1 Combination Approach

Before we formulate the first model, we need to introduce some basic notations. For
more details, we refer to [Cia13].

Let Ω ⊂ Rn be a subset with nonempty, sufficiently regular boundary ∂Ω. The term
”sufficiently regular” means that the boundary can locally be described by Lipschitz
continuous functions. The Laplace operator is given by ∆ := ∑n

k=1 ∂kk which acts on
functions in Ω. For a function u : Ω → R, ∆u is called the Laplacian of u. The term
∂kk := ∂k∂k denotes the second-order partial derivative. Sometimes, it may be conve-
nient to call ∂k directional derivative where k denotes the direction.

Furthermore, let ∂ν := ∑n
k=1 νk∂k define the outer normal derivative operator where

(νk)
n
k=1 denotes the unit outer normal vector field along ∂Ω. This operator acts on func-

tions defined on the boundary ∂Ω. For the function u, ∂νu is called the outer normal
derivative of u.

Definition 3.2.1 (Laplace interpolation). Let f : Ω → R be smooth on a bounded domain
Ω ⊂ Rn and represent the initial data. The domain Ω ⊂ Rn has a sufficiently regular boundary
∂Ω and ΩK (Ω is a subset with positive measure. Let u define a reconstruction of f . The
homogeneous diffusion inpainting is given by

−∆u = 0, on Ω\ΩK (3.1)
u = f , on ΩK (3.2)

∂νu = 0, on ∂Ω\∂ΩK (3.3)

where the term ∂νu denotes the derivative of u in outer normal direction.

Note that the just defined Laplace interpolation 3.2.1 is sometimes already presented
as homogeneous diffusion inpainting. To distinguish this problem formulation and the
corresponding discrete optimization problem introduced later, we always refer to 3.2.1
as Laplace interpolation and to 3.2.2 as homogeneous diffusion inpainting.

14

3.2 Combining Diffusion and Inpainting

The Laplace interpolation 3.2.1 belongs to the boundary value problems. It consists
of the Laplace equation 3.1 as well as the Dirichlet 3.2 and Neumann 3.3 boundary
conditions. Since the Neumann boundary condition is required to be 0, we call it ho-
mogeneous.

From now on, we assume that the sets ∂ΩK and ∂Ω\∂ΩK are nonempty. Note that
due to Definition 3.2.1 the set ΩK has positive measure and, thus, is nonempty as well.
Within the context of inpainting, we interpret ΩK to represent the set of known data
points after a compression. Thus, the Dirichlet boundary condition 3.2 affects these
points that are used to reconstruct the missing data.

In the next step, we introduce a binary valued function c : Ω → {0, 1} which takes
the value 1 only for points in ΩK and 0 otherwise, i.e.

c(x) =
{

1 , x ∈ ΩK
0 , otherwise.

Since this function c separates Ω into ΩK and Ω\ΩK, it is said to be a mask on Ω with
respect to ΩK.

Using mask c, we can rewrite the Laplace equation 3.1 and the Dirichlet boundary
condition 3.3 to −(1− c(x))∆u(x) = 0 and c(x)(u(x)− f (x)) = 0, respectively. Com-
bining these new formulations leads to the following problem which is equivalent to
the Laplace interpolation 3.2.1

c(x)(u(x)− f (x))− (1− c(x))∆u(x) = 0 for x ∈ Ω
∂νu(x) = 0 for x ∈ ∂Ω\∂ΩK.

(3.4)

Our goal is to optimize the mask c with respect to accuracy of the reconstruction
as well as sparsity of the interpolation data. These two aspects contradict each other.
A perfect reconstruction requires c ≡ 1, which is not sparse at all. But the sparsest
possible mask is given by c ≡ 0, which does not allow any reconstruction.

3.2.2 Discrete Problem Formulation

The following approach of discretizing and optimizing the reformulated Laplace inter-
polation 3.4 can be found in [HMH+15].

Let J := {1, ..., N} be the set of finitely many indices which enumerate all discrete
sample points. In case of an image f ∈ Rn×n, its pixels are counted columnwise such
that sample point (x, y) ∈ R gets numbered with x + n(y − 1) ∈ J and N := n2 as
shown in Figure 3.1. Denote the set of indices of the known sample points by K ⊆ J
as ΩK represents the known data. Then, we can discretize image, reconstruction and
mask and write f , u, c ∈ RN where

ci =

{
1 , i ∈ K
0 , otherwise.

15

3 Linear Diffusion-based Image Compression

x
y 1 2 3 4

1

2

3

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

l

Figure 3.1: regular 4× 4 -grid with size l := 1 and pixels numbered by 1, ..., 16

Furthermore, we work on a regular grid as presented in Figure 3.1. In this setting, let
each sample point represent a pixel of an image. An important characterictic of such a
grid is its size l, the maximal distance between two neighboured pixels. For simplicity,
we set the grid size to 1 so that we do not have to consider it in the further discretization.
To see the influence of a grid size l 6= 1, we refer to [HMH+15].

Having a look at problem formulation 3.4, we still need to discretize the Laplace op-
erator ∆ with homogeneous Neumann boundary conditions on ∂Ω\∂ΩK. Remember
that this operator approximates the sum of the second-order partial derivatives as intro-
duced earlier. To visualize the idea of discretization, we consider the set of neighbours
N (i) for a pixel i = x + n(y− 1) ∈ J corresponding to sample point (x, y),

N (i) = {j ∈ J | ∃xj, yj ∈ {1, ..., n} : j = xj + n(yj − 1)
∧ |x− xj|+ |y− yj| = 1}. (3.5)

Since ∆ := ∂xx + ∂yy for a function in two variables x, y, we are interested in the
approximation of these two second-order partial derivatives. First, we assume that the
sample point (x, y) lies in Ω\∂Ω. Then the point (x, y) has four neighbours, one in each
direction as illustrated in Figure 3.2c. By the central step method, we get

∂xx f (x, y) ≈ f (x + h, y)− 2 f (x, y) + f (x− h, y)
h2

∂yy f (x, y) ≈ f (x, y + h)− 2 f (x, y) + f (x, y− h)
h2

where h ∈ R realizes a step in both possible directions, i.e. positive 1 and negative
−1, of each variable x, y. Parameter h can also be seen as the distance to the neigh-
boured point used for approximation.

Thus, for points in Ω\∂Ω, the discrete Laplacian operator can be approximated by

∆ f (x, y) ≈ f (x + 1, y) + f (x, y + 1)− 4 f (x, y) + f (x− 1, y) + f (x, y− 1).

16

3.2 Combining Diffusion and Inpainting

1

2

3

4

5

6

7

8

9

(a) N (1) = {2, 4}

1

2

3

4

5

6

7

8

9

(b) N (8) = {5, 7, 9}

1

2

3

4

5

6

7

8

9

(c) N (5) = {2, 4, 6, 8}

Figure 3.2: neighbours in a regular 3× 3 -grid with size 1

Identify x and y with the indices of a matrix like in Figure 3.1. This leads to the
following kernel D

D :=

 0 1 0
1 −4 1
0 1 0

Next, consider the cases where one or more of the neighboured pixels do not exist,

like for pixels at the boundary of an image like in Figure 3.2a or Figure 3.2b. We can still
approximate the second-order partial derivatives ∂xx f , ∂yy f by using the set of neigh-
bours N defined in 3.5. We take only one existing neighbour of the center point what
leads to

∂xx f (x, y) ≈ f (x + h, y)− f (x, y)
h

or ∂xx f (x, y) ≈ − f (x, y) + f (x− h, y)
h

for h ∈ R and analogously ∂yy(x, y). Note that this approximation using only one
direction, either h or −h, comes along with less accuracy compared to the central step
method taking both possible directions h,−h.

Finally, we can write the Laplace operator with Neumann boundary conditions as
the matrix L ∈ RN×N with entries

L(i, j) =

1 , j ∈ N (i)
−|N (i)| , j = i
0 , otherwise.

(3.6)

Now, we formulate the initial discrete constrained optimization problem. It opti-
mizes mask c with respect to accuracy of the reconstruction as well as sparsity of the

17

3 Linear Diffusion-based Image Compression

interpolation data. We use 3.4 as constraint to correlate mask c and reconstruction u.
Note that the Neumann boundary condition is included in the Laplace operator 3.6.

Definition 3.2.2 (homogeneous diffusion inpainting). Let f ∈ RN be the initial data.
Moreover, let c ∈ {0, 1}N define a mask on each sample point and let the corresponding recon-
struction be given by u ∈ RN . Then, the homogeneous diffusion inpainting for this data
is the following constrained optimization problem

arg min
(u,c)∈RN×RN

1
2
‖u− f ‖2

2 +λ‖c‖1

s.t. diag(c)(u− f)− (Id− diag(c))Lu = 0

where λ ≥ 0 and L denotes the discrete Laplacian with entries defined by 3.6.

The first term penalizes the difference between reconstruction u and initial image f .
The second term weights the mask c and parameter λ steers the sparsity of c. For λ = 0,
the optimal mask can have maximum weight and the corresponding reconstruction is
perfect, i.e. c ≡ 1 and u = f . But when λ tends to infinity, the sparsity of mask c is
enforced such that ci → 0 for λ→ ∞ and all indices i ∈ {1, ..., N}.

The constraint equation assures the dependence of mask and reconstruction in this
model. Fixing the mask, it has a unique solution for the reconstruction ([MBWF11]).

3.2.3 Outlook

Many mathematical models especially in natural sciences rest upon the widely- re-
searched theory of PDE’s. The process of diffusion which we are interested in can
be modeled in terms of them, as done in Definition 3.2.1. It is closely related to the
well-known heat equation ([Eva10]).

The combination of diffusion and inpainting was already very successful on cartoon-
like images ([MW09]). These images are piecewise flat and thus easier to reconstruct.
The authors show that their approach can outperform even the advanced JPEG 2000
standard.

Another approach uses anisotropic diffusion to compress general images like pho-
tographs ([GWW+08]). It is already better than JPEG and close to the quality of the
JPEG 2000 standard. This work gets improved with recognizable success in [SWB09].
The authors demonstrate that it beats the quality of the JPEG 2000 standard.

18

4 Optimization Algorithms

This chapter is divided into two parts. Each of them presents an optimization algorithm
applying the method of proximal mapping combined with a gradient method. Though,
the algorithms differ in their concepts and the classes of initial problems.

4.1 Inertial Proximal Algorithm for Nonconvex Optimization
(iPiano)

The first algorithm we introduce is the Inertial Proximal Algorithm for Nonconvex
Optimization (iPiano). It solves a special class of nonsmooth nonconvex optimization
problems, namely the sum of a differentiable, possibly nonconvex function and a con-
vex, possibly nondifferentiable function. This algorithm combines a gradient method
with a proximal step to utilize the special structure of the initial problem.

We start by motivating the idea of iPiano and by introducing the general problem
setup. After a brief description of the algorithm, we give a short overview of the con-
vergence analysis.

The whole section about iPiano is based on [OCBP14].

4.1.1 Initial Problem

Due to practical problems like in signal or image processing and machine learning,
there has been an increased interest in partly smooth, partly nonsmooth objective func-
tions. The goal is to solve a sum of a smooth and a nonsmooth, but convex function.
This leads to a special case of the nonsmooth nonconvex optimization problems given
in Definition 2.2.1.

Thus, let g : RN → R, N ≥ 1, be a proper nonsmooth convex function. Define
f : RN → R to be a smooth C1-function with Lipschitz continuous gradient ∇ f on
dom g and Lipschitz constant L.

Composing and minimizing these two functions yields the following structured non-
smooth nonconvex optimization problem

min
x∈RN

h(x) = min
x∈RN

f (x) + g(x) (4.1)

19

4 Optimization Algorithms

where the proper, lower semicontinuous, extended-valued function h : RN → R is
called a composite objective function. It is assumed to be coercive, i.e. ‖x‖2 → +∞
implies h(x)→ +∞, and to be bounded from below by some h > −∞.

Within this setup, function f is not necessarily convex. But if it is so, there already
exists an improvement of the algorithm iPiano for this special case in [OBP15].

The algorithm iPiano combines the concepts of gradient methods and proximal map-
ping to solve the structured nonconvex nonsmooth optimization problem 4.1.

4.1.2 The iPiano-algorithm

Now, we present the generic algorithm to tackle optimization problem 4.1. The ap-
proach starts with the forward step in terms of the heavy-ball method 2.3.3 for the
smooth function f . The next backward step consists of the proximal map 2.3.4 of the
convex function g applied to the result of the forward step.

Algorithm 4.1.1 (iPiano). Inertial Proximal Algorithm for Nonconvex Optimization

• Initialization: Choose c1, c2 > 0 close to 0, x0 ∈ dom h and set x−1 = x0.

• Iterations (k ≥ 0): Update

xk+1 = (I + αk∂g)−1(xk − αk∇ f (xk) + βk(xk − xk−1)) (4.2)

where Lk > 0 is the local Lipschitz constant of ∇ f satisfying

f (xk+1) ≤ f (xk) + 〈∇ f (xk), xk+1 − xk〉+ Lk

2
‖xk+1 − xk‖2

2

and αk ≥ c1, βk ≥ 0 are chosen such that δk ≥ γk ≥ c2 defined by

δk :=
1
αk
− Lk

2
− βk

2αk
and γk :=

1
αk
− Lk

2
− βk

αk

and (δk)
∞
k=0 is monotonically decreasing.

It is important to choose the step sizes appropriately to achieve (good) convergence
results. The proposed rule above suffices to guarantee convergence. There are several
special instances shown in [OCBP14, sec. 4.4] which exactly describe how the step sizes
can be updated during each iteration. For our application, we take constant parameters
as also proposed by the authors. Although, it is the simplest way to choose αk and βk,
the final results turn out to be already good enough for our purpose.

Therefore, we fix βk = β ∈ [0, 1) and αk = α < 2 1−β
L where L denotes the Lipschitz

constant of ∇ f . The constants can be chosen arbitrarily, as long as they fulfill the step
size constraints in Algorithm 4.1.1.

20

4.1 Inertial Proximal Algorithm for Nonconvex Optimization (iPiano)

4.1.3 Convergence Analysis

During this part, we summarize the results of the convergence analysis achieved by
[OCBP14]. For further details and the entire derivation, we refer to this paper.

First of all, the authors verify the existence of parameters αk, βk, δk, γk for given Lk > 0
which satisfy the defined constraints in Algorithm 4.1.1. Hence, the requirements for
the parameters are not contradictory and the algorithm makes sense.

Now, let us state the general convergence results for the Algorithm 4.1.1 iPiano. The
theorem does not make any further assumptions concerning the generated sequence or
the objective functions.

Theorem 4.1.2 (general convergence results of iPiano [OCBP14, Thm. 4.8]). Let (xk)k∈N

be a sequence generated by the iPiano-algorithm.

1. The sequence (h(xk))∞
k=0 converges.

2. There exists a converging subsequence (xk j)∞
j=0.

3. Any limit point x∗ := lim
k→∞

xk j is a critical point of min
x∈RN

h(x) and h(xk j)
j→∞→ h(x∗).

Note that a critical point x ∈ dom h fulfills the necessary first-order optimality con-
dition 0 ∈ ∂h(x). By Fermat’s rule 2.2.2, this is equivalent to −∇ f (x) ∈ ∂g(x) for
h(x) = f (x) + g(x) and a smooth function f .

In addition, under some assumptions, it is even shown that not only subsequences,
but each possible sequence (xk)k∈N generated by iPiano converges to a critical point x∗

of the objective function h, i.e. x∗ = lim
k→∞

xk. If the starting point x0 is close enough to a

global minimum, iPiano converges to that global minimizer.

Theorem 4.1.3 (convergence of iPiano to critical point [OCBP14, Thm. 4.9]). Let (xk)k∈N

be a sequence generated by the iPiano-algorithm and let δk = δ for all k ∈ N. Moreover, define
the function hδ : RN × RN → R ∪ {+∞} with (x, y) 7→ h(x) + δ‖x − y‖2

2. If hδ(x, y)
has the KL-property at a cluster point (x∗, y∗), then the sequence (xk)k∈N has finite length,
xk → x∗ for k → ∞, and (x∗, x∗) is a critical point of hδ. Hence, x∗ is a critical point of the
objective function h.

Last, let us also mention the convergence rate. The authors of [OCBP14] analyzed
it with respect to the proximal residual r(x) := x − (Id + ∂g)−1(x − ∇ f (x)). Since
‖xk − xk+1‖2

2 = ‖r(xk)‖2
2, this residual provides an error measure of tending to a critical

point of the objective function for a sequence (xk)k∈N generated by iPiano. The squared
normed residuum ‖r(xk)‖2

2 achieves a global convergence with rate roughly bounded
from above by O(1/k). Hence, the iterates generated by Algorithm 4.1.1 iPiano con-
verge with rate O(1/

√
k).

21

4 Optimization Algorithms

The proposed Algorithm 4.1.1 iPiano has many favourable theoretical properties as
demonstrated in [OCBP14]. It is simple and efficiently solves the structured nonsmooth
nonconvex optimization problem 4.1. These are the reasons why the authors recom-
mend it as standard solver for this class of optimization problems.

4.2 Proximal Alternating Linearized Minimization (PALM)

During this section, we present the second algorithm of interest, the Proximal Alternat-
ing Linearized Minimization (PALM). Compared to iPiano, this algorithm was devel-
oped to solve a wider class of nonsmooth nonconvex optimization problems, namely a
sum of finitely many functions with weaker assumptions. It also combines a gradient
method with a proximal step.

Again, we start by presenting the problem setting with rather general assumptions
concerning the objective functions. Then, we introduce the algorithm followed by a
short convergence analysis.

The part dealing with PALM relies on [BST14].

4.2.1 Initial Problem

The development of this algorithm can be motivated by problems with practical ap-
plications. Like in compressed sensing, sparse approximation of signals and images
as well as in blind decomposition, we are interested in minimizing a sum of func-
tions which are neither smooth nor convex similarly in all variables. The setup built
in [BST14] addresses a quite general formulation of nonsmooth nonconvex optimiza-
tion problems as defined in Definition 2.2.1.

Assume f : Rn → R and g : Rm → R to be two proper, lower semicontinuous
functions. Let H : Rn ×Rm → R be a C1-function coupling the domains of f and g.
Define the composite objective function as Φ(x, y) := H(x, y) + f (x) + g(y). This leads
to the formally unconstrained initial problem formulation

arg min
(x,y)∈Rn×Rm

Φ(x, y)

= arg min
(x,y)∈Rn×Rm

H(x, y) + f (x) + g(y).
(4.3)

For further analysis of the algorithm, we assume that the functions x 7→ H(x, y)
and y 7→ H(x, y) are continuously differentiable with Lipschitz continuous gradient
for fixed y or x, respectively. If there exist variables in the domain of H for which this
assumption does not hold, we refer to [HLST15]. In this paper, the functions f and
g define indicator functions (Definition 2.3.12) on the corresponding domains. Then,

22

4.2 Proximal Alternating Linearized Minimization (PALM)

the algorithm PALM was adopted as a part of the introduced Proximal Block Implicit-
Explicit algorithm (PBIE).

The algorithm PALM combines the concepts of gradient methods and proximal map-
ping to solve a broad class of nonsmooth nonconvex optimization problems 4.3.

4.2.2 The PALM-algorithm

Before we can present the algorithm, we need to introduce the notation of the partial
gradient. Therefore, consider the map x 7→ H(x, y) for the block of variables x and
fixed y. Its corresponding gradient, denoted by ∇x H(x, y), is the partial gradient of H
in x and is assumed to be Lipschitz continuous with modulus Lx(y). Analogously, we
get the partial gradient ∇yH(x, y) for the other block of variables y and fixed x as well
as its Lipschitz constant Ly(x).

Now, we can describe the generic algorithm. The approach relies on an alternating
minimization. An iteration updates each block of variables x and y separately with
respect to the objective function. Each update contains a forward step in terms of the
gradient descent 2.5 for the partial gradients of H. The next backward step consists of
the proximal map 2.3.4 of function f for block x or g for block y which is applied to the
result of the forward step.

The algorithm PALM solving optimization problem 4.3 is given by the following al-
ternating forward-backward scheme.

Algorithm 4.2.1 (PALM). Proximal Alternating Linearized Minimization algorithm

• Initialization: Choose α, β > 1 and any (x0, y0) ∈ Rn ×Rm.

• Iterations (k ≥ 0): Update as follows

1. Set αk = αLx(yk) and compute

xk+1 ∈ proxαk , f

(
xk − 1

αk
∇x H(xk, yk)

)
(4.4)

2. Set βk = βLy(xk+1) and compute

yk+1 ∈ proxβk ,g

(
yk − 1

βk
∇yH(xk+1, yk)

)
(4.5)

23

4 Optimization Algorithms

4.2.3 Convergence Analysis

Throughout this part, we summarize the results of the convergence analysis attained in
[BST14]. For further details and the entire derivation, we refer to this paper.

Let the following assumptions hold for further analysis.

A1 Let the objective function Φ as well as f and g be bounded from below, i.e.

inf
Rn×Rm

Φ > −∞, inf
Rn

f > −∞ and inf
Rm

g > −∞.

A2 The partial gradients ∇x H(x, y) and ∇yH(x, y) are Lipschitz continuous with
moduli Lx(y, z) and Ly(x, z), respectively.

A3 There exist bounds λ−x , λ+
x , λ−y , λ+

y > 0 such that

inf
{

Lx(yk) | k ∈N
}
≥ λ−x and inf

{
Ly(xk) | k ∈N

}
≥ λ−y ,

sup
{

Lx(yk) | k ∈N
}
≤ λ+

x and sup
{

Ly(xk) | k ∈N
}
≤ λ+

y .

A4 The gradient∇H(x, y) is Lipschitz continuous on bounded domains in Rn ×Rm.

A5 The iterates (xk, yk)k∈N are bounded.

Before we state the general convergence results for PALM, let us introduce the notion
of the set of all limit points and denote the set by ω(x0, y0) ⊂ Rn × Rm. We have
(x∗, y∗) ∈ ω(x0, y0) if there exists a subsequence of (xk, yk)k∈N generated by PALM with
starting point (x0, y0) that converges to (x∗, y∗).

Lemma 4.2.2 (properties of limit points of PALM [BST14, Lemma 3.5]). Let the initial
problem 4.3 be given and let (xk, yk)k∈N be a sequence generated by PALM. Moreover, assume
that assumptions A1-A5 are fulfilled. Then the following hold

1. The set ω(x0, y0) is nonempty, compact, connected and contained in the set of the critical
points of the objective function Φ.

2. It is

lim
k→∞
‖(xk, yk)−ω(x0, y0)‖ = 0.

3. The objective function Φ is finite and constant on ω(x0, y0).

Note that a critical point (x, y) ∈ dom Φ fulfills the necessary first-order optimality
condition 0 ∈ ∂Φ(x, y) by Fermat’s rule 2.2.2. Since Φ(x, y) = H(x, y) + f (x) + g(y)
and considering the partial gradients of H, we have

∂Φ(x, y) =
(
∇x H(x, y) + ∂ f (x),∇yH(x, y) + ∂g(y)

)
.

24

4.2 Proximal Alternating Linearized Minimization (PALM)

In addition, under some more assumptions, it is even shown that not only subse-
quences, but each possible sequence (xk, yk)k∈N generated by PALM converges to a
critical point (x∗, y∗) of the objective function Φ, i.e. (x∗, y∗) = lim

k→∞
(xk, yk).

Theorem 4.2.3 (convergence of PALM to critical point [BST14, Thm. 3.1]). Suppose that
the objective function Φ is a KL-function and that (xk, yk)k∈N is a sequence generated by the
Algorithm 4.2.1 PALM. Let the assumptions A1-A5 hold. Then the following yields

1. The sequence (xk, yk)k∈N has finite length.

2. The sequence (xk, yk)k∈N converges to a critical point (x∗, y∗) of Φ.

4.2.4 Inertial PALM (iPALM)

A combination of an inertial term and a proximal algorithm for nonsmooth nonconvex
optimization problems has already been realized for example in [BC15] or [BCL15].

This motivates the consideration of an inertial version of the algorithm PALM.

We extend the forward step concerning the coupling function H in each update of
PALM by an inertial term such that it becomes a heavy-ball step as in Definition 2.3.3.
Thus, we obtain the following scheme.

Algorithm 4.2.4 (iPALM). Inertial Proximal Alternating Linearized Minimization algorithm

• Initialization: Choose α, β > 1 and any (x0, y0) ∈ Rn ×Rm.

• Iterations (k ≥ 0): Update as follows

1. Set αk = αLx(yk), choose µk > 0 and compute

xk+1 ∈ proxαk , f

(
xk − 1

αk
∇x H(xk, yk) + µk(xk − xk−1)

)
(4.6)

2. Set βk = βLy(xk+1), choose ηk > 0 and compute

yk+1 ∈ proxβk ,g

(
yk − 1

βk
∇yH(xk+1, yk) + ηk(yk − yk−1)

)
(4.7)

Yet there exists no convergence theory for this inertial version of PALM.

In the numerical experiments presented in the following chapter, we also apply the
algorithm iPALM to the homogeneous diffusion inpainting given in Definition 3.2.2.
This shall serve as a first evaluation of behaviour and convergence in practical applica-
tion.

25

5 Numerical Experiments

In this chapter, we apply the presented algorithms iPiano, PALM and iPALM to the
problem of linear diffusion-based image compression. Founded on several experi-
ments, we analyze results and performance of these algorithms within this setup.

5.1 Notations

For analyzing the results of the algorithms, we need some tools to quantize and mea-
sure different attributes.

We evaluate the actual results of the experiments. That means accuracy of reconstruc-
tion and sparsity of mask. To measure the quality of the reconstruction, we determine
the mean square error of its difference to the original image. This tool is not used as
stopping criterion since none of the algorithms explicitly minimizes that value.

Definition 5.1.1 (mean square error (MSE)). Let u0, u ∈ RN be given. The mean square
error (MSE) of u to u0 is determined by

MSE
(
u0, u

)
:=

1
N

N

∑
i=1

(u0
i − ui)

2.

Since the mask should be as sparse as possible, we are interested in its nonzero ele-
ments as well as the ratio between nonzero and all elements.

Definition 5.1.2 (1-norm density). Let c ∈ RN be given. The 1-norm is the sum of the
absolute values of all entries in c, i.e.

‖c‖1 :=
N

∑
i=1
|ci|

and the (1-norm) density of c equals the ratio ‖c‖1
N .

Additionally, we measure the step length between two successive iterates of a se-
quence (xk)k∈N ⊂ RN by the normed proximal residual

‖r(xk)‖2 = ‖xk − xk+1‖2.

This helps to define a stopping criterion for an algorithm with respect to the develop-
ment of its iterates. If the step length between two successive iterates becomes smaller
than a given positive tolerance TOL ∈ R, the algorithm stops.

27

5 Numerical Experiments

5.2 iPiano

The problem of linear diffusion-based image compression needs to fit into the frame-
work of the algorithm iPiano to allow its application. Hence, we start by reformulating
the homogeneous diffusion inpainting to achieve a suitable setup for the algorithm.
We also calculate the operators required. Afterwards, the algorithm iPiano is applied
during several experiments. We use different problem setups to be able to evaluate as
well-founded as possible.

5.2.1 Specialization to Linear Diffusion-based Image Compression

The calculations and derivations throughout this subsection rely on [OCBP14].

Recall the linear diffusion-based image compression as a constrained discrete opti-
mization problem from Chapter 3 in Definition 3.2.2.

We need to express the homogeneous diffusion inpainting in terms of an uncon-
strained problem in one variable.

Let u0 be the ground truth image and u its reconstruction based on mask c. For the
following conversions, let c ∈ [0, 1]N be continuously-valued, as relaxation of its initial
formulation. Then, the latter problem still makes sense in the context of inpainting.

Now, we solve u from the equality constraint of Definition 3.2.2 what leads us to the
relation u = A−1Cu0 with A := C + (C− Id)L and C := diag(c). This representation
of u as a function of c emphasizes their dependence. Note that A is invertible if c 6= 0.

Substituting u into the objective function yields the following optimization problem
in one variable

min
c∈[0,1]N

1
2
‖A−1Cu0 − u0‖2

2 + λ‖c‖1. (5.1)

Define the functions

f (c) :=
1
2
‖A−1Cu0 − u0‖2

2

g(c) := λ‖c‖1

to obtain a suitable structured nonsmooth nonconvex optimization problem for the
Algorithm 4.1.1 iPiano. Next, we calculate the gradient of f as well as the proximal
map of g.

Lemma 5.2.1 (gradient of f (c) = 1
2‖A−1Cu0− u0‖2

2 [OCBP14, Lemma 5.2]). Let the func-
tion f : RN → R be real-valued and given by f (c) = 1

2‖A−1 diag(c)u0 − u0‖2
2. Then

∇ f (c) = diag(−(Id + L)u + u0)(AT)−1(u− u0). (5.2)

28

5.2 iPiano

Proof. First of all, we formulate function f (c) in terms of the scalar product which in-
duces the 2-norm on RN

f (c) =
1
2
‖u− u0‖2

2 =
1
2
〈u− u0, u− u0〉.

Remember that u depends on c, but u0 is just a constant independent of c. By Defini-
tion 2.1.7, we get D f (c) : RN → R. Hence, deriving yields

D f (c) = D
(

1
2
〈u− u0, u− u0〉

)
=

1
2
(
〈Du, u− u0〉+ 〈u− u0, Du〉

)
⇒ D f (c) = 〈Du, u− u0〉 (5.3)

Thus, deriving f (c) requires deriving u with respect to c. With the product rule and
the fact that 0 = DId = D(A−1A) = (DA−1)A + A−1DA, it follows that

Du := D(A−1Cu0)−1 = DA−1 · Cu0 + A−1 ·DC · u0

= −A−1DA · A−1Cu0 + A−1 ·DC · u0

= −A−1D(C(Id + L))u + A−1 ·DC · u0

= A−1 ·DC(−(Id + L)u + u0).

Since DC · t = diag(t) ·Dc for t ∈ RN and −(Id + L)u + u0 ∈ RN , it is

Du = A−1 diag(−(Id + L)u + u0)Dc. (5.4)

Substituting 5.4 into 5.3 yields

D f (c) = 〈A−1 diag(−(Id + L)u + u0)Dc, u− u0〉
= 〈Dc, (A−1 diag(−(Id + L)u + u0))T(u− u0)〉

and thus by Definition 2.1.7 and the uniqueness of the gradient

∇ f (c) = diag(−(Id + L)u + u0)(AT)−1(u− u0).

It remains to calculate the proximal map of g(c) = λ‖c‖1. Note that the authors
of [OCBP14] take the term of the resolvent (Id + α∂g)−1(y) instead of the proximal
map proxα−1,g (y). But since g is convex, these two expressions coincide as stated in
Lemma 2.3.6.

29

5 Numerical Experiments

Lemma 5.2.2 (shrinkage operator). Let g : RN → R be the real-valued function defined by
g(c) = λ‖c‖1. Then, for any α > 0, the proximal map of g is given by

proxα−1,g (y) = max (0, |y| − αλ) · sgn(y). (5.5)

Proof. By the Definition 2.3.4 of the proximal map

proxα−1,g (y) = arg min
x∈Rm

(
1
2
‖x− y‖2

2 + αλ‖x‖1

)
.

Since both terms are separable in x, we can minimize each element of x individually.
Hence, min

xi∈R

1
2 (xi − yi)

2 + αλ|xi| for all i ∈ {1, ..., N}. Derive

∂
∂xi

1
2 (xi − yi)

2 = xi − yi

∂
∂xi

αλ|xi| =

αλ , xi > 0
−αλ , xi < 0
[−αλ, αλ] , xi = 0.

Sum up and find the minimum by using Theorem 2.2.2

0 ∈

xi − yi + αλ , xi > 0
xi − yi − αλ , xi < 0
xi − yi + d , d ∈ [−αλ, αλ] , xi = 0

which leads to

xi =

yi − αλ , yi > αλ
yi + αλ , yi < −αλ
0 , −αλ ≤ yi ≤ αλ.

Since αλ ≥ 0, the claim follows.

Remember that the goal of the problem of homogeneous diffusion inpainting 3.2.2 is
to find a binary-valued mask c. It should consist of as few nonzero elements as possible
and still allow a good reconstruction of the original image. Since the shrinkage opera-
tor returns continuously-valued solutions out of [0, 1]N for each iteration of iPiano, we
simply round the very last iterate of the algorithm entrywise to the closest integer.

5.2.2 Initialization of Experiments

During our experiments, we want to test several different initial setups to allow a well-
founded evaluation of the algorithm. But since there exist four customizable parame-

30

5.2 iPiano

ters, changing all of them would not really help us to get a general idea of the frame-
work. Hence, we fix the two parameters α, β which primarily determine the step size
of each iteration.

The parameter β weights the inertial term of the forward gradient step. We fix β = 0.8
since the authors of [OCBP14] indicate this choice as good in practice and since we
received a similar impression during our experiments.

Dependent on β, we choose α = 2 1−β
L+1 . This parameter affects the algorithm during

the forward step as the length in front of the gradient and during the backward step as
part of the range of the shrinkage (see Lemma 5.2.2).

Remember that L denotes the Lipschitz constant of ∇ f . We also need to guess a
value for L. It should rather be taken too big. Consequently, the restricting bound for
step size α becomes smaller than necessary. But choosing L too small could violate the
conditions concerning the parameters in Algorithm 4.1.1. During an experiment, this
would raise α such that the corresponding iteration returns a new iterate which has
a worse objective function value compared to the current value. To prevent the latter
case, we implemented a stopping criterion that breaks the algorithm as soon as the
function value of the new iterate gets worse again.

In addition, there exist two more stopping criteria. We can set a maximal number
of iterations and a tolerance TOL concerning the difference between two successive
iterates. We restrict this normed proximal residual by TOL = 10× 10−10. As long as
the maximal number of iterates is not reached and the difference between the iterates
stays greater than the tolerance, the algorithms proceeds.

Moreover, we initialize the starting point x0 with the full mask c ≡ 1.

All in all, if nothing else is indicated, the experiments are initialized with the follow-
ing parameters

L = 3
β = 0.8
α = 2

55
x0 ≡ 1.

For each experiment, we vary the weight λ of the mask in the objective function to
steer sparsity.

5.2.3 Results

First of all, we start with a simple image consisting of five stripes coloured in black,
white and gray (see Figure 5.1a). The edges between the different colors are straight
and sharp.

The results of our experiments in Figure 5.1 clearly illustrate the edge-detecting char-

31

5 Numerical Experiments

λ MSE density

0.001 0 1
0.002 4.297× 10−32 0.08
0.04 4.297× 10−32 0.08
0.485 0.031 0.06
0.05 0.05 0.04

Table 5.1: experiments for iPiano and test image stripes and different
parameters λ: MSE and density

λ MSE density iterations CPU-time (min)

0.0024 4.821× 10−4 0.0637 2000 1322.5

Table 5.2: experiment for iPiano and test image trui

acter of the algorithm caused by the utilization of the Laplace matrix. Moreover, it
shows that smooth areas can be efficiently reconstructed from the data points of its bor-
der. We just need 8% of the pixels to allow a perfect reconstruction with MSE of the
reconstruction of almost 0 (compare Table 5.1).

Comparing Figure 5.1b and Figure 5.1d, we recognize that edges between colors with
smaller difference are the first omitted. The remaining interpolation data determines
the way of reconstruction. In the example of the “stripes”, the amount of interpolation
data is reduced by omitting the inner edges belonging to the white stripes (Figure 5.1c).
An even greater λ makes a smooth white area replacing the whole gray stripe (Fig-
ure 5.1d). This indicates the lost of information about that gray stripe.

Beyond this first simple figure, Algorithm 4.1.1 iPiano can also be applied to images
like photographs. Therefore, we want to test iPiano on such an image. We take the
standard test image “trui” from Matlab which consists of 256× 256 pixels (Figure 5.3a).
Our implementation of Algorithm 4.1.1 iPiano is able to solve the homogeneous diffu-
sion inpainting for those big images as shown in Figure 5.3b. But the run time takes
relatively long with 22 hours Table 5.2 in comparison to smaller images.

For further and a more detailed analysis, we use an extract of trui of 100× 100 pixels
as given in Figure 5.4a.

Again, the algorithm iPiano determines the edges within the test image and takes
pixels of them as interpolation data. The Figure 5.4b shows the final binary-valued

λ MSE density iterations CPU-time (min)

0.0043 1.047× 10−3 0.0705 3060 121.1

Table 5.3: experiments for iPiano and test image scarf of trui

32

5.2 iPiano

(a) test image stripes (100× 100 pixels)

(b) mask and corresponding reconstruction for λ = 0.002 and λ = 0.04

(c) mask and corresponding reconstruction for λ = 0.0485

(d) mask and corresponding reconstruction for λ = 0.05

Figure 5.1: results of algorithm iPiano, test image “stripes” and differ-
ent parameters λ

33

5 Numerical Experiments

Iterations
0 10 20 30 40 50 60

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

0

50

100

150

200

250

300

350

400

Figure 5.2: evolution of objective function value for test image stripes
in iPiano

(a) test image trui (256× 256 pixels)

(b) mask and corresponding reconstruction

Figure 5.3: results for algorithm iPiano and test image “trui”

34

5.2 iPiano

(a) test image scarf of trui (100× 100 pixels)

(b) mask and corresponding reconstruction

Figure 5.4: results for algorithm iPiano and test image “scarf of trui”

mask for the specification given in Table 5.3. We can easily recognize the smoother
structure of the scarf in the reconstruction in comparison to the original image.

5.2.4 Performance

The performance clearly depends on the size of the input image. But the performance
also depends on the choice of parameters in the initial problem setup.

As already seen in Figure 5.1b, the algorithm iPiano returns the same binary-valued
mask for λ = 0.002 and λ = 0.04 (all other parameters fixed). But the amount of

Iterations
0 500 1000 1500 2000 2500 3000

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

0

5

10

15

20

25

30

35

40

45

Figure 5.5: evolution of objective function value for test image scarf of
trui in iPiano

35

5 Numerical Experiments

λ iterations CPU-time (min)

0.001 1000 42.01
0.002 1000 41.77
0.04 55 2.01
0.485 46 1.79
0.05 45 1.63

Table 5.4: experiments for iPiano and test image stripes with different
parameters λ: iterations and CPU-time

Iterations
0 10 20 30 40 50 60

D
en

si
ty

 o
f M

as
k

0

0.2

0.4

0.6

0.8

1 binary-valued mask
continuously-valued mask

Figure 5.6: evolution of 1- and 0-norm of the iterates for test image
stripes in iPiano with λ = 0.04

iterations and the associated CPU-times given in Table 5.4 considerably deviate by a
factor of about 21. This phenomenon can be explained with the inclusion of parameter
λ into the shrinkage operator (Lemma 5.2.2). The greater λ, the bigger is the value αλ
subtracted from each entry to get the next iterate.

We test several values of fixed parameters λ in the interval [0.002, 0.04]. As ex-
pected, we recognize that the final binary-valued mask stays the same for all these
input datasets. The obvious difference between the runs lies in the number of iterations
until the algorithm terminates. Again, the bigger λ is chosen from this interval, the
faster iPiano seems to converge. Let us have a look at the development of the entries of
the mask during a run of iPiano. Exemplified for test image stripes and λ = 0.04, Fig-
ure 5.6 illustrates the density of the binary-valued as well as continuously-valued mask
in each iteration until termination. The density of the actual iterate of iPiano linearly
decreases over the number of iterations. But the corresponding binary-valued mask
changes abruptly from the initial point (in iteration 28) to the final result (achieved in
iteration 30). In the end, the algorithm terminates since the objective function value of
the next iterate gets worse compared to the current state what we clearly see in Fig-
ure 5.2 from iteration 54 to 55.

In case of the test image scarf of trui, the algorithm also terminates since the objective
function value becomes worse (increase of about 7.6× 10−6, Figure 5.5). The decrease
of the density of the iterates is linear for the first 500 iterations as the plot in Figure 5.7a
visualizes. But the density of the corresponding binary-valued mask rapidly falls from

36

5.2 iPiano

Iterations
0 500 1000 1500 2000 2500 3000

D
en

si
ty

 o
f M

as
k

0

0.2

0.4

0.6

0.8

1 binary-valued mask
continuously-valued mask

(a) evolution of 1- and 0-norm of the iterates

Iterations
0 500 1000 1500 2000 2500 3000

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

proximal residual
1/k

(b) convergent squared normed proximal residual of iterates

Figure 5.7: iterates of algorithm iPiano for test image “scarf of trui”

the initial full mask (in iteration 236) to less than about 0.3 (in iteration 257), slows down
and keeps slightly decreasing until termination of the algorithm (in iteration 3060).

Considering the proximal residual of each iterate, i.e. r(ck) = ck− ck+1, we obtain the
convergence of the generated sequence. Figure 5.7b visualizes that

‖r(ck)‖2
2 ≤

1
k

for all k ≥ 787

and, thus, the generated sequence (ck)k∈N has a convergence rate of O(1/
√

k), i.e.

‖ck − ck+1‖2 ≤
1√
k

for all k ≥ 787.

Next, we adjust the step size parameters α and β for image scarf of trui (Figure 5.4a).
Since we want to raise the effect of the shrinkage operator, we test greater α which can
only be taken for a smaller choice of β due to the assumed restriction in Algorithm 4.1.1.
At the same time, a smaller β means less influence of the inertial force. Keeping the
relation of α, β from the general initialization of our experiments, both β = 0.6 and
β = 0.1 cause slower convergence to the same result (data not provided).

Both plots, Figure 5.6 and Figure 5.7a, indicate that the algorithm iPiano realizes
the most computations affecting the binary-valued mask within just a few iterations in
comparison to its whole run time.

37

5 Numerical Experiments

5.2.5 Commentary

For further experiments and to improve the results, our implementation of iPiano
should be extended at least by an update of the Lipschitz constant L in each iteration.
This could be done by simple backtracking (see [OCBP14]). Since L affects parameter
α, an iterative update of L would adapt the step size to the actual occurrence. The al-
gorithm could start with a rather big step size. This would be decreased every iteration
that requires a smaller step to achieve a better result than the current.

The main challenge during our implementation of iPiano was to find a good balance
between the run time of the algorithm and the amount of data provided at the same
time. The iterative update of L as just suggested could improve the results, but would
also cause more computations during one iteration of the algorithm.

Another challenge is to determine a good choice of parameters for an experiment.
The density of a mask with acceptable MSE of the corresponding reconstruction de-
pends on the number and sharpness of edges in the image.

38

5.3 PALM

5.3 PALM

The linear diffusion-based image compression needs to be implemented as a nons-
mooth nonconvex optimization problem that fits into the framework of the algorithm
PALM. We proceed by specializing the update steps of PALM to this problem and cal-
culate the operators. Then, the algorithm PALM is applied to several instances of the
initial problem formulation. We provide different setups to be able to evaluate as well-
founded as possible.

5.3.1 Specialization to Linear Diffusion-based Image Compression

Recall the linear diffusion-based image compression as a constrained discrete optimiza-
tion problem from Chapter 3 in Definition 3.2.2.

We want to adopt the idea of the homogeneous diffusion inpainting and express it as
a formally unconstrained problem of a sum of functions in two variables. Therefore, let
u0 ∈ [0, 1]N be the ground truth image and u ∈ [0, 1]N its reconstruction based on mask
c ∈ [0, 1]N . The setup of PALM allows the definition of a function coupling the two
variables u and c like in the constraint equation of homogeneous diffusion inpainting.
Moreover, we can add functions in one variable as a restriction of the domain or as
a weight. By using the notion of the indicator function given in Definition 2.3.12, we
define the domains for u and c. Therefore, let ρB2(u0) := {v ∈ RN | ‖v− u0‖2 ≤ ρ}
denote the closed ball around the initial data u0.

Hence, define the coupling function H : RN ×RN → R as well as the constraints
f : RN → R and g : RN → R by

H(u, c) = ‖diag(c)(u− u0) + (diag(c)− Id)Lu‖2
2

f (u) = ιρB2(u0)∩[0,1]N (u)

g(c) = ι[0,1]N (c) +
τ

2
‖c‖2

2.

Next, we formulate the formally unconstrained nonsmooth nonconvex optimization
problem in two variables as follows

min
(u,c)∈RN×RN

H(u, c) + f (u) + g(c)

= min
(u,c)∈RN×RN

‖diag(c)(u− u0) + (diag(c)− Id)Lu‖2
2

+ιρB2(u0)∩[0,1]N (u) + ι[0,1]N (c) +
τ
2‖c‖2.

(5.6)

This is our initial problem formulation for the experiments.

The next Lemma helps us during the calculation of the update steps of PALM. It
provides the gradient of the squared 2-norm of a linear equation in RN .

39

5 Numerical Experiments

Lemma 5.3.1 (gradient of squared normed linear equation [BC11, Ex. 2.48]). Let the
matrix M ∈ RN×N be real-valued and let b ∈ RN . Then,

∇x‖Mx + b‖2
2 = 2MT(Mx + b).

Now, we are prepared to calculate the operators for each update of PALM specialized
to the linear diffusion-based image compression.

Let the optimization problem 5.6 be given. Then, the algorithm PALM updates the
iterates uk, ck for k ∈ N in each step with the following operators. Set αk = αLc(uk+1)
and βk = βLu(ck).

We start by computing the update to the next reconstruction uk+1. By applying
Example 2.3.13, the proximal map of the indicator function ιρB2(u0)∩[0,1]N reduces to the
projection onto ρB2(u0) ∩ [0, 1]N , i.e.

uk+1 ∈ proxβk , ι
ρB2(u

0)∩[0,1]N

(
uk − 1

βk
∇uH(uk, ck)

)
= PρB2(u0)∩[0,1]N

(
uk − 1

βk
∇uH(uk, ck)

)
= P[0,1]N

(
PρB2(u0)

(
uk − 1

βk
∇uH(uk, ck)

))
.

We get the partial gradient of coupling function H by Lemma 5.3.1,

∇uH(u, c) = 2AT (Au− diag(c)u0)
where A := diag(c) + (diag(c)− Id)L.

Substitution into uk+ 1
2 = PρB2(u0)

(
uk − 1

βk
∇uH(uk, ck)

)
yields

uk+ 1
2 =

 ρ
uk− 1

βk
∇u H(u,c)−u0

‖uk− 1
βk
∇u H(u,c)−u0‖2

+ u0 , ‖uk − 1
βk
∇uH(u, c)− u0‖2 > ρ

uk − 1
βk
∇uH(u, c) , otherwise

and the final iterate uk+1 = P[0,1]N

(
uk+ 1

2

)
can be calculated entrywise by

uk+1
j =

0 , uk+ 1

2
j < 0

uk+ 1
2

j , 0 ≤ uk+ 1
2

j ≤ 1

1 , uk+ 1
2

j > 1

.

We continue with the calculation of the update to the next mask ck+1. Again by

40

5.3 PALM

Example 2.3.13, and proximal regularization, it is

ck+1 ∈ proxαk ,ι
[0,1]N+ τ

2 ‖·‖
2
2

(
ck − 1

αk
∇cH(uk+1, ck)

)
= P[0,1]N

(
1

1 + αkτ

(
ck − 1

αk
∇cH(uk+1, ck)

))
.

For Mc := diag(u− u0) + diag(Lu) and by Lemma 5.3.1, the partial gradient of H in
c is given by

∇cH(u, c) = 2MT
c (Mcc− Lu).

Concluding, for ck+ 1
2 = 1

1+ατ

(
ck − 1

αk
∇cH(uk+1, ck)

)
, the final iterate is given by

ck+1
j =

0 , ck+ 1

2
j < 0

ck+ 1
2

j 0 ≤ ck+ 1
2

j ≤ 1

1 , ck+ 1
2

j > 1.

Now, we limit the Lipschitz constants of the partial gradients ∇uH(u, c),∇cH(u, c)
from above and determine rough upper bounds.

Let Lu(c) be the Lipschitz constant of ∇uH(u, c) for a fixed c. Then,

‖∇uH(u1, c)−∇uH(u2, c)‖2 = ‖2AT(Au1 + b)− 2AT(Au2 + b)‖2

= ‖2AT A(u1 − u2)‖2

≤ ‖2AT A‖2 · ‖u1 − u2‖2

and thus Lu(c) ≤ ‖2AT A‖2.

Let Lc(u) be the Lipschitz constant of ∇cH(u, c) for a fixed u. Then,

‖∇cH(u, c1)−∇cH(u, c2)‖2 = ‖2MT
c (Mcc1 − Lu)− 2MT

c (Mcc2 − Lu)‖2

= ‖2MT
c Mc(c1 − c2)‖2

≤ ‖2MT
c Mc‖2 · ‖c1 − c2‖2

and thus Lc(u) ≤ ‖2MT
c Mc‖2.

Note that we chose continuously-valued domains for both iterate groups uk, ck. But
the final mask should be binary-valued with entries in {0, 1}. Therefore, we round the
resulting mask c∗ entrywise to obtain c∗ ∈ {0, 1}N and compute the corresponding
reconstruction by

u∗ = (diag(c∗) + (diag(c∗)− Id)L)−1 diag(c∗)u0.

Unfortunately, this new reconstruction u∗ need not lie any more in the pre-defined
error-ball around the initial image u0.

41

5 Numerical Experiments

5.3.2 Initialization of Experiments

During our experiments for PALM, we test different initial setups to allow a well-
founded evaluation of the algorithm. But since there exist several customizable pa-
rameters, we fix some of them to be able to keep track of the experiments.

First, we set the parameters α, β used to determine the step sizes for the groups of
variables ck, uk, respectively. By assumption, they need to be chosen greater than 1. The
bigger they are, the smaller becomes the gradient step. We take α = 2.5 and β = 1.5.

The maximal number of iterations is limited to 2000. Additionally, we define a second
stopping criterion dealing with the finite length of the generated sequence of PALM
(see Theorem 4.2.3). Therefore, we define a tolerance, i.e. TOL = 1× 10−6. In every
iteration, we calculate the 2-norm of the current and previous iterates for each group of
variables ck, uk separately. As long as one of the groups changes enough that means the
calculated 2-norm is greater than the tolerance, the algorithm proceeds.

Note that we do not define a stopping criterion concerning the objective function
value for every iteration. This is different to our implementation of iPiano. During
computations, the step sizes of PALM are adjusted to the current state in every iteration.
The sequence of objective function values corresponding to the iterates generated by
PALM is not supposed to increase at any time.

Moreover, we initialize the starting point (u0, c0) with the original image u0 and the
empty mask c0 ≡ 0. This means for the coupling function H(u0, c0) 6= 0.

Finally, the bounded domain of the sequence of reconstructions is defined as ρB2(u0)
with radius ρ = 2.5× 10−4.

All in all, if nothing else is indicated, the experiments are initialized with the follow-
ing parameters

α = 2.5
β = 1.2

u0 = u0

c0 ≡ 0.

For each experiment, we vary the regularization parameter τ for the mask in the
objective function to steer sparsity.

5.3.3 Results

Our implementation of Algorithm 4.2.1 PALM can be run for the standard test images
with a size of 256× 256 pixels like “trui” (Figure 5.8a). We present the result of one
experiment in Figure 5.8b and Table 5.5. We can easily recognize the higher priority of
the sharper edges in the scarf for the interpolation data in comparison to the edges in

42

5.3 PALM

(a) test image trui (256× 256 pixels)

(b) mask and corresponding reconstruction

Figure 5.8: results for algorithm PALM and test image “trui”

the hat.

To facilitate comparisons to iPiano, we consider the same two test images “stripes ” in
Figure 5.9a and “scarf of trui ” in Figure 5.11a for further analysis. The algorithm PALM
clearly detects the edges in both images. A smooth area can be perfectly reconstructed
from its boundary (Figure 5.9b). With raising regularization parameter τ, information
of edges with comparatively low contrast are dropped first, as it was the case for iPiano
in Figure 5.1 (not all data provided).

Again, the algorithm PALM determines the edges within the test image and takes
pixels of them as interpolation data. The Figure 5.11 shows final binary-valued masks
for the specifications given in Table 5.7.

If the regularization parameter τ for the mask equals 0, there is no weight at all on the
mask in the initial problem. We stopped the experiment in Figure 5.11b after the maxi-

43

5 Numerical Experiments

τ MSE density iterations CPU-time (min)

0.0046 3.304× 10−3 0.1314 2000 1055.9

Table 5.5: experiment for PALM and test image trui

τ MSE density

0.01 4.288× 10−32 0.08
0.02 4.961× 10−2 0.04

Table 5.6: experiments for PALM, test image stripes and different pa-
rameters τ: MSE and density

(a) test image stripes (100× 100 pixels)

(b) mask and corresponding reconstruction for τ = 0.01

Figure 5.9: algorithm PALM for test image “stripes”

44

5.3 PALM

Iterations
0 10 20 30 40 50 60 70 80 90 100

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

0

50

100

150

200

250

Figure 5.10: evolution of objective function value for test image stripes
in PALM with regularization parameter τ = 0.01

τ MSE density iterations CPU-time

0 1.230× 10−6 0.7566 2000 44.52
0.01 2.3 × 10−3 0.1411 766 12.86

Table 5.7: experiments for PALM and test image scarf of trui and dif-
ferent proximal regularizations

mal number of iterations (2000) to keep the edge-detection visible in the binary-valued
mask. If the entries of the iterates ck are weighted with a regularization parameter
greater than 0, the masks ck need to be adjusted to the coupling function H(u, c) as well
as this additional weight. For τ = 0.01 in Figure 5.11c, we can already easily recognize
the smoother structure of the scarf in the reconstruction compared to the original image
in Figure 5.11a.

5.3.4 Performance

In our experiments, we choose a small threshold TOL. This causes longer run times
than necessary with regard to the binary-valued mask. For the test image stripes, the
final binary-valued mask is hit in iteration 9 as illustrated in Figure 5.13. Afterwards,
only the continuously-valued mask, so the actual iterate, slightly changes over the re-
maining iterations. The algorithm terminates after iteration 96 (Table 5.8) since the
proximal residuals of both groups of variables fall below the tolerance TOL. The corre-
sponding objective function value nearly stagnates from iteration 25 on (Figure 5.10).

Moreover, looking at Figure 5.13, we notice that the binary-valued mask is filled in
stages. First, in iteration 2, the interpolation data for the dark black stripes are deter-
mined at once. After a short waiting time, in iteration 10, the data for the gray-coloured
stripe in the middle of the image are added. The actual iterates of the experiment de-
velop in a similar but smooth way. First, their density is raised very fast, slows down
and, finally from iteration 20 on, converges to a value of about 0.06. This shows that the
darker an edge is, the higher is its priority for the interpolation data.

45

5 Numerical Experiments

(a) test image scarf of trui (100× 100 pixels)

(b) mask and corresponding reconstruction for τ = 0

(c) mask and corresponding reconstruction for τ = 0.01

Figure 5.11: algorithm PALM for test image “scarf of trui”

Iterations
0 100 200 300 400 500 600 700 800

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

0

5

10

15

20

25

30

35

40

45

50

Figure 5.12: evolution of objective function value for test image scarf
of trui in PALM with regularization parameter τ = 0.01

46

5.3 PALM

Iterations
0 10 20 30 40 50 60 70 80 90 100

D
en

si
ty

 o
f M

as
k

0

0.02

0.04

0.06

0.08

0.1

binary-valued mask
continuously-valued mask

Figure 5.13: evolution of 1- and 0-norm density of the iterates for
test image stripes in PALM with regularization parame-
ter τ = 0.01

τ iterations CPU-time

0.01 96 1.59
0.02 169 4.20

Table 5.8: experiments for PALM and test image stripes and different
regularization parameters: iterations and CPU-time

For test image scarf of trui, the same initialization (like for stripes) ends up in a worse
solution compared to the result of iPiano. But the CPU-time of the experiment for
PALM takes about one-tenth of the time of iPiano. See Table 5.7 for the result. From
iteration 200 on, the 1- and 0-norm density of the mask iterates converges to the final
solution (Figure 5.14a). Moreover, the proximal residuals of the iterates for the two
groups of variables, mask ck and reconstruction uk, in Figure 5.14b seem not to be worse
in comparison to iPiano since

‖r(ck)‖2
2 ≤

1
k

for all k ≥ 227

‖r(uk)‖2
2 ≤

1
k

for all k ∈N.

Hence, ‖ck − ck+1‖2 and ‖uk − uk+1‖2 converge in O(1/
√

k).

The plots in Figure 5.13 and Figure 5.14a indicate that the algorithm PALM realizes
the most computations affecting the binary-valued mask within the first few iterations
in comparison to its whole run time.

5.3.5 Commentary

To improve the results, further experiments could utilize the feature of additional block-
ing in PALM as it is suggested for the Proximal Heterogeneous Block Implicit-Explicit

47

5 Numerical Experiments

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

binary-valued mask
continuously-valued mask

(a) evolution of 1- and 0-norm density of the mask iterates

Iterations
0 100 200 300 400 500 600 700 800

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0 proximal residual of mask iterates
proximal residual of reconstruction iterates
1/k

(b) convergent squared normed proximal residuals of mask and recon-
struction iterates

Figure 5.14: iterates of PALM for test image scarf of trui with τ = 0.01

48

5.3 PALM

Algorithm in [HLST15]. The idea is to split each group of variables once more into sub-
blocks which are updated successively. In general, this allows parallel computations
what speeds up the algorithm. In our problem of linear diffusion-based image com-
pression, we could optimize mask and reconstruction for smaller pieces of the initial
image (like “trui”). This would allow to precisely fit the step sizes to each single part.

As for iPiano, it is challenging to determine a good choice of parameters for an ex-
periment with algorithm PALM. The density of a mask with acceptable MSE of the
corresponding reconstruction depends on number and sharpness of edges in the im-
age. The method of additional blocking mentioned above could aid in finding suitable
parameters for each subblock independently.

49

5 Numerical Experiments

5.4 iPALM

To construct the experimental setting for the new algorithm iPALM, we adopt the setup
built for the algorithm PALM and expand it with the inertial force. Afterwards, we
analyze the implementation of iPALM on the problem of linear diffusion-based image
compression.

5.4.1 Specialization to Linear Diffusion-based Image Compression

Since iPALM is an extension of algorithm PALM and solves the same class of optimiza-
tion problems, we take the initial problem formulated for PALM.

As usual, let u0 be the ground truth image and u its reconstruction based on mask c.
Define the coupling function H : RN ×RN → R as well as the constraints f : RN → R

and g : RN → R by

H(u, c) = ‖diag(c)(u− u0) + (diag(c)− Id)Lu‖2
2

f (u) = ιρB2(u0)∩[0,1]N (u)

g(c) = ι[0,1]N (c) +
τ

2
‖c‖2

2.

The initial optimization problem for the experiments testing iPALM is the following

min
(u,c)∈RN×RN

H(u, c) + f (u) + g(c)

= min
(u,c)∈RN×RN

‖diag(c)(u− u0) + (diag(c)− Id)Lu‖2
2

+ιρB2(u0)∩[0,1]N (u) + ι[0,1]N (c) +
τ
2‖c‖2

2.

(5.7)

The operators for updating the iterates can be calculated analogously to those of
PALM in Section 5.3.1.

Let the optimization problem 5.7 be given. Then, the Algorithm 4.2.4 iPALM updates
the iterates uk, ck for k ∈N in each step with the following operators.

First, we compute the update to the next reconstruction uk+1, i.e.

uk+1 ∈ proxβk , ι
ρB2(u

0)∩[0,1]N

(
uk − 1

βk
∇uH(uk, ck) + ηk(uk − uk−1)

)
= P[0,1]N

(
PρB2(u0)

(
uk − 1

βk
∇uH(uk, ck) + ηk(uk − uk−1)

))
.

Let Hhb(uk, ck) := uk − 1
βk
∇uH(uk, ck) + ηk(uk − uk−1) be the heavy-ball update step

for the smooth coupling function H(u, c). The projection onto the ball ρB2(u0) is given

50

5.4 iPALM

by

uk+ 1
2 =

{
ρ Hhb(uk ,ck)−u0

‖Hhb(uk ,ck)−u0‖2
+ u0 , ‖Hhb(uk, ck)− u0‖2 > ρ

Hhb(uk, ck) , otherwise

and the final iterate uk+1 = P[0,1]N

(
uk+ 1

2

)
can be calculated entrywise by

uk+1
j =

0 , uk+ 1

2
j < 0

uk+ 1
2

j , 0 ≤ uk+ 1
2

j ≤ 1

1 , uk+ 1
2

j > 1.

Next, we compute the update to the next mask ck+1, i.e.

ck+1 ∈ proxαk ,ι
[0,1]N+ τ

2 ‖·‖
2
2

(
ck − 1

αk
∇cH(uk+1, ck) + µk(ck − ck−1)

)
= P[0,1]N

(
1

1 + αkτ

(
ck − 1

αk
∇cH(uk+1, ck) + µk(ck − ck−1)

))
.

Finally, for ck+ 1
2 = 1

1+αkτ

(
ck − 1

αk
∇cH(uk+1, ck) + µk(ck − ck−1)

)
, the final iterate is

entrywise given by

ck+1
j =

0 , ck+ 1

2
j < 0

ck+ 1
2

j 0 ≤ ck+ 1
2

j ≤ 1

1 , ck+ 1
2

j > 1.

5.4.2 Initialization of Experiments

To permit a direct comparison of the algorithms PALM and iPALM, we initialize the
experiments for iPALM with the same datasets as used for PALM. The essential differ-
ence are the additional nonzero weights of the inertial terms which we hold constant
during an experiment, i.e. ηk = η and µk = µ.

More precisely, algorithm iPALM is initialized with the following parameters

α = 2.5
β = 1.2
u0 = u0

c0 ≡ 0
ρ = 2.5× 10−4

τ = 0.01.

We vary the tolerance TOL to get a better idea of the motion of the sequence gener-
ated by iPALM.

51

5 Numerical Experiments

µ η TOL MSE density iterations

0.5 0.5 1× 10−4 4.288× 10−32 0.08 7
0.8 0.8 1× 10−4 4.288× 10−32 0.08 3

Table 5.9: experiments for iPALM with test image stripes and different
parameters µ, η

µ η MSE density iterations CPU-time

0.5 0.5 1.57× 10−3 0.1592 8 0.3

Table 5.10: experiments for iPALM and test image scarf of trui

5.4.3 Results and Performance

First, we set η = µ = 0.5, TOL = 1 × 10−32 and the maximal number of iterations
to 2000. Though, the algorithm stops after only 165 iterations (see Figure 5.15). But,
unfortunately, the generated sequence ended in a worse solution compared to PALM
in Figure 5.13. Considering the function value of the initial problem in Figure 5.15a,
we recognize that the sequence seems to hit a (at least) local minimum in iteration 7.
Then, the corresponding function value grows again, just slightly in the beginning, then
faster. When we compare this plot to the evolution of the corresponding density of the
iterates in Figure 5.15, we also find a decreasing density of the iterates which starts to
grow again after iteration 7.

If we set the tolerance TOL to 1× 10−4 or stop the algorithm as soon as the objective
function value gets worse, algorithm iPALM stops after 7 iterations. The solution con-
sists of a binary-valued mask with a density of 0.08 and a corresponding reconstruction
with a MSE of 4.288× 10−32 (Table 5.9). This is the same solution that PALM reaches
after 10 iterations (compare Table 5.6, Figure 5.13 and Table 5.8).

Raising the effect of the inertial terms by setting η = µ = 0.8, the generated sequence
reaches the desired solution already in iteration 3 (Table 5.9).

The smaller tolerance TOL = 1 × 10−4 is not enough for the experiment with test
image “scarf of trui” to stop the algorithm as soon as it hits the (local) minimum. We
test the same initialization as for PALM but with nonzero inertial force. The (local)
minimum is reached in iteration 8 (Figure 5.16). Afterwards, the objective function
value increases again. The solution achieved by iPALM and given in Figure 5.17b and
Table 5.10 is different from the corresponding solution of algorithm PALM (compare
Table 5.7).

An inertial force can affect the motion of a sequence generated by the algorithm such
that it may leave a (local) minimum again. This is exactly what we observe in our exper-
iment in Figure 5.15. The determination of an universal stopping criterion to prevent
from ending up in a worse solution like in our example remains as an open task.

52

5.4 iPALM

Iterations
0 20 40 60 80 100 120 140 160

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

0

50

100

150

200

250

(a) evolution of objective function value

Iterations
0 20 40 60 80 100 120 140 160 180

D
en

si
ty

 o
f M

as
k

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

binary-valued mask
continuously-valued mask

(b) evolution of density of iterates

Figure 5.15: evolution of function value and density of the iterates
for test image stripes in iPALM with stopping criterion
TOL ≈ 0

Iterations
0 10 20 30 40 50 60 70 80 90

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

0

5

10

15

20

25

30

35

40

45

50

55

Figure 5.16: evolution of objective function value for test image scarf
of trui in iPALM with inertial forces µ = η = 0.5

53

5 Numerical Experiments

(a) test image scarf of trui (100× 100 pixels)

(b) mask and corresponding reconstruction for µ = η = 0.5

Figure 5.17: algorithm iPALM for test image “scarf of trui”

54

6 Conclusion

This thesis investigated two conceptually different algorithms to solve the same opti-
mization problem. However, the two algorithms iPiano and PALM rely on the same
basic idea of forward-backward updates combining a gradient method with a proximal
mapping.

We tested the different algorithm setups on several input data of a diffusion-based
image compression problem. To facilitate comparisons, we run iPiano and PALM on
the same images and under as similar conditions as possible.

The reasons to prefer iPiano as standard solver for a special class of nonsmooth non-
convex optimization problems are its simpleness and efficiency - to cite the developers.
But during the numerical experiments, we could not verify a significant advantage in
results or performance of algorithm iPiano compared to PALM.

A good choice of parameters that make the corresponding algorithm efficiently ter-
minate in a favourable solution is often challenging to find. Regarding this challenge,
there was no big difference between iPiano and PALM during our experiments. Quality
of results and performance heavily depend on the initialization.

For both algorithms, we achieved similar results with regard to the quality of the
output. Some experiments for iPiano ended in a better solution than for PALM. The
amount of interpolation data is smaller whereas the corresponding reconstructed image
has a worse MSE.

But with regard to the performance, algorithm PALM significantly beats iPiano. Al-
gorithm PALM needs less computing power and time for all instances tested. Therefore,
it could be interesting to extend the implementation of PALM by an additional block-
ing of the variables as already suggested. Probably, this makes the choice of parameters
easier and the quality of results better than at present.

Another advantage of algorithm PALM is that it solves a more general class of nons-
mooth nonconvex optimization problems than iPiano. Hence, this fact and our experi-
ments suggest to take PALM as the first choice from the theoretical as well as practical
point of view.

In addition, we implemented and tested a new variant of the algorithm PALM, an
inertial PALM (iPALM). It combines PALM with an inertial force in the forward step.
As observed during the experiments, algorithm iPALM generates sequences converg-
ing to solutions with comparable quality as achieved by iPiano or PALM. The addi-

55

6 Conclusion

tional inertial term caused a slightly better performance in our experiment compared to
PALM. Hence, a more detailed analysis, theoretical convergence theory and universal
strategies to set stopping criteria for iPALM would be worthwhile.

56

List of Theorems

2.1.1 Definition (domain, lower level set) . 3
2.1.2 Definition (convex set, convex function) 4
2.1.3 Example (convexity of 1-norm) . 4
2.1.4 Definition (lower semicontinuity) . 4
2.1.5 Definition (Lipschitz continuity) . 4
2.1.6 Example (Lipschitz continuity of 2-norm) 4
2.1.7 Definition (Fréchet differentiability, gradient) 5
2.1.8 Definition (subdifferential, subgradient) 5
2.1.9 Example (subdifferentiability of absolute value function) 6
2.1.10 Definition (KL-property, KL-function) 6
2.2.1 Definition (nonsmooth nonconvex optimization problem) 7
2.2.2 Theorem (Fermat’s rule test) . 7
2.2.3 Definition (critical point) . 7
2.3.1 Definition (gradient descent) . 8
2.3.2 Example (convergence of gradient descent for 1

2 x2) 8
2.3.3 Definition (heavy-ball method) . 9
2.3.4 Definition (proximal map) . 10
2.3.5 Definition (resolvent) . 10
2.3.6 Lemma (relation of proximal map and resolvent) 10
2.3.7 Proposition (relation of proximal map and subdifferential in the convex

setting) . 10
2.3.8 Example (proximal map for g ≡ 0) . 11
2.3.9 Theorem (convergence of proximal map to gradient descent) 11
2.3.10 Definition (projection operator) . 11
2.3.11 Example (projection onto ball) . 12
2.3.12 Definition (indicator function) . 12
2.3.13 Example (proximal map of indicator function) 12

3.2.1 Definition (Laplace interpolation) . 14
3.2.2 Definition (homogeneous diffusion inpainting) 18

4.1.1 Algorithm (iPiano) . 20
4.1.2 Theorem (general convergence results of iPiano) 21
4.1.3 Theorem (convergence of iPiano to critical point) 21
4.2.1 Algorithm (PALM) . 23
4.2.2 Lemma (properties of limit points of PALM) 24
4.2.3 Theorem (convergence of PALM to critical point) 25
4.2.4 Algorithm (iPALM) . 25

57

List of Theorems

5.1.1 Definition (mean square error (MSE)) . 27
5.1.2 Definition (1-norm density) . 27
5.2.1 Lemma (gradient of f (c) = 1

2‖A−1Cu0 − u0‖2
2) 28

5.2.2 Lemma (shrinkage operator) . 30
5.3.1 Lemma (gradient of squared normed linear equation) 40

58

List of Figures

2.1 absolute value function |x| in R and its subdifferential ∂|x| 6
2.2 convergence of gradient descent for f (x) = 1

2 x2 and starting point x0 = 2 9
2.3 set- and single-valued projection operators 12

3.1 regular 4× 4 -grid with size l := 1 and pixels numbered by 1, ..., 16 . . . 16
3.2 neighbours in a regular 3× 3 -grid with size 1 17

5.1 results of algorithm iPiano, test image “stripes” and different parameters λ 33
5.2 evolution of objective function value for test image stripes in iPiano . . . 34
5.3 results for algorithm iPiano and test image “trui” 34
5.4 results for algorithm iPiano and test image “scarf of trui” 35
5.5 evolution of objective function value for test image scarf of trui in iPiano 35
5.6 evolution of 1- and 0-norm of the iterates for test image stripes in iPiano

with λ = 0.04 . 36
5.7 iterates of algorithm iPiano for test image “scarf of trui” 37
5.8 results for algorithm PALM and test image “trui” 43
5.9 algorithm PALM for test image “stripes” 44
5.10 evolution of objective function value for test image stripes in PALM with

regularization parameter τ = 0.01 . 45
5.11 algorithm PALM for test image “scarf of trui” 46
5.12 evolution of objective function value for test image scarf of trui in PALM

with regularization parameter τ = 0.01 46
5.13 evolution of 1- and 0-norm density of the iterates for test image stripes

in PALM with regularization parameter τ = 0.01 47
5.14 iterates of PALM for test image scarf of trui with τ = 0.01 48
5.15 evolution of function value and density of the iterates for test image

stripes in iPALM with stopping criterion TOL ≈ 0 53
5.16 evolution of objective function value for test image scarf of trui in iPALM

with inertial forces µ = η = 0.5 . 53
5.17 algorithm iPALM for test image “scarf of trui” 54

59

List of Tables

5.1 experiments for iPiano and test image stripes and different parameters
λ: MSE and density . 32

5.2 experiment for iPiano and test image trui 32
5.3 experiments for iPiano and test image scarf of trui 32
5.4 experiments for iPiano and test image stripes with different parameters

λ: iterations and CPU-time . 36
5.5 experiment for PALM and test image trui 44
5.6 experiments for PALM, test image stripes and different parameters τ:

MSE and density . 44
5.7 experiments for PALM and test image scarf of trui and different proximal

regularizations . 45
5.8 experiments for PALM and test image stripes and different regulariza-

tion parameters: iterations and CPU-time 47
5.9 experiments for iPALM with test image stripes and different parameters

µ, η . 52
5.10 experiments for iPALM and test image scarf of trui 52

60

Bibliography

[ABRS10] Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran.
Proximal Alternating Minimization and Projection Methods for Noncon-
vex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequal-
ity. Math. Oper. Res., 35(2):438–457, May 2010.

[BC11] Heinz H. Bauschke and Patrick L. Combettes. Convex Analysis and Mono-
tone Operator Theory in Hilbert Spaces. Springer Publishing Company, In-
corporated, 1st edition, 2011.

[BC15] RaduIoan Boţ and ErnöRobert Csetnek. An Inertial Tseng’s Type Proximal
Algorithm for Nonsmooth and Nonconvex Optimization Problems. Jour-
nal of Optimization Theory and Applications, pages 1–17, 2015.

[BCL15] Radu Ioan Boţ, Ernö Robert Csetnek, and Szilárd Csaba László. An iner-
tial forward–backward algorithm for the minimization of the sum of two
nonconvex functions. EURO Journal on Computational Optimization, pages
1–23, 2015.

[BST14] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal Alternating
Linearized Minimization for Nonconvex and Nonsmooth Problems. Math.
Program., 146(1-2):459–494, August 2014.

[BT09] Amir Beck and Marc Teboulle. Gradient-based algorithms with applica-
tions to signal-recovery problems. In Daniel P. Palomar and Yonina C. El-
dar, editors, Convex Optimization in Signal Processing and Communications,
pages 42–88. Cambridge University Press, 2009.

[Cia13] Philippe G. Ciarlet. Linear and Nonlinear Functional Analysis with Applica-
tions. Applied mathematics. SIAM, Philadelphia, 2013.

[CS05] Tony Chan and Jianhong Shen. Image Processing And Analysis: Variational,
PDE, Wavelet, And Stochastic Methods. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2005.

[Eva10] Lawrence C. Evans. Partial differential equations. Graduate studies in math-
ematics. American Mathematical Society, Providence (R.I.), 2nd edition,
2010.

[GSJ13] E. Ghadimi, I. Shames, and M. Johansson. Multi-Step Gradient Meth-

61

Bibliography

ods for Networked Optimization. Signal Processing, IEEE Transactions on,
61(21):5417–5429, 2013.

[GWW+08] Irena Galić, Joachim Weickert, Martin Welk, Andrés Bruhn, Alexander
Belyaev, and Hans-Peter Seidel. Image Compression with Anisotropic Dif-
fusion. Journal of Mathematical Imaging and Vision, 31(2-3):255–269, 2008.

[HLN14] R. Hesse, D.R. Luke, and P. Neumann. Alternating Projections and
Douglas-Rachford for Sparse Affine Feasibility. Signal Processing, IEEE
Transactions on, 62(18):4868–4881, Sept 2014.

[HLST15] Robert Hesse, D. Russell Luke, Shoham Sabach, and Matthew K. Tam.
Proximal Heterogeneous Block Implicit-Explicit Method and Application
to Blind Ptychographic Diffraction Imaging. SIAM J. Imaging Sciences,
8(1):426–457, 2015.

[HMH+15] Laurent Hoeltgen, Markus Mainberger, Sebastian Hoffmann, Joachim We-
ickert, Ching Hoo Tang, Simon Setzer, Daniel Johannsen, Frank Neumann,
and Benjamin Doerr. Optimising Spatial and Tonal Data for PDE-based
Inpainting. CoRR, abs/1506.04566, 2015.

[HSW13] Laurent Hoeltgen, Simon Setzer, and Joachim Weickert. An Optimal Con-
trol Approach to Find Sparse Data for Laplace Interpolation. In EMM-
CVPR, pages 151–164, 2013.

[MBWF11] Markus Mainberger, Andrés Bruhn, Joachim Weickert, and Søren Forch-
hammer. Edge-based compression of cartoon-like images with homoge-
neous diffusion, 2011.

[Mor65] J.J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la
Société Mathématique de France, 93:273–299, 1965.

[MW09] Markus Mainberger and Joachim Weickert. Edge-Based Image Compres-
sion with Homogeneous Diffusion. In Proceedings of the 13th International
Conference on Computer Analysis of Images and Patterns, CAIP ’09, pages 476–
483, Berlin, Heidelberg, 2009. Springer-Verlag.

[OBP15] P. Ochs, T. Brox, and T. Pock. iPiasco: Inertial Proximal Algorithm for
strongly convex Optimization. Journal of Mathematical Imaging and Vision,
2015.

[OCBP14] Peter Ochs, Yunjin Chen, Thomas Brox, and Thomas Pock. iPiano: In-
ertial Proximal Algorithm for Nonconvex optimization. SIAM J. Imaging
Sciences, 7(2):1388–1419, 2014.

[PB13] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and
Trends in optimization, 1(3):123–231, 2013.

62

Bibliography

[Pol97] Elijah Polak. Optimization: Algorithms and Consistent Approximations. Ap-
plied Mathematical Sciences. Springer, 1997.

[Roc70] R. Tyrrell Rockafellar. Convex Analysis. Princeton Mathematical Series.
Princeton University Press, 1970.

[RW98] R Tyrrell Rockafellar and RJB Wets. Variational Analysis, volume 317.
Springer: Grundlehren der Math. Wissenschaften., 1998.

[Str09] Th. Strutz. Bilddatenkompression. Grundlagen, Codierung, Wavelets, JPEG,
MPEG, H.264. 4. Aufl. Vieweg Verlag, 2009.

[SWB09] Christian Schmaltz, Joachim Weickert, and Andrés Bruhn. Beating the
quality of jpeg 2000 with anisotropic diffusion. In Joachim Denzler, Gun-
ther Notni, and Herbert Süße, editors, DAGM-Symposium, volume 5748 of
Lecture Notes in Computer Science, pages 452–461. Springer, 2009.

[ZK93] S.K. Zavriev and F.V. Kostyuk. Heavy-ball method in nonconvex optimiza-
tion problems. Computational Mathematics and Modeling, 4(4):336–341, 1993.

63

Eidesstattliche Erklärung

Mit dieser Unterschrift versichere ich,

Rebecca Nahme

dass ich die vorliegende Masterarbeit mit dem Titel

Inertial Proximal Algorithms
in Diffusion-based Image Compression

selbstständig verfasst und keine anderen als die angegebenen Quellen sowie Hilfsmit-
tel verwendet habe.

Göttingen, 13.11.2015

65

	Introduction
	Preliminaries
	Functions
	Optimization Problems
	Optimization Tools and Methods
	Gradient Methods
	Proximal Methods
	Projection Methods

	Linear Diffusion-based Image Compression
	Image Compression and Inpainting
	Combining Diffusion and Inpainting
	Combination Approach
	Discrete Problem Formulation
	Outlook

	Optimization Algorithms
	Inertial Proximal Algorithm for Nonconvex Optimization (iPiano)
	Initial Problem
	The iPiano-algorithm
	Convergence Analysis

	Proximal Alternating Linearized Minimization (PALM)
	Initial Problem
	The PALM-algorithm
	Convergence Analysis
	Inertial PALM (iPALM)

	Numerical Experiments
	Notations
	iPiano
	Specialization to Linear Diffusion-based Image Compression
	Initialization of Experiments
	Results
	Performance
	Commentary

	PALM
	Specialization to Linear Diffusion-based Image Compression
	Initialization of Experiments
	Results
	Performance
	Commentary

	iPALM
	Specialization to Linear Diffusion-based Image Compression
	Initialization of Experiments
	Results and Performance

	Conclusion

