Übungen Lineare Algebra II (Blatt 5)

Aufgabe 1

Sei $f(\mathbf{x}) = \mathbf{A} \mathbf{x}$ eine lineare Abbildung von K^n in $K^m, \mathbf{A} \in K^{m \times n}$. Man überprüfe die folgenden Aussagen:

- a) Ist die Summe der Komponenten jeder Zeile von **A** Null, so gilt rg $f \leq n-1$.
- b) Ist die Summe der Komponenten jeder Spalte von **A** Null, so gilt def $f \ge 1$. (4P)

Aufgabe 2

Sei $V = \mathbb{R}^4$ und der Untervektorraum $W \subseteq V$ bestehe aus allen Vektoren der Gestalt $(x_1, x_1 + x_2, x_1 - x_2, x_2)^T$. Man bestimme:

- a) eine Basis B' von $V|_{W}$,
- b) eine Basis B von V und die darstellende Matrix \mathbf{A}_f der linearen Abbildung $f: V \to V|_W$, die jeden Vektor $\mathbf{x} \in V$ auf seine Äquivalenzklasse $[\mathbf{x}] \in V|_W$, abbildet bezüglich B, B',
- c) einen zu $V|_W$ isomorphen Untervektorraum $W' \subseteq V$ mit $V = W \oplus W'$. (8P)

Aufgabe 3

Sei $\mathcal{B} = \{\sin, \cos, \sin \cdot \cos, \sin^2, \cos^2\}$ und $V := [\mathcal{B}] \subset \text{Abb } (\mathbb{R}, \mathbb{R})$. Der Endomorphismus $F : V \to V$ sei gegeben durch $f \mapsto f'$ (dabei bezeichnet f' die erste Ableitung von f).

- (i) Zeigen Sie, dass \mathcal{B} eine Basis von V ist.
- (ii) Bestimmen Sie die darstellende Matrix $\mathcal{M}_{\mathcal{B}}(F)$.
- (iii) Bestimmen Sie den Rang und Defekt von F. (6P)

Aufgabe 4

Bestimmen Sie eine Basis von Ker f_i und Im f_i sowie Rang und Defekt von f_i , i = 1, 2.

$$f_1: \mathbb{R}^2 \to \mathbb{R}^3, \quad (x,y) \mapsto (x-y,y-x,x),$$

 $f_2: \mathbb{R}^3 \to \mathbb{R}^3, \quad (x,y,z) \mapsto (2x+y+3z,x+4y-z,-7y+5z)$ (2P)

Abgabetermin: Bis Montag, den 22.05.2006, 10.15 Uhr Briefkästen LE 4. Etage