Übungen Lineare Algebra II (Blatt 6)

Aufgabe 1

Man bestimme $x, y, z \in \mathbb{R}$ derart, daß

$$\mathbf{A} = \frac{1}{9} \cdot \begin{pmatrix} 8 & 4 & -1\\ -1 & 4 & 8\\ x & y & z \end{pmatrix} \tag{3P}$$

eine orthogonale Matrix ist.

Aufgabe 2

Ist $\mathbf{w} \in \mathbb{R}^n$ mit $\mathbf{w}^T \mathbf{w} = 1$, so bezeichnet man

$$\mathbf{H} = \mathbf{I}_n - 2\mathbf{w}\mathbf{w}^T$$

als (reelle) Householder-Matrix.

- a) Man beweise, dass **H** symmetrisch und orthogonal ist.
- b) Man zeige, dass $\mathbf{H}\mathbf{w} = -\mathbf{w}$ gilt und $\mathbf{H}\mathbf{x} = \mathbf{x}$, falls $\mathbf{w}^T\mathbf{x} = 0$. (3P)

Aufgabe 3

Man untersuche, ob die bezüglich einer festen Basis B von V_n (über \mathbb{R}) durch ihre darstellende Matrix \mathbf{A}_f gegebene lineare Abbildung f diagonalisierbar sind. Dabei ist \mathbf{A}_f durch

$$\mathbf{A}_f = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -6 & 1 & 7 & -1 \end{pmatrix}$$

gegeben. Falls das der Fall ist, gebe man eine Matrix \mathbf{M} an, für die $\mathbf{M}^{-1} \mathbf{A}_f \mathbf{M}$ eine Diagonalmatrix ist. (7P)

Aufgabe 4

Man beweise:

Sei **A** eine schiefsymmetrische (n, n)-Matrix (d.h. $\mathbf{A} = -\mathbf{A}^T$) und n gerade. Dann treten in dem charakteristischen Polynom $|\mathbf{A} - \lambda \mathbf{I}_n|$ nur gerade λ -Potenzen auf. (4P)

Abgabetermin: Bis Montag, den 29.05.2006, 10.15 Uhr Briefkästen LE 4. Etage