
Chapter 1

One-Dimensional Discrete-Time Phase
Retrieval

Robert Beinert and Gerlind Plonka

Abstract The phase retrieval problem has a long and rich history with ap-
plications in physics and engineering such as crystallography, astronomy, and
laser optics. Usually, the phase retrieval consists in recovering a real-valued or
complex-valued signal from the intensity measurements of its Fourier trans-
form. If the complete phase information in frequency domain is lost then the
problem of signal reconstruction is severally ill-posed and possesses many
non-trivial ambiguities. Therefore, it can only be solved using appropriate
additional signal information. We restrict ourselves to the one-dimensional
discrete-time phase retrieval from Fourier intensities and particularly con-
sider signals with finite support. In the first part of this section, we study
the structure of the arising ambiguities of the phase retrieval problem and
show how they can be characterized using the given Fourier intensity. Em-
ploying these observations, in the second part, we study different kinds of a
priori assumptions on the signal, where we are especially interested in their
ability to reduce the non-trivial ambiguities or even to ensure uniqueness of
the solution. In particular, we consider the assumption of non-negativity of
the solution signal, additional magnitudes or phases of some signal compo-
nents in time domain, or additional intensities of interference measurements
in frequency domain. Finally, we transfer our results to phase retrieval prob-
lems where the intensity measurements arise, for example, from the Fresnel
or fractional Fourier transform.
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1.1 Introduction

In the classical phase retrieval problem, one is usually faced with the recovery
of a complex-valued signal from intensity measurements of its Fourier trans-
form. Recovery problems of this kind have many interesting applications in
physics and engineering like crystallography [24, 28, 33], astronomy [18, 20],
and laser optics [42, 43]. Without further information about the unknown sig-
nal, the phase retrieval problem is highly ambiguous such that the recovery
of the true solution within the solution set is nearly hopeless.

In this chapter, we consider the one-dimensional discrete-time variant of
the phase retrieval problem, where we restrict ourselves to the recovery of
complex-valued signals with finite support length. The solution set of this
problem can be characterized by investigating and factorizing the related
autocorrelation function, which coincides with the squared given Fourier in-
tensity, see [12, 18, 36]. As a consequence of this characterization, we show
how ambiguities of the discrete-time phase retrieval problem are related to the
true solution signal. Trivial ambiguities are caused by multiplication with a
unimodular constant, time-shifts, and reflection and conjugation. Non-trivial
ambiguities are essentially obtained by conjugation of linear factors of the
algebraic polynomial being defined by the signal values [12]. The number of
these non-trivial ambiguities essentially depends on the structure of the given
intensities [8].

Depending on the application, one can incorporate different a priori con-
ditions or further information about the unknown signal in order to get rid
of the unwanted ambiguities. One approach to reduce the solution set is to
assume that the unknown signal is real-valued and non-negative. The non-
negativity condition is usually employed if the original signal represents an
intensity or a probability density, see for instance [18, 22, 33]. The a pri-
ori non-negativity is, moreover, exploited by a variety of numerical methods
like the alternating projection algorithm [1, 6, 20, 22] or adapted multilevel
Gauß–Newton methods [43]. In the one-dimensional case considered here, the
non-negativity constraint is, however, very erratic [10]. In special cases, the
restricted phase retrieval problem can become uniquely solvable. However, in
many situations, the non-negativity assumption may either not reduce the
solution set at all or may lead to an empty solution set.

Sometimes, like in wave front sensing and laser optics [42], one has addi-
tionally access to the magnitudes of the unknown signal itself. The obtained
restricted one-dimensional phase retrieval problem with a priori magnitude
information in time domain can be efficiently solved by multilevel Gauß–
Newton methods [30, 31, 43]. While these numerical methods work well in
certain cases, their stability strongly depends on the given Fourier intensities
[7]. Moreover, the algorithms can converge to approximate solutions which
essentially differ from the true solution signal. On the basis of these numerical
observations, we study the question whether the knowledge of magnitudes of
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the signal components can guarantee uniqueness. Our findings imply that the
related phase retrieval problems are uniquely solvable for almost all finite-
length signals [12, 13]. But there also exist instances of non-unique phase
retrieval problems with given magnitudes of the signal components [8]. Our
results on uniqueness of solutions can be transferred to phase retrieval prob-
lems with additional phase information in time domain [13].

A further approach to reduce the solution set or to ensure uniqueness is
to exploit additional measurements in frequency domain, which arise from
the interference of the unknown true signal with an appropriate reference
signal. If the reference signal is known beforehand, the solution set of the
discrete phase retrieval problem is reduced to at most two different signals
[12, 26, 27]. Under mild assumptions, one can also use an unknown reference
signal to guarantee uniqueness [12, 29, 41, 40]. Besides employing known or
unknown reference signals that are not related to the unknown true signal, it
is also possible to use a modulation of the unknown signal itself as a reference
[11, 19].

One possible generalization of the classical phase retrieval problem is to
replace the discrete-time Fourier transform by some other signal transform.
If we restrict the one-dimensional discrete phase retrieval problem to signals
with fixed support {0, . . . ,M−1}, which can be represented asM -dimensional
vectors, then the Fourier intensities | x̂(ωk) | at different points ωk ∈ [π, π) can
be written as magnitudes |〈x, vk〉| with vk := (eiωkm)M−1m=0 . If we now replace
the the Fourier vectors vk by elements of an arbitrary frame of CM , the
question arises how to choose the frame vectors to ensure a unique recovery
of the true signal. This question has been studied, for instance, in [3, 4, 5, 17].
Further generalizations, where the Fourier transform is replaced by the signed
Fourier transform or by the short-time Fourier transform, have been studied
in [25] and [16, 34, 35] respectively, see also the references therein.

The generalization of the Fourier phase retrieval problem with respect to
a suitable frame often goes hand in hand with the a priori assumption that
the true signal possesses a sparse representation in the frame. Phase retrieval
problems of this kind have been studied for the shearlet frame [32] and for the
translation invariant Haar pyramid tight frame [44]. Certainly, the sparsity
assumption is not restricted to frame representations. If the sparsity of the
true signal is sufficiently strong, this a priori condition guarantees uniqueness
in the classical phase retrieval problem too, see [16] and references therein.
Moreover, the sparsity of the true signal plays a key role in the recovery of
spike and spline functions [14, 39] as well as in the reconstruction of structured
functions [15].

This chapter is organized as follows. In the first part, Section 1.2 and
1.3, we introduce the one-dimensional discrete-time phase retrieval problem
in more detail and derive a characterization of the entire solution set by
factorizing the autocorrelation function – the squared Fourier intensity –
suitably. Using this characterization, we show that each ambiguity is caused
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by rotation, time-shift, and conjugation and reflection of the factors in a
convolution representation of the true signal.

In the second part – Section 1.4–1.6 – we exploit our findings on the
solution set to investigate different a priori assumptions and additional infor-
mation about the signal with respect to their capability to ensure a unique
recovery of the unknown true signal. In particular, we study the three a priori
assumptions: non-negativity, additionally known direct measurements or in-
tensity measurements in time domain, and additional intensity measurements
in the frequency domain. Here the measurements in the frequency domain
arise from the interference of the true signal with another signal. We partic-
ularly study the interference with a known reference signal, the interference
with an unknown reference signal, and interference with modulations of the
unknown solution signal.

Finally, in Section 1.7, we briefly discuss a generalization of the discrete-
time phase retrieval problem where the Fourier transform is replaced by a
so-called linear canonical transform. The linear canonical transform covers
an entire class of well-known transforms like the Fresnel and the fractional
Fourier transform. Due to the structure of these transforms the characteriza-
tion of the solution set and uniqueness guarantees can be easily transferred
to the new setting.

1.2 The discrete-time phase retrieval problem

The central task in phase retrieval is the recovery of an unknown complex-
valued signal from the measured intensity of its Fourier transform. In other
words, we have completely lost the phase information in the frequency do-
main. Although the Fourier transform itself is a well-understood isometric
isomorphism, the missing phase significantly hampers the reconstruction pro-
cess and turns the phase retrieval problem into an ill-posed, quadratic inverse
problem.

In this chapter, we consider the discrete-time version of the phase retrieval
problem that can be stated as follows: recover an unknown complex-valued
signal x := (x[n])n∈Z from its Fourier intensity

|F [x](ω) | := | x̂(ω) | :=
∣∣∣∣∑
n∈Z

x[n] e−iωn
∣∣∣∣ (ω ∈ R). (1.1)

Throughout the paper, we assume that the true signal x has a finite support,
which means that only finitely many components x[n] are non-zero. We say
that the signal x has a support of length N if there exists an integer n0
such that x[n0] and x[n0 + N − 1] are non-zero and x[n] = 0 for all n 6∈
{n0, . . . , n0 + N − 1}. Since the exponential sum in (1.1) has only finitely
many terms, the Fourier intensity | x̂ | is here always well-defined.
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The Fourier intensity | x̂ | is closely related to the autocorrelation signal
a := (a[n])n∈Z of x given by

a[n] :=
∑
k∈Z

x[k]x[k + n] (n ∈ Z).

The coefficients of the autocorrelation signal are conjugate symmetric, which
means a[n] = a[−n] for all n in Z. Further, the support of the autocorrelation
signal is always {−N + 1, . . . , N − 1}, where N again denotes the support
length of the original signal x, and does not depend on the actual position of
the non-zero elements of the true signal x.

Using the definition of the autocorrelation signal, we observe

| x̂(ω) |2 =
∑
n∈Z

∑
k∈Z

x[n]x[k] e−iω(n−k) =
∑
n∈Z

∑
k∈Z

x[k]x[k + n] e−iωn = â(ω),

where â is called the autocorrelation function of x. The phase retrieval prob-
lem is thus equivalent to the recovery of the true signal x from its autocorrela-
tion signal a. Due to the support {−N + 1, . . . , N − 1} of the autocorrelation
signal a, the squared intensity | x̂ |2 is here a trigonometric polynomial of
degree N − 1, which implies that the Fourier intensity | x̂ | is already com-
pletely determined by 2N − 1 measurements in [−π, π). For convenience, we
nevertheless assume that the entire Fourier intensity is given.

1.3 Trivial and non-trivial ambiguities

The unknown phase of x̂ in the frequency domain cannot be completely
arbitrary since the squared Fourier intensity is a trigonometric polynomial.
However, without further information, the phase retrieval problem is never
uniquely solvable. The simplest occurring ambiguities are

1. rotated signals (e−iα x[n])n∈Z with α ∈ R,
2. time-shifted signals (x[n− n0])n∈Z with n0 ∈ Z, and
3. the reflected and conjugated signal (x[−n])n∈Z,

which obviously have the same Fourier intensity | x̂ | as the true signal x.
Since these signals are, however, closely related to the true signal x, we call
these ambiguities trivial.

In the following, we are interested in all non-trivial solutions of the discrete-
time phase retrieval problem. Before we give an explicit characterization, let
us start with the following observation. If our true signal x can be represented
as a convolution x = x1 ∗ x2 defined by

(x1 ∗ x2)[n] :=
∑
k∈Z

x1[k]x2[n− k] (n ∈ Z),
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where x1 and x2 are two signals with finite support, than the Fourier convo-
lution theorem implies that the signal(

e−iα x1[n]
)
n∈Z ∗

(
x2[n− n0]

)
n∈Z (1.2)

with α ∈ R and n0 ∈ Z has the same Fourier intensity | x̂ |. Differently from
the trivial ambiguities, the constructed signal in (1.2) can have a completely
different structure than the original signal x. In this section, we will show
that all ambiguities – trivial and non-trivial – in discrete-time phase retrieval
can be written as in (1.2), which means that they are caused by rotation,
time-shifts, and reflection and conjugation of the single factors with respect
to an appropriate convolution.

For this purpose, we will derive a suitable factorization of the given auto-
correlation function â by exploiting that the trigonometric polynomial â is
closely related to the algebraic polynomial Pa of degree 2N − 2 defined by

Pa(z) :=

2N−2∑
n=0

a[n−N + 1] zn (z ∈ C). (1.3)

More precisely, we have

| x̂(ω) |2 = â(ω) = eiω(N−1) Pa(e−iω).

In the following, We call Pa the algebraic polynomial associated to â.
Due to the conjugate symmetry a[n] = a[−n] for n = 0, . . . , N − 1, the

polynomial Pa is here conjugate palindromic, which implies that all roots
occur in pairs of the form (γ, γ −1), where γ and γ −1 have exactly the same
multiplicity. Moreover, zeros on the unit circle have an even multiplicity.
Hence, the associated polynomial can be written as

Pa(z) = a[N − 1]

N−1∏
j=1

(z − γj)(z − γ −1j ).

Using the identity

|(e−iω − γj)(e−iω − γ −1j ) | = |γ −1j | |e
−iω − γj | |γj − eiω |

= |γj |−1 |e−iω − γj |2,
(1.4)

we obtain the factorization

â(ω) = |Pa(e−iω) | = |a[N − 1] |
N−1∏
j=1

|(e−iω − γj)(e−iω − γ −1j ) |

= |a[N − 1] |
N−1∏
j=1

|γj |−1 ·
N−1∏
j=1

|e−iω − γj |2,
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see for instance [21, 8, 12].
The square root of â now yields the Fourier transform of a finitely sup-

ported signal, and hence a solution of the phase retrieval problem with re-
spect to the autocorrelation function â. Interchanging the role of γj and
γ −1j in (1.4), we can explicitly construct further non-trivial solutions of the
problem. With this idea in mind, we can characterize all solutions x of the
discrete-time phase retrieval problem with given squared Fourier intensity
|x̂|2 = â.

Theorem 1 ([12]). Let â : R→ [0,∞) be an arbitrary non-negative trigono-
metric polynomial of degree N − 1. The Fourier transform of every finitely
supported signal x with | x̂ |2 = â can be written in the form

x̂(ω) = ei(α−n0ω)

√√√√|a[N − 1] |
N−1∏
j=1

|βj |−1 ·
N−1∏
j=1

(
e−iω − βj

)
, (1.5)

where α is a real number, n0 is an integer, and βj is chosen from the zero
pair (γj , γ

−1
j ) of the associated polynomial Pa.

In Theorem 1, the trivial rotation ambiguity is covered by the factor eiα,
and the time-shift ambiguity by the factor ein0ω. Further, if the true signal x
corresponds to the zero set {β1, . . . , βN−1}, then the reflected and conjugated
signal x[−·] corresponds to the zero set {β−11 , . . . , β−1N−1}. Consequently, the
trivial reflection and conjugation ambiguity is also covered.

Employing the representation (1.5) of all ambiguities in the frequency do-
main, we can finally show that every non-trivial solution x of the phase
retrieval problem | x̂ |2 = â can be described by a suitable convolution factor-
ization of the true signal x.

Theorem 2 ([12]). Let x and y be two discrete-time signals with finite sup-
port and the same Fourier intensity | x̂ |. Then there exist two finitely sup-
ported signals x1 and x2 such that

x = x1 ∗ x2

and
y =

(
eiα x1[−n]

)
n∈Z ∗

(
x2[n− n0]

)
n∈Z,

where α is a suitable real number and n0 is a suitable integer.

Using the characterization of all solutions in Theorem 1, we can construct
2N−1 zero sets {β1, . . . , βN−1} by choosing either βj = γj or βj = γ −1j for
j = 1, . . . , N − 1, and each zero set determines a solution x̂ of the phase
retrieval problem |x̂|2 = â. Remembering that the reflection of all zeros on
the unit circle corresponds to the reflection and conjugation of the related
signal, we can therefore have at most 2N−2 different non-trivial solutions.
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The true number of non-trivially different solutions x̂ can, however, be
much smaller and depends on the number of different zero sets {β1, . . . , βN−1}
that can be constructed. If all zeros lie on the unit circle, then γj and γ −1j

coincide for all j = 1, . . . , N − 1, and the solution is thus unique. A similar
observation holds if some zero pairs (γ`, γ

−1
` ) have a higher multiplicity m` >

1, where the number of pairwise different zero sets {β1, . . . , βN−1} is then
reduced accordingly.

Theorem 3 ([8]). Let x be a discrete-time signal with finite support. Fur-
thermore, let L be the number of distinct zero pairs (γ`, γ

−1
` ) of the associated

polynomial Pa to the autocorrelation function â not lying on the unit circle,
and let m` be the multiplicity of these zero pairs. The corresponding phase
retrieval problem to recover the signal x exactly has⌈

1

2

L∏
`=1

(m` + 1)

⌉

non-trivial ambiguities.

Example 1. The actual number of non-trivial ambiguities in phase retrieval
strongly depends on the zeros of the autocorrelation function. For example,
the phase retrieval problem related to the autocorrelation function given by

â(ω) = |Pa(e−iω) | =
∣∣(e−iω + 1

2

) (
e−iω + 2

)∣∣4 · ∣∣e−iω + ei
π
10

∣∣10,
has exactly three non-trivially different solutions, namely

x̂1(ω) =
(
e−iω − 1

2

)4(
e−iω + ei

π
10

)5
,

x̂2(ω) = 1
2

(
e−iω − 1

2

)3(
e−iω − 2

)(
e−iω + ei

π
10

)5
,

and
x̂3(ω) = 1

4

(
e−iω − 1

2

)2(
e−iω − 2

)2(
e−iω + ei

π
10

)5
.

Reflecting more than two zeros at the unit circle from 1/2 to 2 only produces
further trivial ambiguities caused by conjugation of the linear factors. The
absolute value and the coefficients of the three non-trivially different solutions
x1, x2, and x3 are shown in Figure 1.1. ut

1.4 Non-negative signals

As we have seen in Theorem 3, the solution set of the discrete-time phase
retrieval problem usually consists of a vast number of non-trivially different
solutions that strongly differ in shape and form. To recover the true signal
x within the solution set, we have to rely on further a priori knowledge on
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Fig. 1.1 Phase retrieval problem â = | x̂ |2 with exactly three non-trivially different solu-

tions as in Example 1, see [8].

the desired signal. In many applications, we can assume that the unknown
signal is real-valued and non-negative, see for instance [18, 22, 33]. Therefore,
we study the problem: how many non-trivial real-valued non-negative signals
exist satisfying |x̂|2 = â for a given autocorrelation function? In other words,
can the a priori assumption that x is real-valued and non-negative help us to
find a unique solution or at least essentially reduce the number of non-trivial
ambiguities?

Let us now assume that x has a finite support of the form {0, . . . , N − 1},
and that all components x[n] with n ∈ {0, . . . , N − 1} are real and non-
negative. The representation (1.5) in Theorem 1 without rotations and time-
shifts – with α = 0 and n0 = 0 – yields the solution

x̂ (ω) = |a [N − 1] |
1
2

N−1∏
j=1

|βj |−
1
2
(
e−iω − βj

)
. (1.6)

The non-negativity of x is now equivalent with the condition that the coeffi-
cients of the algebraic polynomial Q given by

Q(z) :=

N−1∏
J=1

(z − βj) (1.7)

are non-negative. Since the zeros βj are always non-zero, the leading coeffi-
cient and the absolute term of Q have even to be strictly positive. Algebraic
polynomials of this kind are usually called positive polynomials.

A closer inspection shows that the non-negativity condition does not al-
ways reduce the number of non-trivial ambiguities of the phase retrieval prob-
lem.

Theorem 4 ([10]). Let x be a real-valued discrete-time signal with finite sup-
port. If the zero set {β1, . . . , βN−1} corresponding to x̂ in (1.6) is contained in
the left half plane, which means that Reβj < 0 for all j = 1, . . . , N − 1, then
all occurring real-valued non-trivial ambiguities of the corresponding phase
retrieval problem are non-negative.



10 Robert Beinert and Gerlind Plonka

ππ
20− π

2
−π0

1

2

3

4

5

Frequency domain ω
A
bs
ol
ut
e
va
lu
e

Signal x̂ , Ambiguities

0 2 4 6
0

0.5

1.0

1.5

2.0

Time domain n

Si
gn

al
va
lu
e

b Signal x , b Ambiguities

(a) Fourier intensities. (b) Real-valued non-trivial solutions.

Fig. 1.2 Non-reduced non-negative solution set for the phase retrieval problem â = | x̂ |2,

see [8].
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(a) Fourier intensities. (b) Real-valued non-trivial solutions.

Fig. 1.3 Unique non-negative solution of the phase retrieval problem â = | x̂ |2, see [8].

Proof. Since the polynomial Q in (1.7) is real-valued, the zeros βj have to be
real or have to come in conjugated pairs (βj , βj). The corresponding linear
or quadratic factors have the form

(e−iω − βj) or (e−iω − βj)(e−iω − βj) = e−2iω − 2 (Reβj) e−iω + |βj |2.

By assumption all coefficients in these factors are non-negative. Therefore,
also all coefficients of the polynomial Q are non-negative, and Q therefore
always leads to a non-negative solution x of the phase retrieval problem. ut

However, if the assumption of Theorem 4 is not satisfied, the number
of non-negative non-trivial ambiguities of the discrete-time phase retrieval
problem is usually reduced.

Example 2. Figures 1.2–1.4 show some different cases which can occur under
the restriction of non-negativity. Figure 1.2 presents all non-trivial solutions
that can be constructed from the autocorrelation function |x̂|2, where x is
the marked signal of length 6 being determined by the zero set

{β1, . . . , β5} :=
{
− 18

5 ,−
5
2 ,−

9
5 ,−

6
5 ,−

7
8

}
.

As shown in Theorem 4, all non-trivial solutions being constructed via (1.6)
are real and non-negative. The solution set is presented without reflected,
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Fig. 1.4 Empty non-negative solution set for the phase retrieval problem â = | x̂ |2, see

[8].

conjugated signals. In this example, we have 24 = 16 different solutions,
which is the maximal number of non-trivial ambiguities by Theorem 3.

In the second example, see Figure 1.3, the condition of nonnegativity is
strong enough to ensure uniqueness of the phase retrieval problem. Here, the
unique non-negative solution x1 corresponds to the zero set

{β1, . . . , β5} :=
{
− 3

2 ,−
1
2 + 3

2 i,− 1
2 −

3
2 i, 1 + 1i, 1− 1i

}
.

Note that the problem has only four non-trivial ambiguities since the complex
zeros of the characterization (1.5) additionally have to be chosen as complex
conjugated pairs.

In the last example, Figure 1.4, the restriction of non-negativity is too
strong since every solution of the phase retrieval problem possesses some neg-
ative coefficients, which means that the given phase retrieval problem cannot
be solved by a real-valued non-negative signal. The signal x1 in Figure 1.4 (b)
here corresponds to the zero set

{β1, . . . , β5
}

:=
{

1
2 ,−

1
2 + 3

2 i,− 1
2 −

3
2 i, 1 + 1i, 1− 1i

}
. ut

Since the coefficients of an algebraic polynomial continuously depend on
the zero set {β1, . . . , βN−1}, the number of non-negative non-trivial ambigu-
ities around a true signal x with non-zero components remains unchanged in
a certain (small) neighbourhood of the zero set. On the basis of this observa-
tion, one can show that neither the signals that are uniquely defined by their
Fourier intensity and the a priori known non-negativity nor the signals that
are not uniquely defined by these conditions form negligible sets. Unfortu-
nately, there is no simple way to decide from the given intensity data whether
the a priori condition of non-negativity is helpful for reducing the number of
ambiguities of the discrete-time phase retrieval problem. Mathematically, we
can show the following result.

Theorem 5 ([10]). The set of real-valued discrete-time signals with support
{0, . . . , N − 1} of length N > 0 that can be recovered uniquely up to re-
flection as well as the set of signals that cannot be recovered uniquely from
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their Fourier intensities employing the non-negativity constraint are both un-
bounded sets containing a cone of infinite Lebesgue measure.

In other words, the non-negativity of the true signal is not an appropriate
a priori assumption in order to guarantee uniqueness of the solution of the
related one-dimensional phase retrieval problem.

1.5 Additional data in time-domain

In certain applications like electron microscopy, wave front sensing and laser
optics [43], we may have direct access to one or more signal values x[n] or
to magnitudes |x[n]| in the time domain. In order to exploit these additional
information, we need to know the position of the measurements within the
support of the true signal. To simplify the following considerations, we re-
strict ourselves to finite discrete-time signals x = (x[n])n∈Z with support
{0, . . . , N − 1}. These signals may be interpreted as complex-valued vectors
x = (x[n])N−1n=0 in CN . If x[0] and x[N − 1] are additionally non-zero, then we
call the support of the signal x with length N normalized.

Xu et al. already considered the a priori constraint that, besides |x̂| for
a real-valued signal, also the endpoint x[N − 1] is known [46], which al-
most always enforces uniqueness. In [13], these ideas have been generalized
to discrete-time phase retrieval problems with given magnitudes of the form
|x[n]| or partial phase information arg(x[n]) in the time domain.

Again, the question arises whether a priori information of this type is
sufficient to determine a unique solution of the discrete-time phase retrieval
problem (up to trivial ambiguities).

1.5.1 Using an additional signal value

In order to get a heuristic idea, we start with the following question: for a
given non-negative trigonometric polynomial â of degree N − 1 as in Theo-
rem 1 and a given constant C ∈ C, how many non-trivial solutions x with
support {0, . . . , N − 1} exist for the constrained phase retrieval problem

| x̂ |2 = â and x[N − 1] = C ? (1.8)

As we know already from Theorem 1, there exist at most 2N−2 non-trivially
different signals x = (x[n])n∈Z with Fourier intensity | x̂ |2 = â. But how many
of these solutions also satisfy the side condition x[N − 1] = C?

To answer this question, we employ our knowledge about the structure of
the solutions in (1.5). Recalling that x̂(ω) =

∑N−1
n=0 x[n] e−iωn, we notice that

the coefficient x[N − 1] in (1.5) with n0 = 0 is given by
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x[N − 1] = eiα

[
|a[N − 1] |

N−1∏
j=1

|βj |−1
]1/2

.

We therefore derive the consistency condition

|C |2 = |a[N − 1] |
N−1∏
j=1

|βj |−1. (1.9)

If this condition is not satisfied, there will be no solution signal satisfying the
side condition x[N − 1] = C. Assuming that (1.9) is satisfied for some zero
set {β1, . . . , βN−1}, we find at least one solution of (1.8), where we take α
according to the phase of the complex value C. By Theorem 1, all further
solutions with Fourier intensity | x̂ |2 = â are obtained by reflecting zeros
from βj to β−1j at the unit circle for some indices j ∈ {1, . . . , N − 1} in the
representation (1.5).

Let us now assume that there is indeed a second solution x̃ of (1.8) sat-
isfying (1.9), and let {β̃1, . . . , β̃N−1} be the corresponding zero set in (1.5).
Then we can assume without loss of generality that the corresponding zeros
are given by

β̃j =

{
β
−1
j j = 0, . . . , L,

βj otherwise

for some L ∈ {1, . . . , N − 1}. The consistency condition (1.9) now implies

N−1∏
j=1

|βj |−1 =

L∏
j=1

|βj |
N−1∏
j=L+1

|βj |−1

and thus
∏L
j=1 |βj |2 = 1. We can therefore state the following theorem.

Theorem 6 ([12]). Let x be a complex-valued discrete-time signal with nor-
malized support of length N , i.e., x̂ is of the form (1.5) with n0 = 0. Then the
constrained phase retrieval problem to recover the signal x from its Fourier
intensity | x̂ | and the signal value x[N − 1] is uniquely solvable if and only if∏

βj∈Λ

|βj |2 6= 1

for each non-empty subset Λ of B, where B denotes set of values in the
corresponding zero set of x not lying on the unit circle.

Since the support of x is normalized to {0, . . . , N − 1}, and since the rota-
tion factor α in (1.5) is here fixed by the phase of the given constant C, we
have no trivial ambiguities caused by rotation or shift. Moreover, the reflec-
tion and conjugation ambiguity cannot occur since we have here particularly
assumed

∏N−1
j=1 |βj |2 6= 1. The simplification of the set of zeros to those with
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modulus different from 1 can be done since the reflection of zeros on the unit
circle does not lead to further non-trivial solutions.

1.5.2 Using additional magnitude values of the signal

Next, we generalize the problem considered in (1.8) and assume that, be-
sides the Fourier intensity |x̂|2, either all or at least some of the magnitudes
|x[n]| with n = 0, . . . , N − 1 are given. Phase retrieval problems with these
constraints have been considered for example in [30, 31, 43]. The numerical
approaches to find the phase retrieval solution in [30] are based on multilevel
Gauß–Newton methods. However, these algorithms are not always stable and
sometimes reconstruct signals that are different from the desired solution.

We therefore study the uniqueness of solutions of the following constrained
phase retrieval problem: for a given non-negative trigonometric polynomial
â of degree N − 1 as in Theorem 1 and a given C > 0, how many non-
trivial solutions x with support {0, . . . , N −1} exist to the constrained phase
retrieval problem

| x̂ |2 = â and |x[N − 1]| = C ? (1.10)

To characterize the solutions of (1.10), we can proceed similarly as in Sec-
tion 1.5.1. Doing so, we obtain the same consistency condition (1.9) but,
obviously, the given absolute value |x[N − 1]| will give us no information
how to choose the rotation factor eiα; so we cannot get rid of the rotation
ambiguity.

Corollary 1 ([12]). Let x be a complex-valued discrete-time signal with nor-
malized support of length N , i.e., x̂ is of the form (1.5) with n0 = 0. Then the
constrained phase retrieval problem to recover the signal x from its Fourier
intensity | x̂ | and the absolute value |x[N − 1] | is uniquely solvable up to
rotations if and only if ∏

βj∈Λ

|βj |2 6= 1

for each non-empty subset Λ of B, where B denotes set of values in the
corresponding zero set of x not lying on the unit circle.

In [13], we have generalized these observations to the constrained phase
retrieval problem of the form

| x̂ |2 = â and |x[n]| = C (1.11)

for some n ∈ {0, . . . , N − 1}. Similarly as before, one can derive a consis-
tency condition and a condition in terms of the zeros of the autocorrelation
function â such that uniqueness of a solution x of (1.11) is guaranteed up to
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trivial ambiguities. However, the corresponding conditions are more complex
and require an extensive investigation of the (N−1)-variate elementary sym-
metric polynomials, which are related to the components of the true signal x
by Vieta’s formulae. The important outcome of these investigations can be
summarized as follows.

Theorem 7 ([13]). Let x be a complex-valued discrete-time signal with nor-
malized support of length N , and let ` be an arbitrary integer between 0 and
N−1. The phase retrieval problem to recover the signal x from its Fourier in-
tensity | x̂ | and the absolute value |x[N−1−`] | is almost always uniquely solv-
able up to rotations whenever ` 6= (N−1)/2. In the special case that ` = (N−1)/2,
the reconstruction is almost always unique up to rotations and conjugate re-
flections.

‘Almost always’ means here that the union of all signals with normalized
support of length N , which permit a further non-trivial solution, corresponds
to the union of finitely many algebraic varieties with Lebesgue measure zero
in R2N , see [13]. In particular, we almost always obtain uniqueness if the
magnitudes of all signal values |x[n]|, n = 0, . . . , N − 1, are given.

Corollary 2 ([8]). Let x be a complex-valued discrete-time signal x with
normalized support of length N . The phase retrieval problem to recover the
signal x from its Fourier intensity | x̂ | and its moduli (|x[n] |)n∈Z is almost
always uniquely solvable up to rotations.

Obviously, Corollary 2 is a simple consequence of Theorem 7. But the
following question remains: is the knowledge of all magnitudes |x[n]| with n =
0, . . . , N − 1 already sufficient to obtain a unique solution of the constrained
problem

| x̂ |2 = â and |x[n]| = Cn for n = 0, . . . , N − 1

up to rotation ambiguities? The following example shows that this is unfor-
tunately not the case.

Example 3. We consider the complex-valued signal x determined by the cor-
responding zeros

β1 := − 1
2 −

1
2 i, β2 := −e−

2π
3 i (1 + i), and β3 := −e

2π
3 i (1 + i)

and by α = 0 and n0 = 0 in the representation (1.5). Knowing the autocorre-

lation function â (ω) = | x̂ (ω) |2 for ω ∈ R and the moduli of all components
|x [n] | for n ∈ Z, we still cannot recover x uniquely. In this specific exam-
ple, we find, up to rotations, three non-trivial solutions that are presented in
Figure 1.5.

It is possible to construct further examples with several non-trivial solu-
tions for all dimensions N of the problem, see [8]. Hence, the a priori known
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(a) Fourier intensities. (b) Signal moduli. (c) Signal phase.

Fig. 1.5 Three non-trivial solutions of phase retrieval problem â = | x̂ |2 with given moduli

|x [n] | for n = 0, . . . , 3 as in Example 3, see [8].

moduli of the components strongly reduce the set of ambiguities, but we
cannot ensure uniqueness (up to trivial ambiguities) for every signal. ut

Using an analogous approach, one can study the restricted discrete-time
phase retrieval problem where the knowledge of additional magnitudes in
time domain is replaced by a priori phase information in time domain. Due
to the trivial rotation ambiguity, we can only expect to reduce the non-trivial
solution set if we have given the phase of at least two signal components.

Theorem 8 ([13]). Let x be a complex-valued discrete-time signal with nor-
malized support of length N , and let `1 and `2 be different integers between
0 and N − 1. The phase retrieval problem to recover the signal x from its
Fourier intensity and the two phases arg x[N−1−`1] and arg x[N−1−`2] is
almost always uniquely solvable whenever `1 + `2 6= N −1. If `1 + `2 = N −1,
then the reconstruction is only unique up to conjugate reflections, except for
the special case where `1 and `2 correspond to the two endpoints.

1.6 Interference measurements

Another possibility to reduce the ambiguities in the considered discrete-time
phase retrieval problem is to exploit additional reference measurements of the
form | F [x+h]|, where h is a suitable reference signal with finite support. We
consider here two cases, either the reference signal h is known beforehand,
or it is also unknown. In the first case, we will show that the corresponding
phase retrieval problem with given intensities |F [x]| and | F [x + h]| has at
most two non-trivial solutions. If h is unknown, we assume that the Fourier
intensities |F [x]|, |F [h]|, and | F [x+ h]| are given and show unique recovery
results under suitable side conditions. Finally, we will examine the special
case where the unknown reference signal is a modulated version of the true
signal x itself.
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1.6.1 Interference with a known reference signal

Let us assume that the considered reference signal h = (h[n])n∈Z has finite
support and is completely known beforehand. The corresponding phase re-
trieval problem is then nearly unique solvable up to at most one ambiguity,
see [27] and [12].

Theorem 9 ([12]). Let x and h be two discrete-time signals with finite sup-
port, where the non-vanishing reference signal h is known beforehand. Then
the signal x can be recovered from the Fourier intensities

|F [x] | and |F [x+ h] |

except for at most one ambiguity. This ambiguity ist trivial if h possesses a
linear phase.

Proof. Let y = x+ h be the interference between the unknown signal x and
the known reference signal h. Then y is a finite length signal with known
Fourier intensity | F [y]| = |F [x+ h] |. Further, with x̂(ω) = |x̂(ω)| eiφ(ω) and

ĥ(ω) = |ĥ(ω)| eiψ(ω), it follows

|ŷ(ω)|2 = |x̂(ω)|2 + |ĥ(ω)|2 + 2 Re (x̂(ω)ĥ(ω))

= |x̂(ω)|2 + |ĥ(ω)|2 + 2 |x̂(ω)| |ĥ(ω)| cos(φ(ω)− ψ(ω))

such that we can extract the phase difference φ(ω) − ψ(ω) up to the sign
and a multiple of 2π for every ω ∈ R. Due to the piecewise continuity of the
phases φ and ψ, there is an open interval where the sign has to be either
plus or minus everywhere. Since each trigonometric polynomial is completely
determined by its values on an open set, we conclude that there can be at
most two different solutions. If we write these solutions x and x̃ in the form
x̂(ω) = |x̂(ω)| eiφ1(ω) and ̂̃x(ω) = |x̂(ω)| eiφ2(ω), then the phases φ1 and φ2 are
related by

φ1(ω)− ψ(ω) = −φ2(ω) + ψ(ω) + 2π `ω,

i.e., φ2(ω) = −φ1(ω) + 2ψ(ω) + 2π `ω. If the reference h has linear phase,
which means that the phase ψ is of the form ψ(ω) = n0ω+α for some n0 ∈ Z
and α ∈ R, then x̃ is a trivial ambiguity of x obtained by support shift and
rotation. ut

If the signal h does not have linear phase, then the ambiguity x̃ can be
non-trivially different as discussed in the next example.

Example 4. Let us consider the discrete-time phase retrieval problem to re-
cover the true signal

x := 1
128

(
. . . , 0, 55− 15i,−84 + 87i, 34 + 82i,
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Fig. 1.6 Discrete-time phase retrieval problem to recover x from the Fourier intensities

|F [x] | and |F [x + h] |, where h is a known reference signal as in Example 4. Besides the

true solution x, the non-trivial ambiguity x̆ is the only further solution of the problem, see
[8].

204− 120i,−16 + 16i,−96, 128, 0, . . .
)

from the Fourier intensities |F [x] | and |F [x + h] |, where h is the known
reference signal

h :=
(
. . . , 0, 0, 20− 10i, 19− 17i,−4− 4i, 4− 4i, 16, 0, . . .

)
.

Here, we have underlined the entry with index 0. Since h does not possess a
linear phase, cf. Figure 1.6c, there may exist a further non-trivially different
solution by Theorem 9, and, indeed, the signal

x̆ := 1
128

(
. . . , 0, 160− 80i,−28− 96i,−173 + 31i,

95− 44i, 76 + 16i,−120− 44i, 40− 8i, 0, . . .
)

yields the same Fourier intensities. The signals and the given Fourier inten-
sities are presented in Figure 1.6. ut

1.6.2 Interference with an unknown reference signal

Let us now consider the case where the finitely supported signal h is also
unknown. For real signals, this problem has already been studied in [29].
For complex signals, we want to refer to the work of Raz et al. [41], where,
besides the three Fourier intensities in the next theorem, a fourth intensity
of the form |x̂(ω) + iĥ(ω)| was used for the recovery of x. From a theoretical
point of view, this intensity is not needed to ensure uniqueness, but this
additional information allows the derivation of an explicit analytic solution.

Theorem 10 ([12]). Let x and h be two discrete-time signals with finite
support. If the corresponding zero sets of the signals x and h are disjoint,
then the two signals x and h can be recovered from the Fourier intensities
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Fig. 1.7 Discrete-time phase retrieval problem to recover x and h from the Fourier intensi-

ties |F [x] |, |F [h] | and |F [x+h] |, where h is an unknown reference signal as in Example 5.

Besides the true solution (x, h), the non-trivial ambiguity (x̆, h̆) is also a solution of the
problem, see [8].

|F [x] | , | F [h]|, and |F [x+ h] |

uniquely up to common trivial ambiguities.

‘Common trivial ambiguities’ means here that we can multiply the two
signals x and h with the same unimodular constant eiα or shift the two
signals with the same integer n0 or take the reflection and conjugation for
both signals, and all these actions do not change the given Fourier intensities
in Theorem 10. For a detailed proof of this theorem, we refer to [12]. The
main part of the proof is heavily based on the result of Theorem 2, where we
have shown that each further solution (x̃, h̃) with Fourier intensities |F [x̃] | =
|F x] | and |F [h̃] | = |F [h] | is related to the true solution (x, h) by some
factorization

̂̃x(ω) = eiα1+n1ω x̂1(ω) x̂2(ω) for x̂(ω) = x̂1(ω) x̂2(ω)

and ̂̃
h(ω) = eiα2+n2ω ĥ1(ω) ĥ2(ω) for ĥ(ω) = ĥ1(ω) ĥ2(ω)

with rotations α1, α2 ∈ [−π, π) and shifts n1, n2 ∈ Z. The assertion then
follows from a detailed comparison of the third Fourier intensity

|x̂(ω) + ĥ(ω)|2 = |̂̃x(ω) +
̂̃
h(ω)|2

by incorporating the product representations of the signals.
If the assumption of Theorem 10 is violated and x and h have common

zeros in the defining zero sets in representation (1.5), then we may find more
non-trivial solutions, as shown in the following example.

Example 5. We want to recover the signal x in Example 4, which corresponds
to the zero set

{β1, . . . , β6} := 1
4

{
1 + i, 3− 2i,−3− i,−4 + 2i, 4 + 4i, 2− 4i

}
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in the representation (1.5) of x̂. Further, we choose the reference signal h
with the corresponding zero set

{η1, . . . , η5} := 1
4

{
1 + i, 4 + 4i,−4− 3i,−4 + 2i,−4i

}
.

If both signals are unknown, we have to recover x and h from the Fourier in-
tensities |F [x] |, |F [h] |, and |F [x+h] |. The intersection of the corresponding
zero sets of x and h is here given by

1
4

{
1 + i, 4 + 4i

}
such that the uniqueness of the solution is not covered by Theorem 10. Indeed,
reflecting the zeros 1/4 (1 + i) and 1/4 (4 + 4i) in the representations (1.5) of

both signals at the unit circle, we find a second non-trivial solution (x̆, h̆).

Both solutions (x, h) and (x̆, h̆) are presented in Figure 1.7. ut

1.6.3 Interference with the modulated signal

Finally we consider the model, where the unknown reference signal is a mod-
ulated version of the signal x itself. Similar approaches for the (periodic)
discrete Fourier transform have already been studied in [19] and [2]. We here
especially rely on the results in [11]. The discrete-time phase retrieval prob-
lem can be now posed as follows: recover a finitely supported signal x from
its Fourier intensity |x̂| and a set of interference measurements

| F [x+ eiα eiµ·x]|,

where the modulations and rotations are described by µ ∈ R and α ∈ [0, 2π).
In order to guarantee uniqueness, besides the Fourier intensity | x̂ |, we merely
need two additional interference signals.

Theorem 11 ([11]). Let x be a discrete-time signal with finite support
of length N . If µ satisfies the assumption that kµ 6≡ 0 mod 2π for all
k = 1, . . . , 2N − 1, then the signal x can be uniquely recovered up to a rota-
tion ambiguity from its Fourier intensity | x̂ | and the Fourier intensities of
two interference signals∣∣F[x+ eiα1 eiµ· x

]∣∣ and
∣∣F[x+ eiα2 eiµ· x

]∣∣ ,
where α1 and α2 are two real numbers satisfying α1 −α2 6= πk for all k ∈ Z.

Proof. Writing the unknown Fourier-transformed signal in the form x̂(ω) =
|x̂(ω)| eiφ(ω), we only need to recover the phase φ(ω) to solve the given phase
retrieval problem. The Fourier intensity measurements of the first interference
signal yield
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]∣∣ = |x̂(ω) + eiα1 x̂(ω − µ)|2

= |x̂(ω)|2 + |x̂(ω − µ)|2

+ 2 |x̂(ω)| |x̂(ω − µ)| cos(φ(ω − µ)− φ(ω) + α1)

and thus the cosine of the relative phase

cos(φ(ω − µ)− φ(ω) + α1) = cos(α1) cos(φ(ω − µ)− φ(ω))

− sin(α1) sin(φ(ω − µ)− φ(ω)).

Analogously, we can extract cos(φ(ω − µ)− φ(ω) + α2) from the Fourier in-
tensity measurements of the second interference signal. Since α1 − α2 6= πk
for all k ∈ Z, we can therefore uniquely determine the phase difference
φ(ω − µ) − φ(ω) for every ω ∈ R. Obviously, the solution can be only re-
covered up to rotations. Taking an arbitrary phase φ(ω0), we can compute
the corresponding phases φ(ω0 + µk) for k = 0, . . . , 2N − 1 and thus the
Fourier values x̂(ω0 + µk) for k = 0, . . . , 2N − 1. It remains to recover the
signal x and especially the unknown support from these Fourier values. Due
to the support length N , the Fourier transform x̂ can be written in the form

x̂(ω) = e−iωn0

N−1∑
n=0

cn e−iωn

with cn := x[n+n0]. Using the found Fourier values, we obtain the equation
system

x̂(ω0+µk) =

N−1∑
n=0

[cne−iω0(n+n0)] e−ikµ(n+n0) =

N−1∑
n=0

dn z
k
n, k = 0, . . . , 2N−1,

with dn := cne−iω0(n+n0) and zn := e−iµ(n+n0). This system can be solved
by Prony’s method if the values ω0 + µkmod 2π are pairwise different for
k = 0, . . . , 2N − 1, which means that kµ is not a multiple of 2π for all
k = 1, . . . , 2N − 1, see for instance [38]. ut

1.7 Linear canonical phase retrieval

Up to this point, we have assumed that the given measurements in the fre-
quency domain arise from the Fourier-transformed true signal. These mea-
surements can be seen as intensities in the so-called far field in Fourier optics.
In this section, we briefly investigate the question: how do the established
uniqueness guarantees change if we replace the far field intensity measure-
ments for example by near field intensity measurements – what happens if we
replace the Fourier transform by the Fresnel or fractional Fourier transform?
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The discrete-time Fourier, fractional Fourier, and Fresnel transform are
special cases of the so-called linear canonical transform. Referring to [45] and
[9], for the real parameters a, b, c, and d with ad−bc = 1 and b 6= 0, we define
the discrete-time linear canonical transform of the signal x := (x[n])n∈Z by

C(a,b,c,d)[x](ω) :=
∑
n∈Z

x[n]K(a,b,c,d)(ω, n),

where the kernel K(a,b,c,d) is given by

K(a,b,c,d)(ω, t) := 1√
2πb

e−i
π
4 e

i
2 (
a
b t

2− 2
bωt+

d
bω

2).

The inverse discrete-time linear canonical transform is given by

C−1(a,b,c,d)[x̃][n] =

π|b|∫
−π|b|

x̃(ω)K(a,b,c,d)(ω, n) dω,

see [45, 9]. The classical discrete-time Fourier transform F coincides with
the linear canonical transform C(0,1,−1,0) up to a multiplicative constant

θ := θ(a,b,c,d) := 1/
√
2πb e−iπ/4. The discrete-time Fresnel transform [23] and

the fractional Fourier transform [37] are covered by the linear canonical trans-
forms C(1,1/2α,0,1) and C(cosα,sinα,− sinα,cosα) with α ∈ R, respectively.

Since b 6= 0 by assumption, we can rewrite the linear canonical transform
with respect to the discrete-time Fourier transform as

C(a,b,c,d)[x](ω) = θ(a,b,c,d) ei
d
2bω

2

F
[
x[·] ei

a
2b ·

2
](
ω
b

)
. (1.12)

Let us now consider the linear canonical phase retrieval problem, where
we wish to recover a complex-valued discrete-time signal x := (x[n])n∈N with
finite support from the intensity |C(a,b,c,d)[x] | of its linear canonical transform.
Similarly to the Fourier phase retrieval problem, we are particularly interested
in the arising ambiguities and in uniqueness guarantees. Using the alternative
formulation (1.12) that relates the linear canonical transform to the discrete-
time Fourier transform, it can be simply seen that the linear canonical phase
retrieval problem to recover the true signal x is also solved by

1. the rotated signal eiα x with α ∈ R,
2. the shifted signal e−ian0·/b x[· − n0] with n0 ∈ Z, and
3. the conjugated and reflected signal e−ia·2/b x[−·].

Again, these trivial ambiguities are of minor interest.
The representation (1.12) implies that the linear canonical phase retrieval

problem to recover x from |C(a,b,c,d)[x] | is equivalent to the recovery of the
signal (x[n] eian2/2b)n∈N from the Fourier intensity |F [x[·] eia·2/2b] |, and we can
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immediately transfer the characterization of the complete solution set in The-
orem 1 to the new setting.

Theorem 12 ([9]). Let x be a discrete-time signal with finite support. Then
each signal y with finite support satisfying

|C(a,b,c,d)[y] | = |C(a,b,c,d)[x] |

is characterized by

F
[
θ e

ia
2b ·

2

y
]
(ω) = ei(α+ωn0)

√√√√|a[N − 1] |
N−1∏
j=1

|βj |−1 ·
N−1∏
j=1

(
e−iω − βj

)
,

where α is a real number, n0 is an integer, and βj is chosen from the zero pair
(γj , γ

−1
j ) of the associated polynomial Pa with respect to the autocorrelation

signal of θ eia·2/2bx[·].

With the characterization of trivial and non-trivial ambiguities, the linear
canonical phase retrieval problem also inherits the uniqueness guarantees of
the discrete-time Fourier phase retrieval problem; so the solutions in linear
canonical phase retrieval are almost always unique (up to trivial ambiguities)
if we have access to further magnitudes or phases in the time-domain, cf. Sec-
tion 1.5, or if further interference measurements are available, cf. Section 1.6.
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