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Problem

Let x = (xj)é.vz_ol c CY be given.

—27i /N

Let wy ;=€ and

~ . e\ N—
X :=Fyx with Fpy:= (wy );Yk:lo.

Assume X = Fyx is M-sparse, i.e., |X]||g := M.
Sparsity M < N is unknown.

Problem

Find a stable deterministic algorithm to compute X with a small num-
ber of arithmetical operations (sublinear sparse FFT).



Recent approaches
Basis pursuit denoise. Minimize ||X||1 s.t. |AX — x|l <o

Chen, Donoho, Saunders (98); Donoho, Tanner (05); Candes, Donoho,
Tao (06); Tropp (04,06); van den Berg, Friedlander (08,11);...

Random Fourier measurements Ay = Fy

Candes, Tao (06); Rudelson, Vershynin (08); Rauhut (07); Foucart,
Rauhut (13);...

Deterministic Fourier CS-matrices
DeVore (07); Haupt, Applebaum, Nowak (10); Xu, Xu (13); ...

Deterministic and randomized sparse FFT

Iwen, Spencer (08); Akavia (08); Iwen (10,13), Hassanieh et al. (12);
Gilbert et al. (14); Plonka, Wannenwetsch (16,17), Bittens (16),...

Prony approaches, Super-Resolution

Roy, Kailath (89); Pereyra, Scherer (10); Heider, Kunis, Potts, Veit
(13); Peter, Plonka (13); Candes, Fernandez-Granda (14); Potts, Volk-
mer, Tasche (16),...



Sparse FFT: A first trial

How to recover X if it contains only one nonzero component?

Let e;, 7 =0,...,N — 1, be the unit vectors in clV.
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We find | .
Ty = Nfr;\ko, r1 = N:L’ko kaO

Thus, two components of x are sufficient to recover X:

o~ _ 5131
T, = Nxo, kaO =
0

Observe that for noisy data the determination of kg is not stable.



Stabilization of the approach

Leth(CN, N =27 and let X € CV be M-sparse, M < N.

Consider the periodized vectors
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Stabilized evaluation with j + 1 samples

Example. X — §<3> = (0,0,0,0,0,0,1,00" with ko= k) =6,

= (0,0,1,0)T with &) =2,
= (1,0)" with &V =0,
0) = (1) with &\ = 0.

Idea. Compute k(()j ) iteratively, starting with k’(()O) = 0.

We observe
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General case: Recovery of M-sparse vectors

Let x € CV, N =27 and let X € C be M-sparse, M < N.

Assumption: There is no cancellation by periodizations of X.

(47)

o195 7 0 1s significant.

If 7, # 0 is significant, then o
Example

X = (Tp)—, with ReZy >0, ImZ >0, k=0,...,N—1.

For example

x3)  =1(0,0,3,0,1,0,—3,0)7
x(2) = (1,0,0,0)

)
|

is not allowed!



General case: Recovery of M-sparse vectors

Idea
[terative reconstruction of the periodized vectors X\ for j =0, 1,..., J.
Observations
1.
<) is M; —sparse: Mo < M; <...<M;=M.
2.

g @it =39 k=o0,...,2 - 1.



Example
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Idea of the algorithm

1. Choose the sample g and compute x(0) = ij\f:—ol T = Nxo.

If 20 = 0 then X = 0 (no cancellation), M = 0, done.

2. It xg > € then compute

Then
fél) N Eggn _ iéo),
2 =3 = Nay .

If fz:‘\(()l) = 0 all even components of X vanish.

If ZL’\%D = 0 all odd components of X vanish.
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General step

Let M; < M be the number of significant entries of x().
Indices of non-zero components:

O§n0<n1<...<nMj_1§2j—1.

We have
~(+1) | A0+ =) _ |
Ty F Ty =Ty k=0,...,20 —1.
Hence, only the components fiq%ﬂ) and 355;12); are candidates for non-

zero entries in XU,

<) ] ] XU+ I I I I

nog np 27 1 no M no+2 ng+2

Hence M;+1 < 2M, and only M; “suitable” further conditions are
needed to recover XU+,
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Theorem (P., Wannenwetsch, Cuyt, Lee (2017)

Let XU) be the periodized vectors with X(¥) = x satisfying the non-

cancellation property. If <) e C? is M j-sparse with support indices

O§n0<n1<...<nMj_1§2j—1,

then XU can be uniquely recovered from %) e €% and M, com-

ponents of x = F]_Vlﬁ, where the indices ko, ..., ky;—1 are taken from

the set {27777 12k + 1),k =0,...,2/ — 1} such that

_ M;—1 2rikyn, \ 0!

kpnr) J T1RpTy M;x M;
., — [ ex . c Cri7™
( 27 p,r=0 ( p( 27 )>

p,r=0

is invertible and has small condition number. Then XUTY can be ob-
tained from XU) by solving a linear system of size M;.

We need less than M (2 +log 17) signal values to recover x! We
need O(M log M log N) arithmetical operations to compute X
using inverse NFFT!
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Remaining problem

For given N =27, M < N and given indices
O<ng<ni <...<ny—1<N—1,

how to choose a new set of indices
O0<ky<ki<...<kpy_1<N-1

such that

is optimally well conditioned?
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Remaining problem

For given N = 27, M < N and given indices
O<ngp<ni <...<npy_-1<N-—-1,

how to choose a new set of indices
O0<ky<ki<...<kpy_1<N-1

such that

is optimally well conditioned?

We strongly simplify the problem
Let ky, := opmod N. How to choose o € {1,...,27} such that

is optimally well conditioned?



Vandermonde matrices on the unit circle

We know

L.

: M-1 . . :
The Vandermonde matrix V; = (w?\[nrp )p o 18 invertible

iff on, mod N are pairwise distinct.
Hence invertibility of V), already follows for o = 1.

. The condition number of V), strongly depends on the distribution

of the values w3/, 7 =0,..., M — 1 on the unit circle.

. cond V) = 1iff w}/"" are equidistantly distributed on the unit circle

(see e.g. Berman, Feuer (07)).

N =32, left: 0 =1, cond V5 = 8841, right: ¢ =6, cond V5 = 1.415
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Conditions on o

Theorem (Moitra (2015)

Let 0 <ng <ny <...<ny—1 < N be a given set of indices. For a
given 0 € {1,..., N} let

dy 1= ' + — d N
nggl}léﬂM_l( o(ng — ny)) mo

be the smallest (periodic) distance between two indices ony and ong,
and assume that d, > 0. Then the condition number xk2(V 7 pr(0)) of

O'nk€

M —1,M—1
the Vandermonde matrix Vi pr(o) = (wN )g - satisfies
M'+ N/d
Vo 2 < 7
HQ( M,M(O)) — M/_N/daa

: / N
provided that M" > T

Proof: based on Hilbert’s inequality, see e.g. Moitra (2015).
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Method to choose the optimal o

Idea
Choose o such that for N = 27 the distance

d, = ' 4 — dN
o Oékg}lgﬂM_l( olng — ngl) mo

1s maximal.
Brute force method O(M?27) operations at level j =0,...,J — 1.
Open problem

Is there a smart method to find the optimal o with O(M?) operations
at each level?

Up to now

We have only heuristic algorithms to find an (almost) optimal ¢ with
O(M?) operations.
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Worst case distance

M—1 . ..

To get V) = (w?\,n’“p )p 1._o With small condition number we want

N

d = d. ~ —

e ¥ g

where
d, = min +oln, — nw|) mod\V.
- OSdeM_l( Ing — ngl)

What is the worst case that can happen for d and optimized o 7
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Worst case distance

M—1
To get V) = ( j'\,n’fp )p 1o With small condition number we want
N
d = max d, ~ Y
where
dy == min  (Fo|ny — ng|) modN.

0<k<t<M-1

What is the worst case that can happen for d and optimized o 7

Theorem (P., Wannenwetsch (2017)

For arbitrarily distributed 0 < ng <n;1 < ... <ny—_-1 < N —1 and
optimally chosen ¢ maximizing

d, = + — dN
iy O<k21<nM 1( o fng = ng|) mo
we have It

d = maxd > ek
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Worst case example

Let N =16, M = 4, found indices (ng, ni, ns, n3) = (0, 1, 3, 8).

- { > 03:>d3<

o=5 = dys=1 > o=1: $d71<

Therefore d = % = 1.
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Numerical example

Let N =128, M =4
Number of different choices of ordered positions: (128) = 10668 000

4
Cases for which d > 16: 10641376 (99.75 %)
Cases for which 8 < d < 16: 26624 ( 0.25 %)
Cases for which d < 8&: 0
The worst case d =~ Mi is rare!

e

I'o avoid bad condition numbers in these cases, we have two options:

a) We use further measurements to improve the condition number of
the Vandermonde matrix.

b) We consider another strategy for extracting a suitable partial Fou-
rier matrix (e.g. a second parameter o9 leading to a generalized
Vandermonde-type matrix).

19



Numerical example: Adaptivity helps!

N =16384 (J =14), M = 17 (adaptive versus nonadaptive)

active indices: 6,7,8.,9,10, 11,12, 13,56, 57, 58, 79, 80, 81, 345, 1234, 1235

M o cond V
1 1 1

2 1 1

4 1 1

8 1 1

13 3 11.64
16 3 h1.17
17 | 11 97.37

I | 22 97.37

17 | 44 97.37
17 | 88 97.37
L7 | 285 14.41
17| 570 14.41

17 | 203 7.98
17 | 406 7.98

— == = =

used signal values: 181
adaptive choice of o

9 M | o cond V

1 1 1 1

2 2 1 1

3 4 1 1

4 8 1 1

5 13 | 1 11.64

6 16 | 1 | 1.4425e+ 05

7 17 | 1 | 8.8402e + 09

8 17 | 1 | 2.7140e + 07

9 17 | 1 | 4.5243e + 12

10 | 25 | 1 | 6.3748e+ 15

11 39 | 1| 1.2212e+ 17

12 || 60 | 1 | 3.4276e+ 16

13 || 114 | 1 | 2.1692e + 17

14 || 193 | 1 | 3.4942e¢ + 17
used signal values: 351

nonadaptive choice of o
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Runtime experiments

Figure 1: Runtime comparison (in seconds) of the FFT (blue line) and our algorithm with
M =5 (red line), M = 10 (black dotted line), M = 20 (cyan dash-dots line) and M = 30

(green dashed line) for length N = 27 with j = 12,...,22.
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Summary

1.

We propose a new multi-scale algorithm for sparse vector
reconstruction.

2. The sparsity M < N does not need to be known a priori.

. We need less than min(M(2 + log 47), N) signal values for

reconstruction.

. We need less than min(O(M?1og N), O(N log N)) arithmetical

operations for reconstruction (sparse FFT!).

. At each iteration step only a linear system of size at most

M x M needs to be solved.

. Adaptivity is used to improve the numerical stability of

the procedure.

. Even a simple strategy optimizing only one parameter usual-

ly gives good numerical results.
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