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Abstract. In this survey we describe some modifications of Prony’s
method. In particular, we consider the recovery of general expansions
into eigenfunctions of linear differential operators of first order. We show,
how these expansions can be recovered from function samples using gen-
eralized shift operators. We derive an ESPRIT-like algorithm for the
generalized recovery method and illustrate, how the method can be sim-
plified if some frequency parameters are known beforehand. Furthermore,
we present a modification of Prony’s method for sparse approximation
with exponential sums which leads to a non-linear least-squares problem.
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1 Introduction

The recovery and sparse approximation of structured functions is a fundamen-
tal problem in many areas of signal processing and engineering. In particular,
exponential sums and their generalizations play an important role in time series
analysis and in system theory [13,15], in the theory of annihilating filters, and
for the recovery of signals with finite rate of innovation [10,34,25,32,3], as well
as for linear prediction methods [16,31]. For system reduction, Prony’s method
is related to the problem of low-rank approximation of structured matrices (par-
ticularly Hankel matrices) and corresponding nonlinear least-squares problems
[17,33]. There is a close relation between Prony’s method and Padé approxima-
tion [4,9]. Exponential sums started to become more important also for sparse
approximation of smooth functions, see [5,6,12,22], and this question is closely
related to approximation in Hardy spaces and the theory of Adamjan, Arov and
Krein, see [1,2,21].
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1.1 The Classical Prony Method

A fundamental problem discussed in many papers is the recovery of exponential
sums of the form

f(x) :=

M∑
j=1

cj eαjx =

M∑
j=1

cj z
x
j , with zj := eαj , (1)

where the coefficients cj ∈ C \ {0} as well as the pairwise different frequency
parameters αj ∈ C or equivalently, zj ∈ C \ {0} are unknown. For simplicity
we assume that the number of terms M is given beforehand. One important
question appears: What information about f is needed in order to solve this
recovery problem uniquely?

The classical Prony method uses the equidistant samples f(0), f(1), . . . ,
f(2M − 1). Indeed, if we suppose that Imαj , j = 1, . . . ,M , lies in a prede-
fined interval of length 2π, as e.g. [−π, π), these 2M samples are sufficient. This
can be seen as follows.

We can view f(x) as the solution of a homogeneous linear difference equa-
tion of order M with constant coefficients and try to identify these constant
coefficients in a first step. We define the characteristic polynomial with the help
of its (yet unknown) zeros zj = eαj , j = 1, . . . ,M , and consider its monomial
representation,

p(z) :=

M∏
j=1

(z − eαj ) = zM +

M−1∑
k=0

pk z
k.

Then the coefficients pk, k = 0, . . . ,M − 1, and pM = 1 satisfy

M∑
k=0

pkf(k +m) =

M∑
k=0

pk

M∑
j=1

cjz
k+m
j =

M∑
j=1

cjz
m
j

M∑
k=0

pkz
k
j =

M∑
j=1

cjz
m
j p(zj) = 0

for all m ∈ Z. Thus the coefficients pk of the linear difference equation can be
computed by solving the linear system

M−1∑
k=0

pk f(k +m) = −f(M +m), m = 0, . . . ,M − 1.

Knowing p(z), we can simply compute its zeros zj = eαj , and in a further step
the coefficients cj , j = 1, . . . ,M , by solving the system

f(`) =

M∑
j=1

αj z
`
j , ` = 0, . . . , 2M − 1.

In practice there are different numerical algorithms available for this method,
which take care for the inherit numerical instability of this approach, see e.g.
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[14,24,26,28]. Note that for a given arbitrary vector (fk)2M−1k=0 the interpolation
problem

fk =

M∑
j=1

cj z
k
j , k = 0, . . . , 2M − 1,

may not be solvable, see e.g. [8]. The characteristic polynomial p(z) of the ho-

mogeneous difference equation
∑M
k=0 pkfk+m = 0, m = 0, . . . ,M − 1, may have

zeros with multiplicity greater than 1, whereas the exponential sum in (1) is
only defined for pairwise different zeros. In this paper, we will exclude the case
of zeros with multiplicity greater than 1. However, the zeros of the characteristic
polynomial eαj resp. the parameters αj , j = 1, . . . ,M , may be arbitrarily close.
This may lead to highly ill-conditioned system matrices.

1.2 Content of this Paper

In this paper, we will particularly consider the following questions.

1. How can we generalize Prony’s method in order to recover other expansions
than (1)?

2. What kind of information is needed in order to recover the considered ex-
pansion?

3. How can we modify Prony’s method such that we are able to optimally
approximate a given (large) vector of function values in the Euclidean norm
by a sparse exponential sum?

To tackle the first question, we introduce the operator based general Prony
method and particularly apply it to study expansions of the form

f(x) =

M∑
j=1

cj H(x) eαjG(x), x ∈ [a, b] ⊂ R, (2)

where cj , αj ∈ C, cj 6= 0, αj pairwise different, G,H ∈ C∞(R) are predefined
functions, where G is strictly monotone on [a, b], and H is nonzero on [a, b]. This
model covers many interesting examples as e.g. shifted Gaussians, generalized
monomial sums and others. For the expansions (2) we will derive different sets
of samples which are sufficient for the recovery of all model parameters, thus
answering the second question.

In regard to question 3 we will focus on the case of f as in (1) and (2) and
show how the methods can be modified for optimal approximation, and how to
treat the case of noisy measurements.

The outline of the paper is as follows. First we will introduce the idea of the
operator based Prony method by looking at the recovery problem of the classical
exponential sum from different angles. In Section 3, we study the recovery of
the more general expansion f of the form (2). We will show that (2) can be
viewed as an expansion into eigenfunctions of a differential operator of first order
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and thus, according to the generalized Prony method in [20], can be recovered
using higher order derivative values of f . We will show, how to find a new
generalized shift operator possessing the same eigenfunctions. This leads to a
recovery method that requires only function values of f instead of derivative
values. The idea will be further illustrated with several examples in Subsection
3.3. Section 4 is devoted to the numerical treatment of the generalized recovery
method. We will derive an ESPRIT-like algorithm for the computation of all
unknown parameters in the expansion (2). This algorithm also applies if the
number of terms M in the expansion (2) is not given beforehand. Furthermore,
we show in Section 4.3, how the recovery problem can be simplified if some
frequencies αj are known beforehand (while the corresponding coefficients cj
are unknown). Finally, in Section 5 we study the optimal approximation with
exponential sums in the Euclidean norm. This leads to a nonlinear least squares
problem which we tackle directly using a Levenberg-Marquardt iteration. Our
approach is essentially different from earlier algorithms, as e.g. [7,18,19,35].

2 Operator Based View to Prony’s Method

In order to tackle the questions 1 and 2 in Section 1.2, we start by reconsidering
Prony’s method. As an introductory example, we study the exponential sum in
(1) from a slightly different viewpoint. For h ∈ R\{0} let Sh : C∞(R)→ C∞(R)
be the shift operator given by Shf := f(·+h). Then, for any α ∈ C, the function
eαx is an eigenfunction of Sh with eigenvalue eαh, i.e.,

(Sheα·)(x) = eα(x+h) = eαh eαx.

Therefore, the exponential sum in (1) can be seen as a sparse expansion into
eigenfunctions of the shift operator Sh. The eigenvalues eαjh are pairwise dif-
ferent, if we assume that Imαj ∈ [−π/h, π/h). Now we consider the Prony
polynomial

p(z) :=

M∏
j=1

(z − eαjh) =

M∑
k=0

pk z
k

defined by the (unknown) eigenvalues eαjh corresponding to the active eigen-
functions in the expansion f in (1).Then, for any predefined x0 ∈ R we have

M∑
k=0

pkf(x0 + h(k +m)) =

M∑
k=0

pk(Sk+mh f)(x0) =

M∑
k=0

pk

M∑
j=1

cj(S
k+m
h eαj ·)(x0)

=

M∑
j=1

cj

M∑
k=0

pkeαj(hm+hk) eαjx0

=

M∑
j=1

cje
αjhmp(eαjh)eαjx0 = 0, (3)
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i.e., we can reconstruct p(z) by solving this homogeneous system for m =
0, . . . ,M − 1. We conclude that the exponential sum in (1) can be recovered
from the samples f(h`+x0), ` = 0, . . . , 2M −1. This is a slight generalization of
the original Prony method in Section 1.1 as we introduced an arbitrary sampling
distance h ∈ R \ {0} and a starting point x0 ∈ R.

Moreover, we can also replace the samples (Sk+mh f)(x0) = f(h(k+m) + x0)

in the above computation (3) by any other representation of the form F (Sk+mh f),
where F : C∞(R)→ C is a linear functional satisfying F (eα·) 6= 0, since

M∑
k=0

pkF (Sk+mh f) =

M∑
k=0

pk

M∑
j=1

cjF (Sk+mh eαj ·) =

M∑
j=1

cje
αjhmp(eαjh)F (eαj ·) = 0.

Any set of samples of the form F (S`hf), ` = 0, . . . , 2M−1, is sufficient to recover
f in (1), and the above set is obtained using the point evaluation functional
F = Fx0

with Fx0
f := f(x0) with x0 ∈ R. For further generalizations of the

sampling scheme we refer to [30].
This operator-based view leads us to the generalized Prony method intro-

duced in [20], which can be applied to recover any sparse expansion into eigen-
functions of a linear operator.

To illustrate this idea further, let us consider now the differential operator
D : C∞(R)→ C∞(R) with (Df)(x) := f ′(x) with f ′ denoting the first derivative
of f . Due to

(Deα·)(x) = α eαx

we observe that exponentials eαx are eigenfunctions of D for any α ∈ C. Thus,
the sum of exponentials in (1) can also be seen as a sparse expansion into eigen-
functions of the differential operator D. Similarly as before let now

p̃(z) :=

M∏
j=1

(z − αj) =

M∑
k=0

p̃k z
k

be the characteristic polynomial being defined by the eigenvalues αj correspond-
ing to the “active” eigenfunctions of D in (1), where again p̃M = 1 holds. Choos-
ing the functional Ff := f(x0) for some fixed x0 ∈ R, we find for minN0

M∑
k=0

p̃kF (Dk+mf) =

M∑
k=0

p̃kf
(k+m)(x0) =

M∑
k=0

p̃k

M∑
j=1

cjα
k+m
j eαjx0

=

M∑
j=1

cjα
m
j p̃(αj) eαjx0 = 0.

Thus we can determine p̃j ,j = 1, . . . ,M , from the homogeneous system∑M
k=0 p̃kf

(k+m)(x0) = 0 for m = 0, . . . ,M−1 and p̃M = 1, and recover the zeros
αj of p̃ in a first step. The cj are computed in a second step the same way as in the
classical case. We conclude that also the sample set f (`)(x0), ` = 0, . . . , 2M − 1,
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for any fixed value x0 ∈ R, is sufficient to recover f . Note that here we do not
have any restrictions regarding Imαj .

This example already shows, that there exist many different sample sets that
may be used to recover the exponential sum. In particular, each set of the form
F (A`h), ` = 0, . . . , 2M − 1, where F is an arbitrary (fixed) linear functional
satisfying F (eα·) 6= 0 and A : C∞(R) → C∞(R) is a linear operator with
eigenfunctions eαx corresponding to pairwise different eigenvalues (at least for
the range of α covering the αj in (1)) can be employed for recovery.

However, in practice it is usually much easier to provide function samples of
the form f(x0+h`) than higher order derivative values f `(x0) for ` = 0, . . . , 2M−
1. Therefore, for more general expansions, for example of the form (2), we will
raise the following question which has also been investigated in [30]: Suppose
we already found a set of samples which is (theoretically) sufficient to recover
the expansion at hand. Is it possible to find other sets of samples which can be
more easily acquired and also admit a unique recovery of the sparse expansion?
In terms of linear operators, we can reformulate this idea: Suppose that we have
already found an operator A, such that a considered expansion f is a sparse
expansion into M eigenfunctions of A (to pairweise different eigenvalues). Is it
possible to find another operator B that possesses the same eigenfunctions, such
that the samples F̃ (B`)f (with some suitable linear functional F̃ ) can be easier
obtained than F (A`)f for ` = 0, . . . , 2M − 1?

Back to our introductory example for the exponential sum (1). Let the linear
functional F be given as Ff := f(0). Assume that we have found the recovery
of (1) from the samples f (`)(0), ` = 0, . . . , 2M − 1 first. This sampling set cor-
responds to the linear differential operator A = D with Df = f ′. How can we
find the shift operator B = Sh, knowing just the fact, that (1) can be viewed as
a sparse expansion into eigenfunctions of D? Is there a simple link between the
linear differential operator D and the shift operator Sh?

This is indeed the case. Taking ϕ ∈ C∞(R) with ϕ(x) = ehx, and applying
ϕ (formally) to D, we observe for each exponential eαx, α ∈ C,

ϕ(D)eα· = ehDeα· =

∞∑
`=0

h`

`!
D`eα· =

( ∞∑
`=0

h`

`!
α`

)
eα· = eαh eα· = Sheα·.

Therefore, we have ϕ(D)f = Shf for f in (1). We note that ϕ also maps the
eigenvalues of the differential operator onto the eigenvalues of the shift operator.
This idea to switch from differential operators to other more suitable operators
will be also applied to the general sparse expansion in the next section.

3 Recovery of Generalized Exponential Sums

In this section we focus on the recovery of more general sparse expansions. Let
G : R→ C be a given function in C∞(R), which is strictly monotone in a given
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interval [a, b] ⊂ R, and let H(x) : R→ C be in C∞(R) and nonzero in [a, b]. We
consider expansions of the form

f(x) =

M∑
j=1

cj H(x) eαjG(x), x ∈ [a, b] ⊂ R, (4)

with cj ∈ C \ {0} and pairwise different αj ∈ C. Obviously, (1) is a special case
of (4) with G(x) = x and H(x) ≡ 1. In order to recover f , we need to identify
the parameters cj and αj , j = 1, . . . ,M .

3.1 Expansion into Eigenfunctions of a Linear Differential Operator

According to our previous considerations in Section 2, we want to apply the
so-called generalized Prony method introduced in [20], where we view (4) as an
expansion into eigenfunctions of a linear operator.

Step 1. First we need to find a linear operator A that possesses the functions
H(x)eαjG(x) as eigenfunctions for any αj ∈ C. For this purpose, let us define the
functions

g(x) :=
1

G′(x)
, h(x) := −g(x)

H ′(x)

H(x)
= − H ′(x)

G′(x)H(x)
, (5)

which are well defined on [a, b], since G′ and H have no zeros in [a, b]. Then the
differential operator A : C∞(R)→ C∞(R) with

Af(x) := g(x)f ′(x) + h(x)f(x) (6)

satisfies

A
(
H(·)eαjG(·)

)
(x) = g(x) (αjG

′(x)H(x) +H ′(x)) eαjG(x) + h(x)H(x) eαjG(x)

= αj H(x) eαjG(x), αj ∈ C,

i.e., the differential operator A indeed possesses the eigenfunctions H(x) eαjG(x)

with corresponding eigenvalues αj .

Step 2. To reconstruct f in (4), we can apply a similar procedure as in
Section 2. Let

p̃(z) :=

M∏
j=1

(z − αj) =

M∑
k=0

p̃k z
k, p̃M = 1, (7)

be the characteristic polynomial defined by the (unknown) eigenvalues αj that
correspond to the active eigenfunctions of the operator A in the expansion (4).
Let F : C∞(R) → C be the point evaluation functional Ff := f(x0) with x0 ∈
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[a, b], such that H(x0) 6= 0 and G′(x0) 6= 0. Then, for f as in (4) we observe that

M∑
k=0

p̃k F (Am+kf) =

M∑
k=0

p̃k

M∑
j=1

cj F
(
Ak+m

(
H(·) eαjG(·)

))

=

M∑
k=0

p̃k

M∑
j=1

cj α
k+m
j F

(
H(·) eαjG(·)

)

=

M∑
j=1

cj α
m
j

(
M∑
k=0

p̃k α
k
j

)(
H(x0) eαjG(x0)

)
= 0

for all integers m ≥ 0. Thus we can compute the coefficients p̃k, k = 0, . . . ,M−1,
using the values F (A`f), ` = 0, . . . , 2M − 1. Having determined the polynomial
p̃(z), we can compute its zeros αj , and afterwards solve a linear equation system
to reconstruct the complex coefficients cj in (4).

However, the question remains, how to obtain the needed data F (A`f), ` =
0, . . . , 2M − 1. We obtain

F (A0f) = f(x0), (8)

F (A1f) = g(x0)f ′(x0) + h(x0)f(x0),

F (A2f) = g(x0)2f ′′(x0) + [g(x0)g′(x0) + 2g(x0)h(x0)]f ′(x0)

+ [g(x0)h′(x0) + h(x0)2]f(x0).

Since g and h (and their derivatives) are known beforehand, it is sufficient to
provide the first 2M derivative values of f at one point x0 ∈ [a, b] in order to
reconstruct f . Therefore we can conclude

Theorem 1. Let G, H ∈ C∞([a, b]), such that G′ and H have no zeros on [a, b],
and let x0 ∈ [a, b] be fixed. Then f in (4) can be viewed as an expansion into
eigenfunctions of the differential operator A as in (6), and f as in (4) can be
uniquely reconstructed from the derivative samples f (`)(x0), ` = 0, . . . , 2M − 1.

Proof. As seen from the above computations the operator A of the form (6)
indeed possesses the eigenfunctions H(x) eαjG(x). In order to reconstruct the
parameters αj , we first have to compute the required values F (A`f) = (A`f)(x0),
` = 0, . . . , 2M − 1. For this purpose, we need to determine the lower triangular
matrix L = (λm,`)

2M−1
m,`=0 ∈ R2M×2M such that

(
F (A`f)

)2M−1
`=0

=
(
(A`f)(x0)

)2M−1
`=0

= L
(
f (`)(x0)

)2M−1
`=0

.

As seen in (8), we have already λ0,0 := 1, λ1,0 := g(x0), λ1,1 := h(x0). Generally,
to obtain the entries of L, we have to consider the elements λm,` as functions in
x, starting with λ0,0(x) ≡ 1. By induction, it follows from

A`f(x) =
∑̀
r=0

λ`,r(x) f (r)(x)
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that

A`+1f(x) =
∑̀
r=0

g(x)
(
λ′`,r(x) f (r)(x) + λ`,r(x)f (r+1)(x)

)
+ h(x)λ`,r(x) f (r)(x)

=
∑̀
r=0

(
g(x)λ′`,r(x) + h(x)λ`,r(x)

)
f (r)(x) + g(x)λ`,r(x)f (r+1)(x).

We conclude the recursion

λ`+1,r(x) :=

{
g(x)λ′`,r(x) + h(x)λ`,r(x) r = 0, . . . , `,

g(x)λ`,r(x) r = `+ 1.

The matrix entries λ`,k := λ`,k(x0) are well-defined by assumption on H and G.
In a second step, we solve the homogeneous equation system

M∑
k=0

p̃k F (Ak+mf) = 0, m = 0, . . . ,M − 1.

Then we can determine the characteristic polynomial p̃ in (7) and extract its
zeros αj . Finally, the coefficients cj can be computed from the linear system

F (A`f) = (A`f)(x0) =

M∑
j=1

cj (A`(H(·) eαjG(·)))(x0) = H(x0)

M∑
j=1

cjα
`
je
αjG(x0)

for ` = 0, . . . , 2M − 1. ut

However, the values f (r)(x0), r = 0, . . . , 2M − 1, may not be easily accessible,
and we need some extra effort to compute F (A`f) from the derivatives of f .

3.2 Expansion into Eigenfunctions of a Generalized Shift Operator

Our goal is to find a different set of sample values for the recovery of f in (4),
which is easier to obtain but also sufficient for a unique reconstruction. Thus we
need to find an operator B which possesses the same eigenfunctions as A in (6).
In addition, we require that F (B`f) (with some point evaluation functions F )
can be simply obtained from function values of f . Similarly as in Section 2, we
consider the linear operator B = ϕ(A) = exp(hA) with A in (6) and h ∈ R\{0}.
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We observe for f in (4),

exp(hA)f =

∞∑
`=0

h`

`!
A`f =

∞∑
`=0

h`

`!

M∑
j=1

cj A
`
(
H(·)eαjG(·)

)

=

∞∑
`=0

h`

`!

M∑
j=1

cjα
`
j

(
H(·) eαjG(·)

)
=

M∑
j=1

cj

( ∞∑
`=0

h`

`!
α`j

)(
H(·) eαjG(·)

)

=

M∑
j=1

cj eαjh
(
H(·) eαjG(·)

)
= H(·)

M∑
j=1

cj eαj(h+G(·))

= H(·)
M∑
j=1

cj eαjG(G−1(h+G(·)))

=
H(·)

H(G−1(h+G(·)))

M∑
j=1

cjH(G−1(h+G(·))) eαjG(G−1(h+G(·)))

=
H(·)

H(G−1(h+G(·)))
f
(
G−1(h+G(·))

)
.

Therefore, we define the generalized shift operator

SH,G,hf(x) :=
H(x)

H(G−1(h+G(x)))
f
(
G−1(h+G(x))

)
, (9)

which depends on the functions G, H, and the step size h ∈ R \ {0}. This shift
operator has been also introduced in [23]. It particularly satisfies the properties

SH,G,h2 (SH,G,h1f) = SH,G,h1 (SH,G,h2f) = SH,G,h1+h2f

for all h1, h2 ∈ R, and
SkH,G,hf = SH,G,khf (10)

for k ∈ Z, see Theorem 2.1 in [23]. Observe that here, we do not assume that G
and H are C∞(R) functions, it is sufficient to consider continuous functions. We
only need to ensure that G−1 and 1/H are well defined within the considered
sampling interval. We summarize this in the following theorem.

Theorem 2. Let G, H be continuous functions on an interval [a, b], such that
G is strictly monotone in [a, b] and H has no zeros in [a, b]. Assume that the
pairwise different parameters αj in the expansion

f(x) =

M∑
j=1

cj H(x) eαjG(x), x ∈ [a, b] ⊂ R, (11)

satisfy Imαj ∈ (−T,T] and that cj ∈ C \ {0}. Then f can be uniquely recon-
structed from the sample values f(G−1(h`+G(x0))), ` = 0, . . . , 2M−1, where x0,
h are taken such that 0 < |h| < π

T and G(x0+h`) ∈ [G(a), G(b)] for G(a) < G(b)
or G(x0 + h`) ∈ [G(b), G(a)] for G(a) > G(b).
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Proof. From the arguments above, we can conclude thatH(x) eαjG(x) is an eigen-
function of the generalized shift operator SH,G,h in (9) with the eigenvalue eαjh,
since

SH,G,h(H(·)eαjG(·))=
H(·)

H(G−1(h+G(·)))

(
H(G−1(h+G(·)))eαjG(G−1(h+G(·)))

)
= H(·) eαj(h+G(·)) = eαjhH(·) eαjG(·).

Further, for Imαj ∈ (−T, T ], and 0 < |h| < π
T , the eigenvalues eαjh corre-

sponding to active eigenfunctions in (4) are pairwise different, such that we can
uniquely derive the “active” eigenfunctions H(x)eαjG(x) in (11) from the corre-
sponding “active” eigenvalues. We define the characteristic polynomial

p(z) :=

M∏
j=1

(z − eαjh) =
M∑
k=0

pk z
k with pM = 1, (12)

using the (unknown) eigenvalues eαjh, where pk, k = 0, . . . ,M − 1, are the
(unknown) coefficients of the monomial representation of p(z). Then, we conclude

M∑
k=0

pk (Sk+mH,G,hf)(x0) =

M∑
k=0

pk

M∑
j=1

cj (Sk+mH,G,hH(·) eαjG(·))(x0)

=

M∑
k=0

pk

M∑
j=1

cj eαjh(k+m)H(x0) eαjG(x0)

= H(x0)

M∑
j=1

cj eαjhm eαjG(x0)
M∑
k=0

pk (eαjh)k

= H(x0)

M∑
j=1

cj eαjhm eαjG(x0) p(eαjh) = 0 (13)

for all integers m, where by definition

(Sk+mH,G,hf)(x0) =
H(x0)

H(G−1(h(k +m) +G(x0)))
f(G−1(h(k +m) +G(x0))).

Thus, we can compute the coefficients pk, k = 0, . . . ,M − 1, from the homoge-
neous linear system

M∑
k=0

pk (Sk+mH,G,hf)(x0) = H(x0)

M∑
k=0

pk
f(G−1(h(k +m) +G(x0)))

H(G−1(h(k +m) +G(x0)))
= 0,

for m = 0, . . . ,M − 1, and pM = 1, or equivalently from

M−1∑
k=0

pk
f(G−1(h(k +m) +G(x0)))

H(G−1(h(k +m) +G(x0)))
= − f(G−1(h(M +m) +G(x0)))

H(G−1(h(M +m) +G(x0)))
, (14)
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for m = 0, . . . ,M − 1. The conditions on h and x0 in the theorem ensure that
we only use samples of f in [a, b]. The equation system (14) is always uniquely
solvable, since the coefficient matrix is invertible. More exactly, we have for f in
(11),

(
f(G−1(h(k +m) +G(x0)))

H(G−1(h(k +m) +G(x0)))

)M−1
m,k=0

=

 M∑
j=1

cj eαj(h(k+m)+G(x0)))

M−1

m,k=0

=
(
eαjhm

)M−1,M
m=0,j=1

diag
(
c1eα1G(x0), . . . , cMeαMG(x0)

) (
eαjhk

)M,M−1
j=1,m=0

. (15)

The first and the last matrix factor are invertible Vandermonde matrices with
pairwise different nodes eαjh, and the diagonal matrix is invertible, since cj 6= 0.

Having solved (14), we can reconstruct p(z) and extract all its zeros zj = eαjh.
In a second step we can compute the coefficients cj from the overdetermined
system

f(G−1(h`+G(x0)) =

M∑
j=1

cj H(G−1(h`+G(x0))) eαj(h`+G(x0)), (16)

for ` = 0, . . . , 2M − 1. ut

3.3 Application to Special Expansions

The model (4) covers many special expansions, and we want to illustrate some
of them.

Classical Exponential Sums. Obviously, the model (1) is a special case of
(4) with G(x) := x and H(x) := 1. In this case, we have

g(x) ≡ 1, h(x) ≡ 0

in (5) such that A in (6) reduces to Af = f ′. The generalized shift operator
in (9) with G−1(x) = x is of the form S1,x,hf(x) = f(h + x) and is therefore
just the usual shift operator Sh in Section 2. By Theorem 1, the sample values
f (`)(x0), ` = 0, . . . , 2M − 1 are sufficient for recovery of f , where in this case
the interval [a, b] can be chosen arbitrarily in R and thus also x0. Theorem 2
provides the set of sample values f(x0 + h`) similarly as we had seen already in
Section 2.

Expansions into Shifted Gaussians. We want to reconstruct expansions of
the form

f(x) =

M∑
j=1

cj e−β(x−αj)
2

, (17)
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where β ∈ R \ {0} is known beforehand, and we need to find cj ∈ C \ {0} and
pairwise different αj ∈ C, see also [34,23].

First, we observe that by

e−β(x−αj)
2

= e−βα
2
j e−βx

2

e2βαjx,

that these functions are of the form H(x) eαjG(x), where here

H(x) := e−βα
2
j e−βx

2

, G(x) := 2βx.

Using the results in Section 3.1 and 3.2, (5) yields

g(x) =
1

G′(x)
=

1

2β
, h(x) = −g(x)

H ′(x)

H(x)
= − 1

2β
(−2βx) = x.

We define the operator A by Af(x) := 1
2β f

′(x) + x f(x) and find

A
(

e−β(·−αj)
2
)

(x) =

(
1

2β
(−2β(x− αj)) + x

)
e−β(x−αj)

2

= αj e−β(x−αj)
2

.

Thus, we can reconstruct f in (17) according to Theorem 1 from the derivative
samples f (`)(x0), ` = 0, . . . , 2M − 1. Here, x0 can be chosen arbitrarily in R,
since G′(x) = 2β 6= 0 and H(x) 6= 0 for all x ∈ R, which means that the interval
[a, b] can be chosen arbitrarily in Theorem 1.

Another sampling set is obtained by Theorem 2. We find the generalized shift
operator SH,G,h in (9) here of the form

SH,G,hf(x) =
e−βx

2

e−β((h+2βx)/2β)2
f

(
h+ 2βx

2β

)
= eh(x+h/4β) f

(
x+

h

2β

)
. (18)

Then

SH,G,h(e−β(·−αj)
2

)(x) = eh(x+h/4β) e−β(x+
h
2β−αj)

2

= ehαj e−β(x−αj)
2

.

Therefore, the expansion in (17) is an expansion into eigenfunctions of the gen-
eralized shift operator in (18) and can be reconstructed from the equidistant
samples

f

(
x0 +

h`

2β

)
, ` = 0, . . . , 2M − 1,

where x0 ∈ R can be chosen arbitrarily and 0 < |h| < π
T , where T is the a priori

known bound satisfying |αj | < T for all j = 1, . . . ,M . Since the interval [a, b]
occurring in Theorem 2 can be taken arbitrarily large, we can always take it
such that

|G(b)−G(a)|
2M

=
2|β|(b− a)

2M
>
π

T
,

and therefore, there is no further condition on the choice of h. We note that the
procedure also applies for β ∈ C \ {0}. In this case we can use the substitution
α̃j = αj2β and take G(x) = x.
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Remark 1. The model (17) particularly also includes expansions into modulated
shifted Gaussians

f(x) =

M∑
j=1

cj e2πixκj e−β(x−sj)

with κj ∈ [0, 1) and sj ∈ R which has been considered in [23]. Since

e2πixκj e−β(x−sj) = e−βs
2
j e−βx

2

e−x(2βsj+2πiκj),

we choose αj := 2βsj + 2πiκj , j = 1, . . . ,M . Then the reconstruction of the αj
is sufficient to find the parameters sj and κj from the real and the imaginary
part of αj , respectively.

Example 1. We illustrate the recovery of expansions into shifted Gaussians and
consider f of the form (17) with M = 10 and β = i. The original parameters
in Table 1 have been obtained by applying a uniform random choice from the
intervals (−3, 3) + i(−2, 2) for cj and from (−2, 2) for αj . Since β is complex, we
use G(x) = x and the substitution α̃j = 2iαj . Further, we chose x0 = −1 and
h = 1.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

Re cj −1.754 −1.193 0.174 −1.617 2.066 −1.831 −1.644 −1.976 −1.634 −0.386

Im cj −0.756 1.694 −0.279 −1.261 1.620 1.919 −0.245 −1.556 −0.968 −0.365

αj 0.380 −0.951 0.411 0.845 −1.113 −1.530 −0.813 −0.725 −0.303 −0.031

Table 1. Parameters cj and αj for f(x) in (17) with M = 10, see Figure 1.

The reconstruction algorithm uses the 20 samples f(k), k = −1, . . . , 18, which
are represented as black dots in Figure 1. The obtained maximal reconstruction
error for the parameters αj parameters cj are

errα = 1.518622755454592 · 10−11, errβ = 5.286537816367291 · 10−10.

Expansions into Functions of the Form exp(αj sinx). We want to recon-
struct expansions of the form

f(x) =

M∑
j=1

cj eαj sin x, (19)

where we need to find cj ∈ C \ {0} and pairwise different αj ∈ C. Here, eαj sin x

is of the form H(x)eαjG(x) with H(x) := 1 and G(x) := sin(x). To ensure that
G(x) is strictly monotone, we choose the interval [−π2 + δ, π2 − δ] with some



Modifications of Prony’s Method 15

-2 0 2 4 6 8 10 12 14 16 18
-15

-10

-5

0

5

10

15
real part

-2 0 2 4 6 8 10 12 14 16 18
-15

-10

-5

0

5

10

15
imaginary part

Fig. 1. Real and imaginary part of the signal f(x) consisting of shifted Gaussians as
given in Example 1. The black dots indicate the used signal values. Here the recon-
structed signal is shown in red and cannot be distinguished from the original signal
f(x).

small δ > 0. With g(x) = (G′(x))−1 = (cos(x))−1 and h(x) = 0 we define the
differential operator Af(x) = (cos(x))−1f ′(x) and find

A(eαj sin(·))(x) =
1

cos(x)
(αj cos(x) eαj sin(x)) = αj eαj sin(x).

According to Theorem 1 we can therefore reconstruct f in (19) from the deriva-
tive samples f (`)(x0) for some x0 ∈ [−π2 + δ, π2 − δ].

Using Theorem 2, we define with H(x) := 1 and G(x) := sin(x) the general-
ized shift operator

SH,G,hf(x) = f(G−1(h+G(x)) = f(arcsin(h+ sin(x))).

We have to choose x0 and h such that all samples f(arcsin(h`+sin(x0))) that we
require for the reconstruction are well-defined, i.e., sin(x0)+h` ∈ [−π2 + δ, π2 − δ]
for ` = 0, . . . , 2M −1. This is for example ensured for x0 = −π2 + h

2 and 0 < h ≤
π

2M+1 .

Example 2. We illustrate the reconstruction of a function f(x) of the form (19)
with M = 10 and with real parameters cj and αj in Table 2 that have been
obtained by applying a uniform random choice from the intervals (−3, 3) for cj
and from (−π, π) for αj . We choose a sampling distance h = 1

17 and a starting

point x0 = −π2 + h
2 = −π2 + 1

34 .
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j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

cj 2.104 0.363 2.578 1.180 0.497 1.892 2.274 2.933 −2.997 2.192

αj 1.499 0.540 −1.591 1.046 −2.619 0.791 1.011 1.444 2.455 3.030

Table 2. Parameters cj and αj for f(x) in (19) with M = 10, see Figure 2.

The reconstruction problem is ill-posed, and we cannot reconstruct the exact
parameters with high precision, however, the reconstructed function is a very
good approximation of f , see Figure 2.
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20

25

30

35

40

45

50

Fig. 2. Signal f(x) in (19) consisting of M = 10 terms according to Table 2. The black
dots indicate the used signal values and the reconstructed signal is shown in red.

4 Numerical Treatment of the Generalized Prony
Method

In this section, we consider some numerical procedures to recover the parameters
αj , cj , j = 1, . . . ,M , in (4) resp. (11).

4.1 The Simple Prony Algorithm

First we summarize the direct algorithm for the recovery of f in (11) from the
function values f(G−1(h` + G(x0))), ` = 0, . . . , 2M − 1, according to the proof
of Theorem 2.

Algorithm 1.



Modifications of Prony’s Method 17

Input: M ∈ N, h > 0, sampled values f(G−1(h`+G(x0))), ` = 0, . . . , 2M − 1.

1. Solve the linear system (14) to find the vector p = (p0, . . . , pM−1)T .

2. Compute all zeros zj ∈ C, j = 1, . . . ,M , of p(z) =
M−1∑
k=0

pk z
k + zM .

3. Extract the coefficients αj := 1
h log zj from zj = eαjh, j = 1, . . . .M .

4. Solve the system (16) to compute c1, . . . , cM ∈ C.

Output: αj ∈ R + i[−πh ,
π
h ), cj ∈ C, j = 1, . . . ,M .

The assumptions of Theorem 2 imply that the coefficient matrix of the linear
system (14) is the invertible Hankel matrix,

HM :=

(
f(G−1(h(k +m) +G(x0)))

H(G−1(h(k +m) +G(x0)))

)M−1
k,m=0

.

However, the factorization (15) indicates that HM may have very high condition
number that particularly depends on the condition number of the Vandermonde

matrix
(
eαjhm

)M−1,M
m=0,j=1

.

4.2 ESPRIT for the Generalized Prony Method

We are interested in a more stable implementation of the recovery method and
present a modification of the ESPRIT method, see [28,27,24] for the classical
exponential sum. We assume that the number of terms M in (4) is not given
beforehand, but L is a known upper bound of M . In the following, we use the
notation AK,N for a rectangular matrix in CK×N and AK for a square matrix
in CK×K , i.e., the subscripts indicate the matrix dimension.

Let

f` :=
f(G−1(h`+G(x0)))

H(G−1(h`+G(x0)))
, ` = 0, . . . , 2N − 1, (20)

be given and well defined, where N ≥ L ≥M .
We consider first the rectangular Hankel matrix

H2N−L,L+1 := (f`+m)
2N−L−1,L
`,m=0 ∈ C(2N−L)×(L+1).

For exact data, (13) implies that rank H2N−L,L+1 = M . We therefore compute
the singular value decomposition of H2N−L,L+1,

H2N−L,L+1 = U2N−L D2N−L,L+1 WL+1, (21)

with unitary square matrices U2N−L, WL+1 and a rectangular diagonal matrix
D2N−L,L+1 containing the singular values of H2N−L,L+1. We determine the
numerical rank M of H2N−L,L+1 by inspecting its singular values σ̃1 ≥ σ̃2 ≥
. . . ≥ σ̃L+1 ≥ 0. We find M as the number of singular values being larger than a
predefined bound ε. Usually, we can find a clear gap between σ̃M and the further
singular values σ̃M+1, . . . , σ̃L+1, which are close to zero. We redefine the Hankel
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matrix and consider H2N−M,M+1 := (f`+m)
2N−M−1,M
`,m=0 ∈ C(2N−M)×(M+1) with

the corresponding SVD

H2N−M,M+1 = U2N−M D2N−M,M+1 WM+1, (22)

with unitary matrices U2N−M and WM+1. For exact data, H2N−M,M+1 has
rank M , and DT

2N−M,M+1 = (diag(σ1, . . . , σM , 0),0) ∈ R(M+1)×(2N−M) with
σ1 ≥ σ2 ≥ . . . ≥ σM > 0.

We introduce the sub-matrices H2N−M,M (0) and H2N−M,M (1) given by

H2N−M,M+1 =
(
H2N−M,M (0), (f`+M )2N−M−1`=0

)
=
(
(f`)

2N−M−1
`=0 ,H2N−M,M (1)

)
,

i.e., we obtain H2N−M,M (0) be removing the last column of H2N−M,M+1 and
H2N−M,M (1) by removing the first column of H2N−M,M+1. Recalling (14) we
have for exact data

H2N−M,M (0) p = − (f`+M )
2N−M−1
`=0 , (23)

where p = (p0, . . . , pM−1)T contains the coefficients of the Prony polynomial in
(12). Let now

CM (p) :=


0 0 . . . 0 −p0
1 0 . . . 0 −p1
0 1 . . . 0 −p2
...

...
...

...
0 0 . . . 1 −pM−1

 ∈ CM×M

be the (unknown) companion matrix of p possessing the M zeros of p(z) in (12)
as eigenvalues. By (23) it follows that

H2N−M,M (0) CM (p) = H2N−M,M (1). (24)

This observation leads to the following algorithm. According to (22) we find the
factorizations

H2N−M,M (0) = U2N−M D2N−M,M+1 WM+1,M (0),

H2N−M,M (1) = U2N−M D2N−M,M+1 WM+1,M (1),

where WM+1,M (0) is obtained by removing the last column of WM+1 and
WM+1,M (1) by removing its first column. Now, (24) implies

D2N−M,M+1WM+1,M (0) CM (p) = D2N−M,M+1WM+1,M (1).

Multiplication with the generalized inverse

D†2N−M,M+1 =

(
diag (

1

σ1
, . . .

1

σM
, 0),0

)
∈ R(M+1)×(2N−M),

finally yields
WM (0) CM (p) = WM (1),
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where the square matrices WM (0) and WM (1) are obtained from WM+1,M (0)
and WM+1,M (1), respectively, by removing the last row. Thus, the eigenvalues
of CM (p) are equal to the eigenvalues of

WM (0)−1 WM (1),

where WM (0) is invertible since CM (p) is invertible. (We can assume here that
zj 6= 0 since zj = eαj .) We therefore obtain the following new algorithm.

Algorithm 2 (ESPRIT for the generalized Prony method)
Input: L,N ∈ N, L ≤ N , L upper bound for the number M of terms in (11),
sample values f`, ` = 0, . . . , 2N − 1 as given in (20), G(x0).

1. Compute the SVD of the rectangular Hankel matrix H2N−L,L as in (21).
Determine the numerical rank M of H2N−L,L, and compute the SVD of
H2N−M,M+1 = U2N−M D2N−M,M+1 WM+1.

2. Build the restricted matrix WM (0) by removing the last column and the last
row of WM+1 and WM (1) by removing the first column and the last row of
WM+1. Compute the eigenvalues zj , j = 0, . . . ,M , of WM (0)−1WM (1).

3. Extract the coefficients αj := 1
h log zj from zj = eαjh, j = 1, . . . .M .

4. Solve the overdetermined system

f` =

M∑
j=1

cj z
G(x0)/h
j z`j , ` = 0, . . . , 2N − 1,

to compute c1, . . . , cM ∈ C.

Output: M , αj ∈ R + i[−πh ,
π
h ), cj ∈ C, j = 1, . . . ,M .

Example 3. We compare the performance of the classical Prony method in Algo-
rithm 1 with the ESPRIT method in Algorithm 2 and focus on the reconstruction
of the frequency parameters. In our numerical example we choose M = 5 and
the parameter vectors α = (αj)

M
j=1, c = (cj)

M
j=1 as

α = (
π

2
,

iπ

4
, 0.4 + i,−0.5,−1)T and c = (0.5, 2,−3, 0.4i,−0.2)T .

For the ESPRIT Algorithm 2 we have used N = 15, i.e., 30 sample values, and
have fixed an upper bound L = 10. For the rank approximation we have applied
a bound ε = 10−8. In Table 3, we present the results of parameter reconstruction
using Algorithms 1 and 2.

Remark 2. The Hankel matrices occurring in the considered reconstruction prob-
lems can have a very high condition. However, there are stable algorithms avail-
able to compute the SVD for Hankel matrices, particularly for the square case,
see e.g. [11].
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j exact αj αj (Algorithm 1) αj (Algorithm 2)

j = 1 π
2

1.57121 + 6.0886 · 10−5i 1.57079− 2.3198 · 10−8i

j = 2 iπ
4

0.00231 + 0.7928i 2.00492 · 10−6 + 0.7854i

j = 3 0.4 + i 0.40168 + 0.9982i 0.4000 + 1i

j = 4 −0.5 −0.49944− 0.0013i −0.5− 4.3008 · 10−07i

j = 5 −1 −1.00019− 0.0042i −1.0− 1.1763−06i

Table 3. Reconstructed parameters αj in Example 3 using Algorithm 1 and Algorithm
2.

4.3 Simplification in Case of Partially Known Frequency
Parameters

In some applications, one or more of the parameters αj , or equivalently zj = eαjh,
may be already known beforehand. However, if the corresponding coefficients
cj are unknown, we cannot just eliminate the term cj H(x) eαjG(x) from the
sum in (11) to get new measurements of the simplified sum from the original
measurements. However, we can use the following approach. Recall that the
vector p̃ = (p0, . . . , pM )T of coefficients of the Prony polynomial

p(z) =

M∑
k=0

pkz
k =

M∏
j=1

(z − zj)

satisfies
H2N−M,M+1 p̃ = 0,

where the Hankel matrix H2N−M,M+1 is constructed from f` in (20) as in the
previous section. Assume that z1 is already known beforehand, and let

q(z) :=

M∏
j=2

(z − zj) =

M−1∑
k=0

qkz
k,

with the coefficient vector (q0, . . . , qM−1)T . Then p(z) = (z− z1)q(z) implies for
the coefficient vectors

p̃ =


0
q0
...

qM−1

− z1


q0
...

qM−1
0


and thus

H2N−M,M+1p̃ = (H2N−M,M (1)− z1H2N−M,M (0)) q = 0,

with H2N−M,M (0) and H2N−M,M (1) denoting the submatrices of H2N−M,M+1

where either the last column or the first column is removed. Therefore, we easily
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find the new Hankel matrix

H̃2N−M,M = H2N−M,M (1)− z1H2N−M,M (0)

for the reduced problem. Observe from (20), that the new values in H2N−M,M (1)−
z1H2N−M,M (0) are of the form

f̃` = f`+1 − z1f` =

M∑
j=1

cje
αj(h(`+1)+G(x0)) − eα1h

M∑
j=1

cje
αj(h`+G(x0))

=

M∑
j=2

cj(e
αjh − eα1h)eαj(h`+G(x0)),

i.e., the coefficients cj ,j = 2, . . . ,M , are changed to c̃j = cj(e
αjh − eα1h). Thus,

we can use the samples f̃` to recover the shorter sum
M∑
j=2

c̃je
αjG(x). Once we

have computed the remaining αj , j = 2, . . . ,M we obtain the coefficients cj ,
j = 1, . . . ,M , by solving the linear system (16).

5 Modified Prony Method for Sparse Approximation

In this section, we want to consider the question, how to approximate a given
data vector y = (yk)Lk=0 with L ≥ 2M − 1 by a new vector f = (fk)Lk=0 whose
elements are structured as

fk =

M∑
j=1

cj z
k
j ,

i.e., f only depends on the parameter vectors c = (cj)
M
j=1 and z = (zj)

M
j=1.

We assume that for the given data y the corresponding Hankel matrix H :=
(yk+m)L−M−1,M−1k=0,m=0 has full rank, i.e., that the given data cannot be exactly
represented by an exponential sum with less than M terms, as it can be also
seen from the factorization (15). Further, we suppose that cj ∈ C \ {0} and that
zj ∈ C \ {0} are pairwise distinct.

5.1 The Nonlinear Least-Squares Problem

We want to solve the minimization problem

argmin
c,z∈CM

∥∥∥∥∥∥∥y −
 M∑
j=1

cj z
k
j

L

k=0

∥∥∥∥∥∥∥
2

. (25)

This problem occurs in two different scenarios. The first one is the problem of
parameter estimation in case of noisy data. Assume that we have noisy samples
yk = f(k) + εk, k = 0, . . . , L, of f(x) =

∑M
j=1 cjz

x
j , where εk are i.i.d. random



22 Ingeborg Keller, Gerlind Plonka

variables with εk ∈ N(0, σ2). In the second scenario we consider the sparse

nonlinear approximation problem to find a function f(x) =
∑M
j=1 cjz

x
j , which

minimizes
∑L
`=0 |y` − f(`)|2. With the Vandermonde matrix

Vz :=


1 1 . . . 1
z1 z2 . . . zM
z21 z22 . . . z

2
M

...
...

...
zL1 zL2 . . . zLM

 ∈ C(L+1)×M

we have f = Vz c, and the problem (25) can be reformulated as

argmin
c,z∈CM

‖y −Vzc‖2.

For given z, the linear least squares problem argmin
c∈CM

‖y−Vzc‖2 can be directly

solved, and we obtain c = V+
z y = [V∗zVz]−1V∗zy, since Vz has full rank M .

Thus (25) can be simplified to

argmin
z∈CM

‖y −VzV
+
z y‖22 = argmin

z∈CM
‖(I−Pz)y‖22

= argmin
z∈CM

(y∗y − y∗Pzy) = argmax
z∈CM

y∗Pzy,

where Pz := VzV
+
z is the projection matrix satisfying Pz = P∗z = P2

z, PzVz =
Vz as well as V+

z Pz = V+
z . Hence, similarly as for Prony’s method, we can

concentrate on finding the parameters zj in z first.
Let now r(z) := Pzy ∈ CL+1. Then the optimization problem is equivalent

to
argmax
z∈CM

‖r(z)‖22 = argmax
z∈CM

‖Pzy‖22. (26)

To derive an iterative algorithm for solving (26), we first determine the Jacobian

Jz of r(z) = (r`(z))
L
`=0.

Theorem 3. The Jacobian matrix Jz ∈ C(L+1)×M of r(z) in (26) is given by

Jz :=

(
∂r`(z)

∂zj

)L,M
`=0,j=1

= (IL+1 −Pz)V′z diag(V+
z y) + (V+

z )∗ diag((V′z)∗(IL+1 −Pz)y), (27)

where IL+1 denotes the identity matrix of size L+ 1,

V′z :=


0 0 . . . 0
1 1 . . . 1

2z1 2z2 . . . 2zM
...

...
...

LzL−11 LzL−12 . . . LzL−1M

 ∈ C(L+1)×M ,
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and diag(q) denotes the diagonal matrix of size M ×M for a vector q ∈ CM .
In particular, the gradient of ‖r(z)‖22 reads

∇‖r(z)‖22 = 2J∗z r(z) = diag((V′z)T(IL+1 −Pz)y) V+
z y. (28)

Proof. First, observe that ∂
∂zj

Vz is a rank-1 matrix of the form

∂

∂zj
Vz = z′j e∗j ∈ C(L+1)×M , j = 1, . . . ,M,

where z′j = (0, 1, 2zj , 3z
2
j , . . . , Lz

L−1
j )T and ej is the jth unit vector of length

M . Then we obtain

∂

∂zj
r(z) =

∂

∂zj

(
Vz[V∗zVz]−1V∗zy

)
= (z′j e∗j )V

+
z y − (V+

z )∗
[
(z′j e∗j )

∗Vz + V∗z(z′j e∗j )
]
V+

z y + (V+
z )∗(z′j e∗j )

∗y

= (V+
z y)j z′j − ((z′j)

∗Pzy)(V+
z )∗ej − (V+

z y)jPzz
′
j + ((z′j)

∗y)(V+
z )∗ej

= (V+
z y)j(IL+1 −Pz)z′j + ((z′j)

∗(IL+1 −Pz)y)(V+
z )∗ej

= (V+
z y)j(IL+1 −Pz)V′zej + ((z′j)

∗(IL+1 −Pz)y)(V+
z )∗ej ,

where (V+
z y)j denotes the jth component of V+

z y. From this observation, we
immediately find Jz in (27). Further, this formula implies

J∗zr(z) = (diagV+
z y)(V′z)∗(I−Pz)Pzy + (diag((V′z)∗(IL+1 −Pz)y))∗V+

z Pzy

= diag((V′z)T(IL+1 −Pz)y) V+
z y.

ut

Corollary 1. Let y ∈ CL+1 be given and assume that (yk+m)L−M+1,M−1
k=0,m=0 has

full rank M . Then, a vector z ∈ CM solving (26) necessarily satisfies

(V′z)∗(IL+1 −Pz)y = 0.

Proof. The assertion follows from (28) using the information that c = V+
z y has

no vanishing components. ut

Remark 3. 1. The necessary condition in Corollary 1 can be used to build an
iterative algorithm for updating the vector z where we start with z(0) obtained
from the ESPRIT Algorithm 2. We then search for z(j+1) by solving

(V′z(j+1))
∗(IL+1 −Pz(j))y = 0,

i.e., by computing the zeros of the polynomial with coefficient vector

diag(0, 1, 2, . . . , L) (IL+1 −Pz(j))y

and taking the subset of M zeros which is closest to the previous set z(j).
2. This approach is different from most ideas to solve (25) in the literature, see
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e.g. [7,18,19] and the recent survey [35]. In that papers, one first transfers the
problem of finding z ∈ CM into the problem of finding the vector p = (pk)Mk=0 ∈
CM+1 with ‖p‖2 = 1, such that p(zj) =

∑M
k=0 pkz

k
j = 0 for all j = 1, . . . ,M ,

thereby imitating the idea of Prony’s method. Introducing the matrix

XT
p =


p0 p1 . . . pM
p0 p1 . . . pM

. . .
. . .

p0 p1 . . . pM

 ∈ C(L−M+1)×(L+1)

that satisfies XT
pVz = 0, we obtain a projection matrix

Pp := XpX
+

p = Xp[XT
pXp]−1XT

p = (IL+1 −Pz),

and (26) can be rephrased as

argmin
p∈CM+1

‖p‖2=1

‖Ppy‖22 = argmin
p∈CM+1

‖p‖2=1

y∗Xp[XT
pXp]−1XT

py.

5.2 Gauß-Newton and Levenberg-Marquardt Iteration

Another approach than given in Remark 3 to solve the non-linear least squares
problem (26) is the following. We approximate r(z+δ) using its first order Taylor
expansion r(z) + Jzδ. Now, instead of minimizing ‖r(z + δ)‖22 we consider

argmin
δ∈CM

‖r(z) + Jzδ‖22 = argmin
δ∈CM

(‖r(z)‖22 + (r(z))∗Jzδ+ δ∗J∗zr(z) + δ∗J∗zJzδ)

which yields

2 Re(J∗zr(z)) + 2J∗zJzδ = 0.

Thus, starting with the vector z(0) obtained from Algorithm 2, the jth step of
the Gauß-Newton iteration is of the form

(J∗z(j)Jz(j))δ(j) = −Re (J∗z(j)r(z(j)))

to get the improved vector z(j+1) = z(j) + δ(j). Since (IL+1 − Pz(j))y may be
already close to the zero vector, the matrix (J∗

z(j)Jz(j)) is usually ill-conditioned.
Therefore, we regularize by changing the matrix in each step to (J∗

z(j)Jz(j)) +
λjIM and obtain the Levenberg-Marquardt iteration

((J∗z(j)Jz(j)) + λjIM )δ(j) = −Re (J∗z(j)r(z(j))).

In this algorithm, we need to fix the parameters λj , which are usually taken
very small. If we arrive at a (local) maximum, then the right-hand side in the

Levenberg-Marquardt iteration vanishes, and we obtain δ(j) = 0.
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Remark 4. 1. The considered non-linear least squares problem is also closely
related to structured low-rank approximation, see [17,33]. Further, instead of
the Euclidean norm, one can consider the maximum norm, see [6,12] or the
1-norm, see [29].

2. Some questions remain. How good ist the approximation with exponential
sums and what is the convergence rate with respect to the number of terms M?
The authors are not aware of a complete answer to this question. However, in
[6] it has been shown that the function 1/x can be approximated by an M -term
exponential sum with an error O(exp(c

√
M). Also the results in [5] and [22]

indicate that we can hope for an exponential decay of the approximation error
for a larger class of functions.
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