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Abstract. We employ the generalized Prony method to derive new reconstruction
schemes for a variety of sparse signal models using only a small number of signal
measurements. Introducing generalized shift operators, we study the recovery of
sparse trigonometric and hyperbolic functions as well as sparse expansions of shifted
Gaussians and Gabor functions with Gaussian windows. Furthermore, we show how
to reconstruct sparse polynomial expansions and sparse non-stationary signals with
structured phase functions.
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1 Introduction

The recovery of signals possessing a given structure is an important problem in
various applications as e.g. wireless telecommunication [21], image super-resolution
[23], nondestructive testing [5] and phase retrieval [3].

We assume that we can employ certain a priori knowledge about the underlying
signal model, where a small number of parameters needs to be determined from given
signal measurements in order to recover the structure of the signal. A prototype of
such a signal is an exponential sum of the form

f(x) =
M∑
j=1

cj exαj (1.1)

with unknown complex parameters cj and αj , j = 1, . . . ,M , which need to be recov-
ered from measurement values of f . Here and in all other signal models we always
assume that the parameters αj are pairwise different and that all coefficients cj are
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nonzero, otherwise, the exponential sum can be suitably simplified to a sum with
less terms.

It is well-known, that this recovery problem can be solved by Prony’s method
using equidistant point evaluations f(x0 + kh), k = 0, . . . , 2M − 1, where x0 ∈ R
can be arbitrarily chosen, and h 6= 0 is a suitable step size. Indeed, the model (1.1)
already covers many important applications. For example, taking αj = −itj with
tj ∈ R, (1.1) is closely related to the model

g(t) =

M∑
j=1

cj δ(t− tj), (1.2)

a finite stream of Diracs, since the Fourier transform ĝ(x) :=
∫∞
−∞ g(t) e−itxdt of g is

equal to f in (1.1) . Therefore, g can be recovered from equidistant Fourier samples.
Signals as given in (1.2) are said to have finite rate if innovation, [22]. More generally,
considering a finite linear combination of arbitrary shifts of a given function φ,

g(t) =
M∑
j=1

cj φ(t− tj) (1.3)

with tj ∈ R leads by Fourier transform to a product of an exponential sum
M∑
j=1

cj e−itjx

of the form (1.1) with the Fourier transform φ̂(x), and can therefore also be recovered
from suitable equidistant Fourier samples of g, see [9,17,19,22]. Applying the Laplace
transform to (1.1) with the restriction αj ∈ R, we find

h(s) = Lf(s) =

M∑
j=1

cj
s− αj

.

Therefore, the rational function h(s) can be reconstructed from equidistant samples
of its inverse Laplace transform using Prony’s method. Also, sparse expansions of
shifted Lorentzian functions with the Fourier transform e−itjx−αj |x|/2, where tj and
αj denote the shifts and the function width, can be recovered using the model (1.1),
see [2].

However, many applications require more general signal models. In this paper we
regard a signal as stationary if it can be e.g. written in the form

f(x) =

M∑
j=1

cj(x) eiφj(x) or

M∑
j=1

cj(x) cos(φj(x))

where the amplitudes cj(x) are constants and the phase functions φj(x) are linear
polynomials. Thus the exponential sum in (1.1) is stationary for αj = itj , tj ∈ R.
We say that the signal is non-stationary, if these assumptions are not longer satis-
fied. In Section 6, we will consider expansions with phase functions being quadratic
polynomials or of the form φj(x) = αjx

p + βj with p ∈ R+ .

Non-stationary signals play an important role in many applications in signal pro-
cessing, since signals naturally change their behavior in time. Stationary signal ana-
lysis methods are usually not well suited for decomposing these signals, and some
effort has been put into deriving new techniques for non-stationary signal decom-
position. In [11] the empirical mode decomposition (EMD) has been proposed, a
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greedy non-parametric method to decompose non-stationary signals into so-called
intrinsic mode functions. For applications and further investigation of EMD we refer
to [12] and the references therein. Mathematically improved techniques include the
synchrosqueezed wavelet transform [10] and the signal decomposition method using
a signal separation operator [6]. Other recent attempts for signal reconstruction are
based on hybrid methods employing wavelet analysis and the finite rate of innovation
approach, [23].

Having more a priori information about the signal structure in a sparse model,
we aim at a direct identification of the important signal components. In [4], the
reconstruction of piecewise sinusoidal signals has been studied with finite rate of
innovation methods based on the model (1.1), but this model is still restricted to
linear phase functions. Recently, the generalized Prony method has been proposed
in [15]. This approach allows the recovery of sparse sums of eigenfunctions of linear
operators. It covers the reconstruction of exponential sums in (1.1) as a special case,
where the exponentials are interpreted as eigenfunctions of the shift operator.

In this paper we want to exploit the generalized Prony method introduced in [15]
and derive reconstruction procedures for different signal models that go essentially
beyond the exponential sum in (1.1). Here, we particularly restrict ourselves to mod-
els that can be recovered just from direct measurement values, i.e., point evaluations
of the signal. In Section 2.3 we will indicate how other sampling schemes can be also
used instead.

Employing generalized shift operators we will present new recovery methods for a
variety of signal models as e.g. linear combinations of Gaussians, Gabor expansions
with Gaussian windows and non-stationary trigonometric expansions. For each of
these new models, we will present a reconstruction method and show, which signal
measurements are needed for the recovery.

The paper is organized as follows. In Section 2 we recall the Prony method and
present its interpretation as a recovery method for sparse sums of eigenfunctions
of the shift operator. We also describe some sampling schemes to reconstruct the
exponential sum which we are allowed to use by exploiting the generalized Prony
method. In Subsection 2.3, we introduce generalizations of the shift operator and
show their basic properties.

Sections 3 – 6 are devoted to the investigation of various signal models that are
based on the generalized shift operators. In Section 3 we consider sparse expansions
of trigonometric and hyperbolic functions that can be reconstructed using the sym-
metric shift operator. In Section 4 we study the recovery of expansions of shifted
Gaussians and Gabor expansions with shifted Gaussian windows.

In Section 5 we reconstruct sparse expansions of monomials and complex Gaussians
with different scaling. Moreover, sparse expansions of Chebyshev polynomials and
linear combinations of non-stationary exponentials as e.g. eαj cos can be recovered.

Section 6 is devoted to the recovery of further non-stationary signals whose com-
ponents possess non-linear phase functions of the form αjx

p + βj with known real
parameter p > 0 and unknown parameters αj , βj ∈ R, or with phase functions of
the form x2 + αjx+ βj .

Finally, we illustrate the signal models by some numerical examples in Section
7. Stability issues of the numerical methods will be more closely considered in a
forthcoming paper.
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2 Prony’s Method for Exponential Sums Revisited

2.1 The Prony method

Let us first recall Prony’s method to reconstruct f(x) in (1.1) using equidistant
samples of f . The function f(x) in (1.1) can be interpreted as the solution of a
linear difference equation with constant coefficients. This observation is the key of
this recovering method. The main idea is to reconstruct the parameters eαj in a first
step, and the coefficients cj in a second step. If αj ∈ C, as we have assumed here,
we need to put attention to the fact that the αj may not be uniquely determined by
eαj since eix is 2π-periodic.

We assume therefore that we have an a priori known bound |Imαj | < T . We
choose a sampling size h < π

T such that |αjh| < π and will reconstruct the values
eαjh. Then αj can be uniquely extracted.

We define the characteristic polynomial (Prony polynomial)

P (z) :=

M∏
j=1

(z − eαjh) =

M∏
j=1

(z − λj) (2.1)

with λj := eαjh. Assuming that P (z) has the monomial representation

P (z) =
M∑
k=0

pk z
k = zM +

M−1∑
k=0

pk z
k,

we consider the homogeneous linear difference equation of order M for f in (1.1),

M∑
k=0

pk f(h(k +m)) =
M∑
k=0

pk

M∑
j=1

cj λ
(k+m)
j =

M∑
j=1

cjλ
m
j

( M∑
k=0

pk λ
k
j

)

=

M∑
j=1

cjλ
m
j P (λj) = 0,

which is satisfied for all m ∈ Z. Exploiting pM = 1 we derive the linear system

M−1∑
k=0

pk f(h(k +m)) = −f(h(M +m)), m ∈ Z (2.2)

from the given function values f(hl), l = 0, . . . , 2M − 1. The coefficient matrix
H = (f(h(k +m)))M−1k,m=0 in (2.2) has Hankel structure, and the linear system in

(2.2) is uniquely solvable, provided that the values λj = eαjh in (1.1) are pairwise
different and cj 6= 0 for j = 1, . . . ,M . This can be easily seen from the factorization

H = V diag (c1, . . . , cM ) VT ,

where V denotes the Vandermonde matrix V = (λkj )
M−1
k,j=0.

Having found the coefficients pk of the Prony polynomial P (z) by solving (2.2), we
can extract the zeros λj = eαjh, j = 1, . . . ,M and finally determine the parameters
cj in (1.1) by solving the (overdetermined) linear system

f(l) =

M∑
j=1

cj elαj =

M∑
j=1

cj λ
l
j , l = 0, . . . , 2M − 1.
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The described method has used the function values f(hl), l = 0, . . . , 2M − 1. But
a careful inspection of this approach shows that there is no reason to start with f(0).
We can equivalently start with an arbitrary value x0 ∈ R and apply the samples
f(x0 + lh), l = 0, . . . , 2M − 1 to reconstruct (1.1). As before, we get

M∑
k=0

pkf(x0 + h(k +m)) =

M∑
k=0

pk

M∑
j=1

cje
x0αjλ

(k+m)
j =

M∑
j=1

cje
x0αjλmj

( M∑
k=0

pkλ
k
j

)

=
M∑
j=1

cj ex0αj λmj P (λj) = 0, (2.3)

which leads to a similar Hankel system as in (2.2). For a recent survey on Prony’s
method and its applications we refer to [18].

2.2 Revisiting Prony’s Method Using the Shift Operator

Following the ideas in [15], we now want to look at the exponential sum in (1.1) from
a different point of view, i.e. as an expansion of eigenfunctions of a suitably chosen
operator.

We consider the usual shift operator Sh : C(R)→ C(R) acting on the vector space
C(R) of continuous functions on R, given by

Sh f := f(·+ h), h ∈ R \ {0}. (2.1)

Then, for each α ∈ C we have

(Sheα·)(x) = eα(h+x) = eαh eαx,

i.e., eαx is an eigenfunction of Sh with the eigenvalue eαh. Therefore, we can interpret
the signal f(x) in (1.1) as a sparse linear combination of eigenfunctions of the shift
operator Sh and obtain

Shf(x) =
M∑
j=1

cj eαj(x+h) =
M∑
j=1

cj eαjh eαjx =
M∑
j=1

cj λj eαjx

with λj := eαjh, and the eigenvalues λj of the “active” eigenfunctions in the expo-
nential sum are the zeros of the Prony polynomial P (z) in (2.1).

As we have seen before, the eigenfunction eαjx is only determined uniquely by
its eigenvalue eαjh, if we have the a priori information that Imαj is contained in a
fixed interval of length 2π

h , since the eigenspace of eαjh is very large. For αj ∈ C the
relation

Sheαjx = eαjh eαjx

also implies

She(αj+
2πik
h

)x = e(x+h)(αj+
2πik
h

) = eαjh e(αj+
2πik
h

)x.

Therefore, for each eigenvalue eαjh we find the eigenspace spanned by the eigenfunc-

tions {ex(αj+
2πik
h

) : k ∈ Z}.
We can now reinterpret Prony’s method for the reconstruction of the exponential

sum in (1.1) as follows. Assume that all wanted parameters αj satisfy |Imαj | < T
and h < π

T .
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Then, a given finite linear combination of M eigenfunctions of the shift operator
Sh with the corresponding M pairwise different eigenvalues eαjh, j = 1, . . . ,M , and
with nonzero complex coefficients cj can be completely recovered from the values
Slhf(x0) = Shlf(x0), l = 0, . . . , 2M − 1, with x0 ∈ R. Using the shift operator Sh in
(2.1) the homogeneous difference equation in (2.3) can be simply rewritten as

M∑
k=0

pk(S
k+m
h f)(x0) =

M∑
k=0

pk(Sh(k+m)f)(x0) =
M∑
k=0

pkSh(k+m)

( M∑
j=1

cje
αj ·
)

(x0)

=

M∑
k=0

pk

M∑
j=1

cj (Sh(k+m)e
αj ·)(x0) =

M∑
j=1

cj

M∑
k=0

pk λ
m+k
j eαj x0

=
M∑
j=1

cjλ
m
j

( M∑
k=0

pk λ
k
j

)
eαjx0 = 0.

As before, the coefficients pk of the Prony polynomial can be computed by the Hankel

system as in (2.2) with the coefficient matrix H =
(

(Sh(k+l)f)(x0)
)M−1
k,l=0

, and the

procedure to evaluate all parameters in (1.1) is the same as before.

To make this procedure work, we have essentially used two properties of the shift
operator, namely,

• Sh is a linear operator,

• eαx is the unique eigenfunction of Sh to the eigenvalue eαh for each α ∈ C with
Imα ∈ (−π/h,π/h).

2.3 Sampling Schemes for Recovering Exponential Sums

As we have seen, the exponential sum in (1.1) can be completely reconstructed using
the equidistant function values f(x0 + hl), l = 0, . . . , 2M − 1. These values can be
understood as the application of a point evaluation functional Fx0 with

Fx0(Slhf) = Fx0(Shlf) := f(hl + x0).

However, the generalized Prony method in [15] allows a higher flexibility of sampling
schemes. In [15], it has been shown that instead of using a point evaluation functional
we can also employ another linear functional F to Shlf satisfying the assumption
that all eigenfunctions of the shift operator (which may play an active role in the
exponential sum to be recovered) do not vanish under the action of F .

Using this generalized approach, we replace our measurements (Slhf)(x0) = f(x0+
hl) by F (Slhf)(x). Then the recovery of the parameters αj can be still achieved by
evaluating the coefficients of the Prony polynomial P (z) in the first step,

M∑
k=0

pkF (Sk+mh f) =

M∑
k=0

pkF
(
Sk+mh

( M∑
j=1

cje
αj ·
))

=

M∑
k=0

pk

M∑
j=1

cj F (Sk+mh eαj ·)

=
M∑
j=1

cj

M∑
k=0

pk λ
m+k
j F (eαj ·) =

M∑
j=1

cjλ
m
j

( M∑
k=0

pk λ
k
j

)
F (eαj ·) = 0.

Therefore, we obtain the Hankel system

M−1∑
k=0

pk F (Sk+mh f) =
M−1∑
k=0

pk F (f(·+ h(k +m))) = −F (f(·+ h(M +m))), (2.2)
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for m ∈ Z, where the Hankel matrix H =
(
F (Sk+mh f)

)M−1
k,m=0

is invertible, since we

have
H = V diag (c1, . . . , cM ) diag (F (eα1·), . . . , F (eαM ·)) VT

with the Vandermonde matrix V = (λkj )
M−1
k,j=0 = (eαjhk)M−1k,j=0.

To illustrate the variety of possible sampling schemes, we give two examples.
1. Assume that we know a priori that the parameters in (1.1) satisfy Imαj ∈ (0, T )

and choose 0 < h < 2π
T . Then we can consider

Ff :=

∫ x0+h

x0

f(x) dx =

∫ ∞
−∞

f(x)χ[0,h](x− x0) dx = 〈f, χ[0,h](· − x0)〉,

where χ[0,h] denotes the characteristic function on [0, h], and the condition

F eα· =

∫ x0+h

x0

eαxdx 6= 0

is obviously satisfied for all α ∈ (0, T ) since eαh 6= 1. With this sampling functional,
it is sufficient to take the values

F (Slhf) =

∫ x0+h

x0

f(x+ hl) dx =

∫ x0+h(l+1)

x0+hl
f(x) dx, l = 0, . . . , 2M − 1,

to reconstruct f .
2. With the assumption αj = −itj and tj ∈ (−1, 1), we consider the functional

Ff :=

∫ ∞
−∞

f(x)Φ(x) dx = 〈f, Φ〉

with Φ(x) = 1
πsincx = 1

π
sin(x)
x . The Fourier transform of the sinc kernel is the box

function Φ̂(t) = χ[−1,1](t) and we obtain by Parseval identity with ĝ(x) = f(x),

Ff(·+ hl) = 〈f(·+ hl), Φ〉 = 〈ĝ(·+ hl), Φ〉 = 〈g, Φ̂ eilh·〉.

In particular, since g in (1.2) is a stream of diracs, it follows that

Ff(·+ hl) =
M∑
j=1

cj 〈δ(· − tj), Φ̂ eilh·〉 =
M∑
j=1

cj χ[−1,1](tj)e
ilhtj =

M∑
j=1

cj eilhtj .

Therefore, also the samples 〈f(·+hl), Φ〉, l = 0, . . . , 2M − 1, are sufficient to recover
f in (1.1).

2.4 Generalized Shift Operators

We want to generalize the shift operator in order to be able to recover many more
signal models beyond exponential sums. In particular, we consider the following
linear operators.

A) Let Sh,−h : C(R) → C(R) denote the symmetric shift operator for given h > 0
by

Sh,−hf(x) :=
1

2

(
f(x− h) + f(x+ h)

)
=

1

2
(S−h + Sh)f(x). (2.3)
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B) Let K : R2 → C be a given continuous function satisfying the property

K(x, h1 + h2) = K(x, h2)K(x+ h2, h1) = K(x, h1)K(x+ h1, h2). (2.4)

We define for h 6= 0 the shift operator SK,h : C(R)→ C(R) by

SK,hf(x) := K(x, h) f(x+ h). (2.5)

C) Let the function G : [a, b] → R be continuous and strictly monotonous in the
sampling domain [a, b] ⊆ R and let G−1 denote its inverse function. We intro-
duce the shift operator SG,h : C([a, b])→ C(R) for h 6= 0 by

SG,hf(x) := f(G−1(G(x) + h)). (2.6)

These operators have the following properties.

Theorem 2.1. Let the operators Sh,−h, SG,h and SK,h be defined as above. Then
the following holds,

Sh2,−h2(Sh1,−h1f) = Sh1,−h1(Sh2,−h2f)

= 1
2

(
Sh1+h2,−(h1+h2)f + Sh1−h2,−(h1−h2)f

)
, (2.7)

SG,h1(SG,h2f) = SG,h2(SG,h1f) = SG,h1+h2f, (2.8)

SK,h1(SK,h2f) = SK,h2(SK,h1f) = SK,h1+h2f. (2.9)

In particular, we have

Skh,−hf =
1

2k−1

b(k−1)/2c∑
l=0

(
k

l

)
(S(k−2l)h,−(k−2l)hf + δk/2,bk/2c

1

2k

(
k

k/2

)
f,

SkG,hf = SG,khf, SkK,hf = SK,khf,

where δk/2,bk/2c = 1 if k is even and vanishes otherwise.

Proof. We find for the symmetric shift

Sh2,−h2(Sh1,−h1f)(x) = Sh2,−h2

(
1

2
(f(x+ h1) + f(x− h1))

)
=

1

4
(f(x+ h1 + h2) + f(x− h1 + h2) + f(x+ h1 − h2) + f(x− h1 − h2))

=
1

2

(
(Sh1+h2,−(h1+h2)f)(x) + (Sh1−h2,−(h1−h2)f)(x)

)
.

Repeated application of the operator Sh,−h yields

Skh,−hf =
1

2k
(S−h + Sh)k(f) =

1

2k

k∑
l=0

(
k

l

)
Sl−hS

k−l
h f

=
1

2k

b(k−1)/2c∑
l=0

(
k

l

)
(S(k−2l)h + S−(k−2l)h)f + δk/2,bk/2c

1

2k

(
k

k/2

)
f

=
1

2k−1

b(k−1)/2c∑
l=0

(
k

l

)
S(k−2l)h,−(k−2l)hf + δk/2,bk/2c

1

2k

(
k

k/2

)
f.
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Let the continuous function G be strictly monotonous in [a, b] ⊂ R, and let x, x +
h1, x+ h2, x+ h1 + h2 ∈ [a, b]. Then

SG,h2(SG,h1f)(x) = SG,h2(f(G−1(G(·) + h1)))(x)

= f(G−1(G(G−1(G(x) + h1)) + h2))

= f(G−1(G(x) + h1 + h2)) = (SG,h1+h2f)(x)

= SG,h1(SG,h2f)(x).

Finally, using the special properties (2.4) of the function K, it follows that

SK,h2(SK,h1f)(x) = SK,h2(K(·, h1) f(·+ h1))(x)

= K(x, h2)K(x+ h2, h1)f(x+ h1 + h2)

= K(x, h1)K(x+ h1, h2)f(x+ h1 + h2)

= SK,h1(SK,h2f)(x).

�

Remark 2.2. 1. Operators of the form (2.6) are well established as generalized
operators in the field of quantum mechanics and are used to solve evolution operator
equations in quantum field theory, see [7, 8].
2. Besides using the generalized shift operators introduced in (2.3), (2.4) and (2.5),
we can also combine these shift operators to generate further operators. For example,
we will consider

SG,h,−hf(x) :=
1

2

(
f(G−1(G(x)− h)) + f(G−1(G(x) + h))

)
in Sections 5.3 and 6.1. Similarly, a combination of SK,h and Sh,−h can be applied.
3. By Theorem 2.1, the iterated symmetric shift Skh,−h can be presented as a linear
combination of shifts Shl,−hl for l = 0, . . . , k. Applying the symmetric shift operator
we will therefore always use these shifts instead of Slh,−h, l = 0, . . . , k. Since the
Chebyshev polynomials Tl(z) := cos(l arccos z) satisfy the relation

xk =
1

2k−1

b(k−1)/2c∑
l=0

(
k

l

)
Tk−2l(x) + δk/2,bk/2c

1

2k

(
k

k/2

)
Tk/2,

it will be advantageous to write the Prony polynomial P (z) as an expansion of
Chebyshev polynomials.

3 Reconstruction of Expansions of Trigonometric and
Hyperbolic Functions

First we employ the symmetric shift operator in order to derive a new method to
reconstruct expansions of trigonometric functions. We observe that for each h ∈ R,
we have

Sh,−h cos(αx) =
1

2
[cos(α(x+ h)) + cos(α(x− h))] = cos(αh) cos(αx),

and

Sh,−h sin(αx) =
1

2
[sin(α(x+ h)) + sin(α(x− h))] = cos(αh) sin(αx),

i.e., the symmetric shift operator Sh,−h possesses the eigenfunctions cos(αx) and
sin(αx) for all α ∈ R.
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3.1 Reconstruction of Cosine Expansions

We want to reconstruct an expansion of the form

f(x) =
M∑
j=1

cj cos(αjx), (3.10)

where we need to recover the unknown coefficients cj ∈ R \ {0} and frequency pa-
rameters αj ∈ R, j = 1, . . . ,M .

Theorem 3.1. Assume that all parameters αj are in the range [0,K) ⊂ R and let
h = π

K . Then, f in (3.10) can be uniquely reconstructed using the 2M samples f(kh),
k = 0, . . . , 2M − 1. More generally, for x0 ∈ R satisfying αjx0 6= (2k + 1)π/2 for
k ∈ Z the 4M −1 sample values f(x0 +hk), k = −2M +1, . . . , 2M −1, are sufficient
to reconstruct f in (3.10).

Proof. We define the Prony polynomial

P (z) :=

M∏
j=1

(z − cos(hαj))

which can be written as

P (z) =
M∑
l=0

pl Tl(z),

where Tl(z) := cos(l arccos z) denotes the Chebyshev polynomial of first kind of
degree l. In particular, pM = 2−M+1 since for l ≥ 1 the leading coefficient of Tl is
2l−1. As the first step we compute the coefficients pl of the polynomial P (z) using
the sample values. By definition of the Prony polynomial and Theorem 2.1 we have
for f in (3.10),

M∑
l=0

pl

(
(Slh,−lh)Smhf(x0)

)
=

1

2

M∑
l=0

pl (f(x0 + (m+ l)h) + f(x0 + (m− l)h))

=
1

2

M∑
l=0

pl

M∑
j=1

cj [cos(αj(x0 + (m+ l)h)) + cos(αj(x0 + (m− l)h))]

=

M∑
j=1

cj cos(αj(x0 +mh)

M∑
l=0

pl cos(αj lh)

=

M∑
j=1

cj cos(αj(x0 +mh))

M∑
l=0

plTl(cos(αjh)) = 0

for all m = 0, . . . ,M − 1. Similarly, it follows that

M∑
l=0

pl

(
Slh,−lh(S−mhf)(x0)

)
=

M∑
j=1

cj cos(αj(x0 −mh))

M∑
l=0

plTl(cos(αjh)) = 0

for all m = 0, . . . ,M − 1. For x0 = 0, we obtain the linear system

M−1∑
l=0

pl(f((m+ l)h) + f((m− l)h) = − 2

2M
(f((m+M)h) + f((m−M)h) (3.11)
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for m = 0, . . . ,M−1. Since f is an even function, it suffices to know the signal values
f(kh), k = 0, . . . , 2M − 1 to build this system. The quadratic coefficient matrix has
Toeplitz-plus-Hankel structure,

H =
(

(f((m+ l)h) + f((m− l)h)
)M−1
m,l=0

= 2
( M∑
j=1

cj cos(αjmh) cos(αjlh)
)M−1
m,l=0

= 2 V diag(cj)
M
j=1 VT , (3.12)

with the generalized Vandermonde matrix

V =
(
Tk(cos(αjh))

)M−1,M
k=0,j=1

. (3.13)

The matrix V is always invertible, since the terms cos(αjh) are nonzero and pairwise
distinct by assumption. Therefore, H is invertible if cj 6= 0 for j = 1, . . . ,M . For
x0 6= 0, we need to take all values Slh,−lhSmh,−mhf(x0) into account. Here, we apply

M−1∑
l=0

pl(f(x0 + (m+ l)h)+f(x0 − (m+ l)h) + f(x0 + (m− l)h) + f(x0 − (m− l)h))

= − 2

2M
(f(x0+(m+M)h) + f(x0−(m+M)h) + f(x0+(m−M)h) + f(x0−(m−M)h)),

(3.14)

and, similarly as in (3.12), the coefficient matrix factorizes in the form

H =
(

(f(x0+(m+l)h)+f(x0−(m+l)h)+f(x0+(m−l)h)+f(x0−(m−l)h)
)M−1
l,m=0

= 2
( M∑
j=1

cj cos(αjx0) cos(αjmh) cos(αjlh)
)M−1
l,m=0

=2Vdiag(cj cos(αjx0))
M
j=1 VT .

The diagonal matrix diag(cj cos(αjx0))
M
j=1 is invertible if we have cj 6= 0 and αjx0 6=

(2k + 1)π/2 for all k ∈ Z and all j = 1, . . . ,M . Having found the coefficients of the
Prony polynomial, we can extract the zeros cos(hαj), j = 1, . . . ,M .
In the second step, we solve the linear system

f(x0 + hk) =
M∑
j=1

cj cos(αj(x0 + hk)), k = 0, . . . 2M − 1

in order to compute cj , j = 1, . . .M . �

3.2 Reconstruction of Sine Expansions

The symmetric shift operator can also be applied for the reconstruction of sparse
linear combination of sines of the form

f(x) =
M∑
j=1

cj sin(αjx), (3.15)

with unknown coefficients cj ∈ R \ {0} and αj ∈ R \ {0}. This recovery problem
is closely related to the problem in (3.10), but we need to pay attention at some
details. For example, f(0) does not give us any information here, since the function
f in (3.15) is odd, and a frequency αj = 0 does not occur.
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Theorem 3.2. Assume that all parameter αj are in the range (0,K) and let h = π
K .

Then, f in (3.15) can be reconstructed using the 4M − 1 sample values f(x0 + hk),
k = −2M + 1, . . . , 2M − 1, where x0 ∈ R satisfies sin(αjx0) 6= 0 for j = 1, . . . ,M .
In particular, the 2M samples f(kh), k = 1, . . . , 2M are sufficient to reconstruct f
in (3.15).

Proof. We proceed similarly as in the last proof. We define the Prony polynomial

P (z) :=

M∏
j=1

(z − cos(hαj)) =

M∑
l=0

plTl(z),

with coefficients pl in the Chebyshev expansion and pM = 2−M+1. To compute
the coefficients of P (z), we obtain a linear system as in (3.14), this time with the
coefficient matrix

H =
(

(f(x0 + (m+l)h) + f(x0 − (m+l)h) + f(x0 + (m−l)h) + f(x0 − (m−l)h))
)M−1

l,m=0

= 4
( M∑

j=1

cj sin(αjx0) cos(αjmh) cos(αj lh)
)M−1

l,m=0

= 4 V diag(cj sin(αjx0))Mj=1 VT

with V as in (3.13). Invertibility follows if sin(αjx0) 6= 0. This is satisfied for
x0 = π

K = h. Thus, the function values f(x0 + hl) = f(h(l + 1)), l = 0, . . . , 2M − 1,
are already sufficient for the reconstruction, since we have

f(x0 − hl) = f(h(1− l)) =

{
0 l = 1,
−f(h(l − 1)) l ≥ 2.

Having found P (z) we obtain the zeros cos(hαj) and can compute the coefficients cj
in (3.15) by solving a linear system using the sample values. �

Remark 3.3. 1. The symmetric shift operator possesses also the eigenfunctions
sinh(αx) and cosh(αx) with α ∈ R. Therefore, sparse expansions of the form

f(x) =

M∑
j=1

cj cosh(αjx), (3.16)

and

f(x) =
M∑
j=1

cj sinh(αjx), (3.17)

can be reconstructed using at most 4M − 1 consecutive sample values f(x0 + kh).
Taking the samples f(hl), l = 0, . . . , 2M − 1 for (3.16) or f(hl), l = 1, . . . , 2M for
(3.17) is also sufficient for reconstructing these expansions.

2. Obviously, the considered expansions can also be studied using the well-known
exponential sums by expanding the trigonometric and hyperbolic functions into sums
of exponentials. But in this case, the number of terms in the sparse sums is doubled
from M to 2M .

3. Using the Laplace transform with L(cosα·)(s) = s
s2+α2 and L(sinα·)(s) =

α
s2+α2 , we can also reconstruct signals of the form

f(s) =

M∑
j=1

cjs

s2 + α2
j

or f(s) =

M∑
j=1

cjαj
s2 + α2

j

.
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Analogously, models arising for the Laplace transform of cosh and sinh can be re-
covered.

4 Reconstruction of Expansions Using the Operator SK,h

In this section, we study signal models that arise using the generalized shift operator

SK,hf(x) = K(x, h) f(x+ h)

in (2.5).

4.1 Reconstruction of Expansions of shifted Gaussians

Let g(x) := e−βx
2

for some given β ∈ C \ {0}. We want to reconstruct an expansion
of shifted Gaussians of the form

f(x) =
M∑
j=1

cj g(x− αj) =
M∑
j=1

cj e−β(x−αj)
2
, (4.18)

and need to recover the 2M coefficients cj ∈ C and αj ∈ R, j = 1, . . . ,M .
Let K1(x, h) := eβh(2x+h) such that for all h1, h2 ∈ R the relation

K1(x, h1 + h2) = K1(x, h1)K1(x+ h1, h2) = K1(x, h2)K1(x+ h2, h1)

is satisfied. Then, the functions e−β(·−αj)
2

are eigenfunctions of SK1,h for all αj ∈ R,
since

(SK1,h e−β(·−αj)
2
)(x) = eβh(2x+h) e−β(x+h−αj)

2
= e2βαjh e−β(x−αj)

2
.

Theorem 4.1. If Reβ 6= 0, the stepsize h ∈ R \ {0} can be taken arbitrarily. If
Reβ = 0, we assume that αj ∈ (−T, T ) for j = 1, . . . ,M for some given T and
choose 0 < h ≤ π

2|Imβ|T . Then, f in (4.18) can be reconstructed using the 2M

sample values f(x0 + hk), k = 0, . . . , 2M − 1, where x0 ∈ R is an arbitrary real
number.

Proof. We define the Prony polynomial

P (z) :=
M∏
j=1

(z − e2hβαj ) =
M∑
l=0

pl z
l,

where the parameters pl denote the coefficients of P (z) in monomial representation
with pM = 1. Then we find

M∑
l=0

pl (SK1,(l+m)hf)(x0) =

M∑
l=0

pl e
βh(l+m)(2x0+h(l+m))f(x0 + h(l +m))

=

M∑
l=0

pl e
βh(l+m)(2x0+h(l+m))

M∑
j=1

cje
−β(x0+h(l+m)−αj)

2

=

M∑
j=1

cje
−β(x0+hm−αj)

2
eβhm(2x0+hm)

M∑
l=0

pl e
−β(h2l2+2hl(x0+hm−αj))eβhl(2x0+h(l+2m))
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=

M∑
j=1

cje
−β(x0+hm−αj)

2
eβhm(2x0+hm)

M∑
l=0

pl e
−β(−2hlαj) = 0

for m = 0, . . . ,M − 1. The coefficients p0, . . . , pM−1 of P (z) can therefore be com-
puted by the linear system

M−1∑
l=0

pl e
βh(l+m)(2x0+h(l+m))f(x0 + h(l +m)) (4.19)

= −eβh(M+m)(2x0+h(M+m)) f(x0 + h(M +m)), m = 0, . . . ,M − 1.

This system matrix has Hankel structure and its invertibility follows from the fac-
torization

H := (K1(x0, h(l +m))f(x0 + h(l +m)))M−1l,m=0

=

eβh(l+m)(2x0+h(l+m))
M∑
j=1

cj e−β(x0+h(l+m)−αj)
2

M−1

l,m=0

=

 M∑
j=1

cj e−β(x0−αj)
2

e2βh(l+m)αj

M−1

l,m=0

= Vh diag (cje
−β(αj−x0)2) VT

h

with the Vandermonde matrix

Vh :=


1 1 . . . 1

e2βα1h e2βα2h . . . e2βαMh

...
...

...

e2(M−1)βα1h e2(M−1)βα2h . . . e2(M−1)βαMh

 .

Having solved (4.19), we can find the zeros e2hβαj of the Prony polynomial and
extract the parameters αj , j = 1, . . . ,M . This is always possible using the supposed
restrictions on h. Finally, we solve the linear system

f(x0 + hk) =
M∑
j=1

cje
−β(x0+hk−αj)

2

in order to compute the coefficients cj in (4.18). �

Remark 4.2. 1. The recovery of sums of Gaussians has also been considered in
in [14] and in a short note in the multivariate case, see [16], but without using
the property, that the Gaussian is an eigenfunction of a suitable generalized shift
operator.

2. The model (4.18) is also of the form (1.3) and can therefore be reconstructed
using equidistant Fourier values, as it has been done e.g. in [19].
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4.2 Reconstruction of Gabor Expansions with the Gaussian Window
Function

Similarly as in the previous subsection, we can even consider modulated Gaussians.
We now want to recover a Gabor expansion of the form

f(x) =
M∑
j=1

cj e2πixαjg(x− sj), (4.20)

where g(x) := e−βx
2

is the Gaussian window with known β ∈ R \ {0}, and where
we have to recover the parameters cj , αj ∈ R, and the shifts sj ∈ R, j = 1, . . . ,M .
Using again the shift operator SK1,h in (2.5) with K1(x, h) = eβh(2x+h) we observe

that indeed e2πixαjg(x− sj) = e2πixαj e−β(x−sj)
2

are eigenfunctions of SK1,h,

(SK1,h e2πiαj ·−β(·−sj)2)(x0) = eβh(2x0+h) e2πi(x0+h)αj e−β(x0+h−sj)
2

= e2h(βsj+πiαj) e2πix0αj−β(x0−sj)2 .

Theorem 4.3. Assume that all parameters αj are in the range (−K,K) for j =
1, . . . ,M and let 0 < h ≤ 1

2K . Then, f in (4.20) can be reconstructed using the
2M sample values f(x0 + hk), k = 0, . . . , 2M − 1, where x0 ∈ R is an arbitrary real
number.

Proof. This time, we define the Prony polynomial in the form

P (z) :=

M∏
j=1

(z − e2h(πiαj+βsj)) =

M∑
l=0

pl z
l,

where pl denote the coefficients of P (z) in monomial representation with pM = 1.
We observe that the zeros of the Prony polynomial are complex, where the imaginary
part covers the modulation parameters αj and the real part the shift parameters sj .
Then we find

M∑
l=0

pl (SK1,(l+m)hf)(x0) =
M∑
l=0

pl e
βh(l+m)(2x0+h(l+m))f(x0 + h(l +m))

=

M∑
l=0

pl e
βh(l+m)(2x0+h(l+m))

M∑
j=1

cj e2πi(x0+h(m+l))αje−β(x0+h(l+m)−sj)2

=
M∑
j=1

cj e−β(x0+hm−sj)
2
eβhm(2x0+hm)e2πi(x0+hm)αj

M∑
l=0

pl e
2lh(πiαj+βsj) = 0

for m = 0, . . . ,M − 1. The coefficients p0, . . . , pM−1 of P (z) can therefore be com-
puted by the same system as in (4.19), and we can extract the parameters αj and sj
from the zeros of the Prony polynomial. Finally, the coefficients cj are determined
by inserting the function values f(x0 + hk) into the model (4.20) and by solving the
obtained linear system. �

4.3 Reconstruction of Generalized Exponential Sums

We want to reconstruct expansions of the form

f(x) =

M∑
j=1

cj (xαj)
r exαj , (4.21)
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where r ∈ R is known and where we have to recover cj , αj ∈ C. Here we employ the
shift operator SK2,h with K2(x, h) = ( x

h+x)r satisfying( x

h1 + h2 + x

)r
=
( x

h1 + x

)r( x+ h1
h1 + h2 + x

)r
.

Then (xαj)
r exαj are eigenfunctions of SK2,h for each αj ∈ C, since

(SK2,h(αj ·)r eαj ·)(x0) =
( x0
h+ x0

)r
(αj(x0 + h))r eαj(x0+h) = eαjh (αjx0)

r eαjx0 .

For pairwise different αj it follows that the eigenvalues eαjh are pairwise different,
if the imaginary part of αjh is in a fixed interval of length 2π. Therefore, we will
assume that h is chosen such that Imαj ∈ [−π/h,π/h) holds.

Theorem 4.4. Let h ∈ R\{0} be such that Imαj ∈ [−π/h,π/h). Then, f in (4.21)
can be reconstructed using the 2M sample values f(x0 + hk), k = 0, . . . , 2M − 1,
where x0 ∈ R \ {0} is an arbitrary real number.

Proof. We employ the Prony polynomial P (z) =
∏M
j=1(z − eαjh) =

∑M
l=0 plz

l with
pM = 1. We simply observe that

M∑
l=0

pl (SK2,(l+m)hf)(x0)

=
M∑
l=0

pl

(
x0

x0 + h(l +m)

)r M∑
j=1

cj ((x0 + h(l +m))αj)
r e(x0+h(l+m))αj

=
M∑
j=1

cj (x0αj)
re(x0+hm)αj

(
M∑
l=0

ple
hαj l

)
= 0,

and the coefficients pl of P (z) can be computed by the system

M−1∑
l=0

pl

( x0
x0 + h(l +m)

)
f(x0 + h(l +m)) = −

( x0
x0 + h(M +m)

)
f(x0 + h(M +m))

for m = 0, . . . ,M−1. The system matrix has Hankel structure with the factorization(( x0
x0 + h(l +m)

)
f(x0 + h(l +m))

)M−1
l,m=0

= V diag (cj (x0αj)
rex0αj )Mj=1 VT

where the Vandermonde matrix V = (ehαjk)M−1,Mk=0,j=1 is generated by the knots ehαj ,

j = 1, . . . ,M . Invertibility is ensured since ehαj are pairwise different, cj 6= 0 and
x0 6= 0. Using pl to construct the Prony polynomial we firstly compute its roots,
recover eαjh and afterwards the coefficients cj in (4.21) by solving a linear system.�

Remark 4.5. The expansion in (4.21) is equivalent to

f(x) =
M∑
j=1

c̃j x
r exαj

if we take c̃j = cjα
r
j . We observe that also more general expansions of the form

f(x) =

M∑
j=1

c̃j H(x) exαj
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can be recovered, if we assume that the function H(x) is known and that K2(x, h) =
H(x)/H(x+ h) is well-defined. Then, obviously

(SK2,h(H(·) eαj ·)(x0) =

(
H(x0)

H(h+ x0)

)
H(x0 + h) eαj(x0+h) = eαjhH(x0) eαjx0 .

Alternatively, we can also consider f̃(x) = f(x)/H(x) which is again a simple expo-
nential sum.

5 Reconstruction of Expansions Using the Operator SG,h

Now we consider the generalized shift operator SG,h in (2.6) with

SG,hf(x) = f(G−1(G(x) + h)).

This operator gives us a lot of freedom to generate generalized shifts.

5.1 Reconstruction of Expansions of Monomials

If we consider for example G(x) = lnx and G−1(x) = ex, we obtain

Sln,hf(x) = f(e(lnx)+h) = f(xeh) = f(xa)

with a := eh > 0. With other words, Sln,h is the dilation operator with the dila-
tion factor a = eh. In particular, all functions of the form xpk with pk ∈ C are
eigenfunctions of this operator,

Sln,h((·)pk)(x) = (e(lnx)+h)pk = xpk ehpk = xpk apk .

If the pk are pairwise distinct and if Im pk ∈ [−π/h,π/h), then the eigenvalues ehpk

are pairwise distinct. We now want to recover an expansion of the form

f(x) =
M∑
j=1

cj x
pj , (5.22)

where cj ∈ C and pj ∈ C with Im pj ∈ [−π/h, π/h) for all j = 1, . . . ,M .

Theorem 5.1. Let h ∈ C \ {0} and a := eh /∈ {e2πik/N : k ∈ Z} for all N < 2M be
such that ak, k = 0, . . . , 2M − 1 are pairwise distinct values. Then f in (5.22) can
be reconstructed by the 2M sample values f(akx0), where x0 ∈ C \ {0} can be chosen
arbitrarily.

Proof. We define

P (z) :=

M∏
k=1

(z − apj ) =

M∑
l=0

plz
l

and observe that

M∑
l=0

plf(al+mx0) =
M∑
l=0

pl

M∑
j=1

cja
(l+m)pjx

pj
0 =

M∑
j=1

cj(a
mx0)

pj

M∑
l=0

pl a
pj l = 0



5 Reconstruction of Expansions Using the Operator SG,h 18

for m = 0, . . . ,M − 1, leading to the system

M−1∑
l=0

f(al+mx0)pl = −f(aM+mx0), m = 0, . . . ,M − 1.

The invertibility of the Hankel matrix H = (f(al+mx0))
M−1
l,m=0 follows from

H = V diag (cjx
pj
0 )Mj=1 VT

with the Vandermonde matrix V = (apjk)M−1,Mk=0,j=1 generated by the N pairwise dif-
ferent knots apj , j = 1, . . . ,M . Once the coefficients of the Prony polynomial P (z)
are found, we compute apj as the zeros of P (z), extract pj and finally compute cj in
(5.22) by solving the system

f(x0a
k) =

M∑
j=1

cj(x0a
k)pj , k = 0, . . . , 2M − 1.

�

Remark 5.2. This example was already discussed in [15] using the dilation operator
Da with Daf(x) := f(ax). Moreover, using the substitution x = ex, the model (5.22)
can be transferred to the original model (1.1).

If the parameters pj are positive integers, then f in (5.22) is a sparse polynomial,
and its reconstruction can be performed using the Ben-Or and Tiwari Algorithm,
see e.g. [1, 13].

5.2 Expansions of Complex Gaussians with Different Scaling

Let now G(x) = x2 and G−1(x) =
√
x for x ≥ 0. We consider the corresponding

generalized shift operator

(Sx2,hf)(x) = f
(√

x2 + h
)

and observe that the (complex) Gaussians eαx
2

with α ∈ C are eigenfunctions of this
operator,

(Sx2,h eα(·)
2
)(x) = eα(

√
x2+h

2
) = eαheαx

2
.

The parameter α can be uniquely recovered from the eigenvalues eαh if Imαh ∈
[−π,π), i.e. if Imα ∈ [−π/h,π/h). We now consider the reconstruction of expansions
of the form

f(x) =
M∑
j=1

cj eαjx
2

(5.23)

where we need to recover cj ∈ C and αj ∈ C.

Theorem 5.3. Let Imαj ∈ (−K,K) for some K > 0 for all j = 1, . . . ,M . We
choose h := 1/K. Then the expansion in (5.23) can be uniquely recovered from the

samples f
(√

x20 + kh
)

, k = 0, . . . , 2M − 1, where x0 ∈ R can be chosen arbitrarily.
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Proof. We define

P (z) :=

M∏
j=1

(z − eαjh) =

M∑
l=0

pl z
l

and observe for the monomial coefficients pl of P (z),

M∑
l=0

plf

(√
x20 + (m+ l)h

)
=

M∑
l=0

pl

M∑
j=1

cje
αj(x

2
0+(m+l)h)

=

M∑
j=1

cje
αj(x

2
0+mh)

M∑
l=0

pl e
αjhl = 0

for all m = 0, . . . ,M − 1. Therefore this system can be used to compute the coeffi-

cients pl (using pM = 1), since the corresponding matrix
(
f
(√

x20 + (m+ l)h
))M−1

l,m=0

can be factorized in the form(
f

(√
x20 + (m+ l)h

))M−1
l,m=0

= V diag(cje
αjx

2
0)Mj=1 VT

with the Vandermonde matrix V = (ehαjk)M−1,Mk=0,j=1 generated by the pairwise different

knots ehαj , j = 1, . . . ,M . Having found P (z), we can extract its zeros, recover pj
and finally also cj by solving a linear system. �

Remark 5.4. Similarly, using G(x) = xp and G−1(x) = p
√
x with given p > 0 we

can recover expansions of the form

f(x) =
M∑
j=1

cj eαjx
p

by reconstructing cj , αj ∈ C from the samples f
(

p
√
xp0 + hk

)
, k = 0, . . . , 2M − 1.

Taking e.g. G(x) = cos(x) for x ∈ [0,π] and G−1(x) = arccos(x) we obtain the
operator

Scos,hf(x) = f(arccos(cos(x) + h))

which has the eigenfunctions eαk cosx with

(Scos,heαk cos ·)(x) = eαk cos(arccos(cosx+h)) = eαk(cosx+h).

In this way, we can also recover expansions of the form

f(x) =

M∑
j=1

cje
αj cosx

with parameters cj , αj ∈ C using the samples f(arccos(cosx+kh)), k = 0, . . . 2M−1
with suitably chosen h.



5 Reconstruction of Expansions Using the Operator SG,h 20

5.3 Sparse Expansions of Chebyshev Polynomials

Let now x ∈ [−1, 1] and G(x) = arccosx. Then G is monotonous in [−1, 1] and
G−1(y) = cos y for y ∈ [0,π]. We apply a combination of the symmetric shift
operator Sh,−h and SG,h,

(SG,h,−hf)(x) :=
1

2
(f(cos(arccos(x) + h)) + f(cos(arccos(x)− h))) ,

which is also called Chebyshev shift operator, see also [15, 20]. Then the Cheby-
shev polynomials Tk(x) = cos(k arccosx) of degree k ≥ 0 are eigenfunctions of this
operator,

(SG,h,−hTk)(x) =
1

2
(Tk(cos(arccos(x) + h)) + Tk(cos(arccos(x)− h)))

=
1

2
(cos k(arccos(x) + h) + cos k(arccos(x)− h))

= cos(kh) cos(k arccosx) = cos(kh)Tk(x).

We want to reconstruct a sparse Chebyshev expansion of the form

f(x) =
M∑
j=1

cj Tnj (x), (5.24)

where we need to recover the unknown indices 0 ≤ n1 < n2 < . . . < nM and the
coefficients cj ∈ R. We assume that an upper bound K of the degree nM of the
polynomial in (5.24) is a priori known.

Theorem 5.5. Let K be a bound of the degree of the polynomial f in (5.24) and let
0 < h ≤ π

K . Then the Chebyshev expansion in (5.24) can be uniquely recovered from
the samples f(cos(kh)), k = 0, . . . , 2M − 1.

Proof. Let P (z) =
∏M
j=1(z− cos(njh)) =

∑M
l=0 plTl(z), where pl are the coefficients

of P (z) in the Chebyshev expansion, and pM = 2−M+1. Then, since the cosine is
even, we obtain

M∑
l=0

pl
(
SG,(m+l)h,−(m+l)hf(cos(0)) + SG,(m−l)h,−(m−l)hf(cos(0))

)
=

M∑
l=0

pl (f(cos(m+ l)h) + f(cos(m− l)h))

=
M∑
l=0

pl

M∑
j=1

cj
(
Tnj (cos(m+ l)h) + Tnj (cos(m− l)h)

)
=

M∑
j=1

cj

M∑
l=0

pl(2 cos(njml) cos(njlh))

= 2

M∑
j=1

cj cos(njmh)

M∑
l=0

pl Tl cos(njh) = 0.

This observation leads to the linear system

(f(cos(m+ l)h) + f(cos(m− l)h))M−1l,m=0 p = −2−M+1 (f(cos(m+M)h))M−1m=0
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to evaluate the vector p = (p0, . . . , pM−1)
T of Prony polynomial coefficients. It can

be simply shown that the coefficient matrix of this system is invertible, provided
that cos(njh) are pairwise distinct. Having P (z) it is simple to recover the indices
nj and afterwards the coefficients cj . �

Remark 5.6. 1. Similarly as in Sections 3.1 and 3.2, Theorem 5.5 can be generalized
by taking samples f(cos(x0 + kh)), k = −2M + 1, . . . , 2M − 1, and the choice of x0
governs the number of needed function values taking into account that cosine is even.

2. A numerical algorithm for the reconstruction of sparse expansions of Chebyshev
polynomials can be already found in [20]. The approach can also be transferred to
Chebyshev polynomials of second, third and fourth kind, see [20]. However, in [20]
the connection to shift operators with Chebyshev polynomials as eigenfunctions has
not been explicitly used.

6 Reconstruction of Non-stationary Signals

Within the last years, more efforts have been made to reconstruct non-stationary
signals of the form

f(x) =
M∑
j=1

cj(x) cos(φj(x)).

The empirical mode decomposition method described in [11,12] is a heuristic iterative
method to decompose a given non-stationary signal into certain signal components.
However, this algorithm does not always provide the wanted signal components in a
suitable way. If there is more a priori information on the envelope functions cj(x)
and the phase functions φj(x) available we may be able to exploit it in a direct way.
Using the Prony method with generalized shifts we will consider some models of
non-stationary signals. In particular, we will study constant envelope functions and
polynomial phase functions with a priori known polynomial structure.

6.1 Non-stationary Signals with Phase Functions φj(x) = αjx
p + βj

We want to recover signals of the form

f(x) =
M∑
j=1

cj cos(αjx
p + βj), (6.25)

where the odd integer p > 0 is a priori known, and where the coefficients cj , αj ∈ R
and βj ∈ [−π,π) need to be recovered. We assume here that the αj are pairwise
different and nonnegative. This last assumption is not a restriction since cosx is an
even function.

First, we construct a generalized shift operator that possesses the eigenfunctions
cos(αjx

p + βj). We employ the operator Sxp,h,−h : C(R)→ C(R) with h > 0, which
is a combination of the symmetric shift operator Sh,−h and the operator SG,h with
G(x) = xp = sgn(x)|x|p and G−1(x) = sgn(x) p

√
|x|, given by

Sxp,h,−hf(x) :=
1

2

(
f
(

sgn(xp + h) p
√
|xp + h|

)
+ f

(
sgn(xp − h) p

√
|xp − h|

))
.

Here sgn(x) denotes the sign of x and is 1 for x > 0, −1 for x < 0, and 0 for x = 0.
We find

Sxp,h,−h cos (αjx
p + βj) =

1

2
cos
(
αj

(
sgn(xp + h) p

√
|xp + h|

)p
+ βj

)
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+
1

2
cos
(
αj

(
sgn(xp − h) p

√
|xp − h|

)p
+ βj

)
=

1

2

(
cos (αj(x

p + h) + βj) + cos (αj(x
p − h) + βj)

)
= cos (αjx

p + βj) cos(αjh).

The eigenvalues cos(αjh) and cos(αkh) are pairwise different for αj 6= αk if αj , αk ∈
[0,π/h]. We conclude

Theorem 6.1. Let f be of the form (6.25) with known odd integer p > 0, and with
unknown parameters cj ∈ R, βj ∈ [0, 2π) and pairwise different αj ∈ [0,K) for some
K > 0 for all j = 1, . . . ,M . Let h := π/K.

1. If the parameters βj do not appear in the model (6.25), then f can be uniquely

recovered from its signal values f
(

sgn(x0 + hk) p
√
|x0 + hk|

)
, k = −2M +

1, . . . , 2M − 1, where x0 ≥ 0 only needs to satisfy cos(αjx0) 6= 0 for j =

1, . . . ,M . Taking x0 = 0, the function values f
(

p
√
hk
)

, k = 0, . . . , 2M − 1 are

already sufficient for the reconstruction of the parameters αj , cj, j = 1, . . . ,M .

2. If the nonzero parameters βj appear in (6.25), then the parameters αj, j =

1, . . . ,M , can be recovered from signal values f
(

sgn(x0 + hk) p
√
|x0 + hk|

)
, k =

−2M + 1, . . . , 2M − 1 in a first step. Using in a second step additionally the
signal values f

(
sgn(x0 + hk − π/(2αj)

p
√
|x0 + hk − π/(2αj)|

)
for k = −M +

1,. . . ,M−1, the parameters cj and βj can be reconstructed. The value x0 needs
to be chosen such that cos(αjx0 + βj) 6= 0 for j = 1, . . . ,M .

Proof. We consider the Prony polynomial of the form

P (z) :=
M∏
j=1

(z − cos(αjh)) =
M∑
l=0

pl Tl(z),

where pl denote the coefficients in the representation of P (z) using the Chebyshev
polynomials Tl(z) = cos(l arccos z) with pM = 2−M+1. Then we observe that

M∑
l=0

pl

(
Sxp,h(m+l),−h(m+l)f( p

√
x0) + Sxp,h(m−l),−h(m−l)f( p

√
x0)
)

=

M−1∑
l=0

pl
1

2

(
f( p
√
x0 + h(m+ l)) + f(sgn(x0 − h(m+ l)) p

√
|x0 − h(m+ l)|)

+f(sgn(x0 + h(m− l)) p
√
|x0 + h(m− l)|)

+f(sgn(x0 − h(m− l)) p
√
|x0 − h(m− l)|)

)
=

M∑
l=0

pl

M∑
j=1

cj
1

2

(
cosαj((x0 + h(m+ l)) + βj) + cos(αj(x0 − h(m+ l)) + βj)

+ cosαj((x0 + h(m− l)) + βj) + cos(αj(x0 − h(m− l)) + βj)
)

= 2
M∑
j=1

cj cos(αjx0 + βj) cos(αjhm)
M∑
l=0

pl cos(αjhl)

= 2

M∑
j=1

cj cos(αjx0 + βj) cos(αjhm)

M∑
l=0

plTl(cos(αjh)) = 0
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for all m = 0, . . . ,M − 1. We obtain the linear system

Hp = −2−M+1 fM

with p = (p0, . . . , pM−1)
T and with

H =
(
f
(

p
√
x0+h(m+l)

)
+f

(
sgn(x0−h(m+l)) p

√
|x0−h(m+l)|

)
+f

(
sgn(x0+h(m−l)) p

√
|x0+h(m−l)|

)
+f

(
sgn(|x0−h(m−l)|) p

√
|x0−h(m−l)|

))M−1

m,l=0
,

fM =
(
f
(

p
√
x0+h(m+M)

)
+f

(
sgn(x0−h(m+M)) p

√
|x0−h(m+M)|

)
+f

(
sgn(x0+h(m−M)) p

√
|x0+h(m−M)|

)
+f

(
sgn(x0−h(m−M)) p

√
|x0−h(m−M)|

))M−1

m=0
,

to compute the coefficients pl of the Prony polynomial in Chebyshev representation.
The coefficient matrix of this system has the form

H = V diag(cj cos(αjx0 + βj))
M
j=1 VT (6.26)

with the generalized Vandermonde matrix V = (cos(αjhl))
M−1
l,j=0 = (Tl(cos(αjh)))M−1l,j=0

as in (3.13). These Vandermonde matrices are invertible if the values cos(αjh) are
pairwise different, which is ensured by the choice of h. The invertibility of the
diagonal matrix is ensured if cj 6= 0 and if αjx0 + βj is not of the form π(k + 1/2)
for some k 6= 0. In particular, for vanishing βj we can simply use x0 = 0 and need
only the function values f(lh), l = 0, . . . 2M − 1 to recover αj , since f in (6.25) is an
even function.

Having found the parameters αj by the described procedure, in the case of van-
ishing βj we can simply obtain the values cj cos(αjx0) by solving the linear system

M∑
j=1

cj(cos(αj(x0 + lh)) + cos(αj(x0 − lh))

= 2
M∑
j=1

cj cos(αjx0) cos(αjlh) = f( p
√
x0 + lh) + f(sgn(x0 − lh) p

√
|x0 − lh|)

for l = 0, . . . ,M − 1, where the coefficient matrix is the same generalized Vander-
monde matrix V as in (6.26).

If the model contains nonvanishing parameters βj , then we have to solve the system

M∑
j=1

cj(cos(αj(x0 + lh) + βj) + cos(αj(x0 − lh) + βj)

= 2

M∑
j=1

cj cos(αjx0 + βj) cos(αjlh) = f( p
√
x0 + lh) + f(sgn(x0 − lh) p

√
|x0 − lh|)

to obtain dj := cj cos(αjx0 + βj). In addition, we have to solve

M∑
j=1

cj

(
cos(αj(x0 + lh)− π

2
+ βj) + cos(αj(x0 − lh)− π

2
+ βj)

)

= 2

M∑
j=1

cj cos(αjx0 −
π

2
+ βj) cos(αjlh)
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= f

(
sgn(x0− π

2αj
+lh) p

√
|x0− π

2αj
+lh|

)
+f

(
sgn(x0− π

2αj
−lh) p

√
|x0− π

2αj
−lh|

)
for l = 0, . . . ,M − 1, to find d̃j := cj cos(αjx0 − π

2 + βj) = sin(αjx0 + βj) for
j = 1, . . . ,M . Thus, we conclude

cj =
√
d2j + d̃2j , βj = arg(dj + id̃j)− αjx0 mod 2π.

�

6.2 Non-stationary Signals with Quadratic Phase Functions

Finally, we consider signals of the form

f(x) =
M∑
j=1

cj cos(x2 + αjx+ βj) (6.27)

with parameters cj ∈ R, αj ∈ (−T, T ) for some T > 0, and βj ∈ [−π
2 ,

π
2 ], j =

1, . . . ,M . This model can be rewritten as

f(x) =
M∑
j=1

(cj cosβj) cos(x2 + αjx)− (cj sinβj) sin(x2 + αjx)

=
M∑
j=1

cj,1 cos(x2 + αjx)− cj,2 sin(x2 + αjx)

=

M∑
j=1

(cj,1 + i cj,2
2

)
ei(x

2+αjx) +
(cj,1 − i cj,2

2

)
e−i(x

2+αjx)

=
M∑
j=1

bj ei((x+αj/2)
2−α2

j/4) + bj e−i((x+αj/2)
2−α2

j/4)

= 2 Re

M∑
j=1

bje
−iα2

j/4 ei(x+αj/2)
2

= 2 Re
M∑
j=1

dje
i(x+αj/2)

2
, (6.28)

where we have used the substitutions cj,1 := cj cosβj , cj,2 := cj sinβj , bj :=
(
cj,1+icj,2

2

)
,

and dj := bje
−iα2

j/4. Similarly, we observe that

f̃(x) =

M∑
j=1

cj sin(x2 + αjx+ βj) =

M∑
j=1

cj cos(x2 + αjx+ βj −
π

2
)

= 2 Im
M∑
j=1

dje
i(x+αj/2)

2

with dj = bje
−iα2

j/4. The model is therefore closely related to the model in (4.18)
(with β = −i). We conclude
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Theorem 6.2. Assume that βj ∈ [−π
2 ,

π
2 ) and that αj ∈ (−T, T ), j = 1, . . . ,M , for

some T > 0 and let 0 < h ≤ π
T . Then, f in (6.27) can be reconstructed using the 2M

sample values f(x0 + hk), k = 0, . . . , 2M − 1 and the 2M sample values f̃(x0 + hk),
where x0 ∈ R is an arbitrary real number.

Proof. Considering the function h(x) = f(x) + i f̃(x), we can apply Theorem 4.1 to
recover the parameters dj and αj for j = 1, . . . ,M . The original parameters cj and
βj , j = 1, . . . ,M , are then obtained using the relations

bj = dje
iα2

j/4, cj,1 = 2Re bj , cj,2 = 2Im bj , |cj |=2|bj |, βj = arg (bj), sgn cj = sgn cj,1.

�

7 Numerical examples

In this section we want to illustrate the recovery method for non-stationary signals
with some examples.

Example 7.1. We start with considering the recovery of an expansion of complex
shifted Gaussians,

f(x) =
M∑
j=1

cj g(x− αj) =
M∑
j=1

cj e−β(x−αj)
2
,

with M = 5, g(x) = eix
2
, i.e., β = −i, and with complex coefficients cj and real

shifts αj given in Table 1. The coefficients have been obtained by applying a uniform
random choice from the intervals (−5, 5) + i(−2, 2) for cj and from (−π,π) for αj .
For reconstruction, we have used the 10 signal values f(j), j = −1, . . . , 8, indicated
by ∗ in Figure 1 (left). The maximal error for recovering the parameters is given by

max
j
|cj − c̃j | = 1.5 · 10−10, max

j
|αj − α̃j | = 3.5 · 10−12,

where c̃j and α̃j denote the computed parameters.

j = 1 j = 2 j = 3 j = 4 j = 5

Re cj −2.37854 −4.55545 2.54933 −2.57214 −0.57597

Im cj 0.75118 −0.56308 0.94536 0.42117 0.73366

αj 0.64103 −0.18125 −1.50929 −0.53137 −0.23778

Table 1 Coefficients cj ∈ C and αj ∈ R for the expansion of shifted Gaussians in Example 7.1.

Example 7.2. Next, we consider the recovery of a Gabor expansion of the form

f(x) =
M∑
j=1

cj e2πixαjg(x− sj),

with g(x) = e−x
2/2, M = 6, real coefficients cj , αj and sj as given in Table 2.

The coefficients have been obtained by applying a uniform random sampling from
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Figure 1 Left: Real and imaginary part of the signal f(x) consisting of shifted Gaussians given in Example
7.1. Right: Real and imaginary part of the Gabor expansion considered in Example 7.2. Stars indicate
the used signal values.

the intervals (−10, 10) for cj , from (−5, 5) for sj and from (0, 1) for αj . For the
reconstruction we have used the 12 signal values f(l), l = 0, . . . , 11 indicated by ∗ in
Figure 1 (right). For the errors we obtain in this example

max
j
|cj − c̃j | = 1.3 · 10−6, max

j
|αj − α̃j | < 3.3 · 10−7, max

j
|sj − s̃j | < 3.1 · 10−6,

where c̃j , α̃j , s̃j denote the parameters computed by the numerical procedure.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

cj 0.0777 2.9361 −3.8450 −7.2255 −0.4885 −2.7508

sj −1.9918 −4.3941 4.8090 −2.1337 3.0082 3.9611

αj 0.7881 0.7802 0.6685 0.1335 0.0215 0.5598

Table 2 Coefficients cj , αj , sj ∈ R for the Gabor expansion in Example 7.2.

Example 7.3. Finally, we consider two examples for the model with quadratic phase
function

f(x) =
M∑
j=1

cj cos(x2 + αjx+ βj)

in (6.27). In Figure 2 (left), we display a signal with M = 3 components with
corresponding parameters given in Table 3. For reconstruction, we have used the
signal values f(l), l = 0, . . . , 5. In Figure 2 (right), we give a second example with
coefficients given in Table 4. Here, M = 6, and we have used the signal values
f(−1 + 5l

12), l = 0, . . . , 11 for reconstruction. The coefficients have been obtained
by applying a uniform random sampling from the intervals (−1, 5) for cj in the first
and from (0, 5) in the second example, from (−π,π) for αj and from (−π/2,π/2) for
βj (for both examples). The reconstruction errors in the first example with M = 3
terms are

max
j
|cj − c̃j | = 1.3 · 10−8, max

j
|αj − α̃j | = 3.3 · 10−11, max

j
|βj − β̃j | = 1.7 · 10−9.
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For the second example with M = 6 we obtain

max
j
|cj − c̃j | = 7.7 · 10−5, max

j
|αj − α̃j | = 3.6 · 10−6, max

j
|βj − β̃j | = 5.5 · 10−5.
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Figure 2 Left: non-stationary signal f(x) with quadratic phase function with parameters given in Table 3.
Right: non-stationary signal f(x) with quadratic phase function with parameters given in Table 4. Stars
indicate the used signal values.

j = 1 j = 2 j = 3

cj −0.1835 4.2157 2.478

αj 0.3132 2.2308 2.2181

βj 0.3834 −0.4682 0.0416

Table 3 Coefficients cj , αj , βj ∈ R for the non-stationary signal in Figure 2 (left).

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

cj 3.8940 2.117 0.4541 1.3323 0.7682 1.4050

αj −0.3764 0.1705 −0.2675 2.3585 0.1134 2.7873

βj 0.4326 1.4378 −0.8145 0.5533 −0.6626 0.5397

Table 4 Coefficients cj , αj , sj ∈ R for the non-stationary signal in Figure 2 (right).
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