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Gerlind Plonka
Vasily Strela

Abstract. This paper gives an overview of recent achievements of the
multiwavelet theory. The construction of multiwavelets is based on a mul-
tiresolution analysis with higher multiplicity generated by a scaling vector.

The basic properties of scaling vectors such as Lz—stability7 approximation
order and regularity are studied. Most of the proofs are sketched.

§1. Introduction

Wavelet theory is based on the idea of multiresolution analysis (MRA). Usually
it 1s assumed that an MRA is generated by one scaling function, and dilates
and translates of only one wavelet ¢ € L*(IR) form a stable basis of L*(IR).
This paper considers a recent generalization allowing several wavelet functions
U1, .., The vector ¥ = (3q,...,%,)" is then called multiwavelet.

Multiwavelets have more freedom in their construction and thus can com-
bine more useful properties than the scalar wavelets. Symmetric scaling func-
tions constructed by Geronimo, Hardin, and Massopust [16] (Figure 1) have
short support, generate an orthogonal MRA. and provide approximation or-
der 2. These properties are very desirable in many applications but cannot
be achieved by one scaling function. Thus, multiwavelets can be useful for
various practical problems [11,53].

Our purpose is to give a survey of the basic ideas of multiwavelet the-
ory and to show how naturally multiwavelets generalize the scalar ones. We
start with a simple example of piecewise linear multiwavelets and the def-
inition of MRA. Then we discuss necessary properties of a function vector
® = (¢1,...,0,)T inorder to generate an MRA. In particular, ® has to be re-
finable and L%-stable, i.e., ® can be seen as a stable solution vector of a matriz
refinement equation. Such vector is then called scaling vector or multi-scaling
function. The mask symbol of the matrix refinement equation is closely asso-
ciated with the scaling vector. Similarly to the scalar case, the mask symbol
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and two linear operators, transition operator and the subdivision operator, are
the main tools in multiwavelet theory.

In Section 2, we discuss matrix refinement equations with compactly sup-
ported, L%-stable solutions.

Section 3 is devoted to the approximation properties of scaling vectors.
We show how approximation comes from the Strang-Fix conditions and that it
implies certain factorization of the mask symbol. This factorization generalizes
zeros at w = 7 of the scalar symbols.

In Section 4 we overview basic methods of estimation of the scaling vec-
tors’ smoothness.

Aiming to explain main ideas behind the theory, we will sketch the proofs
of most of the assertions.

Unfortunately the space does not allow us to consider more applied as-
pects of the multiwavelets such as decomposition and reconstruction algo-
rithms, construction of biorthogonal bases, lifting, preprocessing. Let us only
mention that the application of multiwavelets is a fast developing field and
the literature on this subject is rapidly growing.
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Fig. 1. GHM symmetric orthogonal multi—scaling function with approxi-
mation order 2.

1.1. Example of linear multiwavelets

Let us start with a simple example taken from [1]. Consider two piecewise
linear functions

1 0<t<1 Cf2vB(t-1%) 0<t<1
$1(t) = {O otherwise ’ $a(t) = { 0 otherwise

(Figure 2). Their integer translates ¢1(-—1), ¢p2(-—1), | € ZZ form an orthonor-
mal basis of the closed subspace Vo C L?*(IR) containing functions piecewise
linear on integer intervals. Furthermore, let V; be the closed subspace of
L*(R) spanned by 27/2 ¢ (27 - —1), 21/2 (27 - —1) (I € ZZ), and containing all
functions which are piecewise linear on intervals [2771, 277 (1 4+ 1)] (I € ZZ). Tt
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This relation represents the fact that ¢q,¢2 € Vo C V4. Analogously,
ViCVisn (€4 (1)

Orthogonal projections f;(t) of any function f € L*(IR) on subspaces V;
are successive piecewise linear approximations converging to f(t) as j goes to

oo. Thus,
Uwv=2® V=0 )

J=—00 =

Such nested structure of subspaces {V;} ez is usually referred as a multires-
olution analysis (MRA). In our case it is generated by two functions ¢1, ¢
and thus is of multiplicity 2. Observe, that the spaces V; considered here, can
not be spanned by integer translates of only one function ¢.
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Fig. 2. Piecewise linear orthogonal scaling functions ¢y, ¢2 with approx-
imation order 2.

Consider two more piecewise linear functions

6t—1 0<t<1/2 2v3(2t—1) 0<t<1/2
pi(t)=6t—5 1/2<t<1, ha(t) = ¢ —2v3(2t— %) 1/2<t<1
0 otherwise 0 otherwise

(Figure 3). Let W; (j € ZZ) be the closed subspaces of L?(IR) spanned by
2912451 (27 - —1) and 29/2 45 (27 - —1) (1 € 7Z).

The integer translates o1 (- —1),¥2(- —n),l,n € ZZ are orthogonal to each
other and to the integer translates of ¢y, ¢3 which makes Wy orthogonal to
Vo. ¥1 and ¥y are piecewise linear on half integer intervals, thus Wy C V4. In

particular,
IR 1 ) KR e el

Finally, generators of V; are linear combinations of translates of ¢1, 2,11, %2,

- éqbz + l¢17 $1(2--1) = Eﬁbl + éﬁbz

O o=

1
4 2 4 4

4
gﬂ/}l + %%/)27 $2(2-—1) = lﬁbz + éﬂ/ﬂl —

¢1(2) = qb 77Z)17

1
5 1
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Hence, V; is an orthogonal sum of V;, and Wy. Analogously, it follows that
Vi @ W; = W;qq for all j € 7Z, and

L*(R) = @D W; = closge span{2//2yy (27 - —1), 20125 (27 - 1) : 1, € Z}.
JEXL

All said above implies that the dilates and translates of ¥y, 15 form an or-

thogonal basis of L*(IR).

1 1
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Fig. 3. Piecewise linear orthogonal wavelets 11, 1.

1.2 Multiresolution analysis with multiplicity r

Generally, a sequence of closed subspaces {V; }jez of L*(IR) is called multires-
olution analysis (MRA) of multiplicity r if (1) and (2) are satisfied, and if there
exists a vector ® = (¢1,...,¢,) of L>-functions such that 27/ ¢, (27 - —I)
(v =1,...r,1 € 7ZZ) form an L?-stable basis of V;. The scaling spaces V; are
finitely generated 277 ZL-translation-invariant subspaces of L?(IR). Function
vectors @ that generate an MRA with multiplicity » > 1, are called scaling
vectors or multi-scaling functions.

Once an MRA {V,};exz is given, we define the wavelet spaces W; as
complements of V; in V; ;. The wavelet spaces W; are also finitely generated
27/~ 7 -translation-invariant subspaces of L*(IR). Moreover, the structure
of MRA implies that W; is the closure of the span of 2//2¢,(27 - 1) (v =
L...,r, 1 €Z2) if only

Wo = clospzspan{y, (- — 1) v=1,...,r =1, 1 € ZZ}

can be shown. If we can find a function vector ¥ = (¢1,...,%,)T such that
{,(- =1) : v =1,...,,r,1 € ZL} forms an L*-stable basis of Wy, then
{20/24p,(2) - =1): v=1,...,r, 1,j € ZZ} forms an L*-stable basis of L?(IR).

In the Fourier domain, the problem of finding the multiwavelet ¥ can be
reduced to an algebraic problem of matrix completion (see e.g. [36,51]). More-
over, if ® is compactly supported, then a corresponding compactly supported
wavelet vector can be found.

Since ¥, € Wy C Vi is a linear combination of the dilated components of
the scaling vector ®, most properties of the multiwavelet ¥ are determined
by the properties of ®.
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A scaling vector ® has to satisfy some special properties which are induced
by the conditions of the MRA. Another set of properties such as compact sup-
port and smoothness of the components ¢, of ® and polynomial reproduction
in Vj is required by applications.

Condition (1) of the MRA implies that ® needs to satisfy a matriz re-
finement equation of the form

®(t)=> P®(2t-1) (3)

SY/4

Here P; are r x r mask coefficient matrices. A function vector ®(t) satisfying
(3) is called refinable. Application of the Fourier transform to (3) leads to

ou-r(2)8(5) o

where P denotes the symbol of the mask {P;}iec,

Pw) := % Z Pl (5)

~ ~

Here, the Fourier transform is taken componentwisely, i.e., ® = (¢1,... ,gg,,)T
with qg,,(w) = f_oooo b, () et dt.

For simplicity we assume that the sum in the refinement equation (3) is
finite, or equivalently, the symbol P is a matrix of trigonometric polynomials
P(w)=271 Eiio P; e~ Being interested in the refinable function vectors,
we will view the refinement equation as a functional equation. The finite mask
already implies that solutions of (3) are compactly supported in the sense that
each component ¢, (v =1,...,r) is compactly supported.

The second condition on ® induced by the MRA is the L2-stability. We
say that a function vector ® € (L*(IR))" is L*-stable, if there are constants
0 < A< B < oo, such that

AY ceas| Y ¢®--i:<B ) ce (6)

[=— [=— [=—

holds for any vector sequence {¢;}iez € I*(7Z)". Here [*(ZZ)" denotes the set
of sequences of vectors ¢; € R” with >/ ¢je; < oo and ¢} stands for T

Let us introduce the autocorrelation symbol

oo

Q)= Y (D dul- = 1)12), oy €

[=—

Poisson summation formula gives

Qw) = io: <i>(w + 27n) <i>(w +27n)*  a.e.

n—=——0oo
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Observe, that the autocorrelation symbol is positive semidefinite and, for com-
pactly supported @, it is a matrix of trigonometric polynomials. L?-stability
of @ is equivalent to the assertion that Q(w) is strictly positive definite for all
real w (see [18]). In the Fourier domain, L*-stability of @ is ensured if and
only if the sequences {qg,,(w +27l) biew (v =1,...,r) are linearly independent
for each w € R (see [29]).

Finally, let us consider the union and intersection properties (2) of the
MRA. As shown in [17] the equality closy2 Ujez V; = L?*(IR) is satisfied if and
only if UJ_, supp qg,, = R (modulo a null set). This condition obviously holds
for compactly supported ®. The intersection condition Nj;ez V; = {0} follows
for nested sequences V; if ) _ |q£,, (w)| > 0 a.e. in some neighborhood of the
origin (see [17], Theorem 3). Indeed, this condition is already satisfied if ® is
refinable and L?-stable (see Section 2).

Let us summarize: In order to obtain a scaling vector @ generating an
MRA, it is enough to find a compactly supported, L?-stable function vector
which is a solution of a matrix refinement equation (3). In other words, we are
looking for a mask {P;} (a symbol P(w)), such that a compactly supported
L?-solution vector of (3) is L%-stable. This problem will be considered in
Section 2.

Applications usually require several other features such as exact polyno-
mial reproduction in V; (vanishing moments of the wavelets) and smoothness
of the elements of V;. The corresponding properties of the scaling vector ®
are considered in Sections 3 and 4.

1.3. Transition operator and subdivision operator

Besides the mask, two other important tools for studying the properties of a
scaling vector are the transition operator T and the subdivision operator S.
For a given mask symbol P(w) = 27! Eiio P el the transition operator
T : (L) — (L3.)"*", acting on r x r matrices H(w) with 27-periodic,
quadratic integrable entries, is defined by

TH((2w) := P(w)H(w)P*(w) + Plw+n)H(w + W)P*(w + 7). (7)

Observe that the autocorrelation symbol (w) is an eigenmatrix of T' to the
eigenvalue 1. For H € (L% )"™" we find

2" —1

(T H)w) = 3 (o + 20 B2

2n

VL, (w + 271)%, (8)

where II,,(w) := H?:l P(277w). TIf Hy; is the space of r x r matrices of
trigonometric polynomials of degree at most M, then for M > N, Hy; is
invariant under the action of T'.
The transition operator 7' is a linear operator, and T : Hy; — Hjy; can
be represented by an r2(2M +1) x r2(2M + 1) matrix T
1

T:= (§A2k—j)§,\4k:_M
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with
M
Aj:=) P 0P,
(=0

where A @ B stands for the Kronecker product of matrices A = (ajk);k:l €
CTXT and B c q:jr’><7’7

auB Ce aq TB
A B := : .
aB ... a..B

(see [33,41]). As in the scalar case, the spectral properties of the transition
operator govern stability and regularity of scaling vectors.

The subdivision operator S = Sp associated with the refinement mask
{Pi}iem of @ is a linear operator on [(Z)", defined by

(Spe)a= > Ph_5¢p, (9)
BEZX

where ¢ € [(ZZ)". Here I(ZZ)" denotes the set of sequences with arbitrary
vectors of IR" as entries. With the help of the double infinite matrix

L= (Pa_ss)

a,ﬂ:—oo

we find Spe = L*¢. Note that with the infinite vector F := (....,®( +
DT, @)1, &(-—1)T,.. )T the refinement equation (3) can formally be written
in the vector form L F(2:) = F.
Assuming that ¢ € [*(Z)", we can consider Fourier series ¢(w) := Y, ¢; e ™*!;
then (9) leads to

(Spe)(w) = 2 P(w)* &(2w).

In the scalar case, there is a simple connection between transition and subdi-
vision operator, namely

(Sippe)(w) = (T"é)(w) = 2 |P(w)]* é(2)

for ¢ € [*(ZZ). Here T* denotes the adjoint operator of T. In vector case, we
can find a similar close relation (see e.g. [47]): Let for the r x r matrix H with
columns hq,...,h, the vec-operator be defined as

veeH = (h{,....h")T € .

Introduce the scalar product of two matrices H, G € L*(IR)"*" by

7,2

(H, G)2 := (vec H, vecG) := Z<(vec H);, (vecG);) 2

= e (vecH)j(w) (vec G);(w) dw
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and recall the well-known property of Kronecker products vec(AX B) =
(BT @ A)vec X for A, B, X € C™*". Then we find

+7) H(; +7) P(§ —|—7T)*> , vecG>

:< @@ P(é)) vecH(é)

+ (ﬁ@@ P(5 + 77)) vec H( +7), vecG>

-3 % /_2; KP(%)@P(%)) vecH(%)]] (vec G); (@) dw
= %: / vee H(w)], [(Ple) @ P(w) vec G| o

= 2(vec H, (F ® P)T vee G(2)).
On the other hand, for a,b € I*(7Z)",

(H, (521) (g\b)*>2 = 4 (vec H, vec (P* a(2-) 5(2-)* P))
=4 (vec H, (F ® P)T vec (di;*)(z.)}.

Together, these observations imply the relation
2T*(ab’) = (Sa) (Sb)*.

Both operators play a crucial role in characterization of scaling vectors
and lead to deep insight in the structure of the solutions of matrix refine-
ment equations. As in the scalar case, the subdivision operator implies an
efficient algorithm for the iterative computation of ® in time domain. The
corresponding subdivision algorithm is closely related with the cascade algo-
rithm (see e.g. [38], Theorem 2.1, [39]). Actually, there is no reason to restrict
the subdivision operator to the L%-case, general solution vectors with compo-
nents in L? can also be handled (see e.g. [12,30,31]). However, in L*(IR), the
transition operator often provides simpler results. Since both, T and S are
linear operators, their spectral properties are computable by considering their
representing matrices.

62. Existence, Uniqueness, and Stability of Scaling Vectors

In this section we summarize some basic results on existence and uniqueness
of solutions ® of (3) in terms of the symbol P(w). We also are going to
characterize the L?-stability of ®.



From Wavelets to Multiwavelets 9

Let us assume that the mask symbol of @ is given in the form

N
1 .
P(w) = 5 g Pk, (10)
k=0

The following theorem states a necessary and sufficient condition of existence
of a solution vector of (3).

Theorem 1. The matrix refinement equation (3) has a compactly supported
distributional solution vector ® if and only if P(0) has an eigenvalue of the
form 2", n € Z,n > 0.

Proof: The necessary part of Theorem 1 was first obtained in [21]. Since ®
is compactly supported, @ is analytic. Hence, ® # 0 implies that there is an

~

integer o > 0 with D*@®(0) # 0 and D"®(0) =0 for n =0,...,a — 1. Thus,

D*®(0) = D° {P(%)é(g)} oo = — i (O‘> D"~“P(0) D" &(0)

20 n

= Z%P(O)Daé(()).

The sufficient part was proved in [34]. Consider
. - W,a o W
(w) 121 (57) ®o(5;)

with suitable compactly supported ®q. It can be shown that d, converges
for n — oo to an entire function ® with polynomial growth. Moreover, for
n > 0, the solution @ of the refinement equation (3) with symbol P(w) is n-th
distributional derivative of the solution of the dilation equation with symbol
s+ P(w). O

Theorem 1 is analogous to the condition of existence in the scalar case r =
1. However, unlike the scalar case when the uniqueness (up to multiplication
by a constant) of a distributional solution is also guaranteed, in the vector case
(r > 1) the number of linearly independent solutions of the matrix refinable
equation (3) is determined by the multiplicity of eigenvalue 2™ of P(0).

Without loss of generality we restrict ourselves to the case n = 0 and
assume that 1 is the only eigenvalue of P(0) of the form 2", n € 7ZZ, n > 0.
(As we will see later, L%-stability implies that the spectral radius of P(0) is
equal to 1). Then uniqueness can be ensured as follows (see [21,34]).

Theorem 2. Let 1 be the only eigenvalue of P(0) of the form 2", n € ZZ, n >
0. The matrix refinement equation (3) has a unique (up to a constant) solution
® with ®(0) = r if and only if 1 is a simple eigenvalue of P(0) and r = P(0)r.
In particular,
L
&(w)= lim [[P <i> r. (11)

2
i=1
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The convergence of the infinite product (11) is also studied in [9,23,56].

We are especially interested in L2-stable solutions. Let us introduce the
following definition. A matrix (or a linear operator) A is said to satisfy Con-
dition FE if it has a simple eigenvalue 1 and the moduli of all its other eigen-
values are less then 1. First we observe some necessary conditions (see e.g.

[12,25,34]).

Theorem 3. Let ® be a compactly supported, L?-stable solution vector of

(3). Then for the corresponding symbol P(w) we have:

(a) P(0) satisfies Condition E.

(b) There exists a nonzero vector y € R" such that y* P(0) = y* and
y*P(r) =0".

Proof: Recall that the autocorrelation symbol € is an eigenmatrix of the

transition operator T to the eigenvalue 1 and, by L?-stability, Q(w) is invert-

ible for all w € R. For a given eigenvalue A of P(0) with left eigenvector y*
we find
y"Q0)y =y (TQ)(0)y
=y" P(0)Q(0) P(0)" y +y" P(m)Q(m) P(x)"y
> [\ y*Q(0)y
which means that |A\| < 1. For A = 1, y* P(n) Q(r) P(7)"y = 0, and since
Q(7) is invertible, y* P(r) = 0. The hypothesis, that there are other eigen-
values of P(0) on the unit circle can be shown to contradict the L?-stability.
O
Necessary conditions for existence of L%-stable (or more general LP-stable)
solution vectors of (3) can also be given in terms of the subdivision operator
(see e.g. [31], Theorem 2.1).
Obviously, a necessary condition for L?-stability of @ is that the entries
of @ are in L*(IR). The following theorem generalizes the results of Villemoes

[54].

Theorem 4. Let P(w) be a matrix of trigonometric polynomials satisfying
the assertions (a), (b) of Theorem 3 and P(0)r = r. Let U be an invertible
matrix with first column r such that U~' P(0)U is the Jordan matrix of P(0)
with leading entry 1. Further, let ® be the corresponding solution vector of
(3) with <i>(0) =r. Then ® € L*(R)" if and only if there exists an r X r matrix
H c Hy satistving TH = H, and the leading entry of U™" H(0) (U ~")* is
positive.

Proof: We refer to [34], Proposition 3.14. If y* is a left eigenvector of P(0)

to the eigenvalue 1 with y*r = 1, then U™' has y* as its first row. Theo-
rem 3 implies that y* P(r) = 0. Repeated application of (4) easily leads to
y* ®(27l) = 0o,

1. If ® € L?*(IR)" then its autocorrelation symbol £ is a matrix of trigono-
metric polynomials in H y satisfying T7Q = Q and

y QO =y* > ®2r) &2y =1.

I=—00
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2. Conversely, assume that there is a matrix H € Hy with TH = H, and
the first entry of U~ H(0)(U')* is ¢ > 0. Set II,(w) := H?:1 P(271w),
II{w) = limp—eo II,(w) and observe that, by Theorem 3 (a), II(w)U =

~

(®(w), 0,...,0). Hence,
(w) HO)I(w)* = () U U HO) (U ) U T(w) = ¢ ®(w)®(w)*.

Using (8) and TH = H we get

00 2"
c/ &(w) B(w)* dw = lim nn(w)H(Qi)nn(w)*dw
oo n—00 [ _on_ n
= lim (T"H)(w)dw = H(w)dw,
n—oo -

and the assertion can be derived. O

Asin the scalar case, there are three different methods for characterization
of necessary and sufficient conditions of L%-stability of @. The first is based
on spectral properties of the transition operator T associated with P (see
e.g. [48]). Using the representing matrix of T (see e.g. [41]), the resulting
stability condition can be seen as a generalization of Lawton’s criteria [35]
for scaling functions. Another way is to try to find explicit conditions on the
mask symbol P. This idea generalizes the criteria of Cohen [8] and that of Jia
and Wang [32]. However, these conditions are rather complicated. One has
not only to struggle with non commuting matrix products, but also needs to
ensure the algebraic linear independence of the components ¢, of ® and their
translates in terms of P(w) [24,43,55]. Both of these problems do not occur
in the scalar case.

Finally, there is a close relation between stability and convergence of
subdivision schemes (see e.g. [10,12,38,39]).

We only want to present the stability conditions in terms of the transition
operator, proved in [48].

Theorem 5. The refinable function vector ® is L?-stable if and only if its
symbol P(0) satisfies the Condition E and the corresponding transition op-
erator T restricted to Hy satisfies Condition E where the eigenmatrix corre-
sponding to the eigenvalue 1 is positive definite for all w € R.

Proof: 1. The sufficiency of the assertions is obvious: Since P(0) satisfies
Condition E, Theorem 2 implies that the matrix refinement equation (3) has
a unique, compactly supported solution vector ®. Let H € Hy be a positive
definite eigenmatrix of T with eigenvalue 1, then by Theorem 4, ® € L*(IR)".
Thus, the autocorrelation symbol Q of ® exists, and it equals H up to multi-
plication by a constant.

2. The necessity is more complicated. The assertion on P(0) follows
from Theorem 3 (a). Theorem 4 implies that T possesses an eigenvalue 1.
If there were an eigenvalue A of T with |A| > 1, TH = M\H, then since
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of

oo s

I (w) H(0) M(w)* dwl|| = || lim T"H (w)dwl||

n— 00

(w) H(0) I(w)* = Eé(w) é(w)* with some finite constant ¢, the divergence

would contradict the assertion ® € L*(IR)" (see the proof of Theorem 4).
Similar arguments apply for showing that 1 is the only eigenvalue of T on the
unit circle. Finally, the assertion follows by recalling that the autocorrelation
Q of ® is positive definite and satisfies T2 = Q. O

§3. Approximation Order and Factorization of the Symbol

In this section we overview the polynomial reproduction properties of a scaling
vector ®. We start with definitions and notation. Let So(®) denote the linear
space of all functions of the form ., b, ®(- — ), where b € I[(Z)" is an
arbitrary vector sequence on 7Z.

Assume II; to be the space of algebraic polynomials of degree at most
k. A vector sequence y € [(ZZ)" is called polynomial vector sequence of degree
E, if there exists a vector of algebraic polynomials Y € (II;)" with y, = Y (I)
(le).

We say that a function vector ® has accuracy k if lIy_1 C So(®).

A function vector ® € (L*(IR))" is said to provide approzimation order k
if, for any sufficiently smooth function ¢ € L*(IR),

dist(g, Sp(®)) = O(h*).
Here S(®) = L*(IR) N So(®) and
Su(®) :={f(/h): f € 5(®)}.

As shown in [27], ® provides approximation order k if and only if it has
accuracy k.

There are two equivalent methods for characterization of accuracy of a
scaling vector ®; the first method uses the subdivision operator S, the second
gives conditions on the symbol P(w) in the Fourier domain.

Theorem 6. Let ® = (¢1,...,¢,)T be a compactly supported, L?-stable
scaling vector with a finite refinement mask {P;};cy. Then following state-
ments are equivalent:
(i) @ provides approximation order k.
(ii) There exists vector sequences y,, = {(y,)a tacz € (Z)" (n=0,...k—1)
such that

d W )e®(t—a)=t" (teRn=0,... k1) (12)

These series converge absolutely and uniformly on any compact interval
of R. In particular, y,, are polynomial vector sequences of degree n with

7

R N (13)

=0
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(iii) There is a unique superfunction f € S(®) which is a finite linear combi-

nation of shifts ®(- —1) (I =0,...,k — 1), and satisfies
D*f(2rl) =6,0010 (l€ZZ,pn=0,....k—1). (14)

(iv) There exists a nontrivial vector of trigonometric polynomials A(w) :=

;:01 a; e~ ! with coefficient vectors a; € R", such that the symbol P

of ® satisfies
D"[A(2w)* P(w)]]w=0 = D™ A(0)*,

D"[A(2w)* P(w)]|w=r = 0T.
torn=0,...,k—1.

(v) There exists a polynomial vector sequence b satisfying

1 k—1
Spb:<§> b

and b* ®(0) has degree k — 1.

(15)

Proof: We are going to give a sketch of the proof:

(i) = (ii): The existence of sequences y, € ((ZZ)" satistying (12) follows
directly from the definition of accuracy. Only their polynomial structure (13)
has to be shown. For n = 0 we find (by replacing of ¢ by t + 1)

1= Y (o)s @t —1—a) = 3 (ypliy, B(t — ).

aEZ aEZ

Hence (Yg)a = (Yg)a+1 for all o € ZZ. For n > 0 the assertion easily follows by
induction (see [42], Lemma 2.1). Here we need to use the assumed L?-stability
of ® which also applies to polynomial sequences.

(ii)=-(iii): Take the trigonometric polynomial vector

Aw) = z_: ay e (16)

with a; € R" determined by
D"A(0)=:"(y,)0o (n=0,....k—1). (17)

Consider the function f € S(®) with f(w) = A(w)* <i>(w) Then f is the
desired superfunction satisfying (14).
For n =0, (12) and Poisson summation formula imply

1= A0) ®(t—a)=A(0)" ) ™" &(2rj).

ac JEX

Hence, f(0) = A(0)* ®(0) = 1 and f(27j) = A(0)* ®(27j) = O for j € Z\{0}.

For n > 0, an induction proof using (12) and differentiated versions of Poisson
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summation formula can be applied (see [42], Theorem 2.2). The uniqueness
of f is shown in [6], Theorem 4.2.

(iii) = (i): This statement is true, since f satisfies the Strang-Fix condi-
tions of order k.

(iii) & (iv): We show that the trigonometric polynomial vector A(w)
determined by (16)—(17) also satisfies the conditions (15). First, note that

F(2w) = A(2w)* ®(2w) = A(2w)* P(w) ®(w). Using (14), we find for [ € Z
0= f(4rl + 27) = A(0)* P(x) ®(2xl + 7).

The linear independence of the sequences {qg,,(Qﬂ'l + M e (v = 1,...,71)
implies A(0)* P(x) = 0. To get the second equality in (15) for n > 0, we
proceed by induction, using D"f(élﬂ'l +27) = 0.

The first equality in (15) for n = 0 follows by comparison of f(47rl) =
A(0)* P(0)®(2xl) = 8 and f(2x1) = A(0)* ®(2xl) = 6o ;. For n > 0, the
assertion is a consequence of D"f(élﬂ'l) = D" f(27rl) = 0 (see [40], Theorem
2). Conversely, take A(w) of the form (16) satisfying (15) for n =0,...,k—1
and with A(0)* <i>(0) = 1. This last equality is only a normalization, since
A(0)* and ®(0) are left and right eigenvector of P(0) to the simple eigenvalue
1, respectively. (Indeed, A is already uniquely determined by these condi-
tions.) Then it can be shown that f, determined by f(w) = A(w)* <i>(w) is the

superfunction.
(ii) = (v): Let b := y;_, with y,_; as in Theorem 6 (ii). On the one
hand, with v = 2] + n,

=) be(t -0 =) b Yy P,®(2t—2l—n)

leZ SY/4 neZ

= 3 (Spb)t @2 - ).

~NEXL

where (3) and (9) are used. On the other hand,

1
th=t = = (2t = AT > b @2t —1).
leZ

Comparison yields Spb = ﬂ%b. By definition, b is a polynomial sequence

and
k—1

(") )z e0)

=0

is of degree k — 1 if and only if (yy)g <i>(0) # 0. This is a direct consequence
of the Poisson summation formula (applied to (12) for n = 0).
(v) = (i): Let b satisfy the conditions of Theorem 6 (v). Set p :=

> ez bo ®(- — a). Then

p= Y (Spb); 82 —a) = (%)k 2 b2 —a)= (%)k o)

aEZ aEZ
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Since b is a polynomial vector sequence of degree k — 1, it follows that
Vfl/z)np = 0 for all positive integers n. Here V,f = f — f(- — h) and
VEf = Vi_l(vhf). Using these properties of p one can find that p(t) = ct*~!
with some constant ¢ # 0 (see [30], Theorem 3.1). This means that So(®) con-
tains the monomial t*~!. Since So(®) is Z-translation-invariant, it contains
1,...,t* 1 ie., ® has accuracy k. O

Let us give some further explanatory remarks.

1. In [26], Jia already characterized the L*°-approximation order of FSI
spaces So(®) in terms of Strang-Fix conditions implied on a single element
f € So(®). In the special case when ® = ¢ is a single generator, Ron [46]
showed that ¢ provides L*-approximation order k if and only if Sp(¢) contains
IT;_1. This statement was extended to the FSI spaces and LP-approximation
order in [27]. Observe that this result is not longer true for shift-invariant
spaces on R? with d > 1 (see [2]). There is a rich literature generalizing these
results, including extensions to the multivariate case and to non compactly
supported function vectors (see e.g. [3,4,5,6,15,20,28] and references therein).

2. The investigation of the approximation properties of FSI spaces in
[4,5,6] was focused on the superfunction approach. In [6], de Boor, DeVore
and Ron succeeded to construct a superfunction f of S(®) C Lz(IRd) with spe-
cial properties. In the univariate case, this superfunction can be constructed
directly (see Theorem 6). The symbol A of the superfunction is then used to
derive direct conditions for the mask symbol P (see Theorem 6 (iv)). Con-
versely, the conditions (iv) on the mask symbol P can be successively applied
to determine D* A(0) p = 0,... and hence to derive the accuracy of ® directly
from the mask. Conditions of type (iv) were independently found in [22,37,42].
These approximation results can be generalized to the multivariate case with
general dilation matrices (see [7]).

3. Already in 1994, Strang and Strela [50] had observed that accuracy k
of @ implies that the double infinite matrix L = (P4—23)q,3cz has eigenvalues

k— . . . . .
1, %, cee (%) ' with corresponding eigenvectors of special structure. Since
L” is the representing matrix of the subdivision operator Sp, their results are

closely related to the conditions of Theorem 6 (v).

4. Jia, Riemenschneider and Zhou [30] showed that it suffices to consider

the eigenvalue (%) P of Sp and its eigenvector sequence b only (see Theorem 6

(v)). Furthermore, [30] generalizes the result to the case of non-stable function
vectors; then Spb — (%)k_l b has to be contained in the linear space {a €

UZL)" 2 ) pem a0 ®(- — ) = 0}.

In the scalar case r = 1, the conditions (iv) of Theorem 6 simplify to

D"P(W)Z(l) (n=0,....k=1) (18)

P(0) =
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They directly imply a factorization of P(w) in the form

P(w) = (”T) Q). (19)

In the vector case, the accuracy of ® also implies a factorization, but it is
more complicated.

Theorem 7. Let ® be a compactly supported, L*-stable scaling vector with
(finite) mask symbol P. If ® provides approximation order k then there exists
an r X r matrix C(w) of the form C(w) = Ef:o Ce ! satisfying
det C(w) = const (1 — ¢7™)*
such that .
P(w) = 57 C(20) () Cle) ™ (20)

where Q is a matrix of trigonometric polynomials. In particular,

—iw\ F
det P(w) = (1—'—276;) det Q(w).

For the proof we refer to [42]. As shown in [42], a matrix C can be
constructed explicitly, and it can be factored into C = C;...Cr_y, where
each C; (corresponding to a change of approximation order by 1) has an
analogous structure. If A(w) is a symbol of trigonometric polynomials of the
form (16) satisfying (15) for n =0,...,k — 1, then

D"[A(w)* C(w)]|w=o =0T (n=0,...,r—1) (21)
(cf. [45]). The factorization matrix C is not unique. A general characterization
of factorization matrices is presented in [44,45 52].

Using a reverse version of the factorization theorem, a procedure for con-
struction of multi-scaling functions with special properties (symmetry, com-
pact support, arbitrary approximation order) is given in [44]. We remark that
there is a close connection between the spectrum of the symbol P(0) and
that of the inner matrix Q(0). More exactly, P(0) possesses the spectrum
{1, i1y ooy i1}, if Q(0) possesses the spectrum {1, 2841, ...,2%u, 1} (see
[9], Lemma 4.3, [52], Lemma 2.2).

The factorization can be transfered into time domain, using the repre-
senting matrix of the subdivision operator L* (see [38]).

The inner matrix @ can be considered as a mask symbol of a distribution

vector ¥ such that .

&(w) = ot C(w) ¥(w).

In the scalar case r = 1, when C'(w) = (1 + ¢~*)*, we observe that <i>(w) =
Bk(w) \il(w), i.e., ® = ByxV, where By, is the cardinal B-spline of order k with
support [0, k]. In the vector case, a similar convolution result is not obvious,
however, if ® has accuracy k, a special linear combination F(w) = M(w)é(w)
(with some invertible matrix M of trigonometric polynomials) can be found,
such that F(w) — B, (w) U, (w), where ¥y is a refinable vector of distributions
(see [45]).
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§4. Regularity of Scaling Vectors

In this section we analyze the regularity of a scaling vector ®. Again, let us
set the symbol P(w) to be a matrix of trigonometric polynomials, and @ to
be L?-stable.

Throughout this section we assume that ® provides approximation or-
der k. This assumption makes sense, since a stable scaling vector ® with all
components in C¥~1 always provides approximation order k (see [9], Lemma
2.2). Many papers dealing with the smoothness of scaling functions or scaling
vectors rely on the given approximation order and the corresponding factor-
ization of the mask symbol. Unfortunately, in the multivariate setting, no
factorization properties are known, and the ideas based on factorization, can
not be generalized to that case.

Similarly to the scalar case, we can use the product representation of <i>,

$(w) = lim 1P ( ) r, (22)
j=1
where r is a right eigenvector of P(0) to the eigenvalue 1. By Theorem 2, this
representation is unique up to multiplication by a constant.
The simplest method to find regularity estimates of @ is to consider the

decay of its Fourier transform. Let us briefly recall the situation in the scalar
case (r = 1). Let P(w) be a trigonometric polynomial of the form

Pl = (H5) Qo

where Q(0) = 1 and Q(x) # 0. Assume that the corresponding scaling func-
tion ¢ is given by ¢(w) = Hjil P(w/27). Exploiting the factorization we
find

[O(w)] < O (14 |w])* HIQw/Z’

7=1

Together with estimates of the type sup,, |Q(2*71w)... Q(w)| < B! we obtain
[G(w)] < C (14 [w])~FHls B

(see [13,14]). This idea can be generalized to the vector case (see [9]). Suppose
that ® € (L*(IR))" is compactly supported and

[ ®(w Z |6 (w)|*) /2

For H = (hyu)p =1 € (L3)"™" let [[H(w)|| = (X}, ,—1 [huw(w)[*)'/?. Then
the following theorem holds.
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Theorem 8. Let P be a finite mask symbol of a scaling vector ® such that

P(w) = 2ik C(20) Q(w) Cleo) ",

Here, C(w) and Q(w) are matrices of trigonometric polynomials satisfying the
conditions of Theorem 7. Suppose that p(Q(0)) < 2, and let for [ > 1

1 _
3= Hlog, s Q1) Q.
Then there exists a constant C such that for all w € IR
[@(w)]] < C (14 Jw])~F. (23)

Proof: The idea of the proof is based on the following observation. Using
the factorization (20) in the infinite product (22), one can see that

w w w

$(w) = lim —— CW Q) ... e,

and with E(w) 1= (1 — e7*)k C(w)™!,

n— 00

k n
2 . 1 w w
#() = fin (G ) O 15 B50r
Since lim, oo [27%(1 — e7/2" )71 = |w| ™! for w # 0, it follows that
- _ . = w w
@) < CL+ ) CW) Jim ] Q) Bl (24)
j=1

We show that E(0)r is a right eigenvector of Q(0): By assumption, there
exists a polynomial vector A(w) = E;:ol a; e~ ! with D"[A(w)* C(w)]|w=0 =
0T for n =0,...,k — 1. In particular, A(0)* C(0) = 0". Since the eigenvalue
0 of C(0) has geometric multiplicity 1 and C(0) E(0) = E(0)C(0) = 0, we
find E(0) = a A(0)* where a is a suitable right eigenvector of C(0) to the
eigenvalue 0. Then E(0) P(0) = E(0), because A(0)* P(0) = A(0)*. On the

other hand, the factorization (20) also implies
E(0) P(0) = Q(0) E(0).

Thus, Q(0)E(0)r = E(0)r.

As in the scalar case, the problem is now reduced to the estimation of
the infinite matrix product of the inner matrix . For a complete proof see
[9], Theorem 4.1. O
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From (23) it follows that the components of @ are continuous if P satisfies
the conditions of the Theorem with +; < k — 1 for some [. Estimates similar
to Theorem 8 were independently found in [52].

The brute force method presented above, usually does not provide sharp
estimates for the smoothness of the components of the scaling vector. It gives
only lower bounds.

In the second part of this section, we are going to consider a more refined
method based on the transition operator.
Let the Sobolev exponent s of ® be defined by

s =sup{d: /_OO 1@ (w)]|? (1 + |w|?)® dw < o< }.

Assume that the symbol P(w) satisfies the conditions of polynomial repro-
duction, i.e., there exists a vector A(w) = E;:ol a; e~ ™! such that for n =
0,...,k—1

D"[A(2w)* P(w)]]w=0 = D" A(0)",

D"[A(20)* P(w)]|wer = 07.

According to Theorem 7, this assumption implies a factorization of P:
1 _
P(w) = o7 C(20) Q() Cle) ™,

such that D"[A(w)* C(w)]|w=o =0T forn =0,...,k — 1.

Consider the transition operator T = Tp as given in (7). We want to
show the basic idea of how to estimate regularity by spectral properties of
T restricted to special subspaces. Recall that for P(w) of the form (10) the
space Hpy; of r x r matrices of trigonometric polynomials of degree at most
M is for M > N a finite-dimensional space invariant under the action of T'.

We need some definitions. For each matrix of 27-periodic functions

H(w) = (hij(w))j j=1 € (L3;)"7" let

IHIF = > kil

1<i,j<r

be the Frobenius norm of H, where || - ||z denotes the usual norm in L2 .
Further, let the norm of a linear operator T : (L3_)"*" — (L3_)"*", restricted
to a subspace H of (L3.)"*", be defined by

ITH|F
|T[ull :== sup :
HeH\{o} HHHF

The spectral radius py of T restricted to H satisfies

1 n|l/n
pu = lim (Tl
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Introduce the smallest closed subspace Hy € Hy invariant under 7" and
containing the matrix CC™, where C is the factorization matrix in (20) satis-
fying (21). Obviously, Hy is finite-dimensional. Further, observe that by (8),
for each n € IN,

"CCH)(w Z I, (w + 271) C (“’+2ﬂ)0(“+2”l)*11n(w+2771)*,

where II,(w) = [['_, P(277w). Using that Q(w) = 2* C(2w)~! P(w) C(w)
we find C(w) 1 I, (w) C(27"w) = 27 H?:l Q(277w) and hence

where T¢ denotes the transition operator corresponding to @(w), and I is the
identity matrix. In particular, since D"[A(w)* C(w)]|w=o = 07, it follows that
for all H € Hy,

D" A(w)* H(w)]|omo =0T (n=0,....k—1).

Consider the smallest subspace H; of Hy which is invariant under Tg
and contains the identity matrix.

Lemma 9. Let H € H, be an eigenmatrix of Tg to the eigenvalue \. Then

= CHC" is an element of Hy and it is an eigenmatrix of Tp to the
eigenvalue 4%\,

Proof: From C(2w) Q(w) = 2% P(w) C(w) we find

TpH(2w)
= P(w)C(w)H(w)C(w
+Plw+n)Clw+n)H

w4 m)Cw+m) Plw+r)"

2w) =4 FNH(2w). m

Indeed, there is a close connection between Hg and Hy; H € H; if and

only if C H C* € Hy.

Theorem 10. Let ® be a compactly supported, L?-stable scaling vector with
mask symbol P(w). Further, let ® provide approximation order k leading to

the factorization (20) of P with C and Q as in Theorem 7. Denote by Tp and
Tq the transition operators corresponding to P and @, and let the spaces Hy
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and H; be defined as above. Let py be the spectral radius of Tp restricted
to IHy and py the spectral radius of Tq restricted to ;. Then the Sobolev
exponent s is:

—lo
(1) s = S5
lo
(2) s=k— 21%gp12'
Proof:

For the proof of (2) we can follow the lines of the proof of Theorem 5.1
in [9]. As was observed in (24), the factorization (20) implies

1@(w)] < C (1 + ) IG()

with G(w) = limy, 00 Gp(w) and G (w) = Q27 'w) ... Q(27"w) E(0)r.
Using the definition of s it follows that s < k — ~ if the estimate

2"
/ |G (w)]|?dw < C 2277

—2" 7T

is true. Really,

[mgnee = [T ecimn e -

implies

27
/ 1Gu(@)IP dw < Co (p1 + &) < G, 22

—2" T

for v > ;Ol:g)gp;‘ Hence, it follows that s < k — ;olig)gp;‘ Moreover, analogously
as e.g. in [31], the L?-stability of ® implies (2). The equality (1) is a simple

consequence of (2) since pg = 47 p;. O

Let us finish this section with several remarks.

1. Accuracy of order k implies eigenvalues 27" (n = 0,...,k — 1) of the
transition operator T' = Tp (see e.g [33], Theorem 2.2.). By restriction of
Hy to the subspace IHy we get rid of the eigenvalues of T' that are related to
polynomial reproduction. Another way to suppress these eigenvalues is to use
the factorization of the symbol, and then consider the transition operator T
of the inner matrix Q.

2. In [48] and [33], the subspace H 4,
Hy:={HcHy: H=H" D"[A(w)* H(W)]|o=o =0T, n=0,...,k—1},

of Hy was introduced. It can be shown that IH 4 is invariant under the
action of T' and IHy C H 4. The use of H4 has the advantage, that a matrix
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factorization of P needs not to be known, only the symbol vector A(w) of the
superfunction is applied (see [34,48]). Moreover, instead of IH 4, one can also
consider the smallest Tp invariant subspace Hy of Hy (M = max(N,k'))
which contains the matrices (1 — cos w)k/ e; e]T (j =1,...r), where e; are the
usual unit vectors. This subspace Hy, applied in [31], Theorem 3.4, does not
need any information on approximation properties of @ (up to an estimate of
the approximation order k, since k' should be chosen > k).

In case of an L?-stable scaling vector, Jia, Riemenschneider and Zhou
[31] showed that s = —lzoligpé, where pr is the spectral radius of T restricted
to Hy.

Since the factorization is not involved when using the subspaces H4 or
Hy, the corresponding method can be transfered to the multivariate setting.

3. The computation of the eigenvalues of the transition operator of the
magnitude smaller than the spectral radius is numerically unstable. Factor-
ization greatly improves numerical stability!

4. Smoothness estimates can also be obtained in terms of the subdivi-
sion operator. This approach is taken in [38] using the factorization tech-
nique, and in [31] without using factorization. Results in [31] and [38] are
also obtained in the general LP-space (Besov-exponents) and in the L*-case
(Holder-exponents).

5. Unfortunately, all methods above do not allow to estimate the smooth-
ness of each entry of ® separately, but only the common smoothness of all
functions in ®. A first attempt to tackle this problem can be found in [47].
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