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Abstract

We consider the problem of phase retrieval in the Fresnel regime. In recent years, several
techniques have been used to solve this problem applying different a-priori assumptions on the
two-dimensional object in space such as positivity, finite support and amplitude constraints.
In this paper, we propose a new constraint, namely the assumption that the object possesses a
sparse representation in a shearlet frame. We show, how a shearlet soft-thresholding procedure
can be used for phase reconstruction with Fresnel data. As it turns out, the shearlet sparsity
constraint yields reconstruction results that are far superior to the support constraint and
similarly well as the support plus positivity constraint.
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1 Introduction

In this paper we consider the phase retrieval problem in the Fresnel regime, where the wave
propagation is modelled by the unitary Fresnel propagator Rτf : R2 → C2,

Rτf(ξ) :=
1

τ2

∫
R2

exp

(
iπ
‖x− ξ‖2

τ2

)
f(x) dx.

Here, x = (x1, x2) and ξ = (ξ1, ξ2) are the coordinates in the spatial resp. the Fresnel domain
and τ =

√
λd describes experimental parameters, the wavelength λ and the distance d between

probe and image plane. This mathematical model is often used in coherent x-ray imaging and
can be derived as an approximative solution to the Helmholtz equation, see [11].

Let us assume that m(ξ) := |Rτf(ξ)|, ξ ∈ Ω ⊂ R2 are the measured magnitudes of
the wanted object f : R2 → R in the Fresnel domain where, in practice, Ω is a finite grid.
Our goal in phase retrieval is to determine the phase of Rτf from the measurements m(ξ).
After reconstruction of the phase, the inverse Fresnel transform provides the desired object.
Unfortunately, the measurement information m(ξ) does not sufficiently constrain the problem,
therefore one needs to apply additional a-priori information. A frequently used assumption is
that f possesses a compact support in spatial domain that can be well approximated during
the reconstruction. However, this constraint may not be satisfied in many applications where
one does not consider small isolated objects.
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In this paper we want to explore a new constraint for phase retrieval, namely the as-
sumption that the object to be reconstructed can be sparsely represented in space domain
within a so-called shearlet frame. Indeed, shearlets have been shown to provide sparse image
representations [14] and are suitable as constraints in image inpainting problems, see [6].

The idea to employ sparsity of images in suitable wavelet bases or frames for regular-
ization of the ill-posed problem of phase retrieval has been used already before. The most
acknowledged wavelet approach so far for hologram reconstruction is the so-called Fresnelet
construction due to Liebling et al. [16], where a Fresnel transform of a tensor-product spline
wavelet basis is used to obtain fresnelets. Further recent approaches involving wavelet methods
can be found e.g. in [24, 26, 15, 1]. In [24], a multiresolution approximation of the Fresnel
diffraction integral by means of tensor-product Shannon wavelets is proposed. Weng et al. [26]
employs the two-dimensional Gabor wavelet transform to the measured hologram and uses
only the wavelet coefficients at its peak for phase reconstruction. Langer et al. [15] presents a
Fourier-wavelet regularized deconvolution method for solving the inverse problem of phase shift
reconstruction, where a shift-invariant redundant discrete wavelet transform with Daubechies
filters is used. In [1], an iterative projection method is utilized with the constraint that the
measured intensity has a good low-resolution approximation, where the multiscale approach is
based on Haar wavelets. However, the tensor-product wavelet transform cannot sparsely char-

Figure 1: Representation of singularities along curves: isotropic vs. anisotropic scaling.

acterize special two-dimensional structures of images like discontinuities along curves since
the wavelet system is not rotationally invariant. However, the Fresnel transform is a unitary
transform being translation and rotationally invariant, see [16]. Indeed, we have for x0 ∈ R2

Rτ (f(· − x0))(ξ) = Rτf(ξ− x0),

and for a rotation matrix Rθ ∈ R2×2 with angle θ ∈ [0, 2π) it follows that

Rτ (f(Rθ·))(ξ) = Rτf(Rθξ).

In this paper we examine the applicability of sparsity constraints using shearlets for phase
retrieval in the Fresnel regime. Shearlets [6, 12, 17, 14] form a function frame in L2(R2)
that is able to represent directional information in images efficiently. Figure 1 illustrates the
intrinsic difference between isotropic wavelet functions and anisotropic shearlet functions to
detect singularities along curves. In the latter case, much less shearlet functions are necessary
to represent the singularities along the smooth curve.

The paper is organized as follows. In Section 2, we summarize the construction of shearlet
frames with compact support in space domain due to Lim [17]. In Section 3, we propose a phase
reconstruction method based on the relaxed averaged alternating reflection (RAAR) technique
introduced by Luke [18, 19] where the new shearlet sparsity constraint is incorporated. This
new constraint can be regarded as a smoothing procedure applying a shearlet soft-thresholding.
Writing the phase retrieval problem as a feasibility problem for a convex set and a prox-regular
set, Luke succeeded to show local convergence of the RAAR algorithm in [19]. Investigating the
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properties of the RAAR iteration using the new shearlet sparsity constraint, we observe that
the reconstruction problem cannot simply be interpreted as a feasibility problem. However,
in the discrete setting we show that the iteration sequence is bounded. Section 4 is devoted
to numerical results showing that the new shearlet constraint is far superior to the support
constraint only and equally well as using the support plus positivity constraint. For data being
corrupted with Poisson noise our reconstruction scheme is further improved by combining the
shearlet sparsity constraint with the positivity constraint. In this noisy case the new method
considerable outperforms the known conventional methods. The paper is finished by a short
conclusion presenting some open problems regarding this approach.

2 The shearlet frame

We briefly summarize the basic idea for the construction of separable shearlets with compact
support in spatial domain due to Lim [17] allowing a fast and simple shearlet transform. Let
φ ∈ L2(R) be a one-dimensional orthonormal scaling function with compact support, and let
ψ ∈ L2(R) be an orthonormal compactly supported wavelet function. For example, φ can be
chosen as a Daubechies scaling function with support [0, 2n + 1] and ψ as the corresponding
wavelet function with support [−n, n+1], see [4]. Other examples are symlets with a sufficient
number of vanishing moments [4]. Now, the mother shearlet is defined as

Ψ(x) := φ(x1)ψ(x2).

The shearlet frame is generated using translations, scalings and shearings of the mother shear-
let, i.e.,

Ψj,`,k(x) =
(

2jbj/2c
)1/2

Ψ(B`Ajx− ck), (2.1)

where k ∈ Z2, c > 0 is a suitable sampling constant, and where for j ∈ N0 and ` ∈ Z with
|`| ≤ 2dj/2e,

Aj =

(
2bj/2c 0

0 2j

)
, B` =

(
1 0
` 1

)
generate a parabolic scaling resp. a shearing of Ψ. For more details on the shearlet construction
we refer to [17]. Figure 2 visualizes, how the supports of shearlet functions change depending
on the chosen parameters. Besides Ψj,`,k we also consider translation, scaling and shearing

of the (rotated) mother shearlet Ψ̃(x) := ψ(x1)φ(x2) (analogously as in (2.1)) as well as
translations of the low-pass function Φ(x) := φ(x1)φ(x2) to construct the complete shearlet
frame of L2(R2) of the form

{Φk : k ∈ Z2} ∪ {Ψj,`,k : j ∈ N0, −2dj/2e ≤ ` ≤ 2dj/2e, k ∈ Z2}
∪ {Ψ̃j,`,k : j ∈ N0, −2dj/2e ≤ ` ≤ 2dj/2e, k ∈ Z2},

where Φk := Φ(· − ck). Observe that this shearlet frame (differently from shearlet construc-
tions with band-limited functions) is no longer tight. Tight shearlet frame constructions with
compact support can however be given by suitable extension of this shearlet frame, [17].

The shearlet transform maps f to the set of all shearlet coefficients,

Sf = c = ((cj,`,k)j,`,k, (c̃j,`,k)j,`,k, (ck)k),

where cj,`,k := 〈f,Ψj,`,k〉, c̃j,`,k := 〈f, Ψ̃j,`,k〉, and ck := 〈f,Φk〉, and where 〈·, ·〉 denotes the
usual L2-scalar product.

In [17] it is shown, how the shearlet coefficients can be efficiently computed for c = 1
using the underlying multiresolution analysis being similar to separable wavelet transforms.
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Figure 2: Support of different shearlet functions depending on their scaling

and shearing parameters where supp Ψ = [0, 7]× [−3, 4].

For simplicity, we regard IS as a one-dimensional index set for the shearlet coefficients, i.e.,
Sf = c = (ci)i∈IS . In the discrete setting, we assume that f is a discrete image with real-valued
entries, i.e., f : Ωs → R with Ωs = {1, . . . , N} × {1, . . . , N} where N is a power of 2. The
discrete shearlet transform in [17] on an N ×N image with N = 2J yields a total number of
shearlet coefficients NS := 3

4 (4J −1)+ 2
2
√

2−1
((2
√

2)J −1)+1, and we have a redundancy ratio

2−2JNS ≤ 2 for J ≥ 1. In this case we can regard c = (ci)i∈IS as a vector of length NS . The
inverse transform is based on the application of the pseudo inverse (S∗S)−1S∗ of the shearlet
transform S, where S∗c =

∑
i∈IS ciΨi. It can be efficiently computed using conjugate gradient

methods, [17]. Since the shearlets are compactly supported in space, a sparse representation of
directional structures in images can be achieved using only a small amount of most significant
shearlet coefficients, see [14].

3 Phase reconstruction using the new sparsity constraint

We recall that the Fresnel transform can be written as a convolution of f with the kernel
Kτ (x) := 1

τ2 exp(iπ(‖x‖2/τ)2) with ‖x‖2 = (x2
1 + x2

2)1/2, i.e., we have

Rτf(ξ) = (f ∗Kτ )(ξ)

implying

R̂τf(ω) = f̂(ω)K̂τ (ω),

where the Fourier transform is given by f̂(ω) :=
∫
R2 f(x) e2πi〈x,ω〉dx with 〈x,ω〉 = x1ω1+x2ω2.

In particular, the Fourier transformed kernel K̂τ (ω) := i exp(−iπ(τ‖ω‖2)2) obeys similar os-
cillation properties as Kτ . Hence, in the discrete setting f ∈ RN×N , the discrete Fresnel
transform and its inverse can be efficiently computed using the two-dimensional Fourier trans-
form on the grid Ωs = Ω = {1, . . . , N} × {1, . . . , N}. Therefore, we can assume that the
discrete Fresnel transform is still unitary.

First we formulate the phase retrieval problem as a feasibility problem using the support
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constraint and the positivity constraint. We define

M : =
{
f ∈ RN×N : |Rτf(ξ)| = m(ξ) ∀ ξ ∈ Ω

}
,

C : =
{
f ∈ RN×N : supp f ⊆ D

}
,

C+ : = {f ∈ C : f(x) ≥ 0 ∀ x ∈ D} ,

(3.1)

i.e., M is the set of matrices satisfying the measurement conditions in the Fresnel domain, and
C (resp. C+) is the set of matrices satisfying the support constraint where D is some subset of
Ωs. Here, for matrices f = (f(i, j))Ni,j=1 we denote supp f := {(i, j) ∈ Ωs : f(i, j) 6= 0}. Since
the (discrete) Fresnel transform is unitary, we observe that all matrices in the set M have the
same Frobenius norm,

‖f‖F :=

(∑
x∈Ωs

|f(x)|2
)1/2

=

∑
ξ∈Ω

m(ξ)2

1/2

=: BΩ. (3.2)

Further, the set M is non-convex while C and C+ are convex sets. Now the feasibility problem
consists in finding a matrix in the intersection of M and C resp. C+, i.e.,

find f ∈M ∩ C or find f ∈M ∩ C+. (3.3)

The usual approach to solve such a feasibility problem is to apply alternating projection algo-
rithms that have a long standing tradition in the phase retrieval community [9, 25, 8, 7, 2, 18].
We refer to Luke [18] for a comprehensive representation of different projection algorithms as
Fienup’s Hybrid Input-Output algorithm (HIO) [8], Elser’s difference map algorithm [7], and
the Hyprid Projection Reflection algorithm (HPR) [2]. In this paper, we want to apply the
Relaxed Averaged Alternating Reflection algorithm (RAAR) proposed in [18]. Let PM and
PC (resp. PC+

) denote the orthogonal projectors on the sets M resp. C (C+), where

PCf(x) =

{
f(x), x ∈ D,
0 elsewhere,

PC+f(x) =

{
max{f(x), 0} x ∈ D,
0 elsewhere,

and PMf(x) := (R−1
τ g)(x) with

g(ξ) :=

{ (
m(ξ)

Rτf(ξ)

|Rτf(ξ)|

)
if |Rτf(ξ)| 6= 0,

m(ξ) if |Rτf(ξ)| = 0,
(3.4)

for ξ ∈ Ω.
Further, let RM := 2PM − I, RC := 2PC − I be the corresponding reflectors with respect

to M and C, where I denotes the identity operator. Then the RAAR iteration is of the form

fk+1 =

[
βk
2

(RCRM + I) + (1− βk)PM

]
fk, (3.5)

where the relaxation parameter βk ∈ (0, 1] can be taken suitably in each iteration step. The
initial function f0 can be chosen as f0 = R−1

τ m such that the initial phase of Rτf0 is zero, or

as f0 = R−1
τ g with g(ξ) = m(ξ) · eiϕ(ξ) for all ξ ∈ Ω and random phase ϕ(ξ) ∈ [0, 2π].

For β = βk = 1, the RAAR, HPR, and the difference map (with suitable parameters) are
equivalent. For βk 6= 1, RAAR is fundamentally different from HPR and cannot be derived
as a special difference map, [18]. Compared with other non-relaxed projection algorithms, the
advantage of the RAAR approach is its behavior in case of inconsistent feasibility problems,
where the intersection M ∩ C is empty. It has been shown in [19] that the RAAR algorithm
converges for feasibility problems of the type (3.3) for a prox-regular set M and a convex set
C, where in the case M ∩C = ∅, a nearest point minimizing the distance to M and C is found.
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In these considerations we can also replace PC by PC+ thereby replacing the a-priori support
constraint by the stronger support plus positivity constraint.

Our goal is now to exchange the support constraint by a new constraint that is based on
the sparse representation of the object f ∈ RN×N in a shearlet frame. For that purpose, we
introduce the soft-thresholding operator that is defined for a vector c = (ci)i∈IS as

(Tθc)i :=


ci − θ, if ci > θ,

ci + θ, if ci < −θ,
0, otherwise

(3.6)

with some thresholding parameter θ > 0. Componentwise application of Tθ to the vector of
shearlet coefficients Sf = c and subsequent inverse transform yields a sparse shearlet approx-
imation S−1TθSf of f . We denote the corresponding shearlet thresholding operator by

P θSf := S−1 Tθ Sf. (3.7)

The application of the shearlet threshold operator can be equivalently written as P θSf =
S−1 cθ, where cθ solves the minimization problem

cθ = argmin
c

(
θ‖c‖1 +

1

2
‖c− Sf‖22

)
(3.8)

thereby seeking for a vector c of shearlet coefficients with a small `1-norm that approximates
Sf . Indeed, componentwise differentiation of (3.8) leads to the condition

0 ∈ θ ci
|ci|

+ (ci − (Sf)i)

for the minimizing vector c, where ci
|ci| denotes the set [−1, 1] for ci = 0. Hence, cθ = TθSf .

Using the RAAR algorithm for this new setting, we obtain the iteration

fk+1 =

[
βk
2

(
RθSRM + I

)
+ (1− βk)PM

]
fk (3.9)

with RM as above and RθS := 2P θS − I.
In our numerical implementations, the parameters βk are chosen as in [21], for details we

refer to Section 4. Further, it will be reasonable to adapt θ = θk depending on the iteration k.
For a discussion, see Remark 3.3(4) and Section 4.

In the remaining part of this section we want to consider some properties of the RAAR
iteration in this setting. First note that neither the projector PM nor the reflector RM are
contractions since the set M is not convex. Particularly, for matrices f with ‖f‖F < BΩ we
have ‖f‖F < ‖PMf‖F = BΩ. However, we can show that the norm of all fk, k ∈ N, in (3.9)
is bounded.

Theorem 3.1 Assume that the considered shearlet frame is tight with frame bound m > 0.
Then for all fk, k ∈ N (with f0 ∈M) obtained by the iteration (3.9) we have

max{0, BΩ − 3βk

√
NSθ

m
} ≤ ‖fk‖F ≤ BΩ + βk

√
NSθ

m
,

where NS is the number of shearlet coefficients in Sf . Further, assuming that BΩ > 0 and
βk ≥ ε > 0 for all k ∈ N, there does not exist an f ∈ M that is a fixed point of the iteration
(3.9).
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Proof. First we observe from the definition of the soft threshold operator for a tight shearlet
frame that

‖f − P θSf‖F =
1

m
‖Sf − TθSf‖2 ≤

√
NSθ

m
.

Further, using (3.2) and ‖P θSf‖F < ‖f‖F for all f ∈ Rn×n \ {0}, we obtain

‖fk+1‖F = ‖βk
2

(
RθSRM + I

)
fk + (1− βk)PMfk‖F

≤ βk
2
‖(RθSRM + I)fk‖F + (1− βk)BΩ

≤ βk
2

(
‖RθS(RM + I)fk‖F + ‖(I −RθS)fk‖F

)
+ (1− βk)BΩ

≤ βk
2

(
2BΩ + 2

√
NSθ

m

)
+ (1− βk)BΩ

= BΩ + βk

√
NSθ

m
.

In the last inequality we have used that the reflector RθS also satisfies ‖RθSf‖F ≤ ‖f‖F .
Similarly,

‖fk+1‖F = ‖βk
2

(
RθSRM + I

)
fk + (1− βk)PMfk‖F

= ‖βk
2

(
(2P θS − I)(2PM − I) + I

)
fk + (1− βk)PMfk‖F

= ‖PMfk + 2βk(P θSPM − PM )fk + βk(I − P θS)fk‖F
≥ ‖(I + 2βk(P θS − I)PMfk‖F − βk‖(I − P θS)fk‖F

≥ ‖PMfk‖F − 2βk

√
NSθ

m
− βk

√
NSθ

m
= BΩ − 3βk

√
NSθ

m
.

Moreover, we have

fk+1 − fk =
βk
2

(
RθS(2PM − I)fk − fk

)
+ (1− βk)(PM − I)fk

=
βk
2

(RθSPM − I)fk +

(
βk
2
RθS + (1− βk)I

)
(PM − I)fk.

Hence, for fk ∈M it follows from fk = PMfk that

fk+1 − fk =
βk
2

(RθSPM − I)fk = βk(P θS − I)fk 6= 0

since BΩ > 0, i.e., there exists no fixed point f ∈M of this iteration.

Theorem 3.1 implies that the sequence (fk)k∈N possesses at least one accumulation point.
Attempting to write the reconstruction problem with the shearlet constraint again as a fea-
sibility problem, the observations in Theorem 3.1 may suggest to define the set of matrices
satisfying the shearlet sparsity constraint by

S :=
{
f ∈ RN×N : Sf = TθSh, h ∈ RN×N , ‖Sh‖2 ≤ B̃Ω

}
, (3.10)

where we may choose B̃Ω ≥ mBΩ +
√
NSθ with m being the frame bound of the shearlet frame.

For a tight frame we can replace the condition ‖Sh‖2 ≤ B̃Ω in (3.10) by ‖h‖F ≤ B̃Ω/m.
Obviously P θS is not a projector on S (for B̃Ω > 0) since it is not idempotent and retains

only the most significant shearlet coefficients of f . But P θS is a so-called proximal mapping,
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see [23], Definition 1.22, thereby generalizing the concept of iterated projection algorithms, see
[5]. More precisely, we have TθSf = cθ = proxθ|·|(Sf), see e.g. [5], Definition 2.1.

However, the choice of the bound B̃Ω > 0 and hence the size of the set S does not effect the
result of the iteration algorithm in (3.9). This is particularly according to the fact that we do
not employ a projection onto S but the proximal mapping P θS which is a contractive mapping.
Since the `1-norm is lower semi-continuous, we know that the proximal mapping proxθ|·| is

firmly nonexpansive. Especially, we have ‖P θSf‖F < ‖f‖F for ‖f‖F > 0 such that for f ∈ M
the matrix P θSf is not longer contained in M . Therefore only a “relaxed” iterative projection
algorithm is suitable for incorporating the shearlet sparsity condition. Unfortunately we even
find the following result indicating that we cannot simply apply the results on local convergence
of the RAAR algorithm in our setting.

Lemma 3.2 The set S in (3.10) is not convex.

Proof. Let h1, h2 be two matrices with Sh1 = (B̃Ω, 0, . . . , 0)T and Sh2 = (
√
B̃2

Ω − (θ + ε)2, (θ+

ε), 0, . . . , 0)T with ε > 0 determining two matrices f1 and f2 in the set S by

Sf1 = TθSh1 = (B̃Ω − θ, 0, . . . , 0)T , Sf2 = TθSh2 = (

√
B̃2

Ω − (θ + ε)2 − θ, ε, 0, . . . , 0)T .

Consider now the matrix 1
2 (f1 + f2) with

1

2
(Sf1 + Sf2) = (

1

2
(B̃Ω − θ) +

1

2
(

√
B̃2

Ω − (θ + ε)2 − θ), ε
2
, 0, . . . , 0).

Then Sh =

(
1
2

(
B̃Ω +

√
B̃2

Ω − (θ + ε)2

)
, ε2 + θ, 0, . . . , 0

)
is the vector with minimal norm

satisfying 1
2 (Sf1 + Sf2) = TθSh. But for sufficiently small ε we obtain(

1

2

(
B̃Ω +

√
B̃2

Ω − (θ + ε)2

))2

+
( ε

2
+ θ
)2

> B̃2
Ω.

since for ε→ 0 we easily observe that

1

4

(
B̃Ω +

√
B̃2

Ω − θ2

)2

+ θ2 > B̃2
Ω,

where we can assume by construction that B̃Ω >
√

3
2θ. Hence 1

2 (f1 + f2) 6∈ S.

Remarks 3.3
(1) In [19, 20], Luke succeeded to show that the RAAR algorithm for solving a feasibility
problem of the form

find f ∈ A ∩B

possesses local linear convergence properties, if one set A is prox-regular and the other set is
convex. In the feasibility problems of the type (3.3) considered here, the set C (resp. C+) is
convex. Unfortunately, M is neither convex nor prox-regular. But a regularization of M of the
form

Mε := {f ∈ RN×N : d(|Rτf |,m) < ε}

with ε > 0 can be shown to be prox-regular, where the distance function d can be e.g. the
Euclidean norm, or more generally a Bregman distance, see [20], Section 3. A “fattening” of
the original set M to obtain Mε is also meaningful in practice if the data m are noisy, and
the distance function can be chosen according to the noise distribution. However, since the
incorporation of the shearlet constraint cannot be nicely written as a feasibility problem, we do
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not see any possibility to directly apply the results on local convergence of the RAAR algorithm
given in [19, 20] in our case. Despite this fact, a suitable fattening of the set M may also lead
to local convergence of the iteration sequence (3.9) in our setting.

(2) While the set S in (3.10) is not convex, one can simply obtain a convex set by changing
the norms and taking e.g.

S̃ :=
{
f ∈ RN×N : Sf = TθSh, h ∈ RN×N , ‖Sh‖∞ ≤ B̃Ω

}
,

where ‖ · ‖∞ denotes the usual maximum norm. Indeed from the definition of Tθ it follows that
S̃ is the set of all matrices f whose shearlet transform is bounded by ‖Sf‖∞ ≤ B̃Ω − θ.

(3) Instead of applying the soft threshold operator Tθ as proposed in (3.6), we may also
employ another threshold function. Particularly for the hard threshold

(T Hθ c)i :=

{
ci if |ci| > θ,
0 if |ci| ≤ θ,

we can similarly define a shearlet threshold operator PH,θS := S−1T Hθ Sf . This operator is
idempotent, and hence a projector. However, any resulting set S that may be defined similarly
as in (3.10) will be not convex since it contains holes in the shearlet coefficient domain where
small coefficients are projected to zero. Therefore, the available theoretical results from convex
analysis do not apply also in this case. Further, our numerical experiments show that the
choice of the soft threshold operator yields better reconstruction results.

(4) As shown in Theorem 3.1, the sequence (fk) in (3.9) cannot have a fixed point in M
for βk ≥ ε > 0 and θ > 0. This observation suggests to employ a step-dependent thresholding
parameter θk that decreases for k → ∞. A large θk implies a sparser shearlet representation
yielding stronger data denoising but may also introduce unwanted blurring. The smaller the
θk, the “closer” the obtained fk will be to the set M .

(5) In our numerical considerations we will apply a slightly different definition of the oper-
ator PM than given in (3.4) that has been shown to be considerably more stable, see [22]. It is
based on a smooth perturbation of the modulus function |Rτfk(ξ)| and aims to minimize the
error

Eε(f) :=
∑
ξ∈Ω

∣∣∣∣ |Rτf(ξ)|2

(|Rτf(ξ)|2 + ε)1/2
−m(ξ)

∣∣∣∣2 ,
where 0 < ε � 1. Following the considerations in [22], Section 5.2, and taking into account
that the Fresnel transform is an isometric map, we arrive at the representation PMf(x) :=
(R−1

τ g)(x), where instead of (3.4) the formula

gε(ξ) := (Rτf)(ξ)

[
1−

(
|Rτf(ξ)|2 + 2ε

(|Rτf(ξ)|2 + ε)3/2

) (
|Rτf(ξ)|2

(|Rτf(ξ)|2 + ε)
−m(ξ)

)]
(3.11)

is used. Under suitable assumptions, it follows limε→0 gε(ξ) = g(ξ).

4 Numerical Examples

We apply the new iteration scheme incorporating the shearlet sparsity constraint

fk+1 =

[
βk
2

(
RθkS RM + I

)
+ (1− βk)PM

]
fk (4.1)

to object reconstruction. We use an implementation of the RAAR algorithm from the Prox-
Toolbox [21] to recover the lost phase and to reconstruct f(x) from its propagated version
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Rτf(ξ). This toolbox is available from http://num.math.uni-goettingen.de/r.luke/pub-

lications/publications.html. The shearlet transform is computed using the ShearLab tool-
box available from http://www.shearlet.org. For the Fresnel transform we use the imple-
mentation provided by [16] from http://sybil.ece.ucsb.edu/pages/fresnelab/fresne-

lab.html.
In all experiments, the parameter βk is chosen in dependence of the iteration step with

β0 = 0.95, βswitch = 20, and βmax = 0.55 by

βk = exp((−k/20)3) ∗ 0.95 + (1− exp((−k/20)3) ∗ 0.55

as proposed in the ProxToolbox [21]. For the regularization parameter ε in (3.11) we take
ε = 10−10. Further, the choice of the soft thresholding parameter θk has strong influence
on the numerical results, see Remark 3.3(4). Our experiments show promising results for
decreasing θk in dependence of the iteration number k in the noiseless case where we have
found θ0 = 0.5 and θk = θ0/k to be a suitable parameter choice. In the case of Poisson
distributed data, θk ≡ θ0 is taken to be constant.

For the noiseless case we obtain the following numerical scheme.

Algorithm 4.1
Input: data f1 = R−1

τ (m), parameters θ0, β0, βmax, βswitch, number of iterations N
Output: fN
Iteration:
for k = 1, . . . , N

θk ← θ0/k

βk ← exp
(

[−k/βswitch]
3
)
∗ β0 +

(
1− exp

(
[−k/βswitch]

3
))
∗ βmax

uk ← 2PMfk − fk
fk+1 ← βk

2

(
2P θkS uk − uk + fk

)
+ (1− βk)PMfk

end

The complexity of the algorithm is governed by the computation of the mappings PMfk
and P θkS uk at each iteration step. Using the fast Fourier transform for an N ×N image, the
projection PMfk (containing a discrete Fresnel transform, the componentwise multiplication
in (3.4) and an inverse discrete Fresnel transform) requires O(N2 logN) operations. The fast
discrete shearlet transform that is employed to compute P θkS uk can be implemented with only
O(N2) operations, see [17]. Therefore this algorithm is only slightly more expensive than the
corresponding iteration (3.5) involving the support and positivity constraint.

In our numerical experiments, we also want to employ a stronger version of our proposed
shearlet sparsity constraint. Besides forcing a sparse expansion of f in a shearlet frame, we
assume that f is real and positive. For this purpose we replace the operator P θS in (3.7) by

P θS+ =
[
S−1TθSf

]
+

with [·]+ = max {Re(·), 0}. Note that the operation [·]+ itself is a projection onto a convex

set. Now we determine the reflector RθS+
:= 2P θS+ − I and replace RθkS by RθkS+

in the iteration

scheme (4.1) resp. in Algorithm 4.1.
First, we study two examples of phase retrieval in the noiseless case and compare the

reconstruction results using the support constraint and the shearlet sparsity constraint where
the support set D is a given rectangular box around the object f . Further, we consider the
reconstruction performance when using the positivity constraint additionally. The parameters
for the Fresnel transform are λ = 1Å, d = 100mm, the pixel size is dx = 10−7 m and the images
are 256 × 256 pixels in size. These parameters correspond to coherent imaging experiments
using hard x-rays, see [13]. In all cases, we apply Algorithm 4.1 (or its variant) with N = 250
iterations.
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Figure 3: (a) Original image, (b) measurements, (c) reconstruction using the
support constraint, (d) support and positivity constraint, (e) shearlet sparsity constraint,

(f) shearlet sparsity with positivity constraint.

In Figure 3(a) we take a synthethic image of a cell1 from [10]. Figure 3(b) represents
the magnitudes of Fresnel transform measurements. Figure 3(c) shows, that even without
noise, inexact knowledge of the support is not sufficient to recover the image and to eliminate
artifacts. Only with further assumptions like positivity a suitable reconstruction is obtained,
see Figure 3(d).

On the other hand, using the shearlet sparsity constraint in Figure 3(e), we obtain a solu-
tion that is very close to the original image in Figure 3(a) without any assumptions on support
or positivity of the function. Finally, Figure 3(f) provides the result when the shearlet sparsity
is combined with the positivity constraint. Figure 4 quantitatively compares the difference to
the original image ‖f − fk‖F using the Frobenius norm for the first 100 iterations.

In a second numerical example using a real image taken from [3], Figure 5 shows the original
data (a)2, the measurements (b) obtained by applying the Fresnel transform with parameters
as above, and the reconstruction results using the support constraint (c), the support constraint
with additional positivity constraint (d), the proposed shearlet sparsity constraint (e) as well
as the shearlet sparsity plus positivity (e).

Also in this case, the shearlet constraint achieves higher resolution and less artifacts than

1Reprinted Figure 3(a) with permission from K. Giewekemeyer, S.P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta,
and T. Salditt, X-ray propagation microscopy of biological cells using waveguides as a quasipoint source, Phys. Rev.
A, 83:023804 (2011). Copyright (2014) by the American Physical Society.

2Reprinted Figure 3.2 with permission from K. Bredies and D. Lorenz, Mathematische Bildverarbeitung,
Einführung in Grundlagen und moderne Theorie, Vieweg+Teubner, 2011, p. 59, chapter “3 Grundlegende
Werkzeuge”; with kind permission from Springer Science+Business Media B.V.
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Figure 4: Error decay for all constraints measured in the Frobenius norm.
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(d) (e) (f)

Figure 5: (a) Original image, (b) measurements, (c) reconstruction using the
support constraint, (d) support and positivity constraint, (e) shearlet sparsity constraint,

(f) shearlet sparsity with positivity constraint.
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Figure 6: Error decay for all constraints measured in the Frobenius norm.
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Figure 7: (a) Measurements with Poisson distributed data with t = 106 counted photons,
(b) Measurements with Poisson distributed data with t = 105 counted photons

the support constraint, as it can be seen in Figure 6, where errors are compared in the Frobenius
norm for the first 100 iterations. Additionally, it performs comparably well to the case with
support and positivity constraint without forcing the object to be positive and without any
knowledge of the support that is often not known in application. The combination of shearlet
sparsity and positivity does not gain much in this case.

In real applications we have to apply the reconstruction scheme to Poisson distributed
data. Poisson noise is the basic form of uncertainty associated with the measurement of light.
The scene irradiance is measured by counting the number of discrete photons incident on the
sensor over a given time interval. The detection of the individual photons is a classical Poisson
process. Here, the exposure time is proportional to the expected total number t of counted
photons.

In a third example we consider data that is Poisson distributed. Observe that in every
iteration step fk is pushed to satisfy the given (noisy) measurement constraints. Therefore the
denoising behavior of the shearlet threshold procedure is highly desirable and we fix θk ≡ 2.5
for every k in this case. Note that despite assuming f to be real and positive, we do not need
any information on the support of f .

We consider the Poisson distributed data in Figure 7 with t = 106 counted photons (left)
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Figure 8: (a) Reconstruction from measurements with t = 106 counted photons using
support constraint, (b) support and positivity constraint, (c) shearlet sparsity constraint,

(d) shearlet sparsity constraint with positivity.

and with t = 105 counted photons (right). The reconstruction results are presented in Figures
8 and 9. Again, we have compared the reconstruction using (a) the support constraint only;
(b) the support plus positivity constraint; (c) the new shearlet sparsity constraint; and (d) the
shearlet sparsity plus positivity constraint. For t = 106 counted photons, our algorithm using
the shearlet sparsity constraint yields reconstruction results that are comparable to the results
using the support plus positivity constraint. However, incorporating the additional assumption
that the object is real and positive outperforms the traditional approach drastically, see Figure
8. For t = 105 the new combination of shearlet sparsity and positivity still yields an acceptable
reconstruction result while all other methods completely fail, see Figure 9.

5 Conclusion

The proposed method incorporating the shearlet sparsity constraint shows highly promising
results that motivate further research in this direction. Since shearlets provide (almost) op-
timally sparse representations of two-dimensional functions which are smooth away from C2-
singularities [14], this approach strongly improves the reconstruction results in comparison
with using only the support constraint and is comparable to support and additional positivity
constraints.
The use of an adaptive shearlet threshold parameter θk gives the possibility to tune the smooth-
ing behavior during the reconstruction process. We consider problem-dependent parameter
choice rules as an open topic for future research. If the data is Poisson distributed, the com-
bination of the shearlet sparsity constraint with the positivity constraint turns out to improve
the performance drastically.
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Figure 9: (a) Reconstruction from measurements with t = 105 counted photons using
support constraint, (b) support and positivity constraint, (c) shearlet sparsity constraint

(d) shearlet sparsity constraint with positivity.

Future research will also cover the adaption of the approach to phase reconstruction for far field
measurements as well as the application to experimental data. Further, it is possible to ex-
ploit the new shearlet constraint together with regularization techniques using Gauss-Newton
methods.
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