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1 Introduction

For a given finite set of real or complex numbers ¢, . .. , ¢, with ¢oc, # 0 we consider the two-
slanted matrix A = (ezj-k), j,k =0,...,n (where ¢; =0 for j < 0 and j > n, respectively),
le.,
[0 0 0 0 ]
Co (4] Co 0
A= (1)
0 ... ¢ €Cuo1 €Cn_2
0o ... 0 0 Cn

The matrix A can completely be described by its symbol

n

1 v
P(Z):§;cyz. (2)
Further we shall consider the infinite two-slanted matrix A = (¢y-x), j,k = 0,1,2..., which
is very useful for the study of spectral properties of A. Indeed, the first n + 1 entries of a left

eigenvector w' = (wg, wy,...) of A form a left eigenvector w' of A to the same eigenvalue,

and, vice versa, every left eigenvector w! = (wg,wy,... ,w,) of (1) can be continued to an
eigenvector w' of A.
Two-slanted matrices play an important role for the solution of two-scale difference equations

of the form
t n
o(5) = et )

t € R (see e.g. [1, 2, 3, 5, 6]). In this context, the symbol P(z) is the so-called two-scale
symbol (or refinement mask) of the equation (3).

The purpose of this paper is to enlighten some connections between zeros of the symbol P(z)
on the unit circle and spectral properties of A and A, respectively.



In the second part of the paper, these results are applied to solutions of two-scale difference
equations. We shall generalize Theorem 4.1 in [1], concerning the nonexistence of proper
root vectors of A to the eigenvalue 1, if (3) possesses a nontrivial, continuous solution ¢.
Further, we present new methods for determining the vector ¥ (0) = ((0),...(n))%, if A
possesses a multiple eigenvalue 1.

2 Roots of unity

Let M be a finite set of complex numbers different from zero, which is closed under the
mapping z — z2. Then, for every { € M, there exist two integers o, 7 with 0 < ¢ < 7, such
that (?” = (?". Hence, all elements of M are roots of unity in view of (?"7%" = 1.

If we choose ¢ and 7 minimal, we can say that  generates a discrete flow (", v =0,1,2,...,
with a preperiod of length ¢ and a cycle of length m = 7 — o, cf. [9]. The length of the
preperiod can be zero, and the length of the cycle can be 1. The last property occurs for
(=1

Example 1. For M = {™/6, emi/3 2mi/3 4mi/3Y and ¢ = €™/% we find 0 = 2,7 =4, i.e., (
generates a preperiod of length ¢ = 2 and a cycle {€?™/3, ¢47/3) of length m = 2.

A subset of M is called an orbit of M., if all elements of the subset generate the same cycle.
This means that different orbits are disjunct, and every orbit has only one cycle, cf. [12].
For the present, we assume that the set M consists of one orbit only. Though all squares of
the elements of M are lying in M, not all corresponding square roots do it, hence we can
split M into three disjunct subsets M,, 4 =0,1,2, in the following way: We define M, as
the subset of all elements of M possessing exactly p square roots in M. In Example 1, we
find Mo = {e™/6}, My = {e™/3, ™3} My = {273},

Next the signs of the considered square roots must be fixed. For the elements ¢ of My,
we denote the square roots lying in M by /(. For the square roots of the elements of
M, we fix the signs as follows: If ¢ belongs to the cycle, then \/( shall also belong to the
cycle, otherwise, we choose the signs arbitrarily. Now, we number the elements of M in
the following way: We denote the elements of the cycle by (i,...,(, in such a way that
(?=C(,_ forv=2,...,mand (} = (,. Having already numbered the elements of a strict
subset of M, we choose an element ¢ so that (? is already numbered, give to it the next
number, and the consecutive numbers to the consecutive square roots without minus-sign,
as long as they belong to M.

If we proceed in this way up to the last element, we have the following relations:

VG = for (, € MiUMyand v # m,\/(n =,
+/(, ¢ M for (, € My,

_\/C¢M for §UEM17
—/C, =, for ¢, € Mywith some n, > max(m,v).

The first property simplifies, if we denote (,, by (o on the left-hand side. In our above
Example 1 we could choose for instance (; = e*™/3, (, = >™/3, (3 = ™/3, (4 = €™/°, s0 that

\/§_1:§2,\/§_2:§1,\/§_3:§4and—\/§_2:§3.

Example 2. Let us consider a more delicate example of a set M with one orbit only,
with cycle of length 4 and several preperiods. Let Mg = {(7, (s, Ci0, i3, Cra, G5}, My =
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Figure 1: Directed graph of roots of unity for Example 2

{2, Ge5 Cofs Mo = {1, (3, (a5 G5, Cur, Gz} and ny = 11,3 =9,y = 5,n5 = 8,ny = 14,13 =
15. In Figure 1, the numbers indicate the indices and the arrows indicate squaring of the
elements.

This set M can e.g. be obtained with ¢, = €™ , where

v 1 2 3 4[5 6 7 |8 [9 10|11 12 13[14]15
nlls 55 505 w6 wlwls wls w %l

Let us mention that the power of Mg is the same as the power of M, | since the number
of elements being square roots in M is the same as the number [ of all elements of M.
Moreover, [ is also the number of the remaining square roots (of elements of M), being
not elements of M, because the number of all square roots of elements of M is 2[. In the
following, we denote the remaining square roots (being not contained in M) in an arbitrary

order by wy,... ,w;. Of course, these w, are also roots of unity. If M contains an element
with a preperiod, then Mg # () and at least for two indices p, v we have w, = —w,, i.e.,
{w1,... ,w} contains symmetric roots.

FEach polynomial P(z) can uniquely be related with a special set M p as follows. We consider
sets M of (pairwise different) zeros of P(z) being at the same time roots of unity, and form
the closure M of M with respect to the mapping z — 22 as well as the differences M \ M.
If, among these differences, there exist such which have the same number of elements as the
corresponding M, then Mp is defined as the largest of these special differences. Only the
case Mp # () is interesting for us.

Example 3. Let P(z) = £(1+14)(z —i)(z® + 1)? with the different zeros 7, —1, e™i/3 B3,
Choosing M = {—1, e™/3, 5™/3} we find M = {—1, 1, e7/3, 57/3 ¢2mi/3 ¢4mi/3)  Indeed,
M\ M contains 3 elements and Mp = M\ M = {1, e?™/3 ¢¥™/3} is maximal.

3 Left eigenvectors of A
With the foregoing notations and assumptions, we find:

Theorem 1 Let P(z) in (2) be the symbol of a two-slanted matriz A. Further, let M =
{C1,...,C} be a set of roots of unity being closed under the mapping z — 2%, consisting of



one orbit only, and being denoted as in Section 2. Assume that P(w,) =10 forv=1,... 1,
i.e. M C Mp, and P(C,) # 0 for p=1,...,m, where m is the length of the cycle. Then

A has m eigenvalues M\ Ae, ... ,Ae™ ', where ¢ = €™/™ and ) is a special solution of
At =11 P, (4)
n=1

If additionally P'(w,) = P"(w,) = ... = P")(w,) =0 for a fived r € N and v = 1,...1, then
the mr numbers

A A A

M e N 2 op—l

58 e g
with p=1,... ,m, are also eigenvalues of A.

Proof. We carry out the proof for A instead of A. For the components of a left eigenvector

w’ = (w;);>0 of A, we use the ansatz

l

w;j :de(]) Cliv (5)

k=1

at first with constant coefficients di.(j) = dx € C and (, € M. With the notation (¢/)T =
(1, ¢, ¢3,...), we can verify that

(¢)TA=PH/O VO + P(=VO) (V)T (6)

(see [1], Formula (3.2)) which implies in components

(w'4); =3 di (POVE) (V) + PG (VG

In view of our notations in Section 2, equation Aw' = w?' A reads in components

l
A Gl =Y PG+ Y PG, (7)
k=1

veT veT>

where 77 is the set of indices v with (, € M; U M, and J; the set with (, € M,, but with
(o instead of (,,. Comparing the coefficients of (., we obtain a system of equations for the
calculation of the coefficients dj, . In view of n, > max(r,m), the matrix of the system has
the form

o) g



where O is a suitable zero matrix, D is a lower triangular matrix of size (I —m) x (I —m)
with constant diagonal elements A, and B is the m x m matrix

A0 o0 =P ]
—P(&) A 0
B = 0 —P(§3) )‘ ' : 7 (9)
: . . A 0
0 ... .0 =P A

which for m = 1 must be interpreted as B = A — P((1). The determinant of (8) reads

m

(=TT Pena= (10)

v=1

and vanishes for (4). If this condition is satisfied, the first m equations
My, = P(Cp)dy—y  fork=1,...,m
with do = d,, # 0 imply recursively
dy = P(C) ... P(G)AN"dy fork=1,...,m. (11)

Finally, in view of A # 0, the remaining equations can also be solved recursively, and we
have finished the proof for r = 0. The eigenvector with the components (5) is unique up to
the factor dj.

Let now Pllw,) = ... = P(r)(wl,) = 0 for a fixed r > 1. We show the assertion inductively
and assume that the theorem is already proved for r — 1 instead of r. Differentiating (6) o
times with respect to (, we obtain after multiplication by CQ—T

CIDIEE

e (P(y/T))e) ((J/2>(\/Z)1>T +(P(—/())le ((jﬂ)(—\/@j)T] :

— (0 —v)!

1% 1%

v

Using for w the ansatz (5) with coefficients

(w'A); =
> Y S (1) (e e+ pvan e -y

k=1 p=0 =0



In view of our assumptions, equation %wT = w?' A reads in components
l r
A =7 (3]2 —0) i
Py e(l)d = X ey (T,
k=1 ¢=0 veJr ¢=0 Q
0
G’ J/ 2
Y () e
vedz ¢=0 Q

with index sets [J; and J; as before. Comparing the coefficients of j”, we obtain after
multiplication by 27 r!

A Zak,{k > aP(Gs)G + Y anP(Ca)

veT veT>

But this is exactly the system (7) only with ay, instead of dy.

Hence, choosing «,,, = do, we find oy, = dj. Having already determined a4, for o =
s+1,...,r, we compare the coefficients of 7° , and obtain after multiplication by 2°s!
or—s Z Oékséak Z aus §y—|—1 1/—|—1 —I' Z aus Cnl,
vedy NP

where the dots indicate already known terms. The matrix of the system arises from that of
(7) by the replacement A — A\/2"7°. Hence, in view of (4) and (10), its determinant reads

)\l

ol — 2lr=e)m) (13)

and is different from zero. Thus the system is uniquely solvable, and the theorem is proved.

4

From the proof of Theorem 1, we obtain the following generalization of Lemma 7.1.11 of [4]:

Corollary 1 Let the assumptions of Theorem 1 be satisfied. Then, to the eigenvalues ZA—Sas”
with 0 < s < r, 0 < v < m belong left eigenvectors w' of A with components of the
form (5), where di(7), ... ,dn(J) have exactly the degree s, and the other di(j) have at most

the degree s. In the case s = 0, the components (5) of the corresponding vectors wT are

(2" — 1)-periodic.

Remarks. 1. For a fixed cycle (y,... ., (, and a corresponding eigenvalue A of A satisfying
(4), there can exist only one linearly independent eigenvector w?t with components of the
form (5). However, if M consists of k orbits, then there can exist k linearly independent
eigenvectors to the same eigenvalue with components of the form (5). Moreover, every two-
slanted matrix (1) has also the eigenvector (1, 0,...,0) to the eigenvalue ¢ , which can also
be interpreted as ((?), but in the exceptional case { = 0 with the definition 0° = 1.

2. In special cases, we can calculate A in (4) explicitly. Let the symbol P(z) of A be of the
form

P(z) = (=) (14)




where Q(z) is a polynomial, and let (i,... ,(, be simple zeros of Q(z). Then

0(=) . QG)
Pl =1 300 =% ong)

forv=1,...,m with (; = (,», and therefore

=G

HP(G’) _ C1+2+...+2m—1 _ §2W—1 —1
v=1

in view of (2" = (,,. Hence, the solutions of (4) are 1, ¢,...c¢™ ! with ¢ = ezm/m. This case

appears e.g. for Q(z) = (z — 1) 1;[1(2 (), v # 1, and P(z) = (1 + 2) 1:[(2 —w,). If
Ciy...,Cn are (r + 1)-fold zeros of Q(z), then, analogously,

7’+1Q r1) (Cl/ 1)
QUHI(C,)

forv=1,... ,m with {, = (», and according to (4) it follows that A” = 2. Hence, we have
A=2"¢"forv=0,1,... ,m—1.

In the case m = 1, which is only possible for (; = 1, we have, without additional assumptions
on the structure of P(z), simply A = P(1).

3. If My # (), then the vectors (§Z)]T>O with v € J3, are eigenvectors of A to the eigenvalue
0 (see [1], Remark 2 in Section 4).

4. If 2™ — 1 is not a prime number, then the primitive period of the components (5) can be
a proper divisor of it as Example 2 shows with m =4 and 2* — 1 =3.5.

Example 4. Let P(z) = %(Z + 1) (2* + 1) = (. + 1)°(2* = 2 + 1)? be the symbol of a
two-slanted matrix A, so that n =7 and Q(z) = (z — 1) (2® = 1)? = (z = 1)3(z* + 2z + 1)?
in the representation (14). To the threefold zero ( = 1 of Q(z) belong the eigenvalues
A =4, Ay =2, A3 = 1 of A, further, we have the exceptional eigenvalue \y = 1, and to the
cycle of double zeros (4 = €*™/3,(, = €™/ belong the eigenvalues Ay = 2, A\ = =2, Ay =1
and A\g = —1. Corresponding to the theory, we find:

P(C) =2"¢)

v A eigenvectors w! of A components

1 4 (1, 1 1 L,1,1,1) constant

2 21 (7,5 —1, 3, =5, =T7) linear

3 1| (16,7, 1, -2, -2,1,7,16) quadratic

41 11(,0,0,0,0,0,0,0) 0/

5 2(1,-1,0,1,—-1,0, 1, —1) 3-periodic

6| —2((,1,-2,1,1,-2,1,1) 3-periodic

Tl (1L T L =2, =2 1,7, —11) | wsy = —11 4+ 9, wajsr = 7 — 97, wsype = 1
8| —1](1,1,-1,0,0,1, -1, —1) Wa; = Wagp1 = 1 — o wWaie = —1 +2j

The components of the last two eigenvectors Can be represented in the form (5) with 3-
periodic ¢} and with linear dr(7). In analogy to wj], the eigenvalue 1 has also the eigenvector

(0,0,0,0,0,0,0,1) = 5=(wy —w;7) —w;. The zeros ¢, of P(z) are —1,em/3, 53,



Example 5. Let P(z) = %(Z +1)(z° — %(1 — Z\/?)ZZ — %(1 + zﬁ)z + 1) be the symbol of A,
so that n =4 and Q(z) = (2 — 1)(2* + %(1 — Zﬁ)zz — %(1 + zﬁ)z — 1) in (14). The zeros
C, of Q(2) are 1, 27 AT 837/ hence the zeros ¢, of P(z) are —1,e™/7, 97/T l17i/T,
There appear two orbits without preperiods and with cycles of length m = 1 resp. m = 3.
The corresponding matrix A has the threefold eigenvalue 1 with the constant eigenvector
wi = (1,1, 1, 1, 1) , the exceptional eigenvector w] and w3 = (0, 0, 0, 0, 1). Further, we
obtain the eigenvalues Ay = —%(1 — Z\/g), Ay = )\_4, and the corressponding left eigenvectors
of A are restrictions of the 7-periodic eigenvector

w] = (4,2 + 20VT, —4 4 2ia, —(VT + i)a, —2ia, (V3 — i)a,2 + 20V/3,4,. ..

of A with ¢ = /3 + /7 and of an analogous vector ’w5T which is obtained by replacing V3

by —v/3, also in a. The linear combination wd — w] is also 7-periodic, namely

1 1
wl —w] =(-1,0,0,0,1, S+ V7)), -1+ iVT),—1,...).

This example shows that the period 2™ — 1 can be greater than n.

4 Root vectors of A

In this section, we shall show that nonzero eigenvalues of a two-slanted matrix A can never
have proper root vectors with components of the form (5) and (, € Mp, where P is the
symbol (2) of A. From [1], Theorem 4.2, we know that the eigenvalue 0 can have proper
root vectors.

Theorem 2 Let u be a nonzero eigenvalue of A, and let all corresponding left eigenvectors
w possess components of the type (5) with , € Mp only. Then A cannot have a root vector
of height greater than 1 with components of the type (5).

Proof. Again, we carry out the proof for A instead of A. A vector w is a root vector of
height 2 belonging to the eigenvalue p, if

wlA = pw' +w', (15)

where w is an eigenvector of A to the same eigenvalue. According to our assumptions, the
components of w have the form (5), and for the corresponding set M, we first assume that
it consists of one single orbit only. For the components of w, we can use the ansatz

@ =y dil(5)] (16)

with the same (i as in the representation of w, because (15) is an inhomogeneous system,
and we only need a special solution of it, so that all (x, which are not contained in the
representation of w, can be dropped in (16). The eigenvalue i of A can be written in the



form g = A/2% with A from (4) and 0 < s < r, consequently, the polynomials di(7) have at
most the degree s. We write the polynomials dk( ) in (16) in the form

for a certain v € Ny. Hence, we obtain analogously as in (12)

(Zaw (GG + Y @ P(Ga,) %)

veT veT>

(' 4)

with index sets [J1, J2 as in (7), and where the dots indicate terms with lower powers of j
(or zero for v = 0). On the other side,

AN . 7 e
gijZSV!ZOszCﬂk—I-..., —’Z kka
k:

The equation w' A = —w + w?' can only be satisfied, if ¥ > s. In the case ¥ > s, we find
by comparison of the Coeﬂiaents of j7/(274!) that

l

):W Z&lwéc]i - Z &UWP(Cu+1)§Z+1 + Z &uwP(Cny)ng'

k=1 veTy ved>

Analogously to (13), the determinant of the matrix of the linear system for the calculation
of dy., reads

)\l

(1 =27)

and is different from zero, so that the system has only the trivial solution.
In the case v = s, we obtain analogously

A Z ozksfk + 2° Z ozkka Z QP §u+1 l,_|_1 + Z ay, P Cnu g]zy

veT veT>

Comparing coefficients, we obtain similar as in the foregoing section a system with the first
m equations

B (us) = —2°(ous) (17)
with B as in (9) and vectors (ags) = (g, -+ s Qms) T, (Gks) = (Q1sy- -+ 5 Qms) . The matrix
B has the left zero eigenvector

ol = ([P AT PG A2 P (), A7),
v=2 v=3



and in view of ays = d and (11), cf. the proof of Theorem 1, we have the scalar product
ol - (ags) = mA™ 1,

which is different from zero. Hence (17) is unsolvable, so that there cannot exist a root
vector of height 2 with components (16) belonging to one single orbit of Mp. But the
case of several orbits is also impossible, since we can do our considerations for each orbit
separately. Moreover, since there are no root vectors of height 2 with the components (16)
there also cannot exist root vectors of a greater height with such components, and the
theorem is proved. O

5 Application to two-scale difference equations

In the last part of the paper, we want to apply the above results to two-scale difference
equations of the form (3). As shown in [5], (3) can only have a nontrivial compactly supported
(distributional) solution ¢ if P(1) = 2* for some nonnegative integer k. In this case we find

supp ¢ = [0, n]. For simplicity, we mainly use the following assumptions on the symbol P
in (2):
(A1) P(1) = 1.

(A2) || < 1, |eg| < 1.

The assumption (Al) is not restrictive, since each solution of (3) whose symbol P satisfies
P(1) = 2™ can be seen as an mth (distributional) derivative of a solution of (3) with symbol
277 P. Further, (A2) is a necessary condition for continuity of ¢.

Introducing the vector ¥ (¢) = (¢(¢),...¢(t+n))t, equation (3) can be rewritten in the form

" (%) _AG(l)  for —1<t<1 (18)
with A from (1). Equivalently, we find ¢(3) = A(t) for —oo < t < 1 with (1) =
(o(t), p(t+1),...)%. In order to study the properties of ¢, in [1] the space

L =span {w = (w;);50: W' P(t) =¢, t € (—o0, 1]a.e.}
has been considered. In particular, we have (see [1]):

Proposition 1 Let ¢ be a nontrivial, compactly supported, integrable solution of (3), and
let (A1), (A2) be satisfied. Then we have:

(i) The vector e = (1, 1,...)" is contained in L.

(ii) If w € L, then (w"A)" € L.

(iii) Let the solution ¢ be bounded in neighbourhoods of the points k (k = 0,...,n). If
A € C with [N > 1 is an eigenvalue of A, then the corresponding left eigenvectors of A are
contained in L.

(iv) Let ¢ be continuous in the points k (k = 0,...,n). Then the left eigenvectors of A

10



corresponding to an eigenvalue X with |X| = 1 are contained in L.

(v) If w = (w;)j>0 € L. Then w; has the form

l

wi =Y di(j)¢ (G>0) (19)

k=1
with | < n, where (x € C\ {0} are zeros of the polynomial

n—

B(z) =) (p(u+t) —p(n) ="

for each choice of t1 € (0,1). The coefficients di(j) are polynomials in j of degree vy, if (
is a zero of B(z) of multiplicity vy, + 1.

(vi) If w € L with representation (19) is an eigenvector of A then the numbers (i occuring
in (19) are roots of unity and form a closed set under the mapping z — 2*.

Let MP be the largest set of zeros of B(z) (for each choice of #;) being closed under the
mapping z —+ z2. Then, under the assumptions of Proposition 1, it follows that M? = Mp,
where P(z) is the symbol (2) of A and Mp is defined as at the end of Section 2. This
assertion directly follows from Proposition 1 and Theorem 3.1 in [1].

Summarizing and simplifying the above results and observing that the r-th (distributional)

derivative of ¥ (t) satisfies ¢(r)(%) = 2"A (1), we obtain:

Theorem 3 Let ¢ be a nontrivial compactly supported (distributional) solution of (3). Then
the components of an eigenvector of A to the eigenvalue p have the form (5), if one of the
following conditions is satisfied:

(i) @(t) is integrable, bounded and |u] > 1,

(i) () is continuous and |u| > 1,

(iil) the r-th derivative of p(t) is bounded and || > o,

(iv) the r-th derivative of ©(t) is continuous and |p| > 3-.

Applying Theorem 2, we find the following generalization of Theorem 4.1 in [1].

Corollary 2 If one of the conditions of Theorem 3 is satisfied, then to the eigenvalue p of
A there exist no root vectors of height greater than 1.

Remark. The solution of (3) has in the first, resp. last subinterval of its support the
structure

Int
e(t) = taR<n—2> for0<t<1,

M) forn—1<t<n
In2

f0) = -0 (

with 27 = ¢, 277 = ¢, and l-periodic functions R(z) = R(z — 1), S(z) = S(z — 1).
If we look for real solutions only, then in case of ¢y < 0 we can choose 27 = |¢o] and
R(x) = —R(x—1) antiperiodic. For ¢, < 0, the situation is analogous. These representations
of ¢(1) are useful for a discussion of the behaviour of ¢.

11



6 The start vector v (0)

From (18) it follows for nontrivial ¢ that ¢(0) is a right eigenvector of A to the eigenvalue 1.
If 1/(0) is known , then (18) implies an iterative algorithm for the computation of (2771,
[=0,...,2n, and for continuous ¢, the interpolation splines

27n

Zc,o h(27t — 1)

with the hat function A(t) = (1 — [t|) x[=1,1)(¢) uniformly converge to ¢ for 7 — oo, see
[2, 5, 11]. (Here, xj—1,1] denotes the characteristic function of [—1,1].) However, if the
eigenvalue 1 of A is not simple, then the computation of ¢(0) is more delicate.

Using the results of Theorem 1 and Theorem 3, we observe that multiple eigenvalues 1
can only occur if the set Mp contains a corresponding number of different orbits. In the
following, we want to present three different methods to determine (0).

Theorem 4 Let (3) possess a nontrivial compactly supported, continuous solution. Then the
right eigenvector 1(0) of A to the eigenvalue 1 is determined by the condition wl(0) = 0
for all left eigenvectors w' of A to the eigenvalue 1 with components of the form (5) with

G € Mp\{1}.

Proof. According to (ii) from Theorem 3, the components of all left eigenvectors w! of
A to the eigenvalue 1 have the form (5), and Proposition 1 implies w4 (t) = wl(0) for
—1 <t < 1. Moreover, we have according to [1], Theorem 2.4,

N it celt +5) = cu

7=0
for =1 <t <1 and 0 < v < vy, where v is the degree of the coefficient di(7) in (5). In view
of o(t) =0 for t ¢ (0,n), it follows for 0 < ¢ < 1 that

n—1
N elt+ ) = .
7=0

and after replacing ¢ by t — 1,

—_

n—

ek =) 3Gt =145) =3 (G +1)"G et +))

i=1

ECH
Il
=]

also for 0 < ¢ < 1. For v = 0, this means cor = (rcok, 1.e. cop = 0 for ¢, # 1. If we have
proved already ¢, = 0 for 0 < p < v < vy, we find ¢, = (e and therefore ¢, = 0
for ¢x # 1 and all integers v € [0,14]. Hence, we have w'¢(t) = 0 for all left eigenvectors
with components of the form (5) with ¢, # 1 for all &, so that, for ¢ = 0, the theorem is
proved. O

As a consequence, we can determine 1/(0) in the following way: Let W' be the matrix of all
left eigenvectors of A to the eigenvalue 1. We can choose the components of the eigenvectors
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according to (5) with sets M C Mp, consisting of one orbit only. According to Theorem
3.3 in [1], we have always one eigenvector with (; = 1. We choose the components of this
vector as the first row of W' Let U; be the matrix of all right eigenvectors of A to 1, such
that WU, = I. Then the vector of the first column of U; is ¥(0) (up to a constant factor).

Example 6. Consider the two-scale difference equation corresponding to the symbol P(z) =
1(2% +1)? (2 4+ 1)%. The zero set of P(z) is {—1, ¢33 ei5 emmilb  3mifh =3mi/5)
Hence, we find Mp = {1, 2™/3, 4mi/3 2mi/5 eAmif5 (8mif5 6mi/5)  The set Mp contains
3 different orbits, namely {1}, {>7/3, ¢4™/3) and {275, 4mi/5 87i/5 ¢67/51 Indeed, the
corresponding matrix A possesses the eigenvalue 1 with multiplicity 3. The two left eigen-
vectors of A of the form (5) with (i from the second and from the third subset, respectively,
satisfy wt )(0) = 0 (see [2], Example 2.6 (ii)). Note that here we have P(1) = 4.

In order to explain the second possibility to determine ¢(0), we modify Proposition 3.2 of

[1]:

Proposition 2 Let ©(t) be a nontrivial compactly supported solution of (3), and let the
corresponding refinement mask have the splitting

P(z) = L=Lp(2) (20)

with polynomials q(z), ]5(2) and q(0)q(1) # 0, say

Then the equation (3) with the symbol ]5(2) has a compactly supported solution @(t) and

m

pt) = arp(t — k). (21)

k=0

Let now A be the two-slanted matrix (1) corresponding to (3) with a nontrivial compactly
supported continuous solution ¢, and let 1 be a multiple eigenvalue of A. Then M p consists
of several orbits M, ... M*" with k > 1. Let M! be the orbit of Mp containing ( = 1,
and M% = Mp\ M = {(,...,(} with a certain k > 1. Let wy,... ,w; be the roots of
the elements of M° not belonging to M?°. All these roots are zeros of P. Let s, + 1 be
the multiplicity of the zero w, of P, v =k,...,l, and r* = mins, for all v with w? € M*,
i = 2,...,k. For these indices v, we also use the notation r, = r*. Now, we choose
q(z) = Hi:k(z — ()", so that ¢(2%)/q(z) = Hi:k(z — w,)™. According to (20), the set
M can only consist of one single orbit, and the two-slanted matrix A belonging to ]5(2)
must have 1 as a simple eigenvalue. We choose ¢ = 0 for k£ ¢ {0, 1,... ,m} and introduce
the rectangular Toeplitz matrix @ = (¢j_r), j = 0,1,... ,nand kK =0,1,... ,m, as well as
;/N)(t) = (P(t), p(t + 1),...,5(t +m))L. Hence, we can write (21) as (t) = Q@/Nj(t), which
implies ¢(0) = Q;/N)(O) Since ;/N)(O) can be determined uniquely up to a constant factor, also
the wanted ¢ (0) is fixed by the foregoing formula.
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Let us mention that (20) implies Q A = A Q.

The third possibility to determine ¢/(0) was already described in [2]. Let as before W' be the
matrix of all left eigenvectors of A to the eigenvalue 1, and U; the matrix of all corresponding
right eigenvectors, such that W U; = I. We use the shifting matrix V = (§;_341),7,k =
0,1,...,n, where §; is the simplified Kronecker symbol, i.e. o =1 and §; = 0 for 7 # 0. It
was shown in [2] by means of the ansatz 1(0) = Uy that the vector x satisfies the equations

T = WlTVTUll' and x = WlTVUll'. (22)

Further, it was conjectered in [2] that x is uniquely determined by these equations up to
a constant factor. Anyway, if (22) has only the trivial solution, then (3) does not have a
nontrivial compactly supported continuous solution.

Example 7. For real parameters a, p, we consider (3) with n =5 and ¢g = a, ¢; = ap, ¢z =
l—a—ap, cs=(14+p)(1—ap), cs = ap, ¢s = plap—1), i.e., the two-scale symbol P(z) reads

1
P(z) = 5(1 + 2) <a +alp—1)z+ (1 — 2ap)22 +pla+1-— ap)23 + plap — 1)Z4>. (23)
Observe that P(1) = 1, hence (3) provides a (distributional) compactly supported solution
@. The corresponding matrix (1) has 1 as a double eigenvalue with the matrix of right
eigenvectors

0
a(p? +p+1)
P SRy
1
0
0 _
0

o — OO O

The factor p? +p-+1 in the first column was choosen in order to simplify later formulas. The
matrix W, of the corresponding left eigenvectors with W,'U; = I was determined by means
of DERIVE and is too complicated to write it down here. In general, the two equations
(22) have linearly independent solutions x, so that (3) does not have a nontrivial, compactly
supported, continuous solution. However, in the cases

1 p+1

a=——

1
™ s & = S,
p p P+p+1

a —

(24)

(22) has a common nontrivial solution x. For a = ]l), we have ¢; = 0, so that n reduces to

n =4 and ¢4 = 1. Hence the solution ¢ of (3) is not continuous (see e.g. [3]). For a = _zl?’ we
have ¢ = ]l), ¢s = —2p, and therefore for every p once more a contradiction to the necessary

condition (A2) for the existence of the wanted continuous solution. In the last case of (24),
we find z = (1, 1)* and

1 plp+1) p+1 pP4+1  plp+1) p+1 pP+1

Wh=_——— :
Voo ap4 ) PP 4242 —p plp+l) pPP42p+2 —p plp+1)
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Figure 2: Solution ¢(t) for p = —0.5 and,  Figure 3: Solution ¢(¢) for p = (v/5+1)/2 and,
for t € [0,1], @(1) 22849525 (dashed). for t € [0,1], ¢(1)t (dashed).

so that ©(0) = (0, p+ 1, 1, 1, —p, 0)T . The two-scale symbol allows a further factorization,
namely

20" +p+ )P(2) = (14 2)(1— 2+ 25)(p + 1+ plp + 1)z — pz?).

Corresponding to the theory, we have a constant left eigenvector (p +2, 1 — p)W, and a 3-
periodic one to the eigenvalue 1, and a 3-periodic left eigenvector (p, 1, —p—1, p, 1, —p—1)
to the eigenvalue —1. Besides of the already mentioned eigenvalues as well as ¢y and ¢5 , we
also obtain the eigenvalue pi(ﬁ;ji)l. The points p = 0 and p = —1 must be excluded, since
they imply ¢ = 1 and ¢5 = 1, respectively.

Observe that the computation of ¢ can be simplified by means of Proposition 2,

p() =¢l) + ot =1) + (= 2)

where ¢ itself is a solution of (3) with symbol

~ 1+z p—l—l—l—pp—l—lz—pz:2 142

Py = D04 Lbplpt D2 =p2) 1z
2(p* +p+1) 2

where Q(2) = 3(go + @12 + @22*) = (p+ L+ p(p + 1)z — p2?) [(p* + p + 1).

As already remarked at the end of Section 5, in the neighborhood of 0, the function ¢

has a similar behaviour as ¢(1)t* with o = —log, |co| = log, |ﬁ| (see Figures 2 and 3).

Analogously, ¢(t) behaves as $(n—1) (n—t)” in the neighborhood of n with 3 = —log, |c,| =
log, | >57 |- Further, a negative ¢ (resp. ¢,) causes changes of sign of the solution ¢ in (0,1)
(resp. (n—1,n)). For p = —0.5 we obtain ¢y = ¢35 = 2/3 and a = § = 0.5849625 (see Figure
2). For p = (v/5 4+ 1)/2 it follows that co = 1/2, e5 = (1 —/5)/4 and a = 1, § = 1.6942419
(see Figure 3).

Finally, we want to estimate the Sobolev exponent

o0

4w=4@=wma/ Ba)? (1 + JuP) du < +oo}

— 00

of ¢ (resp. @) using the transfer operator T: L*([0, 27]) — L*([0, 27]) corresponding to
((z). This operator is defined by

TH(2u) = Q™) H(u) + |Q(—e=™)* H(u+ 7). H € L*([0, 2x]).
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It can be simply observed that 7' is invariant on the set Il of trigonometric polynomials of
degree at most N with N > 2. Considering the basis {¢; = e % : [ = —-N,-N+1,... ,N —
I, N} of Iy we find with g =k 41

(Teau)(u) = (|Q(€_i“/2)|2 + |Q(_e—iu/2)|2) o iu2l/2

— % Z qu—qum e iuk o —iul

meL keZ,
1
= Z 5 Z dm—2u+219m Cu-
WEZ meEZ

Analogously,
(Tewa)(u) = (QU/2) — Qe /7)) e=iei=b:

= Z (% Z Qm—2u+21—1qm> €u-

WEZ meEZ

Since Q(e~™) € II,, we only need to consider the spectral properties of T restricted to
I1;. Taking the basis elements of Iy we have (Te,)2_, =T (e,)2 with the representing

v=—2
matrix

2
1
T = 5(2 Am—2u+; qm)]%u:—?
m=0

—plp+1) P*+p+1)? —pp+1) 0 0
) 0 p(](9+1)) (p(p+1)1) (0 y 8
= 0 —p(p+1 ‘+p+1)? —pp+
it X A A
0 0 —pp+1) (PP+p+1)? —pp+1)

The Sobolev exponent is now given by s(p) = 1 — log, p, where p denotes the spectral
radius of T (cf. [7, §]). For all p € R\ {0, —1}, the spectral radius of 7 is smaller then 2,
hence s(¢) > 0.5 and we obtain a continuous solution ¢ of (3). For p = —0.5, the maximal
regularity is found; in this case p = 1.267013804 and s(¢) = 0.8292838787 (see Figure 2).
For p = (v/5 +1)/2, we find p = 1.878299127 and s(p) = 0.5452865817 (see Figure 3).
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