On Stability of Scaling Vectors

Gerlind Plonka

Abstract. The paper generalizes Lawton’s criteria for scaling vectors
by means of Kronecker products. Necessary and sufficient conditions for
the stability (orthonormality) of scaling vectors are provided in terms of
their two-scale symbols. The paper is based on the results of Shen [14].

§1. Introduction

Usually, the construction of multiwavelets is based on a multiresolution anal-
ysis (MRA) with higher multiplicity. In order to generate the MRA, a refin-
able function vector ® = (¢g,...,¢,—1)1 (r € N, r > 1) is needed, such that
B(®):={¢,(-—1): 1€ Z,v=0,...,r —1} forms an L?-stable basis of
its span. Moreover, the components of ® are often desired to be compactly
supported, regular and symmetric (or antisymmetric) such that multiwavelets
with similar properties can be derived.

The compactly supported scaling vector @ can be considered as a solution
vector of a matrix refinement equation

®(x)=> P®(2x-1), (1)

where P; are complex (r x r)-coefficient matrices. Hence, the question occurs
of how the L?-stability of B(@®) for the solution vector ® of (1) can be ensured,
just by appropriate choice of the (two—scale) symbol

N
Pw) := Z P et
=0

This problem has also been studied very recently in [3,4,9,14,15].
By Fourier transform of (1), we have

() = P(5) 8(3). (2)

| €
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where @ is taken componentwisely, i.e., <i>(w) = (qgo (W),... ,qg,,_l(w))T with
qg,,(w) = f_oooo v () e~ dg (v=0,....,r—1).

We say that a function vector @ is L%-stable if there are constants 0 <
A < B < o0, such that

AN da<| Y e -Dli-<B Y e (3)

I=—00 I=—00 I=—00

for any vector sequence {¢;}icz € 15. Here [} denotes the set of sequences of
vectors (¢1)iez (e € C7) with Y2 c;fc_l < 00. Introducing the autocorre-

lation symbol
>0

Q)= > d(w+2rl) d(w + 27l)* (4)
[=—

~ = T

with ®(w)* := ®(w) , (3) is equivalent with the following condition (see [6]):

0<A S pmin(ﬂ) S pmax(ﬂ) S B < 0,

where
Pmin(2) := min {|\|: det (Q(w) — A\I) = 0},

wE[—m,m)
Pmax () := Erflax ){|/\| : det (Q(w) — AI) = 0}.

Here I denotes the unit matrix of size r. In particular, for compactly sup-
ported @, supp ® C [0, N], Q(w) is a matrix of trigonometric polynomials of
degree (at most) N — 1, and (3) is already satisfied if det Q(w) # 0 for all
w € [—m, 7. The function vector ® is called orthonormal if (3) is satisfied
with constants A = B = 1, or equivalently, if the autocorrelation symbol is
the unit matrix, i.e., Q(w) = I. Applying the refinement equation (2) in (4),
we find

Q2w) = P(w) Qw) P(w)" + P(w+7)Qw + 7) P(w + 7). (5)
Hence, the orthonormality of @ implies that, for all w € [—m, 7],
Pw)Pw)"+ Plw+r)Plw+r) =1, (6)

Analogously, a necessary condition on P(w) for L%-stability of ® is that
P(w)P(w)* + P(w+ 7) P(w+ m)* is positive definite for all w € [—m, 7], i.e.,

y' (P(w)P(w) + Plw+m)Plw+m))y>0 (yeR,y#0) (¢)

(see e.g. [6,8,9]). The condition (6) (or (6)’) is known to be not sufficient to
ensure that @ is orthonormal (L?-stable). In the case r = 1, conditions could
be given, being necessary and sufficient for orthonomality (or L%-stability) of
® (see e.g. [1,5,11,13]).

The purpose of this paper is to present a generalization of Lawton’s con-
dition (see [5,13]) for the matrix coeflicients of the symbol P(w), such that
the corresponding solution vector @ of (1) is orthonormal and L?-stable, re-
spectively. We fundamentally use the results in [14] on the transfer operator
corresponding to P(w).
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§2. Generalization of Lawton’s condition
For a square matrix M (or a linear operator) let us introduce the following

Condition E. The spectral radius of M is less than or equal to 1, i.e. p(M) <
1, and 1 is the only eigenvalue of M on the unit circle. Moreover, 1 is a simple
eigenvalue.

As shown in [4,10], we have:

Proposition 1. Let ® be a stable Ly-solution vector of (1). Then for the
corresponding symbol P(w) we have:
a) P(0) satisfies Condition E.

b) The solution vector ® provides approximation order 1, i.e., we have

yT Z (I)(_l):cv

I=—00

where y is a left eigenvector of P(0) to the eigenvalue 1, and ¢ is a nonva-
nishing constant. Equivalently, we havey” P(0) = y” and y" P(x) = 0"

Observe that the necessary conditions for P(w) in Proposition 1 are also
assumed in [14]; there they are called basic conditions.

Let P(w) satisfy the basic conditions, and let a be a right eigenvector of
P(0) to the eigenvalue 1. Then the infinite product

converges uniformly on compact sets, and ® is a solution of (2) (see [2,7.,8]).
Hence, if we speak about a solution vector of (1) or (2) corresponding to a
symbol P(w), we mean the vector determined by this infinite product. Fur-
ther, if @ is supposed to be compactly supported, then supp ® C [0, N].

We want to generalize the following result (see [5,13]):

Lawton’s condition. Let r = 1, and assume that P(w) = %ZnNzo ppeTien
is a trigonometric polynomial satisfying the condition (6) and P(0) = 1. Then
we have: The solution of (1) corresponding to P(w) is orthonormal if and only

if the (2N — 1) x (2N — 1) matrix

1 N
M .= ~ n Pk— n
2(;)19 - )

possesses a simple eigenvalue 1.

N—-1

kI=—N+1

Let H = Hy_; be the space of trigonometric polynomials of degree at
most N — 1, i.e., the elements of H are of the form h(w) = ]_V];}H By €719

(h, € €). We introduce the following transfer operator T : H™" — H"*",

TH(w) = P(5)H(S)P() + P(5 +m) H(S +mP(5 +7)"
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acting on (r x r)-matrices H(w) with elements of IH as entries. For r = 1,
the following equivalence is known: Lawton’s condition is satisfied if and only
if the only trigonometric polynomials invariant under T are constants, or
equivalently, if and only if T possesses a simple eigenvalue 1 (see [5], p. 189
190). Recently, Shen [14] presented the following generalization for scaling
vectors:

Theorem 2 ([14]). Let P(w) be an (r X r)-matrix of trigonometric polyno-

mials, P(w) = %251\7:0 P,e7wn (P, € C™*"), satisfying the basic conditions
of Proposition 1, and let ® be a corresponding compactly supported solution
vector of (1).

(a) If P satisfies (6) then ® is orthonormal if and only if the transter operator

T satisfies Condition E.

(b) The vector ® is L?-stable if and only if the transfer operator T satisfies
Condition E and the eigenmatrix corresponding to the eigenvalue 1 is
nonsingular on [—m, 7.

Observe that, by (5), the autocorrelation symbol Q(w) € H™™" is an
eigenmatrix of the transfer operator T' corresponding to the eigenvalue 1, and
it is uniquely determined if the eigenvalue 1 of T' is simple.

For applications, it seems to be also convenient to have a direct gener-
alization of Lawton’s criteria. To this end, let us introduce the Kronecker
product of matrices A = (a;;);;—; € C"*" and B € C"*",

annB ... a.B
A B := : .
amB ... ap.B
Further, for a matrix A = (Ay,...,A,) with columns A; € C", let
A
vec A = e
A,

Then, it is well-known that, for A, B, X € C"*",
vec (AX B) = (BT @ A)vec X
(see e.g. [12], p. 410, Proposition 4). We find

Theorem 3. Let P(w) be an (r X r)-matrix of trigonometric polynomials

of the form P(w) = %251\7:0 P,e7" and let ® be a corresponding com-
pactly supported solution vector of (1). Assume that P(w) satisfies the basic
conditions of Proposition 1.

a) Let P(w) satisfy (6). Then the scaling vector ® is orthonormal if and

only if the matrix M,
N-—-1

N
1 2
M = (5 ZPn—Zu-H ® Pn) e CmENTY, (7)
wl=—N+1

n=0
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has a simple eigenvalue 1.
b) The scaling vector ® is L?-stable if and only if we have: The matrix M in
(7) satisfies the Condition E with a right eigenvector w = (vec Al) N—i—l
(A; € C"") corresponding to the eigenvalue 1, and the matrix polyno-
mial Ef\;__lN_H A; e~ is nonsingular for all w € [—7, 7).
Proof: 1. We show that the condition E for the matrix M in (7) is equivalent
with the condition E for the transfer operator 7', i.e., that, for an appropriate
basis of the finite dimensional space H"*", M is the representing matrix of
T. Then the assertion follows from Theorem 2.
Using the properties of Kronecker product, it follows from the definition
of T that

(vec T)(vec H)(w) =
= vec <P (;) + P(=

(P(%) ® P(%)) vec H(%)
(ﬁ@

i.e., vec T maps H" into H" . For simplicity, let us assume that P; = 0 if
[ <0 and !> N. Then we observe that

Pw)@Pw)+Plw+7)@Pw+n)
= Y Y (B0 Pt ()" (B @ Py e

nEZ me

- Z Z m— 2k®P ) _Zika

mEZ kEZ

“rmHE

2 2

+ ; P(— —|—7T)>V6CH( + ),

where we have used the substitution n := m — 2k. Analogously,

P(CU)®P((,U) m@P uj—|—7T = Z Z m—2k—1 ® P ) —lw(Zk—i—l)‘
mEZ ke
Let e, :=(0,...,0,1,0,... vO)T € IRTQ (v=1,... ,7“2) and consider the basis
N—_——
v—1

Uy =€y el (1/ = 1 r?l=—-N+1,....N—1)of H Then, we find
for u, o (v =1,... ZZE{ N+1,. —1})With/,L::k—|—l:

(vee Thuyulw) = P<§>®P<‘;>+P< )0 P(S +)) o

<Pm or @ P ) —itwk e, e—iwl
(S/4

EX k
= ( Z Pm 2u+21®P ) Uy s
uEZ

|
w|.—~/\

me
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and for u, 01 (v = 1,...,7%, 2l =1 € {—-N +1,...,N — 1}), in the same

manner,

w w w

2 2 2

= % Z Z <Pm—2k—1 ®Pm> €y e_iW(k—H)

meX keX

= Z (% Z Pm—2u—|—21—1 ®Pm> Uy -

WEX meZ

(vee Thuyarca() = (P5) 0 P(5) = P(5 +7) 0 P( 7)) et

Thus, generally it follows that

(vee Thuy (w) = Z (% Z P oy ®Pm> Uy s (8)

HWEZL meEZ

and hence, M = (Mml)ﬁl_:l—N-H with M, ; := %EmEZ P, 2,41 @Ppisa
representing matrix of 7. If P(w) satisfies condition (6), then it follows that
p(M) = 1. Then Condition E simplifies to the assertion that the eigenvalue

1 of M is simple.

2. The vector ® is L?-stable if and only if the transfer operator T satisfies con-
dition E, and the eigenmatrix corresponding to the eigenvalue 1 is nonsingular
for w € [—m, 7|. As shown in the first part of the proof, T satisfies Condition E
if and only if M satisfies Condition E. Let w € €N e right eigenvec-
tor of M corresponding to the eigenvalue 1, and let A; (I = —N+1,...,N—1)
be constant (r x r)-matrices formed by w such that w = (vec Al);i__lN_H, ie.,
A_ Ny is formed by the first 72 entries of w, A_ 1+ is formed by the second
r? entries of w and so on. We show that

N-—-1 ‘
U(w):= Z A et
I=—N+1

is an eigenmatrix of T corresponding to the eigenvalue 1. This follows by (8)
from

N-—-1
vee (TW)(w) = Z vec (TAle_”)(w)
I=—N+1
N-1
— Z Z M, ;(vec Ay) e TiwH
I=—N+1 \pez
N-—-1
— Z ( Z M, vec (Al)> e TiwH
weZ \l=—N+1

= g vec A, e " =vec ¥(w). m
In<y/
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Remarks: 1. Observe, that ¥(w) is (up to normalization) the autocorrela-
tion symbol of the solution vector ® of (1).

2. Let the matrix U be defined by U := (61, —m )(—N+41)r2<i,m<(N—1)r2. Then
M in (7) satisfies M U = U M. This fact can be used to simplify the compu-
tation of M. In particular, if w is an eigenvector to the simple eigenvalue 1
of M. then we have w = Uw.

§3. An Example

Let us apply the result of Theorem 3 for checking the stability property for a
solution vector @ with the symbol

1 1 e—iw
P(w) - 5 (e—iw €—2iw> .

Note that P(0) possesses the eigenvalues 1 and 0, and we find (1, 1) P(0) =
(1, 1) and (1, 1)P(x) = (0, 0). Hence, P(w) satisfies the basic conditions of

Proposition 1. However, with

1 0 0 1 0 0
P0_<0 0)7 P1_<1 0)7 P2_<0 1)7

we obtaln

0 01 00 0 0 O0O0OUO0OTUOTDO

0 0000 0 O0O0O0OUO0ODTUOTD O

1 001 0 0 1 0 0 O0O00O0

0 01 00 0 0 O0O0OUO0OTUOTDO

01 001 0O01O0O0T1TO0O0

M- l 1 001 0 0 1 0 0 O0O00O0
210 0 0 0O 01 0 0 1 0 0 1

01 001 0O01O0O0T1TO0O0

0 0000 0O O0OO0OO0OTI1TTUO0OTFO

0 0000 1 001 001

0 0000 0 O0O0O0OUO0ODTUOTD O

0 0000 0O O0OO0OO0OTI1TTUO0OTFO

But M possesses the eigenvalue 1 with multiplicity 2, hence Condition E is
not satisfied and the corresponding solution vector is not stable. One obtains

the solution vector
& — (X[0,3/2)> 7
X[1/2,2)

where x[q4,5) denotes the characteristic function of the interval [a,b). Indeed,
® is not L*-stable (see also [9]).
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