Back to Gerlind Plonka's home page
Back to peer-reviewed publications
Back to preprints and technical reports

Prof. Dr. Gerlind Plonka

University of Göttingen, Institute for Numerical and Applied Mathematics

November 20, 2020

Non-peer-reviewed publications (proceedings)

[17]  Markus Petz, Gerlind Plonka, Nadiia Derevianko
Rational Functions for the Reconstruction of Exponential Sums from their Fourier Coefficients.
Proc. Appl. Math. Mech. Volume 21, 1:e202100078, 2021 (DOI 10.1002/pamm.202100078).
[16]  Hanna Knirsch, Markus Petz, Gerlind Plonka
The Difference between Optimal Rank-1 Hankel Approximations in the Frobenius Norm and the Spectral Norm.
Proc. Appl. Math. Mech. Volume 20, 85-86, 2020 (DOI 10.1002/pamm.202000085).
[15]  Gerlind Plonka, Therese von Wulffen
Iterative Sparse FFT for M-sparse Vectors: Deterministic versus Random Sampling.
Proc. Appl. Math. Mech. Volume 20, 134-135, 2020 (DOI 10.1002/pamm.202000134).
[14]  Ingeborg Keller, Gerlind Plonka, Kilian Stampfer
Reconstruction of Non-Stationary Signals by the Generalized Prony Method.
Proc. Appl. Math. Mech. Volume 19, 358--359, 2019 (DOI 10.1002/pamm.201900358).
[13]  Vlada Pototskaia, Gerlind Plonka
Application of the AAK theory and Prony-like Methods for sparse approximation of exponential sums.
Proc. Appl. Math. Mech. Volume 17, pp. 829-830, December 2017 (DOI 10.1002/pamm.201710385).
[12]  Robert Beinert, Gerlind Plonka
Sparse phase retrieval of structured signals by Prony's method.
Proc. Appl. Math. Mech. Volume 17, pp. 835-836, December 2017 (DOI 10.1002/pamm.201710382).
[11]  Stefan Loock, Gerlind Plonka
Iterative phase retrieval with sparsity constraints.
Proc. Appl. Math. Mech. Volume 16, Issue 1, pp. 835-836, October 2016 (DOI: 10.1002/pamm.201610406).
[10]  Gerlind Plonka, Vlada Pototskaia
Sparse approximation by Prony's method and AAK theory.
Oberwolfach Reports, 33/2016, 16-19.
[9]  Gerlind Plonka, Katrin Wannenwetsch
Deterministic sparse FFT algorithms.
Proc. Appl. Math. Mech. Volume 15, Issue 1, pp. 667-668, October 2015 (DOI: 10.1002/pamm.201510323).
[8]  Thomas Peter, Gerlind Plonka, Robert Schaback
Prony's Method for Multivariate Signals.
Proc. Appl. Math. Mech. Volume 15, Issue 1, pp. 665-666, October 2015 (DOI: 10.1002/pamm.201510322).
[7]  Robert Beinert, Gerlind Plonka
Ambiguities in one-dimensional phase retrieval of structured functions.
Proc. Appl. Math. Mech. Volume 15, Issue 1, pp. 653-654, October 2015 (DOI: 10.1002/pamm.201510316).
[6]  Gerlind Plonka, Katrin Wannenwetsch
A deterministic sparse FFT algorithm for vectors with short support.
Oberwolfach Reports, Volume 38/2015, pp. 41-44.
[5]  Thomas Peter, Gerlind Plonka
A generalized Prony method for sparse approximation.
Oberwolfach Reports 11/2013, pp. 600-602.
[4]  Thomas Peter, Gerlind Plonka
Approximation by k-sparse sums of eigenfunctions of linear operators.
Oberwolfach Reports 31/2012, pp.16-18.
[3]  Gerlind Plonka, Jianwei Ma
Curvelets.
in Encyclopedia of Applied and Computational Mathematics, B. Engquist (eds.), Springer Berlin, 2015, DOI 10.1007/978-3-540-70529-1.
[2]  Gerlind Plonka, Stefanie Tenorth, Daniela Rosca.
Image approximation by a hybrid method based on the easy path wavelet transform.
Asilomar'09 Proceedings of the 43rd Asilomar conference on Signals, systems and computers, 2009, 442-446. ISBN: 978-1-4244-5825-7.
[1] Gerlind Plonka.
Stability of translates of scaling vectors.
Computational Mathematics (Achim Sydow, ed.), Wissenschaft & Technik Verlag, Berlin, 1997, 81-86.

Go to top of page | Back to Gerlind Plonka's home page