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The relation between multicriteria robustness

concepts and set valued optimization
Jonas Ide 1, Elisabeth Köbis, Daishi Kuroiwa, Anita Schöbel and Christiane Tammer

Abstract

In this paper, we discuss the connection between the concepts of robustness for multi-objective opti-

mization problems and set order relations. We extend some of the existing concepts to general spaces and

cones. We point out that uncertain multi-objective robust optimization can be interpreted as an applica-

tion of set-valued optimization. Furthermore, we use algorithms developed for uncertain multi-objective

optimization problems to solve a special class of set-valued optimization problems.
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1 Introduction

Dealing with uncertainty in multi-objective optimization problems is very important in many applications.
On the one hand, most real world optimization problems are contaminated with uncertain data, especially
tra�c optimization problems, scheduling problems, portfolio optimization, network �ow and network design
problems. On the other hand, many real world optimization problems require the minimization of multiple
con�icting objectives (see [26]), e.g. the maximization of the expected return versus the minimization of
risk in portfolio optimization, the minimization of production time versus the minimization of the cost of
manufacturing equipment, or the maximization of tumor control versus the minimization of normal tissue
complication in radiotherapy treatment design.

For an optimization problem contaminated with uncertain data it is typical that at the time when it is
solved these data are not completely known. It is very important to estimate the e�ects of this uncertainty
and so it is necessary to evaluate how sensitive an optimal solution is to perturbations of the input data. One
way to deal with this question is sensitivity analysis (for an overview see [23]). Sensitivity analysis is an a
posteriori approach and provides ranges for input data within which a solution remains feasible or optimal. It
does not, however, provide a course of action for changing a solution should the perturbation be outside this
range. In contrast, stochastic programming (see e.g. Birge and Louveaux [4] for an introduction) and robust
optimization (see e.g. [14, 2] for an overview) take the uncertainty into account during the optimization
process. While stochastic programming assumes some knowledge about the probability distribution of the
uncertain data and the objective usually is to �nd a solution that is feasible with a certain probability and
that optimizes the expected value of some objective function, robust optimization hedges against the worst
case. Hence robust optimization does not require any probabilistic information. Depending from the concrete
application one can decide whether robust or stochastic optimization is the more appropriate way of dealing
with uncertainty.

Robust optimization is usually applied to problems where a solution is required which hedges against all
possible scenarios. For example, the emergency department with landing place for rescue helicopters in a
ski resort should be chosen in such a way that the �ight time to all ski slopes in the resort that are to be
protected is minimized in the worst case, even though �ight times are uncertain due to unknown weather
conditions. Similarly, if an aircraft-schedule of an airline is to be determined, one would want to be able to
provide service to as many passengers as possible in a cost-e�ective manner, even though the exact number
of passengers is not known at the time the schedule is �xed.

Generally, in the concept of robustness it is not assumed that all data are known, but one allows di�erent
scenarios for the input parameters and looks for a solution that works well in every uncertain scenario.

Unfortunately, at the time the uncertain optimization problem has to be solved, it is not known which
scenario is going to be realized. Therefore, a de�nition of a �good� (or robust against the perturbations in
the uncertain parameter) solution is necessary.

Robust optimization is a growing up �eld of research, we refer to Ben-Tal, L. El Ghaoui, Nemirovski [2],
Kouvelis and Yu [14] for an overview of results and applications for the most prominent concepts. Several
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other concepts of robustness were introduced more recently, e.g. the concept of light robustness by Fischetti
and Monaci [10] or the concept of recovery-robustness in Liebchen et al. [21], for a uni�ed approach, see [13].
A scenario-based approach is suggested in Goerigk and Schöbel [11]. In all these approaches, the uncertain
optimization problem is replaced by a deterministic version, called the robust counterpart of the uncertain
problem.

One of the most common approaches is the concept of minmax robustness, introduced by Soyster [24] and
studied e.g. by Ben-Tal and Nemirovski [3]. Here, a solution is said to be robust, if it minimizes the worst
case of the objective function over all scenarios. We do not go into detail here as for this paper we mostly
consider concepts of robustness for multi-objective optimization problems.

Now, if we consider the objective function in the problem de�nition to be not a single-objective, but a
multi-objective function, the concepts of robustness do not apply naturally anymore. The problem obviously
is that there is no total order on Rn and the robustness concepts for uncertain single-objective optimization
problems rely on the total order of R. Therefore, new de�nitions of what is seen as a robust solution to an
uncertain multi-objective optimization problem are necessary.

The �rst approach to handling uncertainty for multi-objective optimization problems was presented by
Deb and Gupta [6] who extended the concept Branke [5] introduced for single-objective functions. Here each
objective function is replaced by their mean function and an e�cient solution to the resulting multi-objective
optimization problem is called a robust solution. The authors also presented a second de�nition where the
uncertainty is modeled into the constraints which restrict the variation of the original objective functions to
their means. Barrico and Antunes [1] extended the concept of Deb and Gupta and introduced the degree
of robustness as a measure how much a prede�ned neighborhood of the solution considered can be extended
without containing solution whose function values are too bad. An overview of the existing concepts of
robustness for multi-objective optimization problems can be found in [25] and [27].

A �rst approach to extending the concept of minmax robustness to multi-objective optimization was
presented by Kuroiwa and Lee [19]. Here, the worst case in each component is calculated separately, and an
e�cient solution to the problem of minimizing the vector of worst cases is then called a robust solution to
the original problem. This de�nition has been extended by Ehrgott, et al. [7], where the authors replace the
objective function by a set-valued objective function. Furthermore, the authors present solution algorithms
for calculating minmax robust e�cient solutions, one of which is closely connected to the concept of robustness
presented by Kuroiwa and Lee [19]. Furthermore, the authors in [19] present solution concepts for obtaining
robust points of uncertain multi-objective optimization and study optimality conditions for the special case
of convex objective functions in [20].

Set-valued optimization on the other hand deals with the problem of minimizing a function where the
image of a point is in fact a set. Minimizing a set is not totally intuitive since on a power set there is no total
order as well as on Rk. Therefore, a de�nition of what can be seen as an optimal solution to minimizing a
set-valued objective function is necessary. In order to compare sets, several preorders have been introduced
(see e.g. [9, 15, 18, 22, 28]). With these preorders it is then possible to de�ne a set-valued optimization
problem.

Now, as Ide and Köbis [12] pointed out, the concept of minmax robust e�ciency is closely connected to
a certain set order relation, introduced by Kuroiwa [15, 18], namely the upper-type set-relation.

Replacing the set order relation implicitly used in the de�nition of minmax robust e�ciency, Ide and Köbis
[12] presented various other concepts of robustness for multi-objective optimization, derived by replacing the
upper-type set-relation with another set ordering from the literature. The authors then presented algorithms
to calculate the resulting robust e�cient solutions.

Now, this paper is structured as follows: After �xing the notation in Section 2, in Section 3 we show that
a lot of the Theorems presented in [7] and [12] can be extended to general spaces. Using this information, we
extend the algorithms presented in these publications to our general setting and then use these algorithms in
to solve a certain class of set-valued optimization problems. We conclude the paper with some �nal remarks
and an outlook to future research.

2 Preliminaries

Throughout the paper, let Y be a linear topological space partially ordered by a proper closed convex pointed
(i.e., C ∩ (−C) = {0}) cone C. The dual cone to C is denoted by C∗ := {y∗ ∈ Y ∗|∀y ∈ C : y∗(y) ≥ 0} and
the quasi-interior of C∗ is de�ned by C# := {y∗ ∈ C∗|∀y ∈ C \ {0} : y∗(y) > 0}. Furthermore, let X be a
linear space, F : X ⇒ Y (with the �⇒�-notation we denote that F is a set-valued objective function whose
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function values are sets in Y ), and X a subset of X. As usual, we denote the graph of the set-valued map F
by graphF := {(x, y) ∈ X × Y | y ∈ F (x)}. Furthermore, we de�ne F (X ) := ∪x∈XF (x).

In set optimization, the following set-relations play an important role, see Young [28], Nishnianidze [22],
Kuroiwa [15, 18] and Eichfelder, Jahn [9]. We will use these set-relations to introduce several concepts of
robustness.

De�nition 1 (Set less order relation ([28, 22, 9])). Let C ⊂ Y be a proper closed convex and pointed cone.
Furthermore, let A,B ⊂ Y be arbitrarily chosen sets. Then the set less order relation is de�ned by

A �sC B :⇐⇒ A ⊆ B − C and A+ C ⊇ B.

Remark 1. Of course, we have

A ⊆ B − C ⇐⇒ ∀a ∈ A ∃b ∈ B : a ≤C b

and
A+ C ⊇ B ⇐⇒ (∀b ∈ B ∃a ∈ A : a ≤C b).

De�nition 2 (Upper-type set-relation ([15, 18])). Let A,B ⊂ Y be arbitrary chosen sets and C ⊂ Y a proper
closed convex and pointed cone. Then the u-type set-relation �uC is de�ned by

A �uC B :⇐⇒ A ⊆ B − C ⇐⇒ ∀a ∈ A ∃b ∈ B : a ≤C b.

Another important set order relation is the lower-type set-relation:

De�nition 3 (Lower-type set-relation ([15, 18])). Let A,B ⊂ Y be arbitrarily chosen sets and C ⊂ Y a
proper closed convex and pointed cone. Then the l-type set-relation �lC is de�ned by

A �lC B :⇐⇒ A+ C ⊇ B ⇐⇒ ∀b ∈ B ∃a ∈ A : a ≤C b.

Remark 2. Note that

(i) A ⊂ B − intC and

(ii) A+N ⊂ B − C for some neighborhood N of the null vector

are not equivalent when A is not compact. Clearly (ii) implies (i). From a theoretical viewpoint, (ii) may, in
some cases, be more appropriate.

Remark 3. There is the following relationship between the l-type set-relation �lC and the u-type set-relation
�u−C :

A�lCB :⇐⇒ A+ C ⊇ B ⇐⇒ B ⊆ A− (−C)⇐⇒: B�u−CA.

Remark 4. If we use the set-relation �lC introduced in De�nition 3 in the formulation of the solution concept,
i.e., we study the set-valued optimization problem of (SP −�lC) we observe that this solution concept is based
on comparisons among sets of minimal points of values of F . Furthermore, considering the u-type set-relation
�uC (De�nition 2), i.e., considering the problem (SP − �uC) we recognize that this solution concept is based
on comparisons of maximal points of values of F . When x ∈ X is a minimal solution of problem (SP −�lC)
there does not exist x ∈ S such that F (x) is strictly smaller than F (x) with respect to the set order �lC .

To conclude the notation, we repeat the de�nition of a set-valued optimization problem: Consider F :
X ⇒ Y , and X a subset of X. Furthermore, let � be a preorder on Y given by De�nition 1, 2, 3, respectively.
Then a set-valued optimization problem (SP− �) is de�ned as

� −minimize F (x) subject to x ∈ X , (SP− �)

where minimal solutions of (SP− �) are de�ned in the following way:

De�nition 4 (Minimal solutions of (SP− �) w.r.t. the preorder �). Given a set-valued optimization problem
(SP− �), an element x ∈ X is called a minimal solution to (SP− �) if

(F (x) � F (x) for some x ∈ X ) =⇒ F (x) � F (x).
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The de�nition of a minimizer of (SP− �) is very often used in the theory of set optimization and given
below. However, the solution concept introduced in De�nition SP− � is more natural and useful as we can
see in Example 1.

De�nition 5 (Minimizer of (SP)). Let x ∈ X and (x, y) ∈ graphF . The pair (x, y) ∈ graphF is called a
minimizer of the problem (SP) if y ∈ Min

(
F (X ), C

)
, where Min

(
F (X ), C

)
:= {y ∈ Y | F (X )∩(y−C\{0}) =

∅}.

For our approach to robustness of uncertain vector optimization problems, minimal solutions in the sense
of De�nition SP− � are useful and therefore, when considering robustness concepts, we will deal with this
solution concept in the following.

In order to get an insight to the issue of set-valued optimization problems, we give two examples (see
Kuroiwa [17]) of set-valued optimization problems.

Example 1. Consider the set-valued optimization problem

�lC −minimize F1(x), subject to x ∈ X , (SP −�lC)

with X = R, Y = R2, C = R2
+, X = [0, 1] and F1 : X ⇒ Y is given by

F1(x) :=

{
[(1, 0), (0, 1)] if x = 0
[(1− x, x), (1, 1)] if x ∈ (0, 1],

where [(a, b), (c, d)] is the line segment between (a, b) and (c, d). Only the element x = 0 is a minimal solution
of (SP − �lC). However, all elements (x, y) ∈ graphF1 with x ∈ [0, 1], y = (1 − x, x) for x ∈ (0, 1] and
y = (1, 0) for x = 0 are minimizers of the set-valued optimization problem in the sense of De�nition 5. This
example shows that the solution concept with respect to the set-relation �lC (see De�nitions 3 and 4) is more
natural and useful than the concept of minimizers introduced in De�nition 5.

Example 2. In this example we are looking for minimal solutions of a set-valued optimization problem with
respect to the set-relation �uC introduced in De�nition 2.

�uC −minimize F2(x), subject to x ∈ X , (SP −�uC)

with X = R, Y = R2, C = R2
+, X = [0, 1] and F2 : X ⇒ Y is given by

F2(x) :=

{
[[(1, 1), (2, 2)]] if x = 0
[[(0, 0), (3, 3)]] if x ∈ (0, 1],

where [[(a, b), (c, d)]] := {(y1, y2) | a ≤ y1 ≤ c, b ≤ y2 ≤ d}. Then the only minimal solution of (SP −�uC) in
the sense of De�nition 4 is x = 0.

In Section 3, we will apply the preorders introduced in De�nitions 1, 2, 3 in order to de�ne several concepts
of robustness for uncertain multi-objective optimization problems.

3 Extending robust e�ciency to general spaces

Talking about an uncertain optimization problem, we consider the uncertain data to be given as a parameter
(also called scenario) ξ ∈ U where U ⊆ Rm is the so called uncertainty set. For a realization of this parameter
we obtain a single optimization problem

f(x, ξ)→ min

s.t. x ∈ X ,
(P(ξ))

where f : X×U 7→ Y is the objective function and X ⊆ X is the set of feasible solutions (note that we assume
the feasible set to be unchanged for every realization of the uncertain parameter). We use the notation

fU (x) := {f(x, ξ)|ξ ∈ U} (1)

for the image of the uncertainty set U and x under f (note that fU (x) in general is a set and not a singleton).
Now, when searching for an optimal solution, one has to overcome the problem that we do not know anything
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about the di�erent scenarios, e.g., which one is most likely to occur, any kind of probability distribution and
so on. Therefore, an uncertain (multi-objective) optimization problem is de�ned as the family of optimization
problems

(P(ξ), ξ ∈ U). (P(U))

Now it is not clear what solution to this problem P(U) would be seen as desirable. Throughout the paper
we repeat several concepts of robustness for multi-objective optimization problems from the literature.

In this section we extend the robustness concepts presented in [7] and [12] to general spaces using the
preorders introduced in De�nitions 1, 2, 3. In particular, we are interested in extending the theorems which
provide the foundation for the algorithms for calculating the respective robust solutions. We shortly repeat
the various concepts which relate to di�erent set orderings, extend the theorems and then formulate the
algorithms. With this, we present some ideas for solving set-valued optimization problems in this section.

3.1 �u
C-robustness

We extend the de�nitions and results presented by Ehrgott, et al. [7] about minmax robust e�ciency.
In [7] a feasible solution x ∈ X to P(U) is called minmax robust e�cient if there is no other feasible

solution x ∈ X \ {x}, such that
fU (x) ⊆ fU (x)− Rk=

where Rk= := {λ ∈ Rk : λi ≥ 0 ∀ i = 1, . . . , k},
With the de�nitions of upper-type set-relation, see De�nition 2, and minmax robust e�ciency in mind

we can see the close connection between minmax robust e�ciency and the upper-type set-relation since a
solution x ∈ X to P(U) is minmax robust e�cient if there is no other feasible solution x ∈ X \{x}, such that

fU (x) �uC fU (x),

where Y = Rk and C = Rk=.
Since all the concepts considered in this paper are closely related to a set order relation �, in order to keep

the names of the concepts readable we call the respective solution �-robust. Using this notation, the concept
of minmax robust e�ciency can be re-de�ned as a concept of robustness in the sense of set optimization in
the following way:

De�nition 6. Given an uncertain multi-objective optimization problem P(U), we call a solution x ∈ X
�uC-robust for P(U) if there is no solution x ∈ X \ {x} such that

fU (x) �uC fU (x).

Note that the de�nition of �uC-robustness is valid for general spaces and general cones, while the de�nition
of minmax robust e�ciency in [7] is for Y = Rk and C = Rk= only.

The motivation behind this concept is the following: When comparing sets with the u-type set-relation,
the upper bounds of these sets, i.e., the �worst cases�, are considered. Minimizing these worst cases is closely
connected to the concept of minmax robust e�ciency where one wants to minimize the objective function in
the worst case. This risk averse approach would re�ect a decision makers strategy to hedge against a worst
case and is rather pessimistic.

Remark 5. The �rst scenario-based concept to uncertain multi-objective optimization, or minmax-robustness
adapted to multi-objective optimization, has been introduced by Kuroiwa and Lee [19] and studied in [20]. In
[19, 20] robust solutions of multi-objective optimization problems are introduced in the following way. The
authors propose to consider the robust counterpart to P (U)

Min(fURC(X ),Rk≥), (2)

where the objective vector for x ∈ X is given by

fURC(x) :=

maxξ∈U1 f1(x, ξ1)
. . .

maxξ∈Uk fk(x, ξk)

 , (3)

with functionals fi : Rn × Ui → R for i = 1, . . . , k and the convex and compact uncertainty sets U :=
(U1, . . . ,Uk) (Ui ⊆ Rm, i = 1, . . . , k). They call solutions to (2) robust.
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In di�erence to [19, 20], we develop new concepts of robustness based on upper-type and lower-type set-
relations (see De�nitions 3 and 3). Our approach is related to the robustness approach based in [7], further-
more, we derive new concepts of robustness.

Remark 6. Robustness in the sense of vector optimization is introduced by Kuroiwa and Lee [19, 20] in the
following way: Consider the objective function as de�ned by (3) with U := (U1, . . . ,Uk), where Ui ⊆ Rm, i =
1, . . . , k are convex and compact uncertain sets. An element x̄ ∈ X is a robust solution in the sense of
vector optimization if

fURC(x̄) ∩Min(fURC(X ), C) 6= ∅. (4)

Note that robustness in the sense of set optimization, introduced in De�nition 6, and robustness in the sense
of vector optimization, see (4), are di�erent.

With the extension of the de�nition of minmax robust e�ciency we can extend an algorithms for com-
puting minmax robust e�cient solutions which is an extension of the well-known weighted sum scalarization
technique for calculating e�cient solutions to multi-objective optimization problems (compare e.g. Ehrgott
[8]).

The general idea is to form a scalar optimization problem by multiplying each objective function with a
positive weight and summing up the weighted objectives. The resulting (single-objective) problem in a more
general setting is

min
x∈X

sup
ξ∈U

y∗ ◦ f(x, ξ), (P(U)y∗)

where f : X × U → Y and y∗ ∈ C∗, i.e., y∗ : Y → R.
Now, solving this problem one can obtain �uC-robust solutions as shown in Theorem 4.3 in [7]. Before

extending this theorem, we need a lemma which will help during the proofs:

Lemma 1. Consider the uncertain multi-objective optimization problem P(U). Then it holds for all x′,
x ∈ X and for Q = intC (Q = C \ {0}, Q = C, respectively),

fU (x′) ⊆ fU (x)−Q⇐⇒ ∀ξ ∈ U ∃η ∈ U : f(x′, ξ) ∈ f(x, η)−Q. (5)

Proof. �=⇒ �: Suppose the contrary. Then

∃ξ ∈ U ∀η ∈ U : f(x′, ξ) /∈ f(x, η)−Q =⇒ ∃ξ ∈ U : f(x′, ξ) /∈ fU (x)−Q
=⇒ fU (x′)− C 6⊆ fU (x)−Q

�⇐=�: Suppose the contrary. Then

∃ξ ∈ U : f(x′, ξ) /∈ fU (x)−Q =⇒ ∃ξ ∈ U ∀η ∈ U : f(x′, ξ) /∈ f(x, η)−Q

With this, we can extend Theorem 4.3 from [7] in the following way:

Theorem 1. Consider an uncertain multi-objective optimization problem P(U). The following statements
hold:

(a) If x0 ∈ X is a unique optimal solution of (P(U)y∗) for some y∗ ∈ C∗ \ {0}, then x0 is a �uC-robust
solution for P(U).

(b) If x0 ∈ X is an optimal solution of (P(U)y∗) for some y∗ ∈ C# and maxξ∈U y∗ ◦ f(x, ξ) exists for all

x ∈ X , then x0 is a �uC\{0}-robust solution for P(U).

(c) If x0 ∈ X is an optimal solution of (P(U)y∗) for some y∗ ∈ C∗ \ {0} and maxξ∈U y∗ ◦ f(x, ξ) exists for

all x ∈ X , then x0 is a �uintC-robust solution for P(U).

Proof. Suppose that x0 is not (�uC , �uC\{0}, �
u
intC)-robust. Then there exists an element x ∈ X \ {x0} such

that
fU (x) ⊆ fU (x0)−Q, (6)

for Q = C, (Q = (C \ {0}), Q = intC, respectively).
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This implies
∀ξ ∈ U ∃η ∈ U : f(x, ξ) ∈ f(x0, η)−Q.

taking into account Lemma 1.
Choose now y∗ ∈ C∗\{0} for Q = C (y∗ ∈ C# for Q = C\{0}, y∗ ∈ (C∗\{0}) for Q = intC, respectively)

arbitrary but �xed.

=⇒ ∀ξ ∈ U ∃η ∈ U : y∗ ◦ f(x, ξ) ≤ (<,<, respectively) y∗ ◦ f(x0, η)

⇐⇒ ∀ξ ∈ U : y∗ ◦ f(x, ξ) ≤ (<,<, respectively) sup
η′∈U

y∗ ◦ f(x0, η′)

⇐⇒ sup
ξ′∈U

y∗ ◦ f(x, ξ′) ≤ (<,<, respectively) sup
η′∈U

y∗ ◦ f(x0, η′)

The last equation holds because for (b) and (c) maxξ′∈U y∗ ◦ f(x, ξ′) exists. But this means that x0 is not
the unique optimal (an optimal, an optimal, respectively) solution of (P(U)y∗) for y

∗ ∈ C∗ \ {0} (y∗ ∈ C#,
y∗ ∈ C∗ \ {0}, respectively).

With this theorem we can now formulate a �rst algorithm for �nding (�uC , �uC\{0}, �
u
intC)-robust solu-

tions.
Algorithm 1 for deriving (�uC , �uC\{0}, �

u
intC)-robust solutions to P(U) based on weighted

sum scalarization:

Input: Uncertain multi-objective problem P(U), solution sets OptC = OptC\{0} = Optint C = ∅.

Step 1: Choose a set C ⊂ C∗ \ {0}.

Step 2: If C = ∅: STOP. Output: Set of �uC-robust solutions OptC , set of �uC\{0}-robust solutions
OptC\{0}, set of �uintC-robust solutions Optint C .

Step 3: Choose y∗ ∈ C. Set C := C \ {y∗}.

Step 4: Find an optimal solution x0 of (P(U)y∗).

a) If x0 is a unique optimal solution of (P(U)y∗), then x
0 is strictly robust for P(U), thus

OptC := OptC ∪ {x0}.

b) If maxξ∈U y∗ ◦ f(x, ξ) exists for all x ∈ X , then x0 is weakly robust for P(U), thus

Optint C := Optint C ∪ {x0}.

c) If maxξ∈U y∗ ◦ f(x, ξ) exists for all x ∈ X and y∗ ∈ C#, then x0 is robust for P(U), thus

OptC\{0} := OptC\{0} ∪ {x0}.

Step 5: Go to Step 2.

Furthermore, we present an interactive algorithm for �nding a desired (�uC , �uC\{0}, �
u
intC)-robust so-

lution to the uncertain multi-objective optimization problem P(U). This algorithm uses the input of the
decision maker whether she accepts the calculated solution or not:

Algorithm 2 for deriving a single accepted (�uC , �uC\{0}, �
u
intC)-robust solution to P(U) based

on weighted sum scalarization:

Input: Uncertain multi-objective problem P(U).

Step 1: Choose a set C ⊂ C∗ \ {0}.

Step 2: Set j:=0, choose y0 ∈ C. Set C := C \ {y0}.

Step 3: Find an optimal solution x0 to (P(U)y∗).

7



a) If x0 is a unique optimal solution of (P(U)ȳ0), then x0 is �uC-robust for P(U).

b) If maxξ∈U y∗ ◦ f(x, ξ) exists for all x ∈ X , then x0 is �uintC-robust for P(U).

c) If maxξ∈U y∗ ◦ f(x, ξ) exists for all x ∈ X and ȳ∗ ∈ C#, then x0 is �uC\{0}-robust for P(U).

If x0 is accepted by the decision-maker: STOP. Output: x0.

Step 4: Choose ȳj+1 ∈ C, such that ȳj+1 6= yi for all 0 ≤ i ≤ j.
Set l := 0, t0 := 0.

Step 5: Choose tl+1 with tl < tl+1 ≤ 1 and compute an optimal solution xjl+1 to

min
x∈X

sup
ξ∈U

ȳ∗ ◦ f(x, ξ) (P(U)ȳj+tl+1(ȳj+1−yj))

with ȳ∗ := ȳj + tl+1(ȳj+1 − ȳj). If no optimal solution to (P(U)ȳj+tl+1(ȳj+1−yj)) can be found for all

t > tl, go to Step 2.

Step 6: If xjl+1 is accepted by the decision maker: STOP. Output: xjl+1.

Step 7: If tl+1 = 1, then set j := j + 1 and go to Step 4. Otherwise, set l := l + 1 and go to Step 5.

3.2 �l
C-robustness

We derive the concept of �lC-robustness, de�ned analogously to �uC-robustness (De�nition 6):

De�nition 7. Given an uncertain multi-objective optimization problem P(U), a solution x ∈ X is called
�lC-robust if there is no x ∈ X \ {x} such that

fU (x) �lC fU (x)

The �lC-robustness can be interpreted as an optimistic approach. The following example illustrates this
concept.

Example 3. Here, x is �lC-robust, while it is not �uC-robust.

fU (x)

fU (x)

fU (x) + C

Figure 1: x is �lC-robust.

Remark 7. The �lC-robustness is an alternative tool for the decision maker for obtaining solutions of another
type to an uncertain multi-objective optimization problem. This rather optimistic approach focuses on the
lower bound of a set fU (x̄). In order to compare this set to a set fU (x0), the lower bound is considered. In
particular, a point x0 ∈ X is called an optimistic solution if there is no other point x̄ ∈ X such that fU (x0)
is a subset of fU (x̄) + Q. In that sense, this approach would re�ect a decision maker's preferences if she
is interested in solutions whose objective function may be smaller in a future scenario ξ. Contrary to the
�uC-robustness approach, the �lC-robustness is hence not a worst-case concept, thus the decision maker is not
considered to be risk averse but risk a�ne. This optimistic concept thus hedges against perturbations in the
best-case scenarios.
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For calculating �lC-robust solutions again the weighted sum scalarization is helpful, but in order to later
on compute �lC-robust solutions to P(U), we de�ne a new weighted sum problem in a general setting:

Let y∗ ∈ C∗ \ {0} (y ∈ C#, y ∈ C∗ \ {0}). Consider the weighted sum scalarization problem

min
x∈X

inf
ξ∈U

y∗ ◦ f(x, ξ). (P(U)
opt
y∗ )

Theorem 2. Consider an uncertain vector optimization problem P(U). The following statements hold:

(a) If x0 is a unique optimal solution of (P(U)
opt
y∗ ) for some y∗ ∈ C∗ \ {0}, then x0 is a �lC-robust solution

to P(U).

(b) If x0 is an optimal solution of (P(U)
opt
y∗ ) for some y∗ ∈ C# and minξ∈U y∗ ◦ f(x, ξ) exists for all

x ∈ X , then x0 is a �lC\{0}-robust solution to P(U).

(c) If x0 is an optimal solution of (P(U)
opt
y∗ ) for some y∗ ∈ C∗ \ {0} and minξ∈U y∗ ◦ f(x, ξ) exists for all

x ∈ X , then x0 is a �lintC-robust solution to P(U).

Proof. Suppose x0 is not a (�lC/�lC\{0}/�
l
intC)-robust. Consequently, there exists an x̄ ∈ X \ {x0} s.t.

fU (x̄) +Q ⊇ fU (x0) for Q = C (Q = C \ {0}, Q = intC, respectively). That is equivalent to

∀ξ ∈ U ∃η ∈ U : f(x̄, η) +Q 3 f(x0, ξ)

⇐⇒ ∀ξ ∈ U ∃η ∈ U : f(x̄, η) ∈ f(x0, ξ)−Q (7)

Now choose y∗ ∈ C∗ \ {0} for Q = C (y∗ ∈ C# for Q = C \ {0}, y∗ ∈ C∗ \ {0} for Q = intC, respectively)
arbitrary, but �xed. Hence, we obtain from (7)

=⇒ ∀ξ ∈ U ∃η ∈ U : y∗ ◦ f(x, η) ≤ (<,<, respectively) y∗ ◦ f(x0, ξ)

=⇒ ∃η ∈ U : y∗ ◦ f(x, η) ≤ (<,<, respectively) inf
ξ∈U

y∗ ◦ f(x0, ξ)

=⇒ inf
η∈U

y∗ ◦ f(x, η) ≤ (<,<, respectively) inf
ξ∈U

y∗ ◦ f(x0, ξ),

in contradiction to the assumption.

Based on these results, we are able to present the following algorithm that computes (�lC/�lC\{0}/�
l
intC)-

robust solutions to P(U):

Algorithm 3 for deriving (�lC/�lC\{0}/�
l
intC)-robust solutions to P(U) based on weighted sum

scalarization:

Input & Step 1-5: Analogous to Algorithm 1, only replacing (P(U)y∗) by (P(U)
opt
y∗ ) and replacing

maxξ∈U y∗ ◦ f(x0, ξ) by minξ∈U y∗ ◦ f(x0, ξ).

The next algorithm computes (�lC/�lC\{0}/�
l
intC)-robust solutions via weighted sum scalarization by

altering the weights:
Algorithm 4 for calculating a single desired (�lC/�lC\{0}/�

l
intC)-robust solution to P(U) based

on weighted sum scalarization:

Input & Step 1-5: Analogous to Algorithm 2, only replacing (P(U)y0) by (P(U)
opt
y∗ ), maxξ∈U y∗ ◦ f(x0, ξ)

by minξ∈U y∗ ◦ f(x0, ξ) and (P(U)ȳj+tl+1(ȳj+1−ȳj)) by (P(U)
opt
ȳj+tl+1(ȳj+1−ȳj)).

3.3 �s
C-robustness

Based on the de�nition of the set less order relation, we can now introduce the concept of �sC-robustness:

De�nition 8. A solution x0 of P(U) is called (�sC / �sC\{0} / �
s
intC)-robust if there is no x̄ ∈ X \{x0} such

that
fU (x̄) �sQ fU (x0)

for Q = C (Q = C \ {0}, Q = intC, respectively).
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fU (x)

fU (x)

fU (x)− C

fU (x) + C

Figure 2: x is �sC-robust.

Example 4. This Example shows that x is �sC-robust, while it is not �uintC-robust.

Remark 8. Note that a �lC-robust solution is as well �sC-robust by de�nition. The same holds for a �uC-
robust solution.

The concept of �sC-robustness can be interpreted in the following way: In a situation where it is not clear
if one should follow a risk a�ne or risk averse strategy (e.g., the decision maker is not at hand or wants to
get a feeling for the variety of the solutions) this concept might be helpful as it calculates solutions which
re�ect these di�erent strategies. Therefore, this concept can serve as a pre-selection before deciding a de�nite
strategy.

Computing �sC-robust solutions is possible with the help of the following optimization problem:(
infξ∈U y∗ ◦ f(x, ξ)
supξ∈U y∗ ◦ f(x, ξ)

)
→ v −min

x∈X
(P(U)

biobj
y∗ )

with y∗ ∈ C∗ \ {0} (y∗ ∈ C#). We have the following theorem:

Theorem 3. • If x0 is strictly Pareto e�cient for problem (P(U)
biobj
y∗ ) for some y∗ ∈ C∗ \ {0}, then x0

is �sC-robust.

• If x0 is weakly Pareto e�cient for problem (P(U)
biobj
y∗ ) for some y∗ ∈ C∗ \ {0} and minξ∈U y∗ ◦ f(x, ξ)

and maxξ∈U y∗ ◦ f(x, ξ) exist for all x ∈ X and the chosen weight y∗ ∈ C∗\{0}, then x0 is �sintC-robust.

• If x0 is weakly Pareto e�cient for problem (P(U)
biobj
y∗ ) for some y∗ ∈ C# and minξ∈U y∗ ◦ f(x, ξ) and

maxξ∈U y∗ ◦ f(x, ξ) exist for all x ∈ X and the chosen weight y∗ ∈ C#, then x0 is �sC\{0}-robust.

Proof. Let x0 be strictly Pareto e�cient (weakly Pareto e�cient, weakly Pareto e�cient) for problem

(P(U)
biobj
y∗ ) with some some y∗ ∈ C∗ \{0} (y∗ ∈ C∗ \{0}, y∗ ∈ C#, respectively), i.e., there is no x̄ ∈ X \{x0}

such that

inf
ξ∈U

y∗ ◦ f(x, ξ) ≤ (<, <) inf
ξ∈U

y∗ ◦ f(x0, ξ)

and sup
ξ∈U

y∗ ◦ f(x, ξ) ≤ (<, <) sup
ξ∈U

y∗ ◦ f(x0, ξ).

Now suppose x0 is not (�sC/�sintC/�sC\{0})-robust. Then there exists an x̄ ∈ X \ {x0} such that

fU (x̄) +Q ⊇ fU (x0) and fU (x̄) ⊆ fU (x0)−Q

for Q = C (Q = intC, Q = C \ {0}). That implies

∃x̄ ∈ X : ∀ξ1, ξ2 ∈ U ∃η1, η2 ∈ U : f(x̄, η1) +Q 3 f(x0, ξ1) and f(x̄, ξ2) ∈ f(x0, η2)−Q (8)

for Q = C (Q = intC, Q = C \ {0}). Choose now y∗ ∈ C∗ \ {0} (y∗ ∈ C∗ \ {0}, y∗ ∈ C#) as in problem

(P(U)
biobj
y∗ ). We obtain from (8)

∃x̄ ∈ X : ∀ξ1, ξ2 ∈ U ∃η1, η2 ∈ U : y∗ ◦ f(x, η1) ≤ (<, <) y∗ ◦ f(x0, ξ1)

and y∗ ◦ f(x, ξ2) ≤ (<, <) y∗ ◦ f(x0, η2)

⇒ inf
ξ∈U

y∗ ◦ f(x, ξ) ≤ (<, <) inf
ξ∈U

y∗ ◦ f(x0, ξ) and sup
ξ∈U

y∗ ◦ f(x, ξ) ≤ (<, <) sup
ξ∈U

y∗ ◦ f(x0, ξ).
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The last two strict inequalities hold because the minimum and maximum exist. But this is a contradiction
to the assumption.

Based on these observations, we can formulate the following algorithm for computing �sC-robust solutions
to P(U).

Algorithm 5 for computing �sC-robust solutions using a family of problems (P(U)
biobj
y∗ ):

Input & Step 1-3, Step 5: Analogous to Algorithm 1.

Step 4: Find a set of (strictly, weakly, ·) Pareto e�cient solutions {x1, . . . , xs} of (P(U)
biobj
y∗ ).

a) If xj (j=1, . . . ,s) is a strictly Pareto e�cient solution of (P(U)
biobj
y∗ ), then xj is �sC-robust for P(U),

thus
OptC := OptC ∪ {x0}.

b) If xj (j=1, . . . ,s) is a weakly Pareto e�cient solution of (P(U)
biobj
y∗ ) and maxξ∈U y∗ ◦ f(x, ξ) and

minξ∈U y∗ ◦ f(x, ξ) exist for all x ∈ X , then xj is �sintC-robust for P(U), thus

Optint C := Optint C ∪ {xj}.

c) If xj (j=1, . . . ,s) is weakly Pareto e�cient for problem (P(U)
biobj
y∗ ) and y∗ ∈ C# and minξ∈U y

∗ ◦ f(x, ξ)

and maxξ∈U y∗ ◦ f(x, ξ) exist for all x ∈ X and the chosen weight y∗ ∈ C#, then xj is �sintC-robust
for P(U), thus

OptC\{0} := OptC\{0} ∪ {xj}.

In the following we present an algorithm that computes �sC-robust solutions while varying the weights in
the vector of objectives of problem (P(U)

biobj
y∗ ).

Algorithm 6 for computing set less ordered robust solutions using a family of problems
(P(U)

biobj
y∗ ):

Input & Step 1-3 & Step 5-8: Analogous to Algorithm 2, only replacing (P(U)y∗) by (P(U)
biobj
y∗ ) and

(P(U)ȳj+tl+1(ȳj+1−ȳj)) by (P(U)
biobj
ȳj+tl+1(ȳj+1−ȳj)).

Step 4: Analogous to Step 4 of Algorithm 5.

3.4 Alternative Set Less Ordered Robustness

Another way of combining the u- and l-type set-relations is the alternative set less order relation:

De�nition 9 (Alternative set less order relation (compare Ide and Köbis [12])). Let C ⊂ Y be a proper
closed convex and pointed cone. Furthermore, let A,B ⊂ Y be arbitrarily chosen sets. Then the set less order
relation is de�ned by

A �sC B :⇐⇒ A �uC B or A �lC B.

Based on this de�nition we can now de�ne the concept of �aC-robustness for general cones:

De�nition 10. A solution x0 of P(U) is called (�aC / �aC\{0} / �
a
intC)-robust if there is no x̄ ∈ X \ {x0}

such that
fU (x̄) �aQ fU (x0)

for Q = C (Q = C \ {0}, Q = intC, respectively).

The following example illustrates �aC-robust solutions.

Example 5. In Figure 3, both x and y are �aC-robust.

The next lemma follows directly from the de�nitions:

Lemma 2. Note that a solution of P(U) is �aC-robust if and only if it is �lC-robust and �uC-robust.
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fU (x)

fU (x)

fU (x)− C

fU (x) + C

Figure 3: Both x and x are strictly �aC-robust.

As this lemma shows, the concept of �aC-robustness is rather restrictive as only solutions which are �uC-
robust and �lC-robust, thus re�ect both a risk averse and a risk a�ne strategy, are also �aC-robust. Therefore,
this concept is �t for a decision maker who does not want to make any mistake in terms of the best or worst
cases. We can see easily that such an approach would be very restrictive against the solutions and that only
very few solutions should ful�ll these conditions.

Due to this Lemma 2, from Algorithms 1 and 3, we can deduce the following algorithm for calculating
�aC-robust solutions to P(U):

Algorithm 7 for deriving �aC-robust solutions to P(U):

Input: Uncertain multi-objective problem P(U), solution sets OptaC = OptC\{0}a = Optaint C = ∅.

Step 1: Compute a set of (�lC/�lintC/�lC\{0})-robust solutions (OptlC , Optlint C , OptlC\{0}) using Algo-
rithm 6.

Step 2: Compute a set of (�uC/�uintC/�uC\{0})-robust solutions (OptuC , Optuint C , OptuC\{0}) using Algo-
rithm 1 or 2.

Output: Set of (�aC/�aintC/�aC\{0})-robust solutions

OptaC = OptuC ∩OptlC ,
Optaint C = Optuint C ∩Optlint C ,

OptaC\{0} = OptuC\{0} ∩OptlC\{0} .

3.5 Further Relationships Between the Concepts

From Remark 8 we can see that every �uC-robust solution and every �lC-robust solution are also �sC-robust
solutions. The inverse direction does not hold. The following example in Figure 4 shows that a solution can
be �sC-robust but neither �uC-robust nor �lC-robust.

We summarize the relationship between the various robustness concepts in Figure 5.

4 Conclusions

In the following we will explain that our algorithms presented in Section 3 can be used for solving special
classes of set-valued optimization problems.

Having a close look at all the concepts of robustness from Section 3, we can see that in fact all of these
are set-valued optimization problems.

Consider a set-valued optimization problem of the form

� −minimize F (x), subject to x ∈ X , (SP −�)

with some given preorder � and an objective function F : X ⇒ Y we can see the following:
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fU (x)
fU (x)

fU (x̃)

fU (x)− C

fU (x) + Rk≥

fU (x̃) + C

Figure 4: x is �sC-robust, but neither �uC-robust nor �lC-robust.

�aC-robust �lC-robust�uC-robust

�sC-robust

Figure 5: Scheme of solutions to an uncertain multicriteria optimization problem.

If the preorder � is equal to �aC , �lC , �uC , or �sC with some cone C and F (x) can be parametrized by a
parameter ξ ∈ U with some set U in the way that

F (x) := fU (x) for all x ∈ X ,

where fU (x) = {f(x, ξ)|ξ ∈ U}, then the set-valued optimization problem (SP− �) is equivalent to �nding
�-robust solutions to the uncertain multi-objective problem P(U) and can therefore be solved by solving one
of the respective algorithms presented in Section 3.

We revealed strong connections between set-valued optimization and uncertain multi-objective optimiza-
tion. Furthermore, we generalized the results achieved in [7] and [12] to more general sets Q. In particular,
we provided solution algorithms for a certain class of set-valued optimization problems. This class of set-
valued optimization problems is general enough to provide new algorithms for a lot of set-valued optimization
problems. Furthermore, it seems possible to extend this class of problems to a more general one, but this is
future work and of interest for the next steps in this area of research.

Moreover, this paper made very clear that �nding robust solutions to uncertain multi-objective opti-
mization problems can be interpreted as an application of set-valued optimization. Thus, robust solutions
to uncertain multi-objective optimization problems can be obtained by using the solution techniques from
set-valued optimization. Formulating concrete algorithms of this kind is another topic for future research.
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