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We generalize the classical median line location problem, where the sum
of distances from a line to some given demand points is to be minimized,
to a setting with partial coverage distance. In this setting, a demand point
within a certain specified threshold distance r of the line is considered covered
and its partial coverage distance is considered to be zero, while non-covered
demand points are penalized an amount proportional to their distance to the
covered region. The sum of partial coverage distances is to be minimized. We
consider general norm distances as well as the vertical distance and extend
classical properties of the median line location problem to the partial coverage
case. We are finally able to derived a finite dominating set. While a simple
enumeration of the finite dominating set takes O(m3) time, m being the
number of demand points, we show that this can be reduced to O(m2 logm)
in the general case by plane sweeping techniques and even to O(m) for the
vertical distance and block norm distances by linear programming.

Keywords median line location, partial coverage, finite dominating set, plane sweeping,
block norm

1 Introduction

Locating a straight line in continuous space in order to represent (or to fit) a given set
of fixed points is a well-studied problem in facilities location theory. The problem was
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originally posed in terms of a minimization of the sum of weighted Euclidean distances
from a set of fixed points (demand points or customers) to a line in the plane R2 [MT83,
LC85]. The minmax criterion, i.e., minimizing the maximum distance to the line, has also
been investigated [HT88]. In facility location, the linear facility, or line, can represent
a new road or railway track through a given region, a dense series of communication
towers, a main connector in an electrical circuit board, and so on. For an introduction
to the linear facility location problem, see for example [LMW88]. Extensions of the basic
model include the use of arbitrary norms in place of Euclidean distances [Sch99] and the
location of a line in R3 [BJS02, BJS03, BCSS11]. A related problem to line location in
the plane is the location of a hyperplane in Rn, [MS98, MS01] and references therein.
Locating a linear facility on a sphere translates to the location of a great circle on the
sphere [BJS07].

In this paper we investigate a new extension of the median line problem in the plane
where ’partial coverage distance’ is used as the distance measure. The concept of partial
coverage was recently introduced by [BJKS13] for the location of a point facility. The
idea is that the distance function between a customer and the new facility is zero if the
customer is within a threshold value r of the facility, and otherwise, becomes the closest
distance from the customer to the boundary of a disc of diameter 2r centered at the
facility. Thus, the partial coverage model attempts to combine the notion of coverage
with the median objective. For further details and motivation see [BJKS13].

We extend the partial coverage concept to a linear facility in a straightforward manner.
If a customer is within a specified threshold distance of r to the line, we consider that the
customer is happy (i.e., covered) and associate a zero cost to that customer. Otherwise,
a penalty is assessed which is proportional to the distance to the line in excess of r. The
objective is then to minimize the sum of these penalty costs.

The location of a line with partial coverage is equivalent in effect to the location of a
’thick’ linear facility which is a strip of width 2r (as measured by the given distance
function). Thus, we obtain a new type of problem, which may also be referred to as
median strip location problem, and which may have interesting applications in areas other
than facility location such as regression analysis. Another interpretation of the problem
is as follows: replace each fixed point by a disc of diameter 2r centered at the point;
then locate a median line with respect to the discs. This problem has been studied for
the Euclidean distance in [RT94].

It is well-known that an optimal solution of the median line problem always exists where
two of the fixed points are coincident with the line when distance is measured by an
arbitrary norm. Furthermore, if the norm is a smooth one, this incidence property
even becomes a necessary condition [Sch99, MS99]. This important result reduces the
problem to a search through a finite number of candidate solutions. One of the main
findings of this paper is that the incidence property may be generalized to line location
with partial coverage. Based on this, a finite dominating set can be developed also for
the more general problem, although the candidate solutions are different than before.

2



The paper is organized as follows: Section 2 summarizes the notation and presents
the mathematical model; Section 3 analyzes the model and establishes the incidence
property and the finite dominating set. Section 4 presents different approaches derived
from the properties obtained in the previous sections. These are an enumeration of the
finite candidate set, an efficient sweep algorithm, and a linear programming formulation
for the case of block norm distances. Finally, Section 5 gives our conclusions and some
thoughts on further research.

2 The line location problem with partial coverage distance

The given information consists of a set of m fixed points (also demand points or cus-
tomers) with known locations pi = (pi1, pi2)

T ∈ R2, i = 1, . . . ,m, and given weights
wi > 0, i = 1, . . . ,m, which may, for example, represent a demand for service or a flow
in the location model. A threshold value r is also specified. If the distance to the linear
facility exceeds r, a penalty cost proportional to the excess distance is charged; other-
wise, the point is covered and the cost is zero. The distance to the line refers either to
the closest distance measured by some given (arbitrary) norm, or to the vertical distance
to the line. The latter is added because of its importance in regression analysis.

Let L denote the line (i.e., linear facility) to be located. We may define this line in terms
of an unknown normal vector n = (n1, n2)

T ∈ R2 \ {0} and some number c ∈ R:

L = {x ∈ R2 : nTx = c}. (1)

If L is not a vertical line (n2 6= 0), we may set n2 = 1 and obtain an equivalent
representation:

L = {x ∈ R2 : x2 = sx1 + b} (2)

where s and b are, respectively, the slope and intercept of the line. We write Ln,c for
a line in the normal vector parametrization or, if possible without ambiguity, Ls,b for a
line in the slope-intercept parametrization.

Let k : R2 → R be a norm in the plane. Then the distance from any point p ∈ R2 to
line L with respect to norm k is defined as

d(p, L) = min{k(p− x) : x ∈ L}, (3)

that is, the distance is the shortest one between p and L measured by the norm k. In
[Man99] and [PC01] it is shown that for a line L = Ln,c this distance can be computed
as

d(p, Ln,c) =
|nT p− c|
k◦(n)

(4)

where k◦ : R2 → R2 denotes the dual norm of k. For the case of the vertical distance
between a point p and a non-vertical line L (i.e., n2 6= 0) we obtain

d(p, Ln,c) =
|nT p− c|
|n2|

(5)
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or equivalently d(p, Ls,b) = |p2−sp1− b| in the (s, b)-representation. Hence, the distance
between a point and a (non-vertical) line with respect to a norm k is given as the vertical
distance divided by the dual norm k◦((s,−1)T ) of the normal vector. Notice that point-
line distance, no matter if vertical or measured with a norm, can be written in the form
(4) where k◦ is a convex function of n, namely the dual norm in the norm distance case
and k◦(n) := |n2| in the vertical distance case. We will make use of this in the next
sections to unify some of the proofs.
The partial coverage distance between p and L is defined as follows for either case:

D(p, L) = max{d(p, L)− r, 0} = [d(p, L)− r]+, (6)

where [a]+ = max{a, 0} for all a ∈ R. The new problem which we study here replaces
the standard distance from point to line by the partial coverage distance:

(MLPC) min
line L

m∑
i=1

wiD(pi, L). (7)

We refer to the problem above as the median line problem with partial coverage (MLPC)
and denote its objective by f(L) or also

f(n, c) =
m∑
i=1

wi

[
|nT pi − c|
k◦(n)

− r
]+

(8)

if L is parametrized by normal n and a real number c.

Since (MLPC) is a generalization of a well-known line location problem, we will first of
all explore connections to previously treated problems from the literature.

Lemma 1 (Connections to other line location problems). Let rmax be the optimal ob-
jective value of the unweighted center line location problem for points p1, . . . , pn. Let a
radius r be given and denote by z∗ the optimal objective value of (MLPC) for the same
points, but possibly with weights. Then the following hold.

1. If r = 0, then (MLPC) is the median line location problem.

2. r < rmax if and only if z∗ > 0 and r ≥ rmax if and only if z∗ = 0.

3. If r ≥ rmax then any optimal solution to the unweighted center line location problem
is optimal for (MLPC). In case of r = rmax a line L is optimal for (MLPC) if
and only if L is optimal for the unweighted center line problem.

Proof. 1. This is obvious since D(p, L) = d(p, L) for r = 0.

2.

z∗ = 0 ⇔ ∃L : D(pi, L) = 0 ∀ i = 1, . . . ,m

⇔ ∃L : d(pi, L) ≤ r ∀ i = 1, . . . ,m

⇔ ∃L : max
i=1,...,m

d(pi, L) ≤ r

⇔ rmax = min
L

max
i=1,...,m

d(pi, L) ≤ r
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which proves both assertions because f ≥ 0.

3. This can be seen easily from a calculation similar to that of the second case.

This allows us to calculate an optimal solution to (MLPC) in O(m logm) time as center
line if r ≥ rmax [Sch99]. If the threshold r is even larger, namely

r ≥ r̄ := max
i,j=1,...,n

d(pi, pj)

the problem becomes trivial and can be solved in constant time: every line L passing
through one of the fixed points, say pk, is optimal because d(pi, L) ≤ d(pi, pk) ≤ r̄
for all i = 1, . . . ,m. The interesting cases are those with some intermediate r, namely
r ∈ (0, rmax).

Before we turn to properties which help us to solve (MLPC), it is worth noting, that
there is no obvious analogon to Lemma 1.2 which allows us to solve (MLPC) for small
r > 0 by solving a median line location problem. More precisely, for any r > 0 – however
small – the solution to (MLPC) need not coincide with the solution to the median line
location problem, i.e. (MLPC) with r = 0, see Figure 1 for an example with m = 4
and wi ≡ 1 using the Euclidean distance as a norm. This is a main difference to the
location of a point with partial coverage where it is known that the solution of the
partial coverage problem coincides with the solution of the median point problem for
small coverage radii, see [BJKS13].

(0, 0)

(0, 1)

(4, 0)

(4, 1)

(a) An optimal median line.

(0, 0)

(0, 1)

(4, 0)

(4, 1)

(b) An optimal partial coverage line
for small r > 0. Coverage zone
is between dashed lines.

Figure 1: An optimal median line that does not stay optimal for (MLPC) even for
arbitrarily small r > 0.

Note that it is nevertheless possible under certain conditions that a median line remains
optimal when allowing r > 0. It can be shown that this is the case for an odd numberm of
unweighted demand points in general position. There are also other (trivial) conditions,
where optimality remains unchanged, e.g. if all pi are collinear.

3 Properties and a finite dominating set

In order to be able to solve (MLPC), we first derive some helpful properties. This
section is inspired by related work that has been done on the median line problem
without partial coverage and shows that many properties which hold for this problem

5



can be generalized to our case. We start by showing an analogon to the well-known
pseudo-halving property which states that every median line cuts the set of demand
points approximately in half. To this end, denote for a fixed line L by

I+L = {i : d(pi, L) > r and pi lies above L}

the index sets of demand points above L and having a strictly greater distance to L
than the threshold value r. Furthermore, let analogously I

+
L be the index set of demand

points above L with distance greater or equal than the threshold distance r, and let I−L
and I

−
L be the corresponding index sets for demand points below L. Note that above

should be replaced by to the right to deal with vertical lines. For each of these index sets
the sum of corresponding weights is denoted by W+

L , W
+
L , W−L , and W

−
L , respectively,

e.g.

W+
L =

∑
i∈I+L

wi.

Recall that in the case r = 0, i.e. the median line location problem without partial
coverage, every optimal line L satisfies W+

L ≤ W
−
L and W−L ≤ W

+
L , see e.g. [Sch99].

The following theorem extends this to the case r > 0, i.e. the partial coverage setting.

Theorem 2 (Pseudo-halving property). Let L be optimal for (MLPC). Then W+
L ≤

W
−
L and W−L ≤W

+
L .

Proof. To show this, we prove the stronger statement, that a line L is optimal for
(MLPC) restricted to some normal n if and only if W+

L ≤ W
−
L and W−L ≤ W

+
L . Then

the assertion follows since an optimal line L (which has some normal, say n) for (MLPC)
must be optimal for (MLPC) restricted to that normal n.

Clearly, for each partial coverage distance discussed here, induced by a norm or vertical,
the objective f(n, c) is convex in the right hand side c for each normal n, see (4) and
(5). Hence every locally optimal solution is globally optimal for fixed n. We show now
that the assertion of the theorem is equivalent to a local optimality condition.
Take some line L = Ln,c, w.l.o.g. n pointing upwards. Then there is an δ > 0 such that
for every upward translation Lε = Ln,c+ε, 0 < ε < δ of L the sets I+L and I+Lε as well as

I
−
L and I

−
Lε coincide. Then it holds

f(n, c+ ε) =
∑
i∈I+Lε

wi

(
nT pi − c− ε

k◦(n)
− r
)
−
∑
i∈I−Lε

wi

(
nT pi − c− ε

k◦(n)
− r
)

=
∑
i∈I+L

wi

(
nT pi − c
k◦(n)

− r
)
−
∑
i∈I−L

wi

(
nT pi − c
k◦(n)

− r
)
−
ε(W+

L −W
−
L )

k◦(n)

= f(n, c)−
ε(W+

L −W
−
L )

k◦(n)
.
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We hence obtain that f(n, c) ≤ f(n, c + ε) if and only if W+
L − W

−
L ≤ 0. A similar

calculation for downward translations yields f(n, c− ε) = f(n, c)− ε(W−L −W
+
L )/k◦(n)

and hence f(n, c) ≤ f(n, c− ε) if and only if W−L ≤W
+
L . Together, L is optimal for the

normal-restricted (MLPC) if and only if W+
L ≤W

−
L and W−L ≤W

+
L .

We will now come to one of the most important results from an algorithmically point of
view, the incidence property. It is an extension of the incidence property for the median
line location problem which states that there always is an optimal line which passes
through two of the demand points [MN80, Sch99], thus giving rise to a finite dominating
set and a simple enumeration algorithm. In our case with partial coverage we obtain the
existence of an optimal line which has two of the given points at threshold distance r to
the line.

Theorem 3 (Incidence property). If r < rmax there is an optimal line L for (MLPC)
such that d(pj , L) = d(pk, L) = r for at least two j, k ∈ {1, . . . ,m} such that pj 6= pk. If
d is induced by a smooth norm, then every optimal line satisfies this criterion.

Proof. Without loss of generality, suppose that all pi, i = 1, . . . ,m, are distinct. Other-
wise duplicate points may be replaced by a single point with adjusted weight.

Similarly to the proof of the pseudo-halving property (Theorem 2), any line L may
be shifted upwards or downwards without deteriorating the objective until there is one
demand point, say pj , at threshold distance from L, i.e. d(pj , L) = r. We now perturb an
optimal line L̃ = Lñ,c̃ while keeping pj at distance r from L – and still not increasing the
objective – until we reach another point, say pk, also at threshold distance. The argument
is based on the observation that this perturbation is a locally quasi-concave process since
the objective function is locally the ratio of a non-negative linear function and a positive
convex function, see [ADSZ88]. This is now justified formally. Let L̃ = Lñ,c̃ be fixed
and consider any (n, c) in the region

R := {(n′, c′) : I+Ln′,c′
= I+

L̃
and I−Ln′,c′

= I−
L̃
}.

For every (n, c) ∈ R we obtain

f(n, c) =
∑
i∈I+

L̃

wi

(nT pi − c
k◦(n)

− r
)

+
∑
i∈I−

L̃

wi

(c− nT pi
k◦(n)

− r
)

(9)

=
1

k◦(n)

( ∑
i∈I+

L̃

win
T pi −

∑
i∈I−

L̃

win
T pi + c(W−

L̃
−W+

L̃
)− rk◦(n)(W+

L̃
+W−

L̃
)
)

.

We are interested in the behavior of f(n, c) under the constraint that pj is at threshold
distance from Ln,c, i.e. under the constraint nT pj − c = rk◦(n) if we assume w.l.o.g.
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that pj lies above L̃. Plugging this into (9) yields

f(n, c) =
1

k◦(n)

( ∑
i∈I+

L̃

win
T pi −

∑
i∈I−

L̃

win
T pi (10)

+ (nT pj − rk◦(n))(W−
L̃
−W+

L̃
)
)
− r(W+

L̃
+W−

L̃
)

=
1

k◦(n)

( ∑
i∈I+

L̃

win
T (pi − pj)−

∑
i∈I−

L̃

win
T (pi − pj)− 2rk◦(n)W−

L̃

)

which is quasi-concave on any region for n on which the index sets do not change. Thus
a minimum is attained on the boundary of this region. Note that these regions are
full-dimensional. Such a boundary corresponds to another point pk being at distance r
from the minimizing line.
To obtain the stronger result for smooth norms k, note that k◦ is strictly convex in this
case and thus (10) is strictly quasi-concave in n, see [ADSZ88]. Hence a minimum is
only attained on the boundary.

A direct consequence of the incidence properties is an extension of the so-called halving
property for smooth norms [Sch99]. This property states that every optimal line in the

model without partial coverage satisfies W+
L < W

−
L and W−L < W

+
L . This holds also in

the partial coverage setting.

Corollary 4 (Halving property). If d is induced by a smooth norm, then every optimal

line L for (MLPC) satisfies W+
L < W

−
L and W−L < W

+
L .

Proof. Suppose there is an optimal line L with W+
L = W

−
L . Similar to the proof of

Theorem 2, this line stays optimal if shifted by some small ε > 0 upwards where ε can
be chosen so that there is no point at threshold distance r from L anymore. This is a
contradiction to Theorem 3 and the case W−L = W

+
L is settled analogously.

While Theorem 3 yields a finite dominating set in the median line location model without
partial coverage, this is unfortunately not true in the partial coverage case, i.e. r > 0.
More precisely, a line is not necessarily determined by two points which are at fixed
distance r of the line.

For d = dver this is the case if two demand points, p = (xp, yp)
T and q = (xq, yq)

T , are
vertically aligned, i. e. xp = xq and |yp − yq| = 2r. Then any line L passing through
(xp,

yp+yq
2 )T will satisfy dver(p, L) = dver(q, L) = r. Fortunately, this is the only case in

which infinitely many lines have the same distance r from both p and q. If |yp−yq| 6= 2r
there is in fact no line with this property since if there was such a line L it would have to
pass the midpoint of the segment joining p and q, otherwise d(p, L) 6= d(q, L). But then
2r = d(p, L) + d(q, L) = |yp − yq| 6= 2r, a contradiction. If on the other hand xp 6= xq,
then a line with d(p, L) = d(q, L) = r has to have p and q either above or below it,
respectively. If e. g. p is below L then L has to pass through (xp, yp + r). Thus there
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are 4 lines in total with p and q at distance r of it: each such line must pass through
(xp, yp + r) or (xp, yp − r) and also through (xq, yq + r) or (xq, yq − r).
Theorem 6 settles the question for norm distances d. In order to proof it, we need a
generalized version of the Cauchy-Schwarz inequality which can be found for example in
[Mic93].

Lemma 5 (Generalized Cauchy-Schwarz). Let k be a norm on R2 and k◦ its dual. Then
vTw ≤ k(v)k◦(w) for any v, w ∈ R and if v, w 6= 0 equality holds if and only if w = λz
for some λ ∈ R and a subgradient z ∈ ∂k(v).

Theorem 6 (Solution count). Let p and q be two distinct points in R2 and r > 0. Let
k be a norm on R2.

1. If 2r > k(p− q), there are exactly two lines with p and q at distance r.

2. If 2r < k(p− q), there are exactly four lines with p and q at distance r.

3. If 2r = k(p− q) and k is smooth at p− q, there are exactly three lines with p and
q at distance r.

4. If 2r = k(p− q) and k is non-smooth at p− q, there are infinitely many lines with
p and q at distance r.

For an illustration of Theorem 6, see Figure 2.

Proof. Given two points p and q, there always exist two lines with p and q at distance
r, regardless of k(p− q): both are parallel to the line joining p and q, since

d(p, L) =
nT p− c
k◦(n)

= r and d(q, L) =
nT q − c
k◦(n)

= r ⇒ nT (p− q) = 0,

and one is translated such that both p and q lie below it, the other is translated such
that both p and q lie above it. The amount of translation must be chosen such that
d(p, L) = d(q, L) = r.
It is more interesting to analyze if there exist lines L such that p and q lie on different
sides of L. The number of such lines has to be added to each of the four cases stated in
the theorem, namely 0, 2, 1, or infinitely many, as proved below. Together with the two
lines with p and q on the same side of L this gives the stated number of lines.
If p and q are on different sides of L it holds

d(p, L) =
nT p− c
k◦(n)

and d(q, L) =
c− nT q
k◦(n)

after appropriately selecting n. This means that d(p, L) = d(q, L) = r if and only if
nT (p− q)/k◦(n) = 2r. We are hence interested in the solutions of

g(n) :=
nT (p− q)
k◦(n)

= 2r (11)

and distinguish the following three cases.
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r

Figure 2: An illustration of the four cases of Theorem 6, cases 1 through 4 from top left
to bottom right.
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1. If k(p − q) < 2r then (11) does not have a solution. Assume it had a solution.
Then we get nT (p− q) = 2rk◦(n) > k(p− q)k◦(n) which is a contradiction to the
Cauchy-Schwarz inequality, Lemma 5.

2. In the case k(p − q) > 2r we construct two solutions each of which determines
a different line. To this end, choose some subgradient v ∈ ∂k(p − q) and choose
w ⊥ v as well as u ⊥ (p− q) to define the cones

A :={z ∈ R2 : zT (p− q) ≥ 0, zTw ≥ 0} \ {0} and

B :={z ∈ R2 : zT (p− q) ≥ 0, zTw ≤ 0} \ {0}.

Now u, v ∈ A and −u, v ∈ B (if not, substitute v by −v or w by −w) and it
is g(u) = g(−u) = 0. Furthermore, v ∈ ∂k(p − q) (or −v ∈ ∂k(p − q)), hence
the generalized Cauchy-Schwarz inequality vT (p − q) ≤ k◦(v)k(p − q) holds with

equality. This yields g(v) = vT (p−q)
k◦(v) = k(p−q). Since A and B are both connected,

for any r satisfying 0 < 2r < k(p − q) there are nA ∈ A and nB ∈ B with
g(nA) = g(nB) = 2r by the intermediate value theorem (see e.g. [Fle77, Thm.
2.8]). To show that nA and nB determine distinct lines, we have to show that
there is no λ ∈ R \ {0}, so that nA = λnB. Assume on the contrary that such
a λ exists. If λ > 0, then nA ∈ B and hence in A ∩ B. Since A ∩ B contains
only multiples of v ∈ ∂k(p − q), this leads to g(nA) = k(p − q), again by the
equality part of the Cauchy-Schwarz inequality, and thus to a contradiction to
g(nA) = 2r < k(p− q). If λ < 0, then nA = λnB /∈ A gives another contradiction
and thus we have found two distinct lines with normals nA and nB, respectively.

Now we show that there are not more than two lines having p and q on different
sides and distance r to both of them. Suppose there are three lines L1, L2 and L3.
Since they all have the same distance from p and q and also p and q lie on different
sides of each Li, they all intersect in the midpoint x = 1

2(p+ q) of the line segment
joining p and q. This holds since, w.l.o.g.,

nT p− c = k◦(n)r and c− nT = k◦(n)r ⇒ nT (p− q) = 2rk◦(n).

It follows that

nT
(p+ q

2

)
= nT

(
p+

q − p
2

)
= nT p− 1

2
nT (p− q) = nT p− k◦(n)r = c.

Observe that x cannot be the closest point of any Li to p since otherwise p would
have distance k(p− x) > r from each line.

Now we derive a contradiction to the statement that all three lines have distance
r from p. Notice that any ray emanating from p which is not parallel to any of
the three lines intersects each Li in a different point yi if it does not pass through
x. Let the Li be ordered in increasing order of the distances k(yi − p). Then the
index i = 2 is the same for all such rays, i.e., L2 is always between L1 and L3, see
Figure 3. Consider the specific ray joining p and the norm-closest point y on L2,
i.e., y = y2. Then d(p, L1) ≤ k(y1 − p) < k(y2 − p) = d(p, L2), a contradiction.
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L1

L2 L3
ray

p

q

xy1

y2

y3

Figure 3: The line L2 is always between lines L1 and L3.

3. Now let k(p−q) = 2r. In this case, the number of lines determined by the solutions
of (11) equals the cardinality of the set ∂k(p− q):
• Let n be a solution to (11). Then nT (p − q) = 2rk◦(n) = k(p − q)k◦(n),

hence the generalized Cauchy-Schwarz inequality holds with equality, and we
conclude that λn ∈ ∂k(p− q).
• On the other hand, if λn ∈ ∂k(p − q), then we know that nT (p − q) =
k(p− q)k◦(n) = 2rk◦(n), i.e. (11) holds.

If k is smooth at p− q we have |∂k(p− q)| = 1 and the number of lines are three,
and if k is non-smooth at p − q, |∂k(p − q)| = ∞ and hence infinitely many lines
with p and q at distance r from them.

Now we are left with a finite candidate set except in the last case of Theorem 6 in which
there is still one degree of freedom left. The following theorem exploits the local quasi-
concavity of the point-line distance again and strengthens the assertions of Theorem 3
by fixing that degree of freedom.

Theorem 7 (Finite candidate set). There is an optimal line L for (MLPC) satisfying
at least one of the following criteria:

1. Two demand points pj and pk are at threshold distance of L and lie on the same
side of L.

2. Two demand points pj and pk are at threshold distance of L and lie on the different
sides of L while k(pj − pk) > 2r.
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3. Two demand points pj and pk are at threshold distance of L and lie on the different
sides of L while k(pj−pk) = 2r and the normal vector of L is an extremal direction
of the cone {λx : x ∈ ∂k(pj − pk), λ ≥ 0}.

This determines a finite candidate set for (MLPC).

Proof. We know from Theorem 3 that there is an optimal solution L that has at least
two points, say pj and pk, both at distance r from the line L. If pj and pk are on the
same side of L then the first criterion is fulfilled. If not, then we know k(pj − pk) ≥ 2r,
compare the proof of Theorem 6. If in fact k(pj − pk) > 2r holds, the second criterion
is fulfilled. Consider now the case k(pj − pk) = 2r.
The idea is to construct a solution L′ with an objective not worse than that of L which
fulfills one of the three criteria. To this end perturb L while keeping pj and pk at distance
r and on different sides of L as long as the subdifferential ∂k(pj − pk) permits. By an
analogous argument as in the proof of Theorem 3 this is a quasi-concave process (for the
details see below) as long as no point enters or leaves the coverage zone. This means that
there are two possibilities to finally fix the line while not deteriorating the objective:

1. a line L′ with at least three demand points at threshold distance, two of them
being pj and pk

2. a line L′ with pj and pk at threshold distance and an extremal direction of {λx :
x ∈ ∂k(pj − pk), λ ≥ 0} as a normal vector.

In the second case obviously L′ satisfies the third criterion. Moreover, there are only
finitely many possibilities for L′ since a cone in R2 cannot have more than two extremal
directions.In the first case, it is clear that fixing three points at threshold distance of L′

forces two of them, say pj and pk, to lie on the same side of L′. Since both of them have
the same distance from L′, the first criterion of the theorem is satisfied.

We finally give the details of the quasi-concave process: Consider the objective func-
tion of (MLPC) according to (9), but restricted to a feasible region that guarantees

d(pj , Ln,c) = d(pk, Ln,c) = r as well as I
+
L = I

+
Ln,c

and I
−
L = I

−
Ln,c

min
n,c

1

k◦(n)

( ∑
i∈I+

L̃

win
T pi −

∑
i∈I−

L̃

win
T pi + c(W−

L̃
−W+

L̃
)− rk◦(n)(W+

L̃
+W−

L̃
)
)

(12)

s. t. nT pj = nT pk + 2rk◦(n)

|nT pi − c| ≥ rk◦(n) i ∈ I
+
L ∪ I

−
L

|nT pi − c| ≤ rk◦(n) i ∈ I \ (I+L ∪ I
−
L ).

Observe that the second constraint is equivalent to two linear constraints, since we have
by the generalized Cauchy-Schwarz inequality [Mic93]

nT pj = nT pk + 2rk◦(n) ⇔ nT (pj − pk) = k(pj − pk)k◦(n)

which is fulfilled if and only if n ∈ {λx : x ∈ ∂k(pj − pk), λ ≥ 0}. Since this is a
cone in R2 this condition is again equivalent to n ∈ {x : xT v1 ≥ 0 and xT v2 ≥ 0} for
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some v1, v2 ∈ R2 which are orthogonal to the two extremal directions of that cone. Now
substitute these two linear inequalities for the first constraint in (12) and assume that we
have an optimal solution where none of the constraints is fulfilled with equality. Then, by
continuity, there is a small environment around that solution in the feasible region and,
by quasi-concavity, a minimum is also attained at the boundary, where one constraint is
satisfied with equality. This corresponds to another point at threshold distance (if one
of the relative position preserving constraints is fulfilled with equality in the minimum)
– and thus to an optimal L′ fulfilling the first criterion – or a minimizing n which is an
extremal direction of the subdifferential cone (if nT v1 = 0 or nT v2 = 0) – and thus the
third criterion.

Summarizing, we have that there is an optimal solution to (MLPC) which satisfies at
least one of the three stated criteria. From Theorem 6 and this proof we also see that
each criterion is fulfilled by only finitely many lines and thus we have a finite dominating
set.

4 Solution approaches

4.1 Enumeration

Theorem 7 enables us to solve (MLPC) in a straightforward way: for each pair (pj , pk)
of demand points, determine the finitely many candidate lines as stated in the three
cases of Theorem 7. Their number is two (if k(pj − pk) < 2r), three (if k(pj − pk) = 2r
and k is smooth at pj − pk) or four (if k(pj − pk) > 2r or k(pj − pk) = 2r and k is
non-smooth at pj − pk). Then calculate the objective for each candidate line and keep
the one with the smallest value.

Lemma 8. The enumeration approach takes O(n3) time.

Proof. For O(m2) pairs of fixed points, we determine the finitely many candidate lines
as stated in the three cases of Theorem 7. This can be done by solving equation (11)
(at least numerically) in constant time, i.e., it does not depend on the number of fixed
points. We then evaluate each candidate line in O(m) time, giving us a total of O(m3)
time for the approach.

Since the Euclidean and the Manhattan norm are among the most common norms in
location problems we exemplarily show in the following how to calculate all candidate
partial coverage lines for two points p and q at distance r from the line. Note that the
calculation of all candidates determined by two points p and q in the case of d = dver
can be easily derived from the argumentation on page 3 preceding Theorem 6.

The Euclidean case We start with the Euclidean norm k2 and p and q on the same
side of the line L = Ln,c which is to be determined. Since L has distance r from both,
p and q, it is clear that the normal n of L is perpendicular to p− q. Then the first line
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with p and q on the same side is determined by c = nT p + rk◦2(n) and the second one
by c = nT p− rk◦2(n). Then d(p, L) = d(q, L) = r. Note that k◦2 = k2.

The case of p and q on different sides of L = Ln,c is slightly more complicated. As in the
proof of Theorem 6, n is determined by the equation |nT (p−q)| = 2rk◦2(n) or equivalently
nT (p− q) = 2rk◦2(n) or nT (p− q) = −2rk◦2(n). Letting n = (n1, n2)

T , assuming w.l.o.g.
n21 + n22 = 1 and substituting n2 =

√
1− n21 this becomes, for σ ∈ {−1, 1},

n1(p1 − q1) +
√

1− n21(p2 − q2) = 2rσ

=⇒ n21 · [(p1 − q1)2 + (p2 − q2)2]− n1 · 4rσ(p1 − q1) + 4r2 − (p2 − q2)2 = 0

and the solutions of this quadratic equation are given by

n1 =
2rσ(p1 − q1)± (p2 − q2)

√
k2(p− q)2 − 4r2

k2(p− q)2
. (13)

Note that this has no real root if k2(p− q) < 2r (which corresponds to the first case of
Theorem 6), a double root if k2(p − q) = 2r (third case), and two distinct real roots if
k2(p − q) > 2r (second case). Note that the Euclidean norm is a smooth norm, hence
all possible cases are covered. Among the candidate solutions for (13) we pick the ones
that actually satisfy |nT (p− q)| = 2r. Finally, c is determined by the fact that the point
p+q
2 is contained in L = Ln,c with d(p, L) = d(q, L) = r and p and q on different sides of
L.

The Manhattan case For the Manhattan norm k1, the case of p and q on the same side
of L = Ln,c is completely analogous to the Euclidean norm. n is again perpendicular to
p− q and c = nT p± rk◦1(n). Note that k◦1 is the Chebyshev norm.

This means we have to solve

|nT (p− q)| = 2rk◦1(n) = 2rmax{|n1|, |n2|} (14)

in the case of p and q on different sides of L = Ln,c. From (14) we get by assuming
k◦1(n) = 1 and p2 − q2 6= 0 w.l.o.g. and with the triangle inequality

|n1(p1 − q1) + n2(p2 − q2)| = 2r =⇒ |p1 − q1|+ |p2 − q2| ≥ 2r

=⇒ |p2 − q2| ≥ 2r − |p1 − q1|.

Thus one can choose ñ1 ∈ [−1, 1] and ñ2 ∈ {−1, 1} such that

ñ2(p2 − q2) = 2r − |p1 − q1| and ñ2(p2 − q2) = 2r − ñ1(p1 − q1)

and we have that

|ñT (p− q)| = ñ1(p1 − q1) + ñ2(p2 − q2) = 2rmax{|ñ1|, |ñ2|}
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i.e., (ñ1, ñ2)
T is a normal vector of one candidate line. If p1 = q1, the second line is

determined by inverting the sign of n1, if p1 6= q1 the second line is obtained by reversing
the roles of p1 − q1 and p2 − q2. Notice that, in the case p1 = q1 and |p2 − q2| = 2r,
which corresponds to the third case in Theorem 6, it holds in fact n2 ∈ {−1, 1} and n1
can be chosen arbitrarily in [−1, 1]. As in the Euclidean case, c is obtained readily since
p+q
2 ∈ L.

4.2 Sweeping

In order to explore the possibilities of solving (MLPC) faster for arbitrary norms k we
propose an alternative approach based on a plane-sweeping technique for arrangements
of lines by [EW86]. This allows us to efficiently update the objective function, namely
in constant time per candidate line, instead of linear time as in the brute force approach
used for enumeration in Section4.1.
For the sweeping algorithm we restrict ourselves to non-vertical lines. This is not a severe
restriction, since one can, for any norm k, treat the vertical line problem separately as
special case. This results in a one-dimensional problem. Using that also this problem
satisfies an incidence property, namely, that there is one point at distance r to the vertical
line, it can be solved by sorting the fixed points p1, . . . , pn by their x-coordinate and then
evaluate O(m) candidate lines which have at least one of the fixed points at distance r.
This can be done in a straight-forward way in O(m2) time or by linear programming in
O(m) time.
Neglecting the case of a vertical line we can apply a well-known duality transform ∗,
mapping non-vertical lines to points in R2 and vice versa, which can be found e. g. in
[Mat02]:

L = Ls,b 7→ L∗ = (s,−b), p = (x, y) 7→ p∗ = Lx,−y.

This transform preserves the vertical distance dver(p, L) = dver(L
∗, p∗) and above-below

relationships, i. e. p lies above L if and only if L∗ lies above p∗. Hence also the partial
coverage distance D(p, L) = D(L∗, p∗) is preserved in the vertical distance case. We
call the original space the primal space and the transformed space the dual space. The
horizontal coordinate of a dual point hence is the slope of the corresponding line in
primal space.
By the above considerations of the duality transform, (MLPC) is now to find a dual
point L∗ which has at least two dual lines p∗i at distance r, a consequence of Theorem 3.
We can enumerate all these dual points L∗ satisfying this property by sweeping the
arrangement of dual lines p∗1, . . . , p

∗
n starting at an arbitrary horizontal coordinate and

sweeping first to the right from that point and then to the left from the same point.
During the sweep we calculate the objective values of all candidates and return the best
one in the end.
Say we start the sweeping at horizontal coordinate a and sweep to the right. The
sweeping to the left is completely analogous. We determine the best dual point L∗a for
this particular horizontal coordinate a. This means, finding the best intercept for a
line with given slope. Since we know that the objective function w.r.t the intercept is
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piecewise linear and convex (see the proof of Theorem 2) this can be done, e.g. by linear
programming in O(m) time. If the solution is not unique, we choose it such, that it has at
least one of the dual lines p∗i at distance r. Moreover, we determine the top-down order
(1)a, . . . , (m)a of the p∗i at the current horizontal coordinate in the dual space and the

indices i+,ua and i+,la as well as i−,ua and i−,la such that p∗
(i+,u

a )a
is the first dual line above

L∗ with d(L∗, p∗
(i+,u

a )a
) ≥ r and p∗

(i+,l
a )a

the last dual line above L∗ with d(L∗, p∗
(i+,l

a )a
) ≤ r

The other two indices store the position of the corresponding dual lines below L∗. These
will be needed during the sweep to allow for efficient updates of the objective function.
Now we have to find the next candidate along the horizontal axis. There are only
the following possibilities for an event that asks for an action to be performed, when
increasing the horizontal coordinate from a to A > a. We calculate the horizontal
coordinate A of each possibly next event, but in fact only the one with least A actually
occurs.

1. Two lines p∗(i)A and p∗(i+1)A
intersect at A.

2. L∗a has only one of the p∗i , say p∗i0 , at distance r. W.l.o.g. let p∗i0 be below L∗a.
Then pi0 is also below L∗A and either

a) L∗A has at least two of the p∗i at distance r, both above L∗A or

b) L∗A has at least two of the p∗i at distance r, one above and one L∗A

3. L∗a has more than one of the p∗i at distance r and either (a) or (b) as above occur
at A.

The first case is simple. In order to keep the top-down order updated, we exchange
(i+ 1)A := (i)a and (i)A := (i+ 1)a and also adjust i+,uA , i+,lA , i−,uA , and i−,lA if necessary.
Consider now the second case. Since L∗a with one dual line p∗i at distance r is optimal
for horizontal coordinate a, L∗A, A > a with the same p∗i at distance r remains optimal
as long as none of the above events occur due to Theorem 2, since there is no change
in the weights above and below when passing from L∗a to L∗A. Thus we keep increasing
a until an event of type 2(a) or 2(b) occurs. A type 2(a) event implies that two of the
dual lines p∗i intersect and can be found as a type 1 event. In addition to the actions
performed, when the event is only of type 1, we also evaluate the objective since these
events yield candidate solutions for optimality according to Theorem 3. The horizontal
coordinates of possible type 2(b) events can be found in constant time as solutions of

|nT (pj − pi0)| = 2rk◦(n), (15)

for each j ∈ {i+,uA , i+,lA , i−,uA , i−,lA } where n = (A,−1).
The third case can be reduced to the second one: if L∗a has more than one dual line at
distance r, one can always tell by the weights of dual lines above and below, respectively,
which one of those lines should be kept at distance r when moving on to horizontal
coordinate A and is going to play the role of p∗i0 in the distinction of the possible events
when continuing the sweep, compare also Theorem 2. The other dual lines at distance
r can be ignored and we are in the second case.
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Lemma 9. (MLPC) can be solved in O(m2 logm) time with the sweeping approach.

Proof. We first calculate the O(m2) intersection points of the dual lines p∗1, . . . , p
∗
n and

sort them by their horizontal coordinates in O(m2 logm) time. We then sweep to the
right and to the left from an arbitralily chosen horizontal coordinate in the dual space.
Each direction of the sweep ends if no further events in the direction of sweeping are
found. It takes only constant time to find the next event and the objective can also be
evaluated in constant time, if we keep track of the quantities

X+
a :=

i+,u
a∑
j=1

w(j)a(d(p(j)a , L
∗
a)− r) and X−a :=

n∑
j=i−,l

a

w(j)a(d(p(j)a , L
∗
a)− r)

which can be viewed as aggregate distances. The objective is then X+
a + X−a . If we

can now assure an amount of O(m2) events during the sweep to the left and to the
right, this approach has a running time of O(m2 log n), the sorting of the intersection
points being the bottleneck. Clearly each pair of points p and q with k(p − q) 6= 2r
gives rise to a constant number of events by the first two assertions of Theorem 6. If
k(p − q) = 2r, it suffices to examine a constant number of solutions in (15) (if there is
more than one at all) by Theorem 7, namely the two solutions (Amin,−1) and (Amax,−1)
with minimal and maximal A, respectively. Thus we have O(m2) events in total for both
directions of the sweep. The correctness of the sweeping algorithm follows directly from
Theorem 7.

4.3 A linear programming formulation

We start by considereing the vertical distance. As used before (see page 3) we may
parametrize L by its slope s and intercept b in this case, since a vertical line can only
be optimal if all demand points lie on that line.
We obtain d(pi, Ls,b) = |pi2 − spi1 − b| for a point pi = (pi1, pi2) ∈ R2 and (MLPC) can
be written as the following linear program

min

m∑
i=1

wiDi

s. t. Di ≥ pi2 − spi1 − b− r i = 1, . . . ,m (16)

Di ≥ −pi2 + spi1 + b− r i = 1, . . . ,m (17)

s, b ∈ R, d1, . . . , dm ≥ 0. (18)

In an optimal solution to this program, the variables Di contain the partial coverage
distance of the line Ls,b to point pi. This holds, since (16) and (17) together are equivalent
to Di + r ≥ |pi2 − spi1 − b|, and the minimization of the Di ≥ 0 forces them to become

Di = max{0, |pi2 − spi1 − b| − r}.

This linear program is of the form considered in [Zem84] and hence a linear time algo-
rithm is available.
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The case of a block norm distances can be reduced to vertical distance case in the
following way. For the point-line distance for a block norm k with fundamental direction
e1, . . . , eF it holds that

d(p, L) = min
k=1,...,F

min
{
|λ| : p+ λek ∈ L, λ ∈ R

}︸ ︷︷ ︸
=:dk(p,L)

,

where the optimal index k∗ in the outer minimization depends only on the slope of L,
see [Sch99]. Thus, the objective function becomes

f(s, b) = min
k=1,...,F

m∑
i=1

[dk(pi, L)− r]+. (19)

Moreover, it holds

dk(p, L) =
1

lk
dver(Tαk

(p), L) ∀ k = 1, . . . , F

where lk is the Euclidean length of ek and Tαk
the rotation about the origin by αk, the

angle subtended by the positive x-axis and ek. Hence we can solve (MLPC) in the block
norm case by solving F linear programs of the form

min
m∑
i=1

wiDi (20)

s. t. Di ≥
1

lk
(p

(αk)
i2 − p(αk)

i1 s− b)− r i = 1, . . . ,m

Di ≥ −
1

lk
(p

(αk)
i2 − p(αk)

i1 s− b)− r i = 1, . . . ,m

s, b ∈ R, d1, . . . , dm ≥ 0

for k = 1, . . . , F , where (p
(αk)
i1 , p

(αk)
i2 ) = Tαk

(pi). According to (19), the linear pro-
gram with the minimal objective value among them determines the optimal solution to
(MLPC) with block norm k. These considerations hence yield the following result.

Lemma 10. (MLPC) with a block norm k having F fundamental directions can be
solved in O(mF ) time by solving F linear programs of the form (20).

The linear porgramming approach is therefore substantially faster then the sweeping in
O(m2 logm) time if the number F of fundamental directions is small, e.g. in the case of
Manhattan or Chebyshev distances.

5 Conclusion

In this paper we have generalize the classical median line model to a setting with partial
coverage where a demand point sufficiently close to a line, i.e. closer than some fixed
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threshold distance r, is considered covered. A covered point contributes no cost to the
objective function. Demand points which are not within the threshold distance incur a
penalty cost proportional to the distance to the zone covered by the line. The (MLPC)
model represents a compromise between the classical median objective and the center
objective, see Lemma 1: for r = 0 the median model is reproduced and for a certain
rmax our problem is equivalent to the center line problem.

To solve the (MLPC) for arbitrary distances induced by a norm we generalized classical
results for the median model, in particular, we could establish an incidence property in
Theorem 3 which led to a finite candidate set (Theorem 7) and allowing to solve the
problem by pure enumeration in O(m3) time. We were able to reduce the enumeration
time by applying plane sweeping techniques in Section 4.2 to O(m2 logm). For the
special case of block norms and vertical distances, a linear programming formulation
which has the structure required for the linear time algorithm proposed in [Zem84] can
be found in Section 4.3.

Since another interpretation of the median line problem with partial coverage is the
location of a median line to approximate norm disks of radius r, an interesting general-
ization would be the approximation of norms disks of different radii (or even arbitrary
sets). First results can be found in [Sch13].
Another obvious extension is the location of a line or hyperplane with partial coverage in
higher dimensions. In the case of block norms an experimental comparison of the sweep-
ing approach in Section 4.2 and of the linear programming formulation in Section 4.3
would be interesting.
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[MS01] H. Martini and A. Schöbel. Median and center hyperplanes in Minkowski
spaces — a unifying approach. Discrete Mathematics, 241:407–426, 2001.

[MT83] Nimrod Megiddo and Arie Tamir. Finding least-distances lines. SIAM J.
Algebraic Discrete Methods, 4(2):207–211, 1983.

[PC01] F. Plastria and E. Carrizosa. Gauge distances and median hyperplanes. J.
Optim. Theory Appl., 110(1):173–182, 2001.

[RT94] Jean-Marc Robert and Godfried T. Toussaint. Linear approximation of simple
objects. Computational Geometry, 4(1):27–52, 1994.
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