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Abstract
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1 Introduction

Motivation

For coercive multivariate polynomials, we consider the order of growth at infinity and
how this relates to the stability of coercivity with respect to perturbations of the coeffi-
cients.

As a motivation, let us first consider the univariate case. A polynomial f ∈ R[X] is
called coercive on R if f(x)→ +∞ whenever |x| → +∞. This is the case if and only if
the leading coefficient of f is positive and the degree deg(f) of f is positive and even.
This, in turn, is equivalent to the property f(x)/|x|q being coercive for all q ∈ [0, deg(f)).
Hence, the number deg(f) expresses how fast f grows for large x, and, thus, it can be
viewed as a meaningful measure for the order of growth of f at infinity. We call this
number the order of coercivity of f .

We observe further that, in the univariate case, small perturbations of a coercive polyno-
mial f by another univariate polynomial g preserves coercivity. In fact, if f is coercive,
so is f + g whenever deg(g) ≤ deg(f) and if the leading coefficient of g is sufficiently
close to zero. On the other hand, f + g will not necessarily be coercive if the degree of g
exceeds the degree of f , and, thus, the number deg(f) can also be viewed as a measure
expressing how stable the coercivity of f on R is. We call this number the degree of
stable coercivity of f .

Consequently, for a univariate coercive polynomial f , the order of coercivity coincides
with the degree of stable coercivity, and both are equal to the degree of f . Once these
two numbers are properly defined in the multivariate setting, it is only natural to ask
if the order of coercivity again equals the degree of stable coercivity, and if so, whether
these numbers again coincide with the degree of f .

In [BS15b] the first question is answered affirmatively for a broad class of coercive poly-
nomials whereas the authors give a dissenting answer to the second question. More
precisely, using properties of the underlying Newton polytopes, a class of coercive poly-
nomials f is identified for which the order of coercivity coincides with the degree of
stable coercivity, and both are equal to a so-called degree of convenience of f which, in
general, differs from deg(f).

In the present article we shall show that for coercive polynomials f the degree of stable
coercivity of f may differ from the order of coercivity of f in general, but not ”too
much”. More precisely, our main results show that for any coercive polynomial, its
degree of stable coercivity is always equal to the integral part of the order of coercivity.
We shall further characterize the case when the order of coercivity of f is maximum
possible by positivity of its leading form. The latter turns out to be equivalent to the
degree of stable coercivity of f also being maximum possible (see Theorems 15 and 16).
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Related literature

Coercivity of multivariate polynomials itself is an interesting property for various rea-
sons. In polynomial optimization theory it is a recurring question whether a given
polynomial f ∈ R[X1, . . . , Xn] attains its infimum over Rn (see, e.g. [BS15a, ED08,
GSED14, GSED11, NDS06, Sch06, VP07, VP10]); a similar question is equally relevant
in the integer and mixed-integer programming variant [BHS15a]. Coercivity of f is a
sufficient condition for f having this property, and, thus, it is a natural task to verify or
disprove whether f is coercive.

As a further consequence of coercivity, f is bounded below on Rn by some v ∈ R, so
that f − v is positive semi-definite on Rn. Also, since coercivity of f is equivalent to the
boundedness of its lower level sets {x ∈ Rn | f(x) ≤ α} for all α ∈ R, understanding
coercivity can be useful to decide whether a basic semi-algebraic set is bounded. Further-
more, properness of polynomial maps F : Rn → Rn can be characterized by coercivity
of the polynomial ‖F‖2

2. This is useful to decide whether F is globally invertible (see,
e.g. [BS16, BA07, CDTT14]).

Coercivity of polynomials is partially analyzed in [JLL14] and, in the convex setting, in
[JPL14], while the coercivity of a polynomial f defined on a basic closed semi-algebraic
set and its relation to the Fedoryuk and Malgrange conditions are examined in [VP10]. A
connection between coercivity of multivariate polynomials and their Newton polytopes
is given in [BS15a]. In [MN14], the authors study how fast – not necessarily coercive –
polynomials grow on semi-algebraic sets.

Outline of the article

This article is structured as follows. In Section 2, for coercive multivariate polynomials
f ∈ R[X1, . . . , Xn], we recall the notion and also some of the properties of the so-called
order of coercivity o(f) and we link them to the  Lojasiewicz exponent at infinity. For
coercive polynomials f we further recall the definition of the degree of stable coercivity
s(f) and introduce the degree of strongly stable coercivity s̃(f). Also, by studying the
order of coercivity of rational functions, we show that o(f) is always positive for any
coercive polynomial f .

For a coercive polynomial f , Section 3 describes how the order of coercivity o(f), the
degree of stable and strongly stable coercivity, s(f) and s̃(f), respectively, are related.
One of the two main results, Theorem 15, gives an explicit relation between these three
numbers. The other main result, Theorem 16, shows that coercive polynomials f whose
order of coercivity o(f) is maximum possible, that is, o(f) = deg(f), are exactly the
polynomials with a positive definite leading form. We also show that this is equivalent
to the fact that their degree of stable coercivity s(f) is maximum possible, that is,
s(f) = deg(f).
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In Section 4 we explicitly construct two families of coercive polynomials with the cor-
responding order of coercivity being positive but tending to zero. For the first family
the number of variables is hold fixed but the degree varies, and, for the second family,
the degree is fixed but the number of variables varies. This gives rise to the question,
addressed in Section 5, of determining the minimal possible order of coercivity o(n, d)
for the set of coercive polynomials f ∈ R[X1, . . . , Xn] with degree not exceeding d.

Notation

Let R[X1, . . . , Xn] denote the ring of polynomials in n variables with real coefficients. We
write f ∈ R[X1, . . . , Xn] in multi-index notation as f =

∑
α∈A(f) aαX

α with A(f) ⊆ Nn
0 ,

where N0 := N ∪ {0}, aα ∈ R for α ∈ A(f), and Xα = Xα1
1 · · ·Xαn

n for α ∈ Nn
0 . We will

assume that the set A(f) is chosen minimally in the sense that A(f) = {α ∈ Nn
0 | aα 6= 0}

holds. The evaluation of f at some x ∈ Rn is then expressed by f(x) =
∑

α∈A(f) aαx
α.

The degree of f is defined as deg(f) := maxα∈A(f) |α| with |α| =
∑n

i=1 αi. Clearly, every
polynomial f ∈ R[X1, . . . , Xn] decomposes uniquely into its homogeneous components
f0, . . . , fd ∈ R[X1, . . . , Xn], where every fi is homogeneous of degree i.

For the subspace of polynomials of degree bound by d ∈ N0 defined by

R[X1, . . . , Xn]d := {f ∈ R[X1, . . . , Xn] | deg(f) ≤ d},

a basic result [Mar08, Remark 1.2.5] states

dimR[X1, . . . , Xn]d =

(
n+ d

d

)
. (1.1)

In this article, ‖ · ‖ stands for an arbitrary norm on Rn unless specified otherwise and
for f ∈ R[X1, . . . , Xn] we define

‖f‖∞ := max {|aα| | α ∈ A(f)} .

We recall the following immediate estimate; for completeness, its proof can be found in
the Appendix.

Observation 1. For f ∈ R[X1, . . . , Xn]d, where n ∈ N, d ∈ N0, and any q ∈ [d,+∞),
the following estimate holds:

|f(x)| ≤
(
n+ d

d

)
· ‖f‖∞ · (‖x‖q∞ + 1) , x ∈ Rn.
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2 Order and stability of coercivity

The order of coercivity

A function f : S → R, defined on a subset S ⊆ Rn, is coercive if for all c ∈ R there
exists some M ∈ R such that for all x ∈ S the implication

‖x‖ ≥M ⇒ f(x) ≥ c

holds. The function f is called q-coercive for some q ≥ 0 if f(x)/‖x‖q is coercive. Note
that coercivity and q-coercivity are properties that are independent of the choice of the
norm on Rn. The following characterization of q-coercivity, q ≥ 0, turns out to be useful
for our later purposes. For completeness, we give its short proof in the Appendix.

Observation 2. Let f : S → R defined on a subset S ⊆ Rn and q ≥ 0 be given. Then
f is q-coercive if and only if

∀c > 0 ∃M ≥ 0 ∀x ∈ S, ‖x‖ ≥M : f(x) ≥ c · ‖x‖q (A)

holds.

For coercive f : S → R, the number

o(f) := sup {q ≥ 0 | f is q-coercive}

is called the order of coercivity of f . A coercive function f is q′-coercive for all q′ with
0 ≤ q′ < o(f), but f need not be o(f)-coercive. Now, if property (A) does not hold for
all but only some c > 0, we may not conclude q-coercivity of f . However, the following
holds:

Observation 3. Let f : S → R defined on a subset S ⊆ Rn and q > 0 be given. Then
the property

∃c > 0 ∃M ≥ 0 ∀x ∈ S, ‖x‖ ≥M : f(x) ≥ c · ‖x‖q (B)

implies o(f) ≥ q.

For a proof we refer to the Appendix. Note that the converse statement does not
necessarily hold.

The following example shows that for quadratic coercive polynomials, the equality o(f) =
deg(f) is always fulfilled.

Example 4. Let f ∈ R[X1, . . . , Xn], f(x) = xTQx+Ltx+ c with Q ∈ Rn×n symmetric,
L ∈ Rn and c ∈ R be given. If f is coercive, then o(f) = 2. Indeed, as f is coercive,
Q must be positive definite. It is well-known that this implies the existence of a unique
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global minimal point x0 ∈ Rn of f , and one finds f(x) = (x − x0)TQ(x − x0) + f(x0)
(see, e.g. [BHS15b]). Denoting the smallest eigenvalue of Q by λ, one obtains that
f(x) ≥ λ(x− x0)T (x− x0) + f(x0) = λ‖x− x0‖2

2 + f(x0) holds for all x ∈ Rn, and thus,
by Observation 3, the inequality o(f) ≥ 2 follows. On the other hand, Observation 1
implies o(f) ≤ deg(f), and, due to deg(f) = 2, one obtains o(f) ≤ 2.

Property (B) shows how the order of coercivity is related to the so-called  Lojasiewicz
exponent at infinity (see, e.g. [Kra07]). For a polynomial map F : Rn → Rm it is defined
as

L∞(F ) := sup {ν ∈ R | ∃c,M > 0 ∀x ∈ Rn : ‖x‖ ≥M ⇒ ‖F (x)‖ ≥ c ‖x‖ν} .

Indeed, for coercive polynomials, the order of coercivity and  Lojasiewicz exponent at
infinity coincide:

Observation 5. Let f ∈ R[X1, . . . , Xn] be coercive. Then

o(f) = L∞(f).

Proof. From the definitions, o(f) ≤ L∞(f). Note that the coercivity of f implies
L∞(f) ≥ 0 and o(f) ≥ 0. Suppose at first that L∞(f) = 0, then o(f) = 0 and
hence o(f) = L∞(f) = 0 follows. Suppose next that L∞(f) > 0. It is enough to show
that for any 0 ≤ q < L∞(f), we also have q < o(f). Let ε > 0 with q + ε ≤ L∞(f). By
definition of L∞(f), there is c > 0 and M ≥ 0 with f(x) ≥ c · ‖x‖q+ε = (c · ‖x‖ε) · ‖x‖q
whenever ‖x‖ ≥M . As c · ‖x‖ε grows without bound, this yields o(f) > q.

Since the  Lojasiewicz exponent L∞(f) is known to be rational (see [Gor61]), Observa-
tion 5 yields the following:

Corollary 6. If f ∈ R[X1, . . . , Xn] is coercive, then o(f) ∈ Q.

The stability of coercivity

Given a coercive polynomial f ∈ R[X1, . . . , Xn] we are interested in how stable this
coercivity property is under small perturbations of f by other polynomials. This gives
rise to the following definition for stability of coercivity which was already analyzed
from the viewpoint of the underlying Newton polytopes in [BS15b] and is inspired by
the concept of stable boundedness of polynomials [Mar03].

Definition 7 (Stable coercivity). A polynomial f ∈ R[X1, . . . , Xn] is called q-stably
coercive for q ∈ N0, if there exists an ε > 0 such that for all g ∈ R[X1, . . . , Xn] with
deg g ≤ q and all coefficients of g bounded in absolute value by ε it holds that f + g is
coercive. The degree of stable coercivity s(f) of f is the largest q such that f is q-stable
coercive.
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We also introduce the following stronger notion for the stability of coercivity.

Definition 8 (Strong stable coercivity). A polynomial f ∈ R[X1, . . . , Xn] is called
strongly q-stable coercive for q ∈ N0, if for all g ∈ R[x] with deg g ≤ q it holds that f +g
is coercive. The degree of strongly stable coercivity s̃(f) of f is the largest q such that
f is strongly q-stable coercive.

Observations on the order of coercivity

In this section we collect some preliminary results on the order of coercivity. The follow-
ing result is not only useful for our purposes but interesting in its own right: It states
that any coercive rational function has a positive order of growth. To this end we denote
the vanishing set of the polynomial g ∈ R[X1, . . . , Xn] by V (g) := {x ∈ Rn | g(x) = 0}
and its complement by V c(g) := Rn \ V (g).

Theorem 9. Let f, g ∈ R[X1, . . . , Xn], g 6= 0, such that f/g : V c(g) → R is coercive.
Then

o (f/g) > 0.

As a corollary, every coercive polynomial f ∈ R[X1, . . . , Xn] has a positive order of
growth, which is a known result (see, e.g. [Gor61]). For the proof of Theorem 9, we use
the following.

Theorem 10 ([Gor61, Theorem 4.1]). Let P (x, z, w) be a real polynomial of n′ = n1 +
n2 + n3 variables x ∈ Rn1, z ∈ Rn2, w ∈ Rn3 where n1, n2, n3 are non-negative integers.
If the surface M given by the equation

P (x, z, w) = 0

is not empty and lies in the domain defined by the inequality

‖z‖2 ≥ ϕ(‖x‖2),

where ϕ(t) → +∞ as t → +∞, then there exists constants h > 0 and b such that this
surface also lies in the domain defined by the inequality

‖z‖2 ≥ ‖x‖h2 − b.

Our choice of a suitable ϕ is given in the next lemma.

Lemma 11. In the setting of Theorem 9, let ϕ : [0,∞)→ R be defined as follows: Let

ϕ̃(t) := inf

{∣∣∣∣f(y)

g(y)

∣∣∣∣ | y ∈ V c(g), ‖y‖2 = t

}
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and put

ϕ(t) =

{
ϕ̃(t), ϕ̃(t) <∞,
0, else.

Then ϕ is coercive.

Proof. Note at first that there can at most be d := deg(g) many t ≥ 0 with the property
that g(x) = 0 whenever ‖x‖ = t (resulting in ϕ̃(t) = ∞). Indeed, suppose there were
d+ 1 points t0 < . . . < td with that property. Consider the leading form gd of g and pick

x ∈ Rn with gd(x) 6= 0 . Then λ 7→ gd

(
λ · x
‖x‖

)
is a univariate polynomial of degree d

with zeros at t0, . . . , td, which is impossible. Now suppose ϕ is not coercive. Thus there
is C > 0 and an increasing sequence {τk}k∈N of reals with τk → +∞ and ϕ(τk) ≤ C.
We may assume τ1 is larger than any of the at most d points ti from above. Fix ε > 0.

Thus there is a sequence {xk}k∈N ⊆ V c(g) with ‖xk‖ = τk and
∣∣∣f(xk)
g(xk)

∣∣∣− ε ≤ ϕ(τk) ≤ C,

contradicting coercivity of f/g.

We may now prove Theorem 9.

Proof of Theorem 9. Let f, g ∈ R[X1, . . . , Xn] with f/g coercive. To apply the theorem
by Gorin, we let n1 = n, n2 = n3 = 1 and define P ∈ R[X1, . . . , Xn, Z,W ] via

P (x, z, w) := (f(x)− zg(x))2 + (wg(x)− 1)2 , x ∈ Rn, z, w ∈ R.

The surface M = V (P ) is not empty, as

M =
{

(x, z, w) ∈ Rn+2 | f(x) = zg(x) and wg(x) = 1
}

=
{

(x, z, w) ∈ Rn+2 | x ∈ V c(g), f(x)/g(x) = z and w = 1/g(x)
}
.

Consider the function ϕ from Lemma 11. We now show that M lies in the domain
defined by the inequality ‖z‖2 ≥ ϕ(‖x‖2). To this end let a point (x, z, w) ∈ M be
given. Then g(x) 6= 0 and so we conclude

‖z‖2 = |z| =
∣∣∣∣f(x)

g(x)

∣∣∣∣ ≥ inf

{∣∣∣∣f(y)

g(y)

∣∣∣∣ | y ∈ V c(g), ‖y‖2 = ‖x‖2

}
= ϕ(‖x‖2).

Hence, we may apply Gorin’s theorem, so there are constants h > 0 and b such that M
also lies in the domain defined by the inequality

|z| = ‖z‖2 ≥ ‖x‖h2 − b.

This means |f(x)/g(x)| ≥ ‖x‖h2−b whenever g(x) 6= 0. From Observation 3 we conclude
o(|f/g|) ≥ h. Since f/g is coercive, f(x)/g(x) > 0 for x ∈ V c(g) with ‖x‖2 large enough,
which implies o(f/g) ≥ h, too.
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We note that for a q-coercive polynomial f , the number q is strictly bound above by the
order of growth of f . This is implicit in [Gor61]; we give an explicit proof in the setting
of this article for completeness.

Lemma 12. Let f ∈ R[X1, . . . , Xn] be coercive. Then f is not o(f)-coercive.

Proof. Suppose the contrary and let f be o(f)-coercive. By Corollary 6 and Theorem 9,
the number o(f) is rational and positive, so o(f) = p/q, with some p, q ∈ N and we may

further assume that p is even. Thus by definition, f(x)/‖x‖p/q2 is coercive, and hence
r(x) := f(x)q/‖x‖p2 is coercive. However, as p is even, r is a coercive rational function,
so by Theorem 9, there is h > 0 such that r is h-coercive. Hence by Observation 2 and
continuity of f , there are c1 > 0, c2 ≥ 0 with

f(x)q

‖x‖p2
≥ c1‖x‖h2 − c2.

Hence, for any fixed 0 < ε < h,

f(x)q

‖x‖p+ε2

≥ c1‖x‖h−ε2 − c2

‖x‖ε2
,

which means f q is (p + ε)-coercive. As f , being coercive, attains positive values for
large x, this implies that f is ((p+ ε)/q)-coercive, and we conclude o(f) ≥ (p + ε)/q,
contradicting the assumption o(f) = p/q.

Although, by Lemma 12, a coercive f ∈ R[X1, . . . , Xn] is not o(f)-coercive, one can
still underestimate f by an o(f)-power of a norm for large values of ‖x‖. That is, for
coercive polynomials, we have a converse statement to Observation 3. Several variants
of this result are known; one may argue by Tarski-Seidenberg [Gor61] or, in the complex
setting, by curve selection at infinity [Kra07]. Our contribution is a proof by elementary
methods.

Lemma 13. Let f ∈ R[X1, . . . , Xn] be coercive. Then there exist c > 0, M ≥ 0 with

f(x) ≥ c · ‖x‖o(f), ‖x‖ ≥M.

Proof. Assume to the contrary that the assertion does not hold. Then for every sequence
{ck}k∈N ⊆ R with ck ↓ 0 there exists a sequence {xk}k∈N ⊆ Rn with ‖xk‖ → +∞ such
that

f(xk) < ck‖xk‖o(f), k ∈ N.

Since f is coercive and ‖xk‖ → +∞, we may further assume f(xk) ≥ 0 for all k ∈ N,
hence

0 ≤ f(xk)

‖xk‖o(f)
< ck, k ∈ N.
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Using the decomposition f =
∑d

i=0 fi of f into its homogeneous components fi ∈
R[X1, . . . , Xn] of degree i = 0, . . . , d, with ξk := xk/‖xk‖ the latter property yields

0 ≤
d∑

i=do(f)e

‖xk‖i−o(f)fi(ξk) < ck −
do(f)e−1∑
i=0

‖xk‖i−o(f)fi(ξk), k ∈ N. (2.1)

Due to ck ↓ 0 and i− o(f) < 0 holding for all i = 0, . . . , do(f)e − 1, the right hand side
in (2.1) converges to zero as k approaches infinity. This implies

lim
k→∞

d∑
i=do(f)e

‖xk‖i−o(f)fi(ξk) = 0 (2.2)

Passing to an appropriate convergent subsequence of the sequence ξk = xk/‖xk‖ with
a limit point ξ, due to continuity of each homogeneous component fi of f , we may
assume that limk→∞ fi(ξk) = fi(ξ) ∈ R for all i = do(f)e, . . . , d. In fact, property (2.2)
yields fi(ξ) = 0 for all i = do(f)e, . . . , d, and, hence again, using the homogeneous
decomposition of f one obtains

f(t · ξ) =
d∑
i=0

fi(t · ξ) = tdo(f)e−1fdo(f)e−1(ξ) + · · ·+ f0(ξ) for all t ∈ R

resulting in o(f) ≤ do(f)e − 1, a contradiction.

3 Main result

In this section we show how the degree of stable and strongly stable coercivity are tied to
the order of growth (Theorem 15). In case of a positive definite leading form, a stronger
characterization is available (Theorem 16). We use the following estimate in the proof
of both.

Proposition 14. Let f ∈ R[X1, . . . , Xn] be coercive. Then the following inequalities are
fulfilled:

s̃(f) ≤ s(f) ≤ o(f) ≤ s̃(f) + 1.

Proof. The first inequality s̃(f) ≤ s(f) follows obviously from the Definitions 7 and 8.
To see s(f) ≤ o(f), assume q := s(f) > o(f). We introduce polynomials

fc,σ := f − c ·

(
n∑
j=1

σjXj

)q

,

parametrized by c ∈ R and σ ∈ Σ := {−1, 1}n. As s(f) = q, for every σ ∈ Σ there
is εσ > 0 such that fc,σ is coercive whenever c ∈ [−εσ, εσ]. Let ε̂ := minσ∈Σ εσ and
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fix ĉ ∈ (0, ε̂). Hence fĉ,σ is coercive for all σ ∈ Σ and thus also bounded from below.
Boundedness from below means for every σ there is kσ ≥ 0 with

f(x) ≥ ĉ
(∑n

j=1 σjxj

)q
− kσ, x ∈ Rn, σ ∈ Σ.

Put k̂ := maxσ∈Σ kσ. Then for x ∈ Rn

f(x) ≥ ĉ ·max
σ∈Σ

(∑n
j=1 σjxj

)q
− k̂ = ĉ ·

(∑n
j=1 |xj|

)q
− k̂ = ĉ · ‖x‖q1 − k̂,

so Observation 3 implies o(f) ≥ q = s(f), a contradiction.

Now we proceed to prove the third inequality o(f) ≤ s̃(f)+1. Assume the contrary: Let
q := s̃(f) and suppose o(f) > q + 1. We have arrived at a contradiction if we may show
that for any g ∈ R[X1, . . . , Xn] of degree at most q + 1, f + g is coercive, as in this case
s̃(f) ≥ q+ 1 = s̃(f) + 1. To this end fix an arbitrary g ∈ R[X1, . . . , Xn]q+1. Now choose
c1 >

(
n+d
d

)
· ‖g‖∞. As o(f) > q + 1, f is q + 1-coercive, therefore, by Observation 2 and

continuity of f , there is c2 ≥ 0 such that f(x) ≥ c1‖x‖q+1
∞ − c2 holds for x ∈ Rn, and

hence, by Observation 1,

f(x) + g(x) ≥ f(x)− |g(x)| ≥ c1‖x‖q+1
∞ − c2 −

(
n+ d

d

)
· ‖g‖∞

(
‖x‖q+1

∞ + 1
)

= c′1 · ‖x‖q+1
∞ − c′2, x ∈ Rn,

for some appropriately chosen c′1 > 0, c′2 ∈ R. Thus f + g is coercive.

We show now how the integer part of the order of growth and our notions of stability
are related to each other.

Theorem 15. Let f ∈ R[X1, . . . , Xn] be coercive.

1. If o(f) is integer, then
s̃(f) + 1 = s(f) = o(f).

2. If o(f) is fractional, then
s̃(f) = s(f) = bo(f)c.

Proof. In order to prove 1., we show s̃(f) + 1 = o(f) first. By integrality of s̃(f), o(f)
and by the property o(f) ∈ [s̃(f), s̃(f) + 1] holding due to Proposition 14, it is enough
to show that s̃(f) < o(f). Suppose the contrary, that is s̃(f) = o(f) =: q. Now for c > 0
and σ ∈ Σ := {−1, 1}n, define

fc,σ := f − c ·

(
n∑
j=1

σjXj

)q

∈ R[X1, . . . , Xn].

11



By definition of s̃(f), the polynomial fc,σ is coercive and hence bounded from below for
all c > 0 and σ ∈ Σ. That is, for every c > 0 and σ ∈ Σ, there exists kc,σ ≥ 0 such that

f(x) ≥ c ·

(
n∑
j=1

σjxj

)q

− kc,σ, x ∈ Rn, c > 0, σ ∈ Σ,

and hence with kc := maxσ∈Σ kc,σ, we have for all x ∈ Rn and c > 0 the property

f(x) ≥ c ·max
σ∈Σ

(
n∑
j=1

σjxj

)q

− kc = c ·

(
n∑
j=1

|xj|

)q

− kc = c · ‖x‖q1 − kc.

In view of Observation 2, the polynomial f is q-coercive. Since q = s̃(f) = o(f) is
holding by assumption, f is o(f)-coercive. This is impossible by Lemma 12, and we may
conclude that s̃(f) + 1 = o(f).

For the second equality s(f) = o(f), put q := o(f). By Lemma 13 and continuity of f ,
there are constants c1, c2 > 0 such that

f(x) ≥ c1‖x‖q∞ − c2 holds for all x ∈ Rn.

Define ε := c1
2
·
(
n+q
q

)−1
. Now for any g ∈ R[X1, . . . , Xn]q with ‖g‖∞ ≤ ε and all x ∈ Rn,

we have from Observation 1

f(x) + g(x) ≥ f(x)− |g(x)|
≥ c1‖x‖q∞ − c2 − ε ·

(
n+q
q

)
(‖x‖q∞ + 1)

=
c1

2
‖x‖q∞ − c2 −

c1

2
.

To summarize, f + g is coercive whenever deg g ≤ q and ‖g‖∞ ≤ ε, that is, f is q-stably
coercive, or s(f) = q = o(f).

Statement 2. follows at once from Proposition 14.

Our next result shows that more characterizations are available for a maximal order of
coercivity.

Theorem 16. Let f ∈ R[X1, . . . , Xn] of degree d ≥ 2. Then, the following assertions
are equivalent:

1. fd(x) > 0 for all x ∈ Rn, x 6= 0.

2. There exists δ > 0 such that fd(x) ≥ δ‖x‖d for all x ∈ Rn.

3. o(f) = d.

4. o(f) > d− 2.

5. s(f) = d.

12



6. s(f) ≥ d− 1.

7. s̃(f) = d− 1.

8. s̃(f) ≥ d− 2.

Proof. ”1 ⇒ 2” For x = 0 the assertion is trivial. For nonzero x ∈ Rn one obtains

fd(x) = ‖x‖dfd
(

x

‖x‖

)
≥ ‖x‖d inf

y∈Sn−1
fd(y).

The infimum is positive by compactness of the sphere. Now for ”2 ⇒ 3”, let cj =
infy∈Sn−1 fj(y) for j = 0, . . . , n− 1 and put cd = δ. Then by homogeneity of the fj,

f(x) =
d∑
j=0

fj(x) ≥
d∑
j=0

cj‖x‖j,

hence o(f) = d. The implication ”3 ⇒ 4” is trivial. The implication ”4 ⇒ 1” holds as
follows: Suppose o(f) > d−2 but fd(x̃) = 0 for some x̃ ∈ Rn with x̃ 6= 0. By assumption
o(f) is positive, hence f is coercive. Let us show that this implies fd−1(x̃) = 0. Indeed,
we find that for all λ ∈ R it holds

f(λx̃) =
d∑
j=0

fj(λx̃) =
d−1∑
j=0

λjfj(x̃),

which, as a function of λ is unbounded from below unless fd−1(x̃) = 0. In fact, this holds
since as d− 1 is odd. Hence

|f(λx̃)| ≤
d−2∑
j=0

|fj(λx̃)| =
d−2∑
j=0

|λ|j|fj(x̃)|,

implying o(f) ≤ d− 2, a contradiction, so 1 through 4 are equivalent.

To see ”2⇒ 5”, let g ∈ R[X1, . . . , Xn] of degree d be given, and let c′ = maxx∈Sn−1 gd(x).
Then |gd(x)| ≤ c′‖x‖d by homogeneity, so for ε ∈ [− δ

2c′
, δ

2c′
],

fd(x) + εgd(x) ≥ fd(x)− |εgd(x)| ≥ δ‖x‖d − δ

2
‖x‖d =

δ

2
‖x‖d,

hence f + εg is still coercive, and we conclude s(f) = d.

We show now that 5. implies 6 and 7. The first implication is trivial. To see “5 ⇒ 7”,
note that Proposition 14 implies s̃(f) ≥ d− 1. As s̃(f) ≥ d is not possible for a degree
d polynomial, s̃(f) = d − 1. Since both 6 and 7 imply 8 trivially, all equivalences are
shown once “8 ⇒ 4” holds.

So suppose s̃(f) ≥ d − 2. From the definition of strong stable coercivity, this implies
coercivity of f , and d must be even. The function g(x) = ‖x‖d−2

2 is a polynomial of

13



degree d−2. The assumption s̃(f) ≥ d−2 implies that f − c1g is coercive for all c1 > 0.
Hence there is M , depending on c1, such that

f(x)− c1‖x‖d−2
2 ≥ 0

holds for ‖x‖ ≥M . As d ≥ 2, we may use Observation 2 to find that f is d−2-coercive.
Now Lemma 12 states that o(f) > d− 2, which finishes the proof.

4 Example families

Introductory remarks

In this section, we give two explicit example families of coercive polynomials with ar-
bitrarily small but positive order of growth. The first family has a bounded number of
variables (two) but varying degree and the second family has a bounded degree (four)
but a varying number of variables.

There are some examples families of {fi}i∈I ⊆ R[X1, . . . , Xn], where I is some index
set, in the literature where the  Lojasiewicz exponents at infinity L∞(fi) of the fi – and
hence the order of coercivity o(fi) of fi, if fi is coercive – are explicitly computed, e.g.,
[Gor61], [Kra07]. These example families are extensive in the following sense: For every
q ∈ Q there is i ∈ I with L∞(fi) = q. Hence, example polynomials with arbitrarily
small order of growth are easily given.

However, these example families from the literature were not created with the objective
in mind to keep the number of variables and the degree of the resulting polynomials
low. The examples we present are, in this sense, not only some further polynomials with
known  Lojasiewicz exponents at infinity.

In the literature, the computations are rather terse. We take a different route and
carefully prove all assertions. These proofs are simplified by partitioning the domain of
definition. Specifically, given S ′ ⊆ S, we write o(f |S ′) for the order of coercivity of f
restricted to S ′. Then, in view of the immediate Observation 17, we may compute the
order of coercivity on more suitable subsets of Rn instead of on all of Rn.

Observation 17. Let S1, . . . , Sk ⊆ Rn, S := ∪ki=1Si and f : S → R coercive. Then

o(f) = min
1≤i≤k

o(f |Si).

The following handy observation is immediate.

Observation 18. Let f : Rn → R be given by f(x) =
∑n

j=1 cj|xj|αj for some cj > 0,
αj > 0. Then o(f) = minj αj.

14



Fixed number of variables

We give now an example of a family of coercive polynomials of arbitrarily small (but,
of course, positive) order of growth in two variables. The key observation is that the
function R2 → R, (x, y) 7→ x2, is 1

k
-coercive on (the image of) the curve γ : R → R2,

t 7→ (t, t2k).

Proposition 19. Consider the polynomial fk ∈ R[X, Y ], k ∈ N, given by

fk = X2 +
(
Y −X2k

)2
. (4.1)

Then o(fk) = 1
k
.

Note that by Theorem 15, s(fk) = s̃(fk) = 0 holds for all k ≥ 2, thus even small linear
perturbations of fk may lead to the loss of coercivity.

Corollary 20. For any given ρ > 0 there is a polynomial that is coercive but not ρ-
coercive; this even holds if the number of variables is fixed to 2.

We split the proof of Proposition 19 into two Lemmata.

Lemma 21. For fk as in (4.1), o(fk) ≥ 1
k
.

Proof. The proof is by case distinction on a given point (x, y) ∈ Rn. Put

S↓ := {(x, y) ∈ R2 | y < 0},
S↔ := {(x, y) ∈ R2 | 0 ≤ y < 2x2k},
S↑ := {(x, y) ∈ R2 | 2x2k ≤ y},

and observe that these sets are a partition of Rn.

1. (x, y) ∈ S↓. Then y < 0 and hence

fk(x, y) = x2 + (−|y| − x2k)2 ≥ x2 + y2 + x4k,

thus o(fk|S↓) ≥ 2 by Observation 18.

2. (x, y) ∈ S↔. Thus x2k > 1
2
|y|, or x2 > 1

k√2
|y|1/k and we find

fk(x, y) ≥ 1

2
x2 +

1

2
x2 ≥ x2

2
+

1
k
√

2
|y|1/k,

hence o(fk|S↔) ≥ 1
k
.

3. (x, y) ∈ S↑. Then y ≥ 2x2k, equivalently, y − x2k ≥ 1
2
y. As y is non-negative,

fk(x, y) ≥ x2 +
(y

2

)2

= x2 +
y2

4
,

which yields o(fk|S↑) ≥ 2.
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The claim follows now from Observation 17.

Lemma 22. For fk as in (4.1), o(fk) ≤ 1
k
.

Proof. Assume o(fk) >
1
k
. By Observation 2 and continuity of fk, there are c1 > 0,

c2 ≥ 0 and ρ > 1
k

with

fk(x, y) ≥ c1‖(x, y)‖ρ1 − c2, (x, y) ∈ R2.

Let {xn}n∈N be a sequence of reals with limn→∞ xn = +∞. We define another sequence
yn := x2k

n . Thus x2
n = k
√
yn and

fk(xn, yn) = x2
n = y1/k

n ≥ c1‖(xn, yn)‖ρ1 − c2 ≥ c1‖(0, yn)‖ρ1 − c2 = c1y
ρ
n − c2.

We shorten the last estimate to the inequality

y1/k
n ≥ c1y

ρ
n − c2, n ∈ N,

which yields a contradiction: Since ρ > 1
k
, c1 > 0 and limn→∞ yn = +∞, so this

inequality will eventually be violated.

Fixed degree

Our second example is a family of coercive polynomials of arbitrarily small order of
growth with a degree fixed to four. The geometric idea behind this family is similar to
the one before: The function Rn → R, x 7→ x2

1 is 22−n coercive on (the image of) the
curve

γ : R→ Rn, t 7→ (t, t2, t4, t8, . . . , t2
n−2

, t2
n−1

, )

To model this curve as the zero set of a single polynomial, we use the fact that for real
polynomials h1, . . . , hs ∈ R[X1, . . . , Xn] and x ∈ Rn, the following holds:

h1(x) = . . . = hs(x) = 0⇐⇒
s∑
i=1

hi(x)2 = 0.

More specifically, the term
∑n−1

i=1 (Xi+1 −X2
i )

2
vanishes at x if and only if xi+1−x2

i = 0
for all i ∈ {2, . . . , n} if and only if x lies on the curve γ, i.e., if and only if x satisfies
xn = x2

n−1 = x4
n−2 = x8

n−3 = · · · = x2n−1

1 .

Proposition 23. Consider the polynomial gn ∈ R[X1, . . . , Xn], n ∈ N, given by

gn = X2
1 +

n∑
i=2

(
Xi −X2

i−1

)2
. (4.2)

Then o(gn) = 22−n.
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Note that by Theorem 15, s(gn) = s̃(gn) = 0 holds for all n ≥ 3, thus even small linear
perturbations of gn may lead to the loss of coercivity.

Corollary 24. For any given ρ > 0 there is a polynomial that is coercive but not ρ-
coercive; this even holds if the degree is fixed to 4.

The proof of Proposition 23 is divided into three lemmata.

Lemma 25. Let
C := {x ∈ Rn | |xi| ≥ 1 for all i ∈ [n]}.

Then o(gn|C) ≥ 22−n for gn as in (4.2).

Proof. We introduce the functions on C

T1(x) := x2
1, Ti(x) := (xi − x2

i−1)2, i = 2, . . . , n,

Qi(x) :=
1

8i
|xi|2

2−i

, i = 1, . . . , n,

so gn(x) =
∑n

i=1 Ti(x) on C. The claim follows from Observation 18 if we can prove by
induction

j∑
i=1

Ti(x) ≥
j−1∑
i=1

Qi(x) + 2Qj(x), x ∈ C, j = 1, . . . , n. (4.3)

The claim in 4.3 trivially holds for j = 1. Assume it holds for some j < n. For the
inductive step it suffices to show that for an arbitrary x ∈ Rn one of

Tj+1(x) ≥ 2Qj+1(x) (4.4)

or

Qj(x) ≥ 2Qj+1(x) (4.5)

holds. Indeed, in case (4.4) holds at x, then adding this inequality to (4.3) yields

j+1∑
i=1

Ti(x) ≥
j−1∑
i=1

Qi(x) + 2Qj(x) + 2Qj+1(x) ≥
j∑
i=1

Qi(x) + 2Qj+1(x)

In the other case, (4.5) holds at x. Then

j+1∑
i=1

Ti(x) ≥
j∑
i=1

Ti(x) ≥
j∑
i=1

Qi(x) +Qj(x) ≥
j∑
i=1

Qi(x) + 2Qj+1(x).

Now let us show by case distinction on x ∈ Rn why (4.4) or (4.5) holds. Again, we
introduce a partition

S↓i := {x ∈ C | xi < 0},
S↔i := {x ∈ C | 0 ≤ xi < 2x2

i−1},
S↑i := {x ∈ C | 2x2

i−1 ≤ xi},

for i = 1, . . . , n− 1. Now fix x ∈ C and consider the cases
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1. x ∈ S↓j+1. Thus xj+1 < 0, and as x ∈ C, we may use monotonicity of exponentials
to find

Tj+1(x) =
(
−|xj+1| − x2

j

)2 ≥ x2
j+1 ≥ |xj+1|2

2−(j+1) ≥ 2Qj+1(x),

so 4.4 holds.

2. x ∈ S↔j+1. Thus |xj|2 > 1
2
|xj+1| and raising both sides to the 22−(j+1)-th power,

|xj|2
2−j ≥ 1

222−(j+1)
|xj+1|2

2−(j+1)

(4.6)

As 2− (j + 1) ≤ 0, we have 1

22
2−(j+1) ≥ 1

4
. Hence, dividing both sides of 4.6 by 8j,

we see that (4.5) holds.

3. x ∈ S↑j+1. Equivalently, xj+1 − x2
j ≥ 1

2
xj+1, thus by monotonicity again,

Tj+1(x) ≥ 1

4
x2
j+1 ≥

1

4
|xj+1|2

2−(j+1) ≥ 2Qj+1(x),

that is, (4.4) holds.

Hence, (4.3) holds for j + 1 and all x ∈ C, so the induction step is proven.

Lemma 26. Let
D := {x ∈ Rn | |xi| < 1 for some i ∈ [n]}.

Then o(gn|D) ≥ 22−n for gn as in (4.2).

Proof. Suppose not. Thus there is a sequence {xm}m∈N ⊆ D with ‖xm‖∞ → +∞ for
m→∞, and

gn(xm) = x2
m,1 +

n∑
i=2

(
xm,i − x2

m,i−1

)2 ≤ c‖xm‖22−n

∞ , m ∈ N.

Especially,

x2
m,1 ≤ c‖xm‖22−n

∞ ,
(
xm,i − x2

m,i−1

)2 ≤ c‖xm‖22−n

∞ , i = 2, . . . , n. (4.7)

We arrive at a contradiction if we can show by induction that there are Nn−1 ≥ . . . ≥ N0

with

|xm,n−j| ≥
1

2j
‖xm‖2−j

∞ , m ≥ Nj, j = 0, . . . , n− 1. (4.8)

Indeed, once the induction is complete, inequality (4.8) holds for all j and all m ≥ Nn−1,
and as ‖xm‖∞ grows without bound, (4.8) forces xm to leave the set D, contradicting
the assumption xm ∈ D for all m.

For the basis of the induction, we use the second inequality in (4.7) to find |x2
m,i−1 −

xm,i| ≤ c1/2‖xm‖21−n

∞ and thus

x2
m,i−1 ≤ |xm,i|+ c1/2‖xm‖21−n

∞
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by the reverse triangle inequality. Using
√
a+ b ≤

√
a +
√
b for a, b ≥ 0, the last

inequality yields

|xm,i−1| ≤ |xm,i|1/2 + c1/4‖xm‖2−n

∞ ≤ ‖xm‖1/2
∞ + c1/4‖xm‖2−n

∞

By assumption on xm, ‖xm‖ grows without bound, so there is N−1 ∈ N with ‖xm‖ ≥ 1

for m ≥ N−1, and then ‖xm‖2−n

∞ ≤ ‖xm‖1/2
∞ . Thus

|xm,i−1| ≤
(
1 + c1/4

)
‖xm‖1/2

∞ . (4.9)

Also, there is N0 ≥ N−1 with
(
1 + c1/4

)2
< ‖xm‖∞ for m ≥ N0, which together with (4.9)

implies |xm,i−1| < ‖xm‖∞ for m ≥ N0 and i = 2, . . . , n, that is,

|xm,n| = ‖xm‖∞ for m ≥ N0,

a rewording of the basis of the induction.

For the inductive hypothesis, suppose (4.8) holds for some j < n− 1. We now prove the
inductive step. Using the reverse triangle inequality on (4.7) the other way, we find

x2
m,j−1 ≥ |xm,j| − c1/2‖xm‖21−n

∞ , j = 2, . . . , n. (4.10)

With (4.10) and the inductive hypothesis,

x2
m,n−(j+1) ≥ |xm,n−j| − c1/2‖xm‖21−n

∞ ≥ 1

2j
‖xm‖2−j

∞ − c1/2‖xm‖21−n

∞ (4.11)

On the other hand, as ‖xm‖∞ grows without bound, there is Nj+1 ≥ Nj with

‖xm‖∞ ≥
(
2j+1c1/2

)1/(2−j−21−n)

⇐⇒ ‖xm‖2−j−21−n

∞ ≥ 2j+1c1/2

⇐⇒ ‖xm‖2−j

∞ ≥ 2j+1c1/2 · ‖xm‖21−n

∞

⇐⇒ 1

2j+1
‖xm‖2−j

∞ − c1/2 · ‖xm‖21−n

∞ ≥ 0

⇐⇒ 1

2j
‖xm‖2−j

∞ − c1/2 · ‖xm‖21−n

∞ ≥ 1

2j+1
‖xm‖2−j

∞

for m ≥ Nj+1. With (4.11) we deduce

x2
m,n−(j+1) ≥

1

2j
‖xm‖2−j

∞ − c1/2‖xm‖21−n

∞ ≥ 1

22(j+1)
‖xm‖2−j

∞

and hence

|xm,n−(j+1)| ≥
1

2j+1
‖xm‖2−(j+1)

∞ ,

proving the induction step.
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Lemma 27. For gn as in (4.2), o(gn) ≤ 22−n.

Proof. Assume o(gn) > 22−n. Using Observation 2 and continuity of gn, there are c1 > 0,
c2 ≥ 0 and ρ > 22−n with

gn(x) ≥ c1‖x‖ρ1 − c2 ∀x ∈ Rn. (4.12)

Let {am}m∈N be a sequence of reals with limm→∞ am = +∞, and define {xm}m∈N ⊆ Rn

with components (xm)1 := am and

(xm)2 := ((xm)1)2 , (xm)3 := ((xm)2)2 , . . . , (xm)n := ((xm)n−1)2 .

Observe that (xm)1 = ((xm)n)22−n
and (xm)n → +∞ for n→∞. Then

gn(xm) = (xm)2
1 +

(
n−1∑
i=2

02

)
= (xm)2

1 = (xm)22−n

n ≥ c1‖xm‖ρ1 − c2

by definition of xm and by (4.12), and we may estimate further

≥ c1‖ (0, . . . , 0, (xm)n) ‖ρ1 − c2 = c1|(xm)n|ρ − c2 = c1(xm)ρn − c2

which contains the contradictory inequality

(xm)22−n

n ≥ c1(xm)ρn − c2, m ∈ N. (4.13)

Indeed, as (xm)n → +∞ for m → ∞ and c1 > 0, ρ > 22−n, inequality (4.13) will
eventually be violated.

5 Final remarks

In Section 4 we have seen explicit examples of slowly growing coercive polynomials
where either the number of variables n or the degree d are fixed. It is thus only a
natural question to ask how small the order of growth can get when both the number
of variables and the degree of the polynomial are fixed. In other words, we consider for
n ∈ N and d ∈ 2N the number

o(n, d) = inf {o(f) | f ∈ R[X1, . . . , Xn]d is coercive} .

We call o(n, d) the minimum possible order of coercivity of a coercive polynomial in n
variables of degree d. It is not known to us whether there is a closed formula for o(n, d)
or if at least o(n, d) > 0 for all n ∈ N and d ∈ 2N. Also, we do not know if our example
families fk and gn from Section 4 are minimal examples in the sense that o(fk) = o(2, 4k)
or o(gn) = o(n, 4).
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n d Upper bound on o(n, d) Attainment Reference
∗ 2 2 yes Example 4
1 ∗ d yes cf. Section 1
2 4k 1/k ? Proposition 19

≥ 2 4 22−n ? Proposition 23

Table 1: Upper bounds on the minimum possible order of coercivity o(n, d).

Table 1 summarizes the special cases and examples discussed in this article. A star (∗)
indicates arbitrary values; that is, n ∈ N or d ∈ 2N.

In [BS15a] a class of coercive polynomials is identified where coercivity can be verified by
analyzing properties of the underlying Newton polytopes at infinity. Then, in [BS15b],
it is shown that for each polynomial from the aforementioned class one always has
o(f) = s(f) = c(f) ∈ 2N with c(f) denoting the so-called degree of convenience of f –
which is the length of the shortest intercept of the Newton polytope at infinity with the
n coordinate axes. So, for coercive polynomials with a fractional order of growth, for
example such as those from Section 4, it would be an interesting question whether their
order of growth is encoded in their Newton polytopes as well.
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A Appendix

Proof of Observation 1. Fix n ∈ N, d ∈ N0, f ∈ R[X1, . . . , Xn] of degree at most
d and q ≥ d. In multi-index notation, f =

∑
α∈A(f) aαX

α, and in view of (1.1), we get

|A(f)| ≤
(
n+d
d

)
. Also, for all x ∈ Rn and α ∈ Nd

0 with |α| = α1 + . . .+ αn ≤ q, we have

|xα| ≤ ‖x‖|α|∞ ≤ max (‖x‖q∞, 1) ≤ ‖x‖q∞ + 1.

The estimates combine to

|f(x)| = |
∑

α∈A(f)

aαx
α| ≤ ‖f‖∞

∑
α∈A(f)

|xα| ≤ ‖f‖∞
∑

α∈A(f)

(‖x‖q∞ + 1)

= |A(f)| · ‖f‖∞ · (‖x‖q∞ + 1) ≤
(
n+ d

d

)
· ‖f‖∞ · (‖x‖q∞ + 1) .
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Proof of Observation 2. Let f be q-coercive and c > 0. By definition of q-coercivity,
there is M ≥ 0 such that f(x)/‖x‖q ≥ c whenever x ∈ S and ‖x‖ ≥ M . Multiplication
by ‖x‖q gives the claim. Now suppose (A) holds and fix c > 0 with the corresponding
M ≥ 0. Division by ‖x‖q yields for all nonzero x ∈ S with ‖x‖ ≥M the inequality

f(x)

‖x‖q
≥ c,

and, thus, lim inf‖x‖→∞ f(x)/‖x‖q ≥ c. Since c > 0 was arbitrary, f is q-coercive.

Proof of Observation 3. For any 0 < ε < q and all nonzero x ∈ S with ‖x‖ ≥M one
has

f(x)

‖x‖q−ε
≥ c‖x‖ε,

and, as the right hand side is coercive, f is (q − ε)−coercive. Thus the inequality
o(f) ≥ q − ε holds and since ε was arbitrary, o(f) ≥ q follows.
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