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Abstract
Finding a line plan with corresponding frequencies is an important stage of planning a public
transport system. A line plan should permit all passengers to travel with an appropriate quality
at appropriate costs for the public transport operator. Traditional line planning procedures
proceed sequentially: In a first step a traffic assignment allocates passengers to routes in the
network, often by means of a shortest path assignment. The resulting traffic loads are used in
a second step to determine a cost-optimal line concept. It is well known that travel time of the
resulting line concept depends on the traffic assignment. In this paper we investigate the impact
of the assignment on the operating costs of the line concept.

We show that the traffic assignment has significant influence on the costs even if all passengers
are routed on shortest paths. We formulate an integrated model and analyze the error we can
make by using the traditional approach and solve it sequentially. We give bounds on the error
in special cases. We furthermore investigate and enhance three heuristics for finding an initial
passengers’ assignment and compare the resulting line concepts in terms of operating costs and
passengers’ travel time. It turns out that the costs of a line concept can be reduced significantly
if passengers are not necessarily routed on shortest paths and that it is beneficial for the travel
time and the costs to include knowledge on the line pool already in the assignment step.
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1 Introduction

Line planning is a fundamental step when designing a public transport supply, and many
papers address this topic. An overview is given in [17]. The goals of line planning can roughly
be distinguished into passenger-oriented and cost-oriented goals. In this paper we investigate
cost-oriented models, but we evaluate the resulting solutions not only with respect to their
costs but also with respect to the approximated travel times of the passengers.

In most line planning models, a line pool containing potential lines is given. The cost
model chooses lines from the given pool with the goal of minimizing the costs of the line
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23:2 Integrating Passengers’ Assignment in Cost-Optimal Line Planning

concept. It has been introduced in [5, 25, 24, 6, 11] and later on research provided extensions
and algorithms.

Traditional approaches are two-stage: In a first step, the passengers are routed along
shortest paths in the public transport network, still without having lines. This shortest
path traffic assignment determines a specific traffic load describing the expected number of
travelers for each edge of the network. The traffic loads and a given vehicle capacity are
then used to compute the minimal frequencies needed to ensure that all passengers can be
transported. These minimal frequencies serve as constraints in the line planning procedure.
We call these constraints lower edge frequency constraints. Lower edge frequency constraints
have first been introduced in [23]. They are used in the cost models mentioned above, but
also in other models, e.g., in the direct travelers approach ([7, 4, 3]), or in game-oriented
models ([14, 13, 19, 20]).

If passengers are routed along shortest paths, the lower edge frequency constraints ensure
that in the resulting line concept all passengers can be transported along shortest paths.
Although the travel time for the passengers includes a penalty for every transfer, routing
them along shortest paths in the public transport network (PTN) guarantees a sufficiently
short travel time. However, routing passengers along shortest paths may require many
lines and hence may lead to high costs for the resulting line plan. An option is to bundle
the passengers on common edges. To this end, [12] proposes an iterative approach for the
passengers’ assignment in which edges with a higher traffic load are preferred against edges
with a lower traffic load in each assignment step. Other papers suggest heuristics which
construct the line concept and the passengers’ assignment alternately: after inserting a new
line, a traffic assignment determines the impacts on the traffic loads ([22, 21, 16]).

Our contribution:
We present a model in which passengers’ assignment is integrated into cost-optimal line

planning. We show that the integrated problem is NP-hard.
We analyze the error of the sequential approach compared to the integrated approach: If

passengers’ are assigned along shortest paths, and if a complete line pool is allowed, we show
that the relative error made by the assignment is bounded by the number of OD-pairs. We
also show that the passengers’ assignment has no influence in the relaxation of the problem.
If passengers can be routed on any path, the error may be arbitrarily large.

We experimentally compare three procedures for passengers’ assignment: routing along
shortest paths, the algorithm of [12] and a reward heuristic. We show that they can be
enhanced if the line pool is already respected during the routing phase.

2 Sequential approach for cost-oriented line planning

We first introduce some notation. The public transport network PTN=(V,E) is an undirected
graph with a set of stops (or stations) V and direct connections E between them. A line is a
path through the PTN, traversing each edge at most once. A line concept is a set of lines
L together with their frequencies fl for all l ∈ L. For the line planning problem, a set of
potential lines, the so-called line pool L0 is given. Without loss of generality we may assume
that every edge is contained in at least one line from the line pool (otherwise reduce the set
of edges E). If the line pool contains all possible paths as potential lines we call it a complete
pool. For every line l ∈ L0 in the pool its costs are

costl = ckm
∑
e∈l

de + cfix, (1)
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i.e., proportional to its length plus some fixed costs, where de denotes the length of an edge.
Without loss of generality we assume that ckm = 1.

The demand is usually given in form of an OD-matrix W ∈ IR|V |×|V |, where Wuv is the
number of passengers who wish to travel between the stops u, v ∈ V . We denote the number
of passengers as |W | and the number of different OD pairs as |OD|.

The traditional approaches for cost-oriented line planning work sequentially. In a first
step, for each pair of stations (u, v) with Wuv > 0 the passenger-demand is assigned to
possible paths in the PTN. Using these paths, for every edge e ∈ E the traffic loads are
computed. Given the capacity Cap of a vehicle, one can determine fmin

e := d we

Cape, i.e., how
many vehicle trips are needed along edge e to satisfy the given demand. These values fmin

e

are called lower edge frequencies. They are finally used as input for determining the lines
and their frequencies, Algorithm 1.

Algorithm 1: Sequential approach for cost-oriented line planning
Input: PTN= (V,E), Wuv for all u, v ∈ V , line pool L0 with costs cl for all l ∈ L0

1 Compute traffic loads we for every edge e ∈ E using a passengers’ assignment
algorithm (Algorithm 2)

2 For every edge e ∈ E compute the lower edge frequency fmin
e := d we

Cape
3 Solve the line planning problem LineP(fmin) and receive (L, fl)

The problem LineP(fmin) is the basic cost model for line planning:

min
{∑
l∈L0

fl · costl :
∑

l∈L0:e∈l

fl ≥ fmin
e for all e ∈ E, fl ∈ IN for all l ∈ L0

}
(2)

Cost models (and extensions of them) have been extensively studied as noted in the intro-
duction.

Step 1 in Algorithm 1 is called passengers’ assignment. The basic procedure is described
in Algorithm 2.

Algorithm 2: Passengers’ assignment algorithm
Input: PTN= (V,E), Wuv for all u, v ∈ V
for every u, v ∈ V with Wuv > 0 do

Compute a set of paths P 1
uv, . . . , P

Nuv
uv from u to v in the PTN

Estimate weights for the paths α1
uv, . . . , α

Nuv
uv ≥ 0 with

∑Nuv

i=1 α
i = 1

end
for every e ∈ E do

Set we :=
∑
u,v∈V

∑
i=1...Nuv :
e∈P i

uv

αiuvWuv

end

There are many different possibilities how to compute a set of paths and corresponding
weights αiuv; we discuss some in Section 5. In cost-oriented models, often shortest paths
through the PTN are used. I.e., Nuv = 1 for all OD-pairs {u, v} and P 1

uv = Puv is an
(arbitrarily chosen) shortest path from u to v in the PTN. We call the resulting traffic loads
shortest-path based. Furthermore, let SPuv :=

∑
e∈Puv

de denote the length of a shortest
path between u and v.

CVIT 2016
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In order to analyze the impacts of the traffic loads we on the costs, note that for integer
values of fl we have for every e ∈ E:

∑
l∈L0:e∈l

fl ≥
⌈
we

Cap

⌉
⇐⇒ Cap

∑
l∈L0:e∈l

fl ≥ we,

hence we can rewrite (2) and receive the equivalent model LineP(w) which directly depends
on the traffic loads:

LineP(w) min gcost(w) :=
∑
l∈L0

flcostl

s.t. Cap
∑

l∈L0:e∈l

fl ≥ we for all e ∈ E (3)

fl ∈ IN for all l ∈ L0

We can hence formulate Algorithm 1 a bit shorter as Algorithm 3.

Algorithm 3: Sequential approach for cost-oriented line planning
Input: PTN= (V,E), Wuv for all u, v ∈ V , line pool L0 with costs cl for all l ∈ L0

1 Compute traffic loads we for every edge e ∈ E using a passengers’ assignment
algorithm (Algorithm 2)

2 Solve the line planning problem LineP(w) and receive (L, fl)

Note that the paths determined in Algorithm 3 will most likely not be the paths the
passengers really take after (3) is solved and the line concept is known. This is known
and has been investigated in case that the travel time of the passengers is the objective
function: Travel time models such as [18] intend to find passengers’ paths and a line concept
simultaneously. The same dependency holds if the cost of the line concept is the objective
function, but a model determining the line plan and the passengers’ routes under a cost-
oriented function simultaneously has to the best of our knowledge not been analyzed in the
literature so far.

3 Integrating passengers’ assignment into cost-oriented line planning

In this section we formulate a model in which Steps 1 and 2 of Algorithm 3 can be optimized
simultaneously. Our first example shows that it might be rather bad for the passengers if we
optimize the costs of the line concept and have no restriction on the lengths of the paths in
the passengers’ assignment.

I Example 1. Consider Figure 1a with edge lengths dAD = dBC = 1, dAB = dDC = M , a
line pool of two lines L0 := {l1 = ABCD, l2 = AD} and two OD-pairs WAD = Cap− 1 and
WBC = 1.

For a cost-minimal assignment we choose PAD = (ABCD), PBC = (BC) and receive an
optimal solution fl1 = 1, fl2 = 0 with costs of gcost = cfix + 2M + 1. The sum of travel
times for the passengers in this solution is gtime = (Cap− 1) ∗ (2M + 1) + 1.
For the assignment PAD = (AD), PBC = (BC) we receive as optimal solution fl1 =
1, fl2 = 1 with only slightly higher costs of gcost = 2cfix + 2M + 2. but much smaller sum
of travel times for the passengers gtime = (Cap− 1) ∗ 1 + 1 = Cap.
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Figure 1 Example infrastructure networks

From this example we learn that we have to look at both objective functions: costs
and traveling times for the passengers, in particular when we allow non-shortest paths in
Algorithm 2. When integrating the assignment procedure in the line planning model we
hence require for every OD-pair that its average path length does not increase by more than
β percent compared to the length of its shortest path SPuv. The integrated problem can be
modeled as integer program (LineA)

(LineA) min gcost :=
∑
l∈L0

fl

(∑
e∈E

de + cfix

)
s.t. Cap

∑
l∈L0:e∈l

fl ≥
∑
u,v∈V

xuve for all e ∈ E

Θxuv = buv for all u, v ∈ V∑
e∈E

dex
uv
e ≤ βSPuvWuv

fl ∈ IN for all l ∈ L0

xuve ∈ IN for all l ∈ L0

where
xuve is the number of passengers of OD-pair (u, v) traveling along edge e
Θ is node-arc incidence matrix of PTN, i.e., Θ ∈ R|V |×|E| and

Θ(v, e) =


1 , if e = (v, u) for some u ∈ V,
−1 , if e = (u, v) for some u ∈ V,
0 , otherwise

buv ∈ R|V | which contains Wuv in its uth component and −Wuv in its vth component.

Note that β = 1 represents the case of shortest paths to be discussed in Section 4. For β
large enough an optimal solution to (LineA) minimizes the costs of the line concept.

Formulations including passengers’ routing have been proven to be difficult to solve (see
[18, 2]). Also (LineA) is NP-hard.

I Theorem 2. (LineA) is NP-hard, even for β = 1 (i.e. if all passengers are routed along
shortest paths).

CVIT 2016
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Proof. See Appendix A. J

The sequential approach can be considered as heuristic solution to (LineA). Different
ways of passengers’ assignment in Step 1 of Algorithm 3 are discussed in Section 5.

4 Gap analysis for shortest-path based traffic loads

In this section we analyze the error we make if we restrict ourselves to shortest-path based
assignments in the sequential approach (Algorithm 3) and in the integrated model (LineA).
More precisely, we use only one shortest path Puv for routing OD-pair (u, v) in Algorithm 2
and we set β = 1 in (LineA). The traffic loads in Step 2 of Algorithm 2 are then computed
as

we :=
∑

u,v∈V :e∈Puv

Wuv. (4)

Assigning passengers to shortest paths in the PTN is a passenger-friendly approach since we
can expect that traveling on a shorter path in the PTN is less time consuming in the final line
network than traveling on a longer path (even if there might be transfers). It also minimizes
the vehicle kilometers required for passenger transport. Hence, shortest-path based traffic
loads can also be regarded as cost-friendly. Nevertheless, if we do not have a complete line
pool or we have fixed costs for lines, it is still important to which shortest path we assign
the passengers as the following two examples demonstrate.

I Example 3 (Fixed costs zero). Consider the small network with stations A,B,C,D, and E
depicted in Figure 1b. Assume that all edge lengths are one. There is one passenger from B
to E.

Let us assume a line pool with two lines L0 = {l1 = ABCE, l2 = BDE}. Since the lines
have different lengths their costs differ: costl1 = 3 and costl2 = 2 (for cfix = 0).

For the passenger from B to E, both possible paths (B-C-E) and (B-D-E) have the same
length, hence there exist two solutions for a shortest-path based assignments:

If the passenger uses the path B-C-E, we have to establish line l1 (fl1 := 1, fl2 := 0) and
receive costs of 3.
If the passenger uses B-D-E, we establish line l2 (fl1 := 0, fl2 := 1) with costs of 2.

Since in this example l1 could be arbitrarily long, this may lead to an arbitrarily bad solution.

This example is based on the specific structure of the line pool. But even for the complete
pool the path choice of the passengers matters as the next example demonstrates.

I Example 4 (Complete Pool). Consider the network depicted in Figure 1b. Assume, that
the edges BC, CE, BD and DE have the same length 1 and the edge AB has length ε. We
consider a complete pool and two passengers, one from A to E and another one from B to E.
The vehicle capacity should be at least 2. If both passengers travel via C, the cost-optimal
line concept is to established the dashed line l1 with costs cfix + 2 + ε. For one passenger
traveling via C and the other one via D, two lines are needed and we get costs of 2cfix + 4 + ε.
For ε→ 0 the factor between the two solutions hence goes to 2cfix+4+ε

cfix+2+ε → 2 which equals the
number of OD pairs in the example.

The next lemma shows that this is, in fact, the worst case that may happen.
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I Lemma 5. Consider two shortest-path based assignments w and w′ for a line planning
problem with a complete pool L0 and without fixed costs cfix = 0. Let fl, l ∈ L, be the
cost optimal line concept for LineP(w) and f ′l , l ∈ L′, be the cost optimal line concept for
LineP(w′). Then gcost(w) ≤ |OD|gcost(w′).

Proof. See Appendix A. J

If we drop the assumption of choosing a common path for every OD-pair, the factor increases
to the number |W | of passengers. However, if we solve the relaxation of LineP(w) the
passengers’ assignment has no effect:

I Theorem 6. Consider a line planning problem with complete pool and without fixed costs
(i.e. cfix = 0). Then the objective value of the LP-relaxation of LineP(w) is independent of
the choice of the traffic assignment if it is shortest-path based. More precisely:

Let w and w′ be two shortest-path based traffic assignments with g̃cost(w), g̃cost(w′) the
optimal values of the LP-relaxations of LineP(w) and LineP(w′). Then g̃cost(w) = g̃cost(w′).

Proof. See Appendix A. J

5 Passengers’ assignment algorithms

We consider three passengers’ assignment algorithms. Each of these is a specification of Step
1 in Algorithm 2. Each algorithm will be introduced in one of the following subsections.
They differ in the objective function used in the routing step, i.e., whether we need to iterate
our process or not.

5.1 Routing on shortest paths

Algorithm 4: Passengers’ Assignment: Shortest Paths
Input: PTN= (V,E), Wuv for all u, v ∈ V
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path Puv from u to v in the PTN, w.r.t edge lengths d
end
for every e ∈ E do

Set we :=
∑
u,v∈V
e∈Puv

Wuv

end

Algorithm 4 computes one shortest paths for every OD pair, i.e., all passengers of the
same OD pair use the same shortest path.

5.2 Reduction algorithm of [12]
Algorithm 5 uses the idea of [12]. It is a cost-oriented iterative approach. The idea is to
concentrate passengers on only a selection of all possible edges. To achieve this, edges are
made more attractive (short) in the routing step if they are already used by passengers.

The length of an edge in iteration i is dependent on the load on this edge in iteration
i − 1, higher load results in lower costs in the next iteration step. This is iterated until
no further changes in the passenger loads occur or a maximal iteration counter max_it is
reached. When this is achieved, the network is reduced, i.e., every edge that is not used by
any passenger is deleted. In the resulting smaller network, the passengers are routed with
respect to the original edge lenghts.

CVIT 2016
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Algorithm 5: Passengers’ Assignment: Reduction
Input: PTN= (V,E), Wuv for all u, v ∈ V
i := 0
w0
e := 0∀e ∈ E

repeat
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path P iuv from u to v in the PTN, w.r.t.

costi(e) = de + γ · de

max{wi−1
e , 1}

end
for every e ∈ E do

Set wie :=
∑
u,v∈V
e∈P i

uv

Wuv

end
i = i + 1

until
∑
e∈E(wi−1

e − wie)2 < ε or i > max_it;
Compute a shortest path Puv from u to v in the PTN, w.r.t.

cost(e) =
{
de, wie > 0
∞, otherwise

Set we :=
∑
u,v∈V
e∈Puv

Wuv

5.3 Using a grouping reward

Algorithm 6 uses a reward term if the passengers can be transported without the need of a
new vehicle. Again, we want to achieve higher costs for less used edges. We reward edges,
that are already used by other passengers. In order to fill up an already existing vehicle
instead of adding a new vehicle to the line plan we reward an edge more, if there is less space
until the next multiple of Cap. To achieve a good performance, we update the edge weights
after the routing of each OD pair and not only after a whole iteration over all passengers.

5.4 Routing in the CGN

For line planning, usually a line pool is given. In particular, if the line pool is small, it has a
significant impact on possible routes for the passengers, since some routes require (many)
transfers and are hence not likely to be chosen. Moreover, assigning passengers not only to
edges but to lines has a better grouping effect. We therefore propose to enhance the three
heuristics by routing the passengers not in the PTN but in the co-called Change&Go-Network
(CGN), first introduced in [18]. Given a PTN and a line pool L0, CGN=(Ṽ , Ẽ) is a graph
in which every node is a pair (v, l) of a station v ∈ V and a line l ∈ L0 such that v is
contained in l. An edge in the CGN can either be a driving edge ẽ = ((u, l), (v, l)) between
two consecutive stations (u, v) ∈ E of the same line l or a transfer edge ẽ = ((u, l1), (u, l2))
between two different lines l1, l2 passing through the same station u. In the former case we
say that ẽ ∈ Ẽ corresponds to e ∈ E. We now show how to adjust the algorithms of the
previous section to route the passengers in the CGN in order to obtain a traffic assignment
in the PTN. For this we rewrite Algorithm 4 and receive Algorithm 7.

We proceed the same way to rewrite the routing step in the repeat-loop of Algorithm 5,
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Algorithm 6: Passengers’ Assignment: Reward
Input: PTN= (V,E), Wuv for all u, v ∈ V
i := 0
repeat

i = i + 1
wie := wi−1

e ∀e ∈ E
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path P iuv from u to v in the PTN, w.r.t.

costi(e) = max{de ·
(
1− γ · (wi−1

e mod Cap)/(Cap)
)
, 0}

for every e ∈ P i−1
uv do

Set wie := wie −Wuv

end
for every e ∈ P iuv do

Set wie := wie +Wuv

end
end

until
∑
e∈E(wi−1

e − wie)2 < ε or i > max_it;

where we use

cost(ẽ) =
{
costi(e) if ẽ is a driving edge which corresponds to e
pen if ẽ is a transfer edge, where pen is a transfer penalty

as costs in the CGN. We still compare the weights wie and wi−1
e in the PTN for ending

the repeat loop, also the reduction step, i.e., the routing after the iteration in Algorithm 5
remains untouched. For the detailed version see Algorithm 8 in Appendix B.

Finally, we consider Algorithm 6. Here routing in the CGN is in particular promising
since a line-specific load is more suitable to improve the occupancy rates of the vehicles. In
the routing version of 6 we construct the CGN already in the very first step in the same
way as in Algorithm 7. We then perform the whole algorithm in the CGN, but compute the
traffic loads wie in the PTN at the end of every iteration in order to compare the weights wie
and wi−1

e in the PTN for deciding if we end or repeat the loop. For the detailed version see
Algorithm 9 in Appendix B.

Algorithm 7: CGN routing for Algorithm 4
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path P̃uv from u to v in the CGN, w.r.t.

cost(ẽ) =
{
de if ẽ is a driving edge which corresponds to e
pen if ẽ is a transfer edge, where pen is a transfer penalty

end
for every e ∈ E do

Set we :=
∑

ẽ∈Ẽ:
ẽ corr. to e

∑
u,v∈V :
ẽ∈P̃uv

Wuv

end

CVIT 2016
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Figure 2 Solution results for a small and a big line pool

6 Experiments

For the experiments, we applied the models introduced in Section 5 on the data-set from [8],
a small but real world inspired instance. It consists of 25 stops, 40 edges and 2546 passengers,
grouped in 567 OD pairs. We started with five different line pools of different sizes, ranging
from 33 to 275 lines, using [9] and lines based on k-shortest path algorithms. We use a
maximum of 15 iterations for every iterating algorithm. For an overview on runtime, see
Table 1 (Appendix C).

6.1 Evaluation of costs and perceived travel time of the line plan
We first evaluate a line plan by approximating its cost and its travel times. Both evaluation
parameters can only be estimated after the line planning phase since the real costs would
require a vehicle- and a crew schedule while the real travel times need a timetable. We use
the common approximations:

gcost =
∑
l∈L0 fl · costl, i.e., the objective function of (LineP(w)) and (LineA) that we

used before, and
gtime =

∑
u,v∈V SPuv+pen ·#transfers, describing the sum of travel times of all OD-pairs

where we assume that the driving times are proportional to the lengths of the paths and
we add a penalty for every transfer.

Comparison of the three assignment procedures

We first compare the three assignment procedures. Figure 2a and 2b show the impact of the
assignment procedure for a small line pool (33 lines) and for a large line pool (275 lines).
For both line pools we computed the traffic assignment for Shortest Paths, Reduction, and
Reward, both in the PTN and in the CGN. This gives us six different solutions, for each of
them we evaluated their costs gcost and their travel times gtime.

Figure 2a shows the typical behaviour for a small line pool: We see that Shortest Path
leads to the best results in travel time, i.e., the most passenger friendly solution. Routing
in the CGN is better for the passengers than routing in the PTN, the PTN solutions are
dominated. Reward, on the other hand, gives the solutions with lowest costs. Also here, the
costs are better when we route in the CGN instead of the PTN. Note that the travel time of
the Reward solution in the CGN is almost as good as the Shortest Path solution.
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Figure 3 Travel time and cost of Shortest Path solutions for increasing line pool size
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(a) Cost of Reduction

33 74 125 186 275
line pool size

800

900

1000

1100

1200

1300

co
st

s
op

tim
al

lin
e

co
nc

ep
t

CGN
PTN

(b) Cost of Reward

Figure 4 Cost of Reward and Reduction solutions for increasing line pool size

Figure 2b shows the behaviour for a larger line pool. Still, the solution with lowest travel
time is received by Shortest Path, and it is still better in the CGN than in the PTN but the
difference is less significant compared to the small line pool. The lowest cost for larger line
pools are received by Reduction. Note that both Reduction solutions have lower cost than the
Reward solution. This effect increases with increasing line pool.

Dependence on the size of the line pool

We have already seen that for larger line pools, cost optimal solutions are obtained by
Reduction and for smaller line pools by Reward. Figures 3 and 4 now study further the
dependence of the line pool.

In all our experiments, the best travel time was achieved by Shortest Paths. In Figure 3
we see that the travel time is lower if we route in the CGN compared to routing in the PTN
for all instances we computed. The difference gets smaller with an increasing size of the line
pool; for the complete line pool routing in the CGN and in the PTN would coincide.

For Reward and Reduction we see two effects: First we see a decrease in the costs when
we have more lines in the line pool. This is to be expected, since the line concept algorithm
used profits from a bigger line pool. Furthermore, we see the for Reduction there are cases,
where the cost optimal solution can be found with the PTN routing.
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Figure 5

Tracking the iterative solutions in Reduction and Reward

Reduction and Reward are iterative algorithms. They require an assignment in each iteration.
For each of these assignments we can compute a line concept and evaluate it. Such an
evaluation is shown in Figure 5a where we depict the line concepts computed for the passengers’
assignments in each iteration for Reduction. For Reward, see C, Figure 7 For Reduction we see
that the rerouting in the reduced network in the end is crucial. In most of our experiments
the resulting routing dominates all assignments in intermediate steps with respect to costs
and travel time of the resulting line concepts. For Reward we observe no convergence. It may
even happen that some of the intermediate assignments lead to non-dominated line concepts.

6.2 Using the line plan as basis for timetabling and vehicle scheduling
In this section we exemplarily evaluate the line concept obtained by Reduction with routing
in the PTN for a large line pool of 275 lines in more detail. The line plan is depicted in
Figure 5b. For its evaluation we used LinTim [1, 10] to compute a periodic timetable and
a vehicle schedule. The resulting public transport supply was evaluated by VISUM ([15]).
More precisely, we computed

the cost for operating the schedule given by the number of vehicles, the distances driven
and the time needed to operate the lines, and
the perceived travel time of the passengers (travel time plus a penalty of five minutes for
every transfer) when they choose the best possible routes with respect to the line plan
and the timetable.

The resulting costs are 1830 which leads to be best completely automatically generated
solution obtained so far for this example (for other solutions, see [8]) and shows that the low
costs in line planning lead to a low-cost solution when a timetable and vehicle schedule is
added. As expected, the travel time for the passengers increased (by 18%).

7 Conclusion and Outlook

We showed the importance of the traffic assignment for the resulting line concepts, regarding
the costs as well as the passengers’ travel time. We analyzed the effect of different assignments
theoretically as well as examined three assignment algorithms numerically. As further steps
we plan to analyze the impact of the passengers’ assignment together with the generation of
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the line pool. We also plan to develop algorithms for solving (LineA) exactly with the goal of
finding the cost-optimal assignment in the line planning stage, and finally a lower bound on
the costs necessary to transport all passengers in the grid graph example. Furthermore, more
optimization in the implementation is necessary to solve the discussed models on instances
of a more realistic size.
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A Proofs

Proof of Theorem 2. We reduce the problem to a set covering problem with elements
M = {1, . . . ,m} and covers N = {1, . . . , n} ⊆ Pot(M).

For each element i ∈M , we create two nodes ui and vi. We create lines Pj , ∀j ∈ N . We
add edges from ui to the start of lj and from the end of lj to vi when j ∈ N covers i ∈M .
An example network is depicted in Figure 6.

Every line lj has length 1 and every edge leading to or starting at the end of such a line
has a length of 1. Hence, SPuivi

= 3 for all ui, vi. We add auxiliary lines for every edge in
the network. For cfix = 0, every line l has costl = 1. For each element i ∈M , create an OD
pair (ui, vi). Set Cap to m.

A path from ui to vi, i.e. a shortest path for the OD pair (ui, vi), needs to use exactly
one line lj . Since costl = 1 and Cap = m, an optimal choice of the lines lj , j = 1, . . . , n
corresponds to a minimal set cover (and vice versa). J

Proof of Lemma 5. Let Puv be a shortest path for each OD pair. Using these paths as lines

http://dx.doi.org/DOI: 10.1007/s11066-013-9080-x
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is a feasible solution. Therefore

gcost(w) ≤
∑
u,v∈V

(
cfix +

∑
e∈Puv

de

)⌈
Wuv

Cap

⌉

=
∑
u,v∈V

(SPuv + cfix)
⌈
Wuv

Cap

⌉

≤
⌈

maxu,v∈V Wuv

Cap

⌉ ∑
u,v∈V

(SPuv + cfix)

=
⌈

maxu,v∈V Wuv

Cap

⌉|OD|cfix +
∑
u,v∈V

SPuv


In order to get a lower bound assume the best possible situation, namely Pu,v ⊆ Pūv̄ for all
OD pairs (u, v). In this case

gcost(w) ≥

(
cfix +

∑
e∈P

de

)⌈∑
u,v∈V Wuv

Cap

⌉
= (cfix + SPūv̄)

⌈∑
u,v∈V Wuv

Cap

⌉
≥

(cfix|OD|+
∑
uv SPuv)

|OD|

⌈∑
uvWuv

Cap

⌉

Together, we get a bound for the ratio of two different passenger assignments w and w′:

gcost(w)
gcost(w′) ≤

⌈
maxu,v∈V Wuv

Cap

⌉(
|OD|cfix +

∑
u,v∈V SPuv

)
(
cfix|OD|+

∑
u,v∈V

SPuv

)
|OD|

⌈∑
u,v∈V

Wuv

Cap

⌉ = |OD|

⌈
maxu,v∈V Wuv

Cap

⌉
⌈∑

uv
Wuv

Cap

⌉ ≤ |OD|

J

Proof of Theorem 6. The optimal solution of the relaxation LineP(w) for traffic load w is
given by choosing a line le for every edge e ∈ E with we > 0 and adjusting its frequency to
fle := we

Cap . The resulting objective function value is

g̃cost(w) =
∑

e∈E:we>0
de

we
Cap (5)

We use that we has been found by routing the OD-pairs along shortest paths: Inserting (4)
into (5) gives

g̃cost(w) =
∑

e∈E:we>0
de

we
Cap

=
∑

e∈E:we>0
de

1
Cap

∑
uv:e∈Puv

Wuv

= 1
Cap

∑
u,v∈V

Wuv

∑
e∈Puv

de

= 1
Cap

∑
u,v∈V

WuvSP (uv)

which does not depend on the shortest paths Puv, but only on their lengths and hence proves
the result. J
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B Algorithms

Algorithm 8: CGN routing version of Algorithm 5
Input: PTN= (V,E), Wuv for all u, v ∈ V
Construct the CGN (Ṽ , Ẽ) with

dẽ =
{
de, for drive edges ẽ, where e is the corr. PTN edge
pen, for transfer edges ẽ, where pen is a transfer penalty

i := 0
w0
e := 0∀e ∈ E

repeat
i = i + 1
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path P̃ iuv from u to v in the CGN, w.r.t.

costi(ẽ) = dẽ + γ · dẽ

max{wi−1
e , 1}

,

where e is the PTN edge corresponding to ẽ.
end
for every e ∈ E do

Set wie :=
∑

ẽ∈Ẽ
e corr. to ẽ

∑
u,v∈V
ẽ∈ẽi

uv

Wuv

end
until

∑
e∈E(wi−1

e − wie)2 < ε or i > max_it;
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path Puv from u to v in the PTN, w.r.t.

cost(e) =
{
de, wie > 0
∞, otherwise

end
for every e ∈ E do

Set we :=
∑
u,v∈V
e∈Puv

Wuv

end
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Algorithm 9: CGN routing version of Algorithm 6
Input: PTN= (V,E), Wuv for all u, v ∈ V
Construct the CGN (Ṽ , Ẽ) with

dẽ =
{
de, for drive edges ẽ, where e is the corr. PTN edge
pen, for transfer edges ẽ, where pen is a transfer penalty

i := 0
w0
ẽ := 0∀ẽ ∈ Ẽ

repeat
i = i + 1
wiẽ := wi−1

ẽ ∀ẽ ∈ Ẽ
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path P̃ iuv from u to v in the CGN, w.r.t.

costi(ẽ) = max{dẽ ·
(

1− γ · w
i−1
ẽ mod Cap

Cap

)
, 0}

for every ẽ ∈ P̃ i−1
uv do

Set wiẽ := wiẽ −Wuv

end
for every ẽ ∈ P̃ iuv do

Set wiẽ := wiẽ +Wuv

end
end
for every e ∈ E do

Set we :=
∑

ẽ∈Ẽ:
ẽ corr. to e

∑
u,v∈V :
ẽ∈P̃uv

Wuv

end
until

∑
e∈E(wi−1

e − wie)2 < ε or i > max_it;
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Figure 7 Iterations for Reward, γ = 0.3, 125 lines
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Figure 8 Travel time of Reward and Reduction solutions for increasing line pool size

C Numerical results

For the numerical result tables, Cost describes gcost, the perceived average travel time
describes gtime, and the drive time is gtime, but without the penalty for transfers. The
parameter set denotes for Reward and Reduction the γ value of the solution, for Reduction
the number of reduced PTN edges is given in brackets. Brackets for the Reward algorithm
denote a better solution found in the iteration process, i.e., a solution that was better than
the end result.
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Model Routing Network Avg. Runtime (s) 33 lines Avg. Runtime (s) 275 lines
shortest path PTN 1.48 6.7
shortest path CGN 1.55 15.35

Reward PTN 14.35 1015.82
Reward CGN 15.62 1260.32

Reduction PTN 2.71 35.71
Reduction CGN 2.94 36.15
Table 1 Average runtime of the algorithms, 10 repetitions on an Intel(R) Core(TM) i3-3130M

CPU @ 2.60GHz, 4 GB RAM

Procedure Cost perceived average travel time average drive time parameter set
shortest paths 1064.55 30.06 18.66 -

reward 1015.6 37.92 24.43 15
reduction 1065.3 30.22 18.73 25 (3)
Table 2 Grid, cost optimal solutions, Routing in Cgn, minimal cost solutions, 33 lines

Procedure Cost perceived average travel time average drive time parameter set
shortest paths 1421.45 31.1 18.41 -

reward 1217.85 34.88 18.58 1
reduction 1320.1 31.96 18.96 200 (9)
Table 3 Grid, cost optimal solutions, Routing in ptn, minimal cost solutions, 33 lines

Procedure Cost perceived average travel time average drive time parameter set
shortest paths 913.35 28.99 18.75 -

reward 863.2 29.14 18.77 0.25
reduction 862.6 30.14 19.37 150 (8)
Table 4 Grid, cost optimal solutions, Routing in Cgn, minimal cost solutions, 74 lines

Procedure Cost perceived average travel time average drive time parameter set
shortest paths 1114.55 29.96 18.41 -

reward 1014.7 37.39 21.00 3
reduction 1063.65 30.75 18.98 200 (9)
Table 5 Grid, cost optimal solutions, Routing in ptn, minimal cost solutions, 74 lines

Procedure Cost perceived average travel time average drive time parameter set
shortest paths 863.8 28.43 18.43 -

reward 813.65 (812.2) 28.64 (28.63) 18.44 (18.43) 0.3
reduction 812.45 28.67 18.64 75 (6)
Table 6 Grid, cost optimal solutions, Routing in Cgn, minimal cost solutions, 125 lines

Procedure Cost perceived average travel time average drive time parameter set
shortest paths 864.1 28.48 18.41 -

reward 864.1 (863.2) 34.81 (35.14) 18.41 (18.42) 0.1
reduction 762.45 29.93 19.62 200 (11)
Table 7 Grid, cost optimal solutions, Routing in PTN, minimal cost solutions, 125 lines
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Procedure Cost perceived average travel time average drive time parameter set
shortest paths 763.65 28.43 18.43 -

reward 762.3 30.12 18.52 0.7
reduction 711.85 28.69 18.67 75 (7)
Table 8 Grid, cost optimal solutions, Routing in Cgn, minimal cost solutions, 186 lines

Procedure Cost perceived average travel time average drive time parameter set
shortest paths 813.5 28.48 18.41 -

reward 812.9 35.34 18.56 0.5
reduction 711.85 28.73 18.65 75 (7)
Table 9 Grid, cost optimal solutions, Routing in PTN, minimal cost solutions, 186 lines

Procedure Cost perceived average travel time average drive time parameter set
shortest paths 763.35 28.42 18.42 -

reward 762.15 28.43 18.43 0.3
reduction 712 28.67 18.66 50 (7)
Table 10 Grid, cost optimal solutions, Routing in Cgn, minimal cost solutions, 275 lines

Procedure Cost perceived average travel time average drive time parameter set
shortest paths 762.6 28.45 18.41 -

reward 762.6 (762.15) 35.1 (35.05) 18.42 (18.44) 0.1
reduction 662 28.7 18.65 75 (7)
Table 11 Grid, cost optimal solutions, Routing in PTN, minimal cost solutions, 275 lines
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