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Abstract

Line Planning is an important stage in public transport planning. This
stage determines which lines should be operated with which frequencies.
Several integer programming models provide solutions for the line planing
problem. However, when solving real-world instances, integer optimiza-
tion often falls short since it neglects objectives that are hard to measure,
e.g., memorability of the system. Adaptions to known line planning mod-
els are hence necessary.

We analyze one such adaption, namely that the frequencies of all lines
should be multiples of a fixed system headway. This is common in practice
and improves memorability and practicality of the designed line plan. We
model the requirement of such a common system headway as an integer
program and compare line plans with and without this new requirement
theoretically by investigating worst case bounds, as well as experimentally
on artificial and close to real-world instances.

Keywords: Public Transport Planning, Line Planning, Integer Op-
timization

1 Introduction

Line planning in public transport is a well researched problem. Its goal is to
choose the number and the shape of the lines to be operated and to determine
their frequencies, i.e., how often services should be offered along every line within
the planning period T . The lines together with their frequencies are called a
line concept. Existing models optimize the costs, e.g., [5], [11], the number of
direct travelers, e.g., [7],[4], or the approximated passengers’ traveling times,
e.g., [17], [20] of the line concept. Overviews on different models can be found
in [18] and [14].

∗This work was partially funded by DFG research unit FOR 2083.
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Recent developments include different planning stages into the line planning
problems, i.e., they consider integrated planning in public transport. Examples
are to integrate the timetabling step [3], the demand [21] or treating several
planning stages in an integrated way [19, 13]. Other work examine the effect
of time dependent demand [2] or the differences of route choice and assignment
[10].

Nevertheless, solutions to the line planning problem often fall short in im-
portant criteria that are not easily measurable in integer optimization problems.
One important criterion is the memorability of the resulting timetable. Ideally,
public transport passengers need to memorize only one specific minute and a
headway for a particular stop, e.g., minute 01 every 10 minutes. To achieve such
properties, transport planners use specific concepts when designing line plans.
One common concept is a system or pulse headway describing a minimum head-
way, which must be achieved by all lines, see [23] and [22]. The application of
a system headway leads not only to regular departure times but also to regular
connections when passengers have to transfer.

More precisely, let a line concept consisting of a set of lines L and their
frequencies fl for all l ∈ L be given. If there exists a natural number i 6= 1
which is a common divisor of all frequencies fl we say that the line concept has
a system headway.

In this paper, we want to model the concept of a system headway mathe-
matically. In particular, we show how the requirement for a system headway
can be added to existing integer optimization models, and we derive properties
for general line planning models and for a cost-based formulation.

2 Modeling system headways

Before we introduce our adaptions to the integer programming models, we define
formally what the line planning problem is. Let a public transport network
PTN=(V,E) be given, with nodes V as stations and undirected edges E between
them. A line l is a path in the PTN. In this paper we assume that a line pool
L is given. It contains a (large) set of potential lines from which we want to
choose the ones to establish. A line concept (L, f) assigns a frequency fl ∈ N0

to every line l in the given line pool L. (Lines which are not chosen from the
pool receive a frequency of zero).

There exist many different models for line planning. The frequencies fl for all
l ∈ L are the variables to be determined in all line planning models. Sometimes,
additional variables x ∈ X ⊆ Rn are also present which might for example be
used for modeling the paths of the passengers.
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The general line planning model can hence be written as

(P) min obj(f, x)

s.t. g(f, x) ≤ b

fl ∈ N0 for all l ∈ L
x ∈ X,

where g : L × X → Rm is a linear function containing m constraints and
b ∈ Rm. Common choices for the linear objective function obj : L×X → R are
to minimize the costs or the traveling time of the passengers, or to maximize
the number of direct travelers. The constraints are written in the general form
g(f, x) ≤ b, but as noted in [18] most line planning models contain constraints
of the type ∑

l∈L:
e∈l

fl ≥ fmin
e ∀e ∈ E, (LEF)

and of the type ∑
l∈L:
e∈l

fl ≤ fmax
e ∀e ∈ E (UEF)

for given lower and upper edge frequency bounds fmin
e ≤ fmax

e for every edge
e ∈ E. The constraints (LEF) are called lower edge frequency constraints and
are used to ensure that all passengers can be transported while the upper edge
frequency constraints (UEF) are needed due to the limited capacity of tracks,
or due to noise restrictions. They also bound the costs of the line concept.
Allowing to set fmin

e = 0 and fmax
e = ∞ we can without loss of generality

assume that constraints of type (LEF) and (UEF) always are present in the
general line planning model.

Typically, cost-oriented models minimize the costs of a line concept and
contain (LEF) while passenger-oriented models optimize the traveling time or
the number of transfers passengers have. To prevent the model to establish all
lines with high frequencies, constraints of type (UEF) may be used or a budget
constraint (BUD) (see Section 5).

The main definition for this work is the following.

Definition 1. A system headway (also called system frequency) is defined as a
common divisor of all frequencies fl, l ∈ L, i.e., i ∈ N is a system headway for
(L, f) if and only if i ≥ 2 and i|fl for all l ∈ L.

In the following we look for line concepts which have a system headway. Note
that we only consider system headways greater than one, as choosing i = 1 as
a system headway poses no restriction on the model and is therefore considered
as having no system headway at all.

Including the system headway requirement into the general line planning
model (P) is possible with only small adaptions. Let us first consider a given
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and fixed system headway i ∈ N. Since the frequencies fl are integer variables
we can include a system headway by adding only the constraints (1) and (2):

(P(i)) min obj(f, x)

s.t. g(f, x) ≤ b

fl = αl · i ∀l ∈ L, (1)

αl ∈ N0 ∀l ∈ L (2)

fl ∈ N0 for all l ∈ L
x ∈ X.

By opt(i) we denote the optimal objective function value of P(i). At first it is
unclear, whether (1) and (2) add to the difficulty of the model. In fact, they do
not do this, as the following theorem shows.

Theorem 2. Let (P) be a general line planning problem for a given instance
based on the period T . Then problem P(i) is equivalent to a line planning prob-
lem (P’). The new line planning problem (P’) has the same number of variables
and constraints as (P).

Proof. We introduce new variables f ′l := fl
i for all l ∈ L. Substituting fl by

these new variables in P(i) and using the linearity of obj and of g, we receive

(P’(i)) min i · obj(f ′, x)

s.t. i · g(f ′, x) ≤ b

i · f ′l = αl · i ∀l ∈ L
αl ∈ N0 ∀l ∈ L
fl ∈ N0 for all l ∈ L
x ∈ X.

From i · f ′l = iαl we conclude that fl = αl for all l ∈ L and the variables αl are
not needed any more. P’(i) hence simplifies to

(P’(i)) min obj(f ′, x)

s.t. g(f ′, x) ≤ b
i

fl ∈ N0 for all l ∈ L
x ∈ X.

which is a line planning problem with the same number of variables and con-
straints, but a right hand side b

i .

Note that the new line planning problem can be interpreted as using the
period T ′ := T

i instead of T . This can be seen by looking at (LEF) and (UEF)
which in (P’) now read as

fmin
e

i ≤
∑
l∈L:
e∈l

fl ≤ fmax
e

i ∀e ∈ E,
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i.e., we restrict how many vehicles are allowed to pass an edge in the new period
T ′ := T

i .

Example 3. We are interested in a solution with system headway i = 4. Then
instead of using lower and upper edge frequency bounds of 3 and 6, respectively,
we can bound the number of vehicles running along this edge within 15 minutes
to be between 3

4 and 6
4 . Since ∑

l∈L:
e∈l

fl ∈ N

we can furthermore use integer rounding and obtain the only feasible solution
of four vehicles per hour running along this particular edge.

It might also be interesting to determine the line concept with a best possible
system headway, i.e., we have no particular number i for a system headway
given but we wish to find a line concept which satisfies the system headway
requirement for some natural number i ≥ 2. A naive approach is to solve
P (i) for all i smaller than the period length T and choose the solution with best
objective value opt(i). However, choosing the best possible system headway can
also be formulated as an integer quadratic program by adding the constraints
(3) and (4) to P(i) and hence leaving α = i as variable:

(Psys−head) min obj(f, x)

s.t. g(f, x) ≤ b

fl = αl · α ∀l ∈ L,
αl ∈ N0 ∀l ∈ L
α ≥ 2 (3)

fl ∈ N0 for all l ∈ L
x ∈ X

α ∈ N. (4)

In the following we analyze which system headways are reasonable and how
much one loses in quality or costs of a line plan when (the best) system headway
is chosen. We first have a look at the general line planning problem and then
discuss the classic cost-oriented model and the direct travelers approach.

3 The size of a system headway in the general
line planning problem

In this section we investigate which numbers i are suitable as system headways
and how we can find a best solution among all possible system headways.

In the following we compare the result of P (i) for different values of i. Our
first result states that a divisor i of a given system headway j always yields
a better solution than using j itself. This holds for all general line planning
problems.
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Figure 1: Infrastructure network for Example 6

Lemma 4. Let i, j ∈ Z and i|j. Then opt(i) ≤ opt(j).

Proof. Let (f(i), x(i)) denote a feasible solution to P (i), and (f(j), x(j)) denote
a feasible solution to P (j). This means j|f(j). Together with the assumption
i|j we obtain that i|f(j), hence f(j) satisfies (1) and (2) also in P (i). The other
constraints g(x, f) ≤ b of P (i) are also constraints of P (j), hence every feasible
solution for P (j) is also feasible for P (i) and their objective functions coincide.
Therefore, P (i) is a relaxation of P (j) and opt(i) ≤ opt(j).

The previous lemma shows that searching for the best solution using a system
headway can be done more efficiently: Instead of testing every possible value,
it is enough to restrict ourselves to prime numbers.

Corollary 5. There always exists an optimal solution (α, f, x) to (Psys−head)
in which the optimal system headway α is a prime number.

Unfortunately, it cannot be seen beforehand which prime number results
in the best solution. In practice, choosing a smaller system headway is often
better (as can be seen in Section 6). However, depending on the constraints
g(f, x) ≤ b, there are counterexamples where a smaller system headway is not
even feasible. This is even true if g(f, x) ≤ 0 only consists of lower and upper
edge frequency constraints (LEF) and (UEF) as the following example shows.

Example 6. Consider a simple PTN with only two stations and a connecting
edge, as depicted in Fig. 1. Let the lower and upper edge frequencies of this
edge be both set to three. Then there is a feasible solution for a system headway
of i = 3 but not for i = 2.

Such examples raise the question in which cases (Psys−head) has a feasible
solution. Clearly, if the original line planning problem (P) is infeasible then cer-
tainly also all P(i) and (Psys−head) are. As Example 6 shows, (LEF) and (UEF)
already make the opposite direction of this statement wrong: P(i) can be in-
feasible even if (P) is feasible. The next lemma shows that this happens in
particular for small upper edge frequencies fmax

e :

Lemma 7. Let (P) be a general line planning problem containing constraints
of type (LEF) and of type (UEF). (Psys−head) is infeasible if there exists an
edge e with fmin

e = fmax
e = 1.

Proof. Edge e needs to be covered by exactly one line l with frequency fl = 1
which then is not an integer multiple of any i ≥ 2.
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On the other hand, in case the only constraints contained in g(l, x) ≤ b are
constraints of type (LEF), then we have a positive result.

Lemma 8. Let (P) be a feasible line planning problem in which only has con-
straints of type (LEF) or constraints which depend on x, but not on f . Then
P(i) is feasible for all possible system headways i ≥ 2.

Proof. Take a solution (f, x) for (P). For all l ∈ L define

f ′l := min{k : i|k and k ≥ fl}.

Then f ′l satisfies (1) and (2). Furthermore, since f ′l ≥ fl also (LEF) are satisfied,
and satisfaction of constraints which just depend on x is not changed when
replacing f by f ′. Hence, (f ′, x) is a feasible solution to P(i).

Note, that even if the conditions of Lemma 8 are met, a smaller system
headway does not need to be better, as can be seen in Example 9.

4 Bounds for a cost model in line planning

We now turn our attention to a particular model in line planning, namely the
basic cost model. It has been extracted from the cost model in [6] and stated
in [18]. The model allows to study how much we lose when requiring a system
headway compared to the original model without the system headway require-
ment.

Since we know from Lemma 7 that (UEF) may destroy feasibility of line
planning problems we only consider problems without upper edge frequency
bounds for the rest of this section, i.e.,

fmax
e =∞ ∀e ∈ E.

The cost model we study here is the following: Passengers are first routed
along shortest paths in the PTN. The number of passengers which travel along
edge e in these shortest paths is then counted and divided by the (common)
capacity of the vehicles. This gives the minimal number of vehicles fmin

e needed
to cover edge e The costs of a line concept are approximated as

cost(L, f) =
∑
l∈L

fl · costl,

where costl is a given cost per line l ∈ L. This often includes time- and distance-
based costs of a line. In this work, we pose no assumptions on the structure of
the costs costl, i.e., they can be chosen arbitrarily for each line. Including the
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system headway requirement results in model P(i):

min
∑
l∈L

fl · costl

s.t. fmin
e ≤

∑
l∈L:
e∈l

fl ∀e ∈ E

fmax
e ≥

∑
l∈L:
e∈l

fl ∀e ∈ E (P(i))

fl = αl · i ∀l ∈ L
fl, αl ∈ N0 ∀l ∈ L

As before, opt(i) denotes the optimal cost value for P (i).
First note, that even in this simple model, opt(i) ≤ opt(j) for i ≤ j need not

hold as the next example shows.

Example 9. Consider again the simple PTN of Fig. 1. Let the lower edge
frequency of this edge be three as before, while the upper edge frequency is now
deleted (or set to fmax

e =∞). Let only one line l serve edge e. Then the optimal
solution for a system headway of i = 3 is fl = 3 which leads to an objective
function value opt(3) = 3 · costl. Now, taking a smaller system headway of i = 2
requires a frequency of fl = 4 for line l in order to serve edge e. This means we
obtain

opt(2) = 4 · costl > 3 · costl = opt(3).

Nevertheless, even if monotonicity does not hold, the structure of the cost
model allows to prove the following result.

Theorem 10. Let i, j ∈ Z, i ≤ j. Then opt(j) ≤ j
i opt(i).

Proof. Let f i be an optimal solution to P (i). Then f ′ = j
i f

i is a feasible
solution for P (j), since j|f ′ and the lower edge frequency requirements (LEF)
are still satisfied: ∑

l∈L:
e∈l

f ′l =
∑
l∈L:
e∈l

j

i
f il ≥

∑
l∈L:
e∈l

f il ≥ fmin
e ∀e ∈ E.

Therefore, the optimal objective value of P (j) can be bounded by the objective
value of f ′ :

opt(j) ≤
∑
l∈L

f ′l · costl =
∑
l∈L

j

i
f il · costl =

j

i
opt(i).

Note that this lemma also holds for i = 1, i.e., the case for no system
headway. This yields the following corollary.
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The result also allows to compare the costs of an optimal solution for the
original problem (P ) to the costs of an optimal solution for problem P (i) with
a system headway of i.

Corollary 11. Let opt be the optimal objective value of the cost model. Then
the optimal costs opt(i) of a system headway i compared to the model without
the requirement of a system headway are bounded by

opt(i) ≤ i · opt∗.

Therefore requiring a system headway of, e.g., i = 2 can in the worst case
double the costs.

Although this factor is often not attained in practice (see Section 6), the
bound is sharp.

Example 12. Consider again the simple PTN of Fig. 1 but now with a lower
edge frequency of one, i.e., the edge must be covered and only one line l serving
edge e. Then the optimal solutions for a system headway of 2 and 3 fulfill:

opt(2) = 2 · costl =
2

3
· 3 · costl =

2

3
opt(3)

5 Passenger-oriented models

There are several passenger oriented models known in literature. We mainly
consider the direct traveler model introduced in [4]. For this problem, the
number of direct travelers, i.e., the number of passengers that can travel from
their origins to their destinations without changing lines, should be maximized.
Other models try to minimize the approximated travel time of the passengers,
e.g., [20, 1].

Passenger oriented models need other types types of constraints than those
in the cost model of Section 4. Including (LEF) may not be necessary any more
since the passengers are treated in the objective function. Including (LEF) is
one way to restrict the costs of the line plan (and used, e.g., in [4]). There may
also be a budget constraint in the form of∑

l∈L

costl · fl ≤ B, (BUD)

where costl are given cost coefficients for every line l ∈ L which may include
time- and distance-based costs of a line. In this work, we pose no assumptions
on the structure of the costs costl, i.e., they can be chosen arbitrarily for each
line.

When we remove such a constraint from a passenger oriented model, the
problem often becomes trivial, since it might be an optimal solution to establish
all lines with high frequencies (which can then be chosen as multiples of the given
system headway i). Hence, a constraint of the type of (BUD) is necessary.
However, with a budget constraint, we obtain similar problems to Lemma 7, as
can be seen in the following example.
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Example 13. We again consider the PTN given in Fig. 1. When we now
assume that we have a budget constraint restricting the costs of the solution
to a single line with frequency 1, there is no feasible solution for any system
headway.

Similarly, we can construct examples equivalent to Example 6 and Exam-
ple 9.

The conclusion is the following: It can always happen that the original line
planning model (P) is feasible while the corresponding problem P(i) with a
fixed system headway i or even (Psys−head) become infeasible. This means that
a result such as Theorem 10 for the cost model is not possible for (reasonable)
passenger-oriented models and that the relative difference between the objec-
tive of a system headway and the objective without this requirement may be
arbitrarily large.

6 Experiments

For the practical experiments, we consider three instances with different char-
acteristics:

Grid: A small example first presented in [8]. It is designed to be small enough to
understand effects of decisions but still contains a realistic demand struc-
ture. It has 25 stops, 40 edges and 2546 passengers. For a representation
of the infrastructure, see Fig. 2a. The instance has been tackled by several
researchers and can be downloaded at [12].

Goettingen: An instance based on the bus network in Göttingen, a small city in
the geographical center of Germany. It contains 257 stops, 548 edges and
406146 passengers. For a representation of the infrastructure, see Fig. 2b.

Germany: An instance based on the long-distance rail system in Germany. It
contains 250 stops, 326 edges and 3147382 passengers. For a representation
of the infrastructure, see Fig. 2c.

All experiments are done using the LinTim-software framework [9, 16]. We
computed a line concept without system headway as well as for every system
headway from 2 to 10 while optimizing the given line planning problem.

First, we consider solving the cost model discussed in Section 4. An evalu-
ation containing the costs of the different solutions and the worst case costs of
Lemma 10 can be found in Fig. 3.

There are mainly two things to observe here: First of all, the assumption that
higher system headways lead to higher costs is often, but not always true. In all
but one case, the costs are strictly increasing for increasing system headways.

But, as was seen in Section 3, this does not always have to be the case. This
can be observed in Fig. 3a where the solution for a system headway of i = 3
has lower costs than the solution for a system headway of i = 2. This occurs in
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(a) Grid (b) Goettingen

(c) Germany

Figure 2: Infrastructure networks of the used instances

11



0 2 3 4 5 6 7 8 9 10

system frequency

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
os
ts

of
th
e
re
su
lt
in
g
op

ti
m
al

lin
e
co
n
ce
p
t

The worst case costs

The costs of the line concepts

(a) Grid

0 2 3 4 5 6 7 8 9 10

system frequency

0

2000

4000

6000

8000

10000

12000

14000

C
os
ts

of
th
e
re
su
lt
in
g
op

ti
m
al

lin
e
co
n
ce
p
t

The worst case costs

The costs of the line concepts

(b) Goettingen

0 2 3 4 5 6 7 8 9 10

system frequency

0

20000

40000

60000

80000

100000

120000

140000

160000

C
os
ts

of
th
e
re
su
lt
in
g
op

ti
m
al

lin
e
co
n
ce
p
t

The worst case costs

The costs of the line concepts

(c) Germany

Figure 3: Solutions for the Cost Model
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Figure 4: Solutions for the Direct Travelers Model

cases where the demand on most edges can be met by lines with a frequencies
of three. Then a system headway of i = 2 leads either to more lines or to line
frequencies of four.

Additionally, note that the worst case factor for using a system headway
from Lemma 10 is not obtained in practice but the difference to the theoretical
bound decreases with increasing instance size.

Next, we consider the case of a passenger-oriented line planning model. We
chose the direct travelers model of [4], see also Section 5. For this, we set a
budget to examine the effect of the system headway on a restricted problem.

In Fig. 4 we can clearly see the effects of the system headway.
In the instance Goettingen (Fig. 4a), we again observe that the quality of

the line plan decreases most of the times with increasing system headway but
there may be cases where a bigger system headway can use the given budget a
little bit better, resulting in a better plan for the passenger. Hence, monotonicity
of the objective function is also here likely, but not guaranteed.

In the instance Germany (Fig. 4b), we see the effect of a late drop-off of the
quality, resulting from a budget that is big enough to not be restrictive for the
first few cases.

It has been recognized in several publications [3, 19, 13] that line planning
should not be treated isolated from other planning stages, but an integrated
approach is needed. We are hence interested not only in the effects a system
headway has on line plans, but also consider if there are effects on the resulting
timetable. Note that the line plan influences the resulting passengers’ travel
time obtained by the timetable significantly [8, 9].

To consider the results of system headways on the timetable, we compute
a periodic timetable for each of the line plans and compare their qualities,
evaluating the perceived travel time of the passengers in the timetable, i.e., the
travel time including a small penalty for every transfer. For the computation of
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Figure 5: Evaluation of the Timetables

the timetable, we use the fast MATCH approach introduced in [15]. The results
are depicted in Fig. 5.

Again, we see the anticipated results: A higher system headway results in
a public transport supply with shorter headways. This leads in many cases to
shorter transfer waiting times and reductions in the perceived travel time, indi-
cating a higher quality for the passengers. However, also here, this interrelation
does not apply without exception as Fig. 5 shows.

7 Outlook

We added the system headway constraint to line planning models, derived the-
oretical bounds on their effects and examined the results on practical instances
for a cost model and a passenger-oriented model. It would be interesting to
see the proposed system headway adjustments implemented into even more line
planning models to further extend the comparison and examine the effects on
public transport systems.

Another interesting topic is the evaluation of the impact of a system headway
on passengers. Important metrics, such as the memorability of a timetable, can
only be measured inadequately using the state-of-the-art mathematical eval-
uation systems and can therefore not be compared conclusively. One way of
evaluating the impacts is to estimate the changes in public transport travel de-
mand. This requires a mode choice model, which captures not only travel time
and number of transfers as indicators for service quality, but also the service
frequency and the regularity. This can be achieved by an indicator adaption
time, which quantifies the time difference between the desired departure time
of a traveler and the provided departure time of the public transport supply.
In car transport the adaption time is always zero. A public transport supply
with regular and short headways reduces adaption time and thus makes public
transport more competitive. Experiments with the grid instance indicate that
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especially in networks with low demand the additional costs of a system headway
can partially be compensated by a shift from car to public transport. In net-
works where high demand leads to solutions with headways below 10 minutes,
the impact of a system headway on additional cost and demand is smaller. Here
the modal share primarily depends on differences in in travel time and travel
costs. Future work is necessary to better understand the impact of regularity
and adaption time on passengers travel behavior.
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