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Abstract

Line planning, timetabling and vehicle scheduling are three important
stages of public transportation planning which are highly depending on
one another. It is hence beneficial to solve them in an integrated way
instead of sequentially. We present a linear integer programming formu-
lation for the integrated problem. Due to the inherent complexity of line
planning and timetabling, it is not possible to solve the integrated model
directly. Thus, we consider different decompositions of the proposed inte-
grated model and compare their properties with regard to their solvability.

Keywords Line planning - Timetabling - Vehicle scheduling - Integrated
public transportation planning - Integer programming - Decomposition

1 Introduction

When planning public transportation, three important and well researched stages
are line planning, timetabling and vehicle scheduling. They are usually solved
sequentially. But as the solution quality and even the feasibility of the later
problems highly depends on the solution of the earlier problems the quality of
the resulting public transport supply is very likely to profit from an integrated
approach. This has been recognized, e.g., in (Borndörfer et al, 2016) for inte-
grating timetabling and passenger routing as well as in (Kaspi and Raviv, 2013)
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and (Schmid and Ehmke, 2015) for integrating line planning and timetabling or
timetabling and vehicle scheduling, respectively. A general scheme for design-
ing iterative algorithms for integrating line planning, timetabling and vehicle
scheduling has been proposed in (Schöbel, 2017). The objectives are to mini-
mize the travel times of the passengers and the costs for the public transport
company. Iterative approaches for integrating timetabling and line planning are
also used in Burggraeve et al (2017). The goal here is to design a robust public
transport supply. Simulated annealing is used in Yue et al (2017) for integrating
timetabling and vehicle scheduling.

2 Integrating line planning, timetabling, pas-
senger routing and vehicle scheduling

In this section we shortly describe the usual sequential approach to public trans-
portation planning and introduce an IP model for the integrated problem.

2.1 Sequential solution

Line planning. The goal of line planning is to cover an infrastructure network
by lines such that a minimal travel quality for the passengers is guaranteed and
the costs for the infrastructure provider is not too high. This is usually done
by routing all passengers along shortest paths and assigning lower and upper
frequency bounds on the edges of the infrastructure network that make sure that
these passengers paths can be realized. For an overview, see (Schöbel, 2012).

Timetabling. We consider periodic timetabling, i.e., the timetable is con-
structed for a fixed period and then repeated. This is usually modeled as pe-
riodic event scheduling problem (PESP) which is intrinsically hard to solve,
see e.g., (Liebchen, 2007). To avoid integrating passenger routing, it is often
assumed that passengers travel on fixed paths independently from the timetable.

Vehicle scheduling. In comparison to line planning and timetabling, vehicle
scheduling is an easier problem as its basic form can be solved by a flow formu-
lation. The goal is to minimize the operator’s costs by scheduling the operation
of lines by vehicles such that additional costs arising from empty trips are min-
imized. It is an aperiodic problem as vehicle schedules do not need to repeat
with the same period as the timetable does. For an overview, see (Bunte and
Kliewer, 2009).

Passenger routing. Passenger routing is used in different stages of the se-
quential approach. It is used to find lower frequency bounds in the line planning
stage as well as for defining weights in the timetabling stage. In the objective
function it is used to evaluate timetables with respect to the passengers’ travel
times. We have to consider passenger routing in the integrated model, because
assigning passengers to transfers beforehand is impossible when no line plan is
fixed.
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2.2 IP model

Our goal is to find a public transport supply consisting of a line plan, a timetable,
a routing of the passengers and a vehicle schedule that is feasible and minimizes
a weighted sum of the costs and the passengers’ travel times. The structure of
the integrated IP model is the following:

objective: minimize costs + travel time

line planning L
feasibility prob.

coupling constraints LP

pass. rout. P
flow problem

coupling constraints PT

timetabling T
PESP

coupling constraints TV

veh. sched. V
flow problem

coupling constraints LT, LV

Figure 1: Structure of the integrated line planning, timetabling and vehicle
scheduling problem.

We abbreviate the three planning stages by L, P, and V, and hence classify the
coupling constraints as LP, LT, LV and TV. These classes are again used in the
IP model to simplify the presentation of the constraints.

We now develop the integrated integer program in more detail. As we are mostly
interested in the structure of the resulting IP model we focus on the constraints
in this paper. In order to keep the complexity of the model manageable, we
introduce the following assumptions:

• A public transportation network PTN = (V,E) consisting of stops V and
direct connections (e.g., tracks) E between the nodes is given.

• Lines are chosen from a fixed line pool L0 and are operated with a fre-
quency of one if used. This is encoded in the boolean variable fl, l ∈ L0.

• Lower and upper frequency bounds fmin
e , fmax

e on the edges e ∈ E are
provided. The lower frequency bounds fmin

e guarantee a minimal service
quality while the upper frequency bounds fmax

e deal with operational is-
sues such as headway constraints.

• The timetable is periodic with period T .

• OD-pairs are routed as a unit on shortest paths according to the travel
time.
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• The number of periods considered for vehicle scheduling is pmax, we write
the set of considered periods as P = {1, . . . , pmax}.

• The number of vehicles is not limited.

• There is one fixed depot where all vehicles start and end their journey.

• The minimal turnover time between the last event of line l1 and the first
event of line l2 is given as Ll1,l2 .

The model is based on an extended event-activity-network N 0 = (E0,A0) which
is derived from the PTN and contains events and activities for all lines in the
pool. The events represent departures and arrivals of vehicles at stops while
the activities represent driving and waiting of vehicles as well as transferring of
passengers between different lines.

E0 = E0
arr ∪ E0

dep

E0
arr = {(v, l, arr) : v ∈ V, v ∈ l, l ∈ L0}
E0

dep = {(v, l, dep) : v ∈ V, v ∈ l, l ∈ L0}
A0 = A0

drive ∪ A0
wait ∪ A0

trans

A0
drive = {((v1, l, dep), (v2, l, arr)) : {v1, v2} ∈ l, l ∈ L0}
A0

wait = {((v, l, arr), (v, l, dep)) : v ∈ l, l ∈ L0}
A0

trans = {((v, l1, arr), (v, l2,dep)) : v ∈ l1, v ∈ l2, l1, l2 ∈ L0}

These events have to be scheduled according to the lower and upper bounds
La, Ua on the duration of the activities a ∈ A. Therefore, the variables πi for
the periodic time of the events i ∈ E and za for the modulo parameters on the
activities a ∈ A are introduced. The auxiliary variables ya are used to decide if
all lines corresponding to activity a are operated. Note that A0(l1, l2) is the set
of activities a = (i, j) such that event i belongs to line l1 and event j belongs to
line l2 while A0(l) is the set of activities a = (i, j) such that i or j belongs to l .

To correctly model the passenger routing, the network has to be extended
further to include source and target nodes for all OD-pairs which correspond to
nodes in the underlying infrastructure network as well as activities connecting
these special events to the rest of the EAN. These new events need not be
scheduled in the timetable. We get N̄ = (Ē , Ā) with

Ē = E0 ∪ E0
OD

E0
OD = {(u, v, source), (u, v, target) : u, v ∈ V }
Ā = A0 ∪ A0

to ∪ A0
from

A0
to = {((u, v, source), (u, l, dep)) : u ∈ l, u, v,∈ V }

A0
from = {((v, l, arr), (u, v, target)) : v ∈ l, u, v,∈ V }.

Analogously to the definition of A0(l), we define Ā(l) as the set of activities
a = (i, j) ∈ Ā such that event i or event j belongs to line l.

As passengers are routed on N̄ in a flow model, we introduce a variable pu,va

for each combination of OD-pair u, v and activity a ∈ Ā indicating whether the
OD-pair uses the activity.
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For vehicle scheduling we introduce boolean variables x(p1,l1),(p2,l2) to indi-
cate if the p2-th driving of line l2 is done by the vehicle that directly before that
did the p1-th driving of line l1. Similarly, boolean variables xdepot,(p,l) indicate if
the p-th driving of line l is done by a new vehicle from the depot and x(p,l),depot

indicates if the vehicle that did the p-th driving of line l is going to the depot.
To correctly describe the p-th driving of line l the following variables are used:
dl is the time it takes in the timetable to get from the first event in the line
(first(l)) to the last event in the line (last(l)), sp,l, ep,l is the start or end
time of the p-th driving of line l, respectively.

The constraints of the IP model can now be formulated in the following way,
specifying the general structure given in Figure 1.

∑
l∈L0:
e∈l

fl ≥fmin
e e ∈ E (L1)

∑
l∈L0:
e∈l

fl ≤fmax
e e ∈ E (L2)

πj − πi + za · T ≥ya · La a = (i, j) ∈ A0 (T1)

πj − πi + za · T ≤Ua +M · (1− ya) a = (i, j) ∈ A0 (T2)

ya =fl1 · fl2 a ∈ A0(l1, l2) (LT1)

Au,v · (pu,va )a∈Ā =bu,v u, v ∈ V (P1)

fl ≥pu,va u, v ∈ V, a ∈ Ā(l) (LP1)

dl =
∑

a=(i,j)∈A0(l,l)

(πj − πi + zaT ) l ∈ L0 (TV1)

sp,l =p · T + πfirst(l) p ∈ P, l ∈ L0 (TV2)

ep,l =p · T + πfirst(l) + dl p ∈ P, l ∈ L0 (TV3)

sp2,l2 − ep1,l1 ≥x(p1,l1),(p2,l2) · Ll1,l2

−M ′ · (1− x(p1,l1),(p2,l2)) p1, p2 ∈ P, l1, l2 ∈ L0 (V1)

fl2 =
∑
p1∈P

∑
l1∈L0

x(p1,l1),(p2,l2)

+ xdepot,(p2,l2) p2 ∈ P, l2 ∈ L0 (LV1)

fl1 =
∑
p2∈P

∑
l2∈L0

x(p1,l1),(p2,l2)

+ x(p1,l1),depot p1 ∈ P, l1 ∈ L0 (LV2)

x(p,l),• ≤fl p ∈ P, l ∈ L0 (LV3)

x•,(p,l) ≤fl p ∈ P, l ∈ L0 (LV4)

πi ∈ {0, . . . , T − 1}, za ∈ Z, ya, fl, pu,va ∈ {0, 1}, dl, sp,l, ep,l ∈ N,
x(p1,l1),(p2,l2), xdepot,(p,l), x(p,l),depot ∈ {0, 1}

Note that constraint (LT1) can easily be linearized as product of two boolean
variables.
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Equations (L1) and (L2) are the standard feasibility constraints for line plan-
ning, guaranteeing a minimal service quality as well as a rough upper bound
on the costs. Equations (T1), (T2) and (LT1) guarantee the feasibility of the
timetable for the lines which are operated. The passenger flow is modeled by
(P1) where a node-arc-incidence matrix is used and Equation (LP1) ensures
that only arcs belonging to operated lines are used by passengers. Equations
(TV1), (TV2) and (TV3) model the correct (aperiodic) time for the start and
end of the trips which is used in Equation (V1) to ensure that the time between
two trips which are operated directly after one another is sufficiently large. The
flow of the vehicles is modeled in Equations (LV1) and (LV2) while Equations
(LV3) and (LV4) ensure that only trips belonging to operated lines are used.

As objective functions one usually considers the overall costs and the sum
of all passengers’ traveling times with a penalty for every transfer. These ob-
jectives can be added to the model where additional variables and constraints
for linearization are needed. Note that the formulation given above can further-
more be extended to include the time slice model introduced in (Gattermann
et al, 2016) in order to distribute the favored departure times of the passengers.
This is omitted here to not further complicate the model.

3 Decompositions

In this section we apply a generic column generation approach to the integrated
line planning, timetabling and vehicle scheduling problem.

The structure presented in Section 2.2 can be exploited using the so-called
Dantzig-Wolfe decomposition (DWD) (Dantzig and Wolfe, 1960): The problem
is reformulated according to the given structure where each block is represented
by a subproblem. Furthermore, a master problem has the task to select feasi-
ble solutions for each subproblem such that the coupling constraints are satis-
fied. Due to the exponentially high number of variables, this master problem is
solved by column generation: variables are generated dynamically when solving
the linear relaxation. Embedding this in a branch-and-bound algorithm yields
branch-and-price. For an overview on column generation and branch-and-price,
see e.g., (Desaulniers et al, 2005; Vanderbeck and Wolsey, 2010).

The above problem structure, consisting of the sub-problems line planning,
passenger routing, timetabling, and vehicle scheduling, seems to be the “canon-
ical” one for applying a DWD. However, any structure that subdivides the
coefficient matrix into blocks and coupling constraints is theoretically suitable
for DWD. Here, two different blocks are independent from one another as they
neither share variables nor constraints. (If linking variables are present, i.e.,
variables that are shared by two or more blocks, one can reformulate the prob-
lem by adding for each such variable a copy for each block it appears in, and
then introducing coupling constraints that state that the variable copies must
attain the same values.) Thus, a broad variety of structures exist that might be
used to decompose the problem. The questions that arise are:

• What other decomposition structures do exist?

• Is the canonical structure suited best for applying a DWD and performing
branch-and-price? Or do there exist other structures, unknown to the
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modeler, for which this decomposition-based solution approach performs
better?

• Are there any properties that can serve as indicators of a good perfor-
mance?

To find more decompositions than the canonical one, we use several structure
detection algorithms, some of them described in (Bergner et al, 2015). Formally,
a structure detection algorithm tries to find a mapping C → N0, where C is the
set of constraints. A constraint that is mapped to 0 is a coupling constraint,
i.e., a constraint that belongs to no block but is part of the master problem.
Depending on the detection algorithm, the mapping either already guarantees
that constraints mapped to the same integer form a block or blocks have to be
formed by moving variables to the set of linking variables.

A key feature of the detection that we use is that the algorithms are allowed
to determine partial structures C → N0 ∪ {open}; i.e., a constraint can be left
undecided (mapping it to open), and a partial structure that contains undecided
constraints can then be completed by another algorithm. This increases the
number of found structures and the chance to find suitable decompositions, but
leaves the challenge to choose a “meaningful” one with which branch-and-price
is expected to perform best.

Structure detection thus proceeds in the following steps:

1. Constraint classifiers determine partitions of C, e.g., according to the
number of variables and their coefficients. With these partitions, potential
candidates for the number of blocks are determined.

2. Then, partial decompositions are built that only assign certain constraints
to be coupling constraints, but leave the remainder open. This is done in
the following ways:

• by the above mentioned constraint classifiers;

• by analyzing the densities of the constraints: Constraints with a high
number of variables are assigned as coupling constraints.

• by graph partitioning : The coefficient matrix A ∈ Rm×n is modeled
as a hypergraph in two different ways:

– hyper row graph: Each node represents a column j, and a hyper-
edge {j : aij 6= 0} for each row i is introduced;

– hyper row-column graph: Each node represents a matrix entry
(i, j) with aij 6= 0, and each row i is represented by a hyperedge
{(i, j) : aij 6= 0} containing its nonzero entries; analogously, there
is a hyperedge for each column j containing its nonzero entries.

Then, graph partitioning algorithms are applied on these graphs.
These graph partitioners yield complete decompositions as well as
partial decompositions which again only assign coupling constraints.

3. The partial decompositions are completed by looking for connected com-
ponents on the remaining constraints.

4. Last, a postprocessing routine checks if coupling constraints can be as-
signed to blocks: If a coupling constraint only contains variables of one
block, it will be moved to this block.
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Step Letter Algorithm

1/2 c constraint classification
2 a graph partitioning on the hyper row-column graph
2 r graph partitioning on the hyper row graph

3 C searching connected components
3 d detection by constraint densities

4 p postprocessing

Table 1: Overview on detection algorithms. The algorithms c, a, and r derive
a partial decomposition according to Step 2. They can be followed by the algo-
rithms C and d, see Step 3. The postprocessing algorithm p can be performed
after each of the other algorithms.

A overview on the detection algorithms is given in Table 1.

4 Computational experiments

The structure detection is implemented in the generic branch-and-price solver
GCG (Gamrath and Lübbecke, 2010) which we use in a development version
based on version 2.1.4. GCG is an extension to SCIP, used in version 4.0, see
(Gleixner et al, 2017), a solver for mixed integer programs that also serves as a
framework for branch-cut-and-price.

We applied the above structure detection scheme on a small example instance
depicted in Figure 2. Since SCIP comes with various presolving routines which
may change the problem formulation and in particular add new constraints, the
detection scheme was applied twice: first on the original IP formulation, then,
after presolving, again on potentially newly added constraints. In total, this
yielded 75 decompositions.

We evaluated each decomposition w.r.t. its computational performance
within branch-and-price: Therefore, we tried to solve the root LP relaxation
within a time limit of one hour. The computations were performed on a In-
tel(R) Core(TM) i7-2600 CPU at 3.6 GHz, with 16 GB RAM and 8 MB cache,
running on openSUSE Leap 42.2 with Linux kernel 4.4. The results are shown
in Table 2; for each decomposition, it shows the involved algorithms; moreover,
the relative block and border area, the time and number of LP iterations needed
to solve the root LP relaxation, and the gap between the dual bound and the
optimal solution value of the integrated IP. Here, the optimal value of the IP
can be used to compute the gap as the integrated problem is small enough such
that it can be solved to optimality by commercial solvers.

4.1 Canonical decomposition

At first, we consider the “canonical” decomposition structure which uses the sub-
problems line planning, timetabling, passenger routing and vehicle scheduling
from the sequential process as blocks. It is depicted in Figure 3.

Figure 3a is a reordering of the schematic representation of the matrix struc-
ture given in Figure 1 while Figure 3b represents the actual matrix structure
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v1 v2 v3 v4

Figure 2: Data set used for testing. The solid lines represent the infrastructure
network while the dashed lines represent the lines of the line pool.

coupling constraints
LT, TV, LV, LP, TP

line planning L
feasibility prob.

timetabling T
PESP

veh. sched. V
flow problem

pass. rout. P
flow problem

(a) Schematic representation of the matrix structure, reordering of Figure 1.

 0

 2000

 4000

 6000

 8000

 10000
 0  1000  2000  3000  4000  5000

(b) Actual matrix structure.The variables are numbered on the x-axis and the con-
straints on the y-axis. The small blocks (dark green area) represent the subproblems
timetabling, vehicle scheduling and passenger routing, with and additional block for
line planning which consists of 12 constraints an cannot be seen. The dark blue area
represents the large number of coupling constraints.

Figure 3: Canonical decomposition of the integrated line planning, timetabling
and vehicle scheduling problem.

for the instance given in Figure 2. The large area at the top represents the
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coupling constraints which clearly make up most of the coefficient matrix thus
making it hard to find subproblems which can be solved independently. Also
note the large number of variables which do not occur in any of the blocks.
These are auxiliary variables used for linearizations of constraints (LT1) and of
the objective and are not explicitly mentioned in the model.

When solving the problem in this canonical form by SCIP, the LP at the
root node of the branch-and-price tree can not even be solved within the time
limit. Due to the then poor lower bound, the gap is still at 5182.32 % which is
far from optimal.

4.2 Influence of detection algorithms

Therefore, we now consider other decompositions found by GCG. Figure 4 shows
the solvability of the matrix structures found by the different algorithms indi-
cated by the gap after solving the root node of the branch-and-price tree.
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Figure 4: Box and whiskers plot of the performance of the different decompo-
sition algorithms. The algorithms listed on the x-axis are combinations of the
detection algorithms given in Table 1. The boxes mark the 25th to 75th per-
centile while the whiskers mark the minimal and maximal values. The median
is depicted by a red line. Here, the performance is measured as the gap after
solving the root node of the branch-and-price tree which is given on the y-axis.

Figure 4 suggests that graph partitioning algorithms on hyper row-column
graphs combined with connected components are better suited for the integrated
line planning, timetabling and vehicle scheduling problem then algorithms using
constraint classification or graph partitioning on hyper row graphs.

Especially the algorithms apC, apCp, apdC and apdCp lead to good struc-
tures. A typical example of a decomposition found by these algorithms is de-
picted in Figure 5. Such decompositions are called arrowhead matrices due to
their shape. Intuitively, these decomposition seem to be easier to solve due to
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the low number of coupling constraints and variables combined with indepen-
dent blocks of reasonable sizes.
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 4500
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Figure 5: Example for an arrowhead matrix found by the algorithm apC with
26 blocks. The variables are numbered on the x-axis and the constraints on the
y-axis. The dark blue area represents the coupling constraints, the purple area
represents the linking variables and the dark green area represents the blocks.

4.3 Influence of the number of blocks

Figure 6 shows the influence of the number of blocks on the solvability. While
good decompositions could be found for a large span of the number of blocks,
high and low numbers of blocks can also lead to bad decompositions while a
medium number of around 20 to 30 blocks is more promising.
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(a) Algorithms a, aC, aCp, adC, adCp and ap, see Table 1.
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(b) Algorithms apC, apCp, apdC, apdCp, see Table 1.

Figure 6: Influence of the number of blocks on the performance of the different
decomposition algorithms, see Table 1. Here, the performance is measured as
the gap after solving the root node of the branch-and-price tree which is given
on the y-axis.

Note that the scale of Figure 6a and 6b varies as Figure 6b only contains
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“good” algorithms which lead to a gap of less than 200 percent. Figure 6a also
shows an effect which occurred for all decompositions considered here: The gap
is either acceptably small (up to 200%) or the root node LP could not be solved,
leading to a gap of several thousand percent.

Examples for decompositions with a large gap are given in Figure 7. They
either feature many very small blocks (Figure 7a and 7b) or few large blocks
(Figure 7d) or a combination of both (Figure7c). Medium-sized blocks seem to
be more promising.
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(a) Algorithm aCp, 106 blocks.
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(b) Algorithm cCpdCp, 77 blocks.
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(c) Algorithm cCpCp, 24 blocks.
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(d) Algorithm r, 3 blocks.

Figure 7: Decompositions with a large gap. The variables are numbered on
the x-axis and the constraints on the y-axis. The dark blue areas represent the
coupling constraints, the purple areas represent the linking variables and the
dark green areas represent the blocks.

4.4 Block and border scores

To further characterize the decompositions we consider the block score

block =

∑K
k=1mk · nk
m · n

(1)

and the border score

border =
m0 · n+ (

∑K
k=1mk) · n0

m · n
, (2)

where K is the number of blocks, m and n are the total number of constraints
and variables, respectively, mk and nk the number of constraints and variables
in block k, respectively, m0 is the number of coupling constraints and n0 the
number of linking variables.
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In an IP model structure, these two scores indicate the relative block and
border area, respectively. Our expectation is that decomposition with smaller
scores lead to a better computational performance.

Figure 8 shows the block and border scores for each decomposition. The
canonical decomposition which is depicted by a star differentiates itself by a
very high border score compared to all other decompositions considered here
and one of the lowest block scores. This could already be seen in Figure 3 in
the large number of coupling constraints. Decompositions for which the root
LP can be solved such that the gap is less than 200 % all feature both low
block and border scores. Nevertheless, low block and border scores are only an
indicator and no guarantee for good solvability, see Bergner et al (2015) for a
general discussion of such measures.
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Figure 8: Comparing different decompositions regarding the block score and the
border score, see equations (1) and (2), respectively.

5 Outlook

The analysis of different matrix structure and their influence on the solvability
of the integrated line planning, timetabling and vehicle scheduling problem pre-
sented here can only be a first step to understanding this problem. Although
we show that the canonical decomposition is far from being an optimal one to
solve the integrated problem it is hard to determine which decompositions are
suited better to this end. The best indicator so far is a small block score and a
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small border score at the same time. Therefore, extensive computational stud-
ies are needed to confirm this correlation and find further indicators for good
decompositions.
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Appendix

Det. K block border # LP iters Time (s) Gap (%)

a 2 0.50 0.01 274 3600.00 4784.50
a 4 0.24 0.02 1913 3600.00 4784.50
a 8 0.12 0.03 16564 3600.00 4784.50
a 16 0.06 0.04 29172 223.20 54.30
a 32 0.03 0.05 48081 97.90 54.30
a 3 0.33 0.01 268 3600.00 4784.50
a 10 0.10 0.04 40097 3600.00 4784.50
a 6 0.16 0.03 18243 3600.00 4784.50
a 20 0.05 0.05 46721 160.80 54.30
a 100 0.01 0.10 1420136 481.10 4784.50

aC 10 0.27 0.06 276 3600.00 4784.50
aC 14 0.13 0.07 147856 2853.20 54.40
aC 22 0.07 0.09 187441 636.70 113.20
aC 38 0.03 0.11 251646 739.30 190.80
aC 9 0.32 0.04 273 3600.00 4784.50
aC 12 0.17 0.12 201955 1415.90 57.20
aC 16 0.10 0.12 544836 904.40 56.80
aC 26 0.05 0.14 2553719 2829.10 59.80
aC 106 0.01 0.18 1589003 1463.90 4784.50

aCp 10 0.27 0.05 276 3600.00 4784.50
aCp 22 0.07 0.09 224273 635.90 113.20
aCp 38 0.03 0.11 265512 727.40 190.80
aCp 9 0.32 0.04 273 3600.00 4784.50
aCp 12 0.17 0.10 290977 1639.60 57.20
aCp 16 0.10 0.11 577623 1019.20 56.60
aCp 26 0.05 0.12 968633 1266.70 59.70
aCp 106 0.01 0.16 3211795 3423.60 4784.50
adC 5 0.27 0.05 271 3600.00 4784.50
adC 9 0.13 0.07 108036 3600.00 4784.50
adC 17 0.07 0.09 138008 585.00 113.20
adC 33 0.03 0.11 206704 609.60 190.80
adC 4 0.32 0.04 268 3600.00 4784.50

Continue next page

15



Det. K block border # LP iters Time (s) Gap (%)

adC 7 0.17 0.12 285443 1414.80 57.20
adC 11 0.10 0.12 574388 1030.90 56.80
adC 21 0.05 0.13 1876435 2067.10 59.80
adC 101 0.01 0.18 1232117 1703.80 1064.30

adCp 5 0.27 0.05 271 3600.00 4784.50
adCp 17 0.07 0.09 154553 543.40 113.20
adCp 33 0.03 0.11 259472 805.80 190.80
adCp 4 0.32 0.04 268 3600.00 4784.50
adCp 7 0.17 0.10 283497 1813.00 57.20
adCp 11 0.10 0.10 699098 1081.20 56.50
adCp 21 0.05 0.11 721362 1072.60 59.70
adCp 101 0.01 0.16 2822062 3518.00 1050.20

ap 16 0.06 0.04 33182 234.70 54.30
ap 32 0.03 0.05 44427 99.00 54.30
ap 10 0.10 0.04 38957 2621.40 54.30
ap 6 0.16 0.03 23019 3600.00 4784.50
ap 100 0.01 0.10 326158 385.80 96.70

apC 38 0.03 0.11 212859 620.80 190.80
apC 12 0.17 0.11 303335 1840.00 56.90
apC 16 0.11 0.08 228118 843.70 55.10
apC 26 0.05 0.12 1179709 1773.90 58.80
apC 106 0.01 0.12 1642579 2619.60 910.40

apCp 38 0.03 0.11 247731 760.40 190.80
apCp 12 0.17 0.10 332521 1776.50 56.90
apCp 26 0.05 0.10 577782 1052.80 58.80
apCp 106 0.01 0.12 1800497 2891.40 910.40
apdC 33 0.03 0.11 235631 670.50 190.80
apdC 7 0.17 0.11 330598 1882.80 56.90
apdC 11 0.11 0.08 348440 836.60 55.10
apdC 21 0.05 0.11 1327333 1828.00 58.80
apdC 101 0.01 0.12 740547 1826.10 910.40

apdCp 7 0.17 0.10 279236 2162.70 56.90
apdCp 11 0.11 0.08 315679 908.80 55.10
apdCp 21 0.05 0.10 571431 978.20 58.80
apdCp 101 0.01 0.12 994508 1950.80 910.40
cCpCp 24 0.50 0.05 292 3600.00 4784.50
cCpCp 24 0.49 0.05 902 3600.00 4784.50
cCpCp 24 0.11 0.15 308 3600.00 4784.50
cCpCp 24 0.49 0.05 472 3600.00 4784.50
cCpCp 24 0.11 0.15 322 3600.00 4784.50

cCpdCp 19 0.10 0.15 392 3600.00 4784.50
cCpdCp 19 0.10 0.15 1460 3600.00 4784.50

r 3 0.22 0.33 10928 3600.00 4784.50

Table 2: Detailed results for each decomposition

16



References

Bergner M, Caprara A, Ceselli A, Furini F, Lübbecke ME, Malaguti E, Traversi
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