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Abstract

In this paper we discuss what a cost-optimal public transport plan looks
like, i.e., we determine a line plan, a timetable and a vehicle schedule which
can be operated with minimal costs while, at the same time, allowing all
passengers to travel between their origins and destinations. We are hereby
interested in an exact solution of the integrated problem. In contrast to
a passenger-optimal transport plan, in which there is a direct connection
for every origin-destination pair, the structure or model for determining a
cost-optimal transport plan is not obvious and has not been researched so
far.
We present three models which differ with respect to the structures we are
looking for. If lines are directed and may contain circles, we prove that a
cost-optimal schedule can (under weak assumptions) already be obtained
by first distributing the passengers in a cost-optimal way. We are able to
streamline the resulting integer program such that it can be applied to
real-world instances. The model gives bounds for the general case. In the
second model we look for lines operated in both directions, but allow only
simplified vehicle schedules. This model then yields stronger bounds than
the first one. Our most realistic model looks for lines operated in both
directions, and allows all structures for the vehicle schedules. This model,
however, is only computable for small instances. Finally, the results of the
three models and their respective bounds are compared experimentally.
Keywords: Public Transport Planning, Integer Optimization, Line Plan-
ning, Vehicle Scheduling

1 Introduction

Public transport planning is a challenging task since it consists of several stages:
network design, line planning, timetabling, vehicle- and crew scheduling. In this
paper we look for a line plan in combination with a timetable and a vehicle
schedule, i.e., a public transport plan. Apart from the different subproblems that
need to be solved in an integrated way, there are also different objectives to
be considered. A public transport plan should be passenger-friendly (mostly
reflected by a short traveling time for the passengers) but also have low operating
costs. For individual planning stages, such as line planning, there hence exist

∗This work was partially supported by DFG under SCHO 1140/8-1 and by the Simulation
Science Center Clausthal/Göttingen.
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both passenger-oriented and cost-oriented models, but finding an integrated
solution to this multi-stage problem is more challenging. As a result, only few
papers evaluate both cost and traveling time for integrated public transport
plans. A first approach in which line plans, timetables and vehicle schedules
have been evaluated together under different criteria has been given in [15].
More recently, [12] proposes to measure the costs and the perceived traveling
time, and evaluates public transport plans under these criteria (cf. Figure 4
in Appendix A). One possible goal could be to find the set of pareto solutions
with respect to these criteria and then to choose from this set. Another goal
might be to find the best possible public transport plan for the passengers
while determining the minimal costs that are needed if all passengers should be
transported. The former problem can be solved by a taxi-solution, providing a
direct and fast connection for each origin-destination pair. Nevertheless, what a
cost-optimal transportation plan would look like has not been studied so far and
does not seem to be obvious. Given a line pool, [4] determine a line plan such
that all origin-destination pairs can travel. The costs for the lines, however, are
only approximated and not determined by the vehicle schedule. Furthermore
capacities are neglected. In contrast to this work, we now take an integrated
point of view and propose models for finding cost-optimal public transport plans,
including lines, timetables, and vehicle schedules.

In this paper we propose models for finding cost-optimal public transport plans.
More precisely, we assume that the public transport network with its stops and
direct connections is given, and that the passengers’ demand is known in form
of an origin-destination (OD) matrix. For a homogeneous fleet with a given
capacity for each vehicle we then design a line plan, a timetable, and a vehicle
schedule under the constraint that all passengers can be transported, i.e., for
each passenger there exists a possible (maybe non-optimal) connection from
their origin to their destination such that none of the vehicles is overloaded. We
aim at solving the integrated system exactly, meaning that we do not provide
iterative heuristics as in [6, 33, 36] or a sequential approach as the one in [24].

For the single planning stages line planning, timetabling, and vehicle scheduling,
models and algorithms are well-researched. For line planning, cost-oriented
models (e.g. [9, 17, 37]) and passenger-oriented models (e.g. [2, 7, 34]) are known,
see [32] for a survey. (Periodic) timetabling focuses on the passengers and is the
hardest of the three problems. Exact approaches to this problem can be found
in [35, 22, 28, 18] and heuristics in [23, 16, 25] and references therein. Integrating
the passengers’ routes in timetabling is an ongoing problem, see [3, 31, 13]. For
vehicle scheduling we refer to the survey in [5].

2 A cost-optimal LTS-plan

In this section we formally describe what a feasible public transport plan (LTS-
plan), consisting of a line plan (L), a timetable (T), and a vehicle schedule (S), is
and how its quality can be evaluated. We restrict ourselves to periodic LTS-plans
(including the vehicle scheduling) in this paper.

Notation 1. The following input data is needed:

• a public transport network PTN = (V,E) with a set of stops V and direct
connections E between them,
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• for every edge e ∈ E:

– a length (in kilometers) lengthe,

– a lower bound on the travel time along the edge Ldrive
e ,

• a lower bound Lwait for the time vehicles have to wait at every stop,

• a minimal turnaround time for vehicles Lturn, denoting the minimal time
a vehicle has to wait at the end of a line. We assume that Lwait ≤ Lturn.

• an OD-matrix W with entries Wuv for each pair of stops u, v ∈ V , denoting
how many passengers want to travel from an origin u to the destination v.
A pair of stations u, v ∈ V with Wuv > 0 is called an OD-pair.

• a capacity Cap being the maximal number of passengers each vehicle can
transport,

• cost parameters

– ctime costs per hour for a vehicle driving,

– clength costs per kilometer for a vehicle driving.

We assume that the fixed costs (cost of a vehicle, administration, etc.) are
included in the costs per hour and the costs per kilometer, as is often done in
practice.
With this input data we then look for an LTS-plan, whose objects are described
next.

Line plan L

A line is a path through the PTN. A line plan is a set of lines L, each of them
operated once in the planning period (often an hour). A line plan is feasible if
every passenger can be transported, i.e., if for every OD-pair (u, v) there exist

• a set of directed paths Puv from u to v, Pall =
⋃

u,v∈V Puv, and

• weights wp for each path p ∈ Puv

such that
∑

p∈Puv
wp = Wuv and such that for every edge e it holds that∑

p∈Pall:e∈p
wp ≤ Cap · |{l ∈ L : e ∈ l}|. (1)

We furthermore assume that lines are simple paths and that every line is operated
in both directions. We do not forbid identical lines, i.e., there may be multiple
lines with the same path. In our setting we allow any path as a possible line (as
also done in [2]) in contrast to many papers which require a line pool of limited
size.
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Timetable T

Given a set of lines L, a timetable assigns a time to every departure and arrival
of each line at its stops. Determining a (periodic) timetable is the hardest of
the three problems line planning, timetabling, and vehicle scheduling, and even
finding a feasible timetable that respects the upper and lower bounds on driving,
waiting, transfer and turnaround activities is intractable. Nevertheless, in our
case we assume no upper bounds on transfer and turnaround activities, hence
a feasible timetable exists for every possible line plan L (since the timetable
for each line can then be determined separately.). Since we are interested in
determining an LTS-plan with minimal costs we furthermore need not care about
optimizing the travel time of the passengers, meaning that any feasible timetable
is sufficient. More precisely, we can neglect the timetabling as a separate planning
stage in cost-optimal planning and simply use the arrival and departure times
which are determined by the vehicle schedule.

Vehicle schedule S

Given a line plan a vehicle schedule determines the number of vehicles and the
exact routes of the vehicles for operating the lines. We construct a set of trips
L′ which contains two directed lines for every (undirected) line l ∈ L, one in
forward and the other in backward direction.
A route of a vehicle is given by the sequence of (directed) lines it passes,

r = (l′1, . . . , l
′
k), l′i ∈ L′

whereby we require that the l′i, i = 1, . . . , k are pairwise distinct. We assume
that after having taken the last trip l′k in a route, the vehicle starts again with
l′1.

This sequence r is interpreted as follows: A vehicle starts with operating line l′1
at some point in time, x. At the end of line l′1 it drives to the start point of line
l′2, operates this line, and so on. At the end of line l′k the vehicle returns to the
start point of l′1 and starts from the beginning. In order to ensure the required
periodicity of the schedule, the vehicle needs to start after an integer multiple of
the period T , i.e., at a time y = x+ dr · T , whereby the integer dr is the number
of periods needed for a complete operation of the route r.

A vehicle schedule thus consists of a set of routes R. It is feasible if each directed
line in L′ is contained in exactly one route, i.e., if

| {r ∈ R : l′ ∈ r} | = 1 ∀l′ ∈ L′. (2)

With these assumptions in place we can then define what an LTS-plan is.

Definition 2. An LTS-plan is a tuple (L,R), such that

• L is a feasible line plan, i.e., it satisfies (1),

• R is a feasible vehicle schedule for the directed lines L′, i.e., it satisfies (2).
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Costs of an LTS-plan

The costs of an LTS-plan are given by the distance driven by all vehicles and its
total duration. Since we compute a periodic schedule, we consider the costs per
planning period T .

A vehicle route r consists of (directed) lines l′ ∈ L′. Hence, we first determine
time and duration of a line l′, namely,

lengthl =
∑
e∈l

lengthe (3)

durl = (|l| − 1)Lwait +
∑
e∈l

Ldrive
e , (4)

where |l| := {e ∈ E|e ∈ l} and (4) uses the fact that it is always cheaper to
operate a line as fast as possible. For the empty rides between a pair of lines l′1
and l′2 we can use the PTN to determine the parameters

lengthl′1,l
′
2

= length when driving from the last station of l′1 to the first station of l′2

timel′1,l′2 = time for driving from the last station of line l′1 to the first station of l′2

The minimum turnaround time (usually accounting for a driver’s break) has to
be added to the duration of an empty ride. This yields

durl′1,l′2 = Lturn + timel′1,l′2 . (5)

The number of kilometers a given LTS-plan covers is determined by summing
up the kilometers of each single route, i.e.,

length(L,R) =
∑
l′∈L′

lengthl′ +
∑

r=(l′1,...,l
′
kr

)∈R

kr∑
i=1

lengthl′i,l
′
i+1

=
∑
l∈L

2 · lengthl +
∑

r=(l′1,...,l
′
kr

)∈R

kr∑
i=1

lengthl′i,l
′
i+1

with l′kr+1 := l′1. The duration of a route r = (l′1, . . . , l
′
kr

) ∈ R is measured by
the number of time periods durr needed. This can be formally computed by

durr =

⌈
kr∑
i=1

durl′i + durl′i,l′i+1

⌉
T

(6)

with daeT := min{n ∈ N|n · T ≥ a} for any a ∈ R and l′kr+1 := l′1 . The overall
duration is hence given as

dur(L,R) =
∑
r∈R

durr. (7)

Finally, the cost function is defined as

g(L,R) := ctime · dur(L,R) + clength · length(L,R). (8)
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This allows us to define the optimization problem we are concerned with in this
paper.

Problem (cost-opt LTS): Given the input data from Notation 1, find a
feasible LTS-plan (L,R) with minimal costs g(L,R).

Traditionally, calculating an LTS-plan consists of solving a series of problems in
a sequential order, as can be seen in [8, 10, 19]. A sequential approach, however,
is flawed, since the costs are mainly determined by the vehicle schedule, which
constitutes the last step of the planning process. Nevertheless, this has been
tackled in [24] by a heuristic approach. The aim of our paper, however, is to
find the exact cost minimum of the integrated problem. In order to address this
issue we present three different models for minimizing the costs of the resulting
LTS-plan (see Figure 1).

Model 1: Load Genera-
tion

Model 2: Integrating up to Line Planning

Model 3: Integrating up to Timetabling and Vehicle Scheduling, i.e., solving
it all

Figure 1: Three proposed models for solving (cost-opt LTS)

The first model aims at distributing the OD-pairs in a cost-optimal way (called
load generation). Although it only concerns this very first step we can show
that this determines the minimal costs of an integrated LTS-plan under certain
conditions. The second model integrates load generation and line planning,
minimizing a cost function that approximates (now in greater detail) the costs
of a resulting LTS-plan. Finally, the third model presents an IP formulation for
integrating load generation, line planning, timetabling, and vehicle scheduling;
it hence provides an exact model for (cost-opt LTS).

3 Model 1: Creating a Cost-efficient Load

Line planning is often decomposed into two steps. In the first step, all OD-pairs
(u, v) are routed through the PTN resulting in paths Puv, Pall =

⋃
u,v∈V Puv,

and weights wp for every path p ∈ Puv (with
∑

p∈Puv
wp = Wuv). This data is

then used to define the loads

fmin
e =


∑

p∈Pall:e∈p
wp ·

1

Cap


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specifying how often an edge e ∈ E in the PTN has at least to be served by
some vehicle. In the second step, the line planning problem is solved using
these minimal frequencies. Normally the fmin

e are calculated assuming that all
passengers travel on their shortest path in the PTN to their destination. Since
we are interested in finding a cost-minimal LTS-plan, we do not want to work
with that assumption. In our system we require just enough capacities so that
every passenger has some possibility to travel to their destination. We use this
insight to find a load that eventually even leads to a cost-minimal LTS-plan.
Of course, in this early planning stage we do not yet have all information to
exactly determine the costs of the resulting LTS-plan, since they depend on the
line plan and the vehicle schedule. Nevertheless, we can already approximate
the costs with the following model.

Model 1. Given the input data from Notation 1, calculate a load (i.e., fmin
e for

all e ∈ E) that aims at minimizing the cost of an LTS-plan.

min ctime · dur · T + clength
∑
e∈E

2 · lengthe · fmin
e (9)

s.t.
∑
e∈E

2fmin
e (Ldrive

e + Lwait) ≤ T · dur (10)∑
u∈V

f(i,j),u ≤ fmin
e · Cap ∀i, j ∈ V with {i, j} ∈ E (11)∑

i∈V :{i,v}∈E

f(i,v),u = Wuv +
∑

i∈V :{v,i}∈E

f(v,i),u ∀u ∈ V ∀v ∈ V \{u}

(12)∑
i∈V :{u,i}∈E

f(u,i),u =
∑
v∈V

Wuv ∀u ∈ V (13)

Variables:

• f(i,j),u – number of passengers starting from stop u ∈ V traveling on arc
(i, j) for some i, j ∈ V with {i, j} ∈ E (non-negative, continuous)

• fmin
e – how often edge e has to be covered (integer)

• dur – total duration (counted in periods) (integer)

In this model we define from every stop u ∈ V in the PTN some passenger flow
going to all destinations v ∈ V . In order not to mix up passengers starting
from different stations we accordingly have to define |V | different flows. The
constraints (12) and (13) describe the flow conservation constraints. In order
to restrict the number of passengers traveling on a certain edge in the network
we defined the capacity constraints (11). Note that the flow variables f(i,j),u
for u ∈ V are defined on directed edges (i, j) whereas the minimal frequencies
fmin
e are defined on undirected edges {i, j} = e ∈ E. Finally constraint (10)

rounds the minimal duration up to the next multiple of a time period T and
the objective function gives the costs which are needed in the best case, namely
for a vehicle schedule without any empty ride and as few time loss (through the
periodicity) as possible.

The following theorem shows that Model 1 is indeed an approximation of (cost-opt
LTS), as its optimal solution yields a lower bound.
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Theorem 3. The optimal objective value of Model 1 is a lower bound on the
optimal objective value of (cost-opt LTS).

Proof. See Appendix C.

For large problem instances a speed-up of the solution process is possible by
adding the following valid inequalities to Model 1.

Lemma 4. Let (X, Y ) be some cut, i.e., some disjoint partition of all nodes
in the PTN with Ecut = {{i, j} = e ∈ E|i ∈ X and j ∈ Y } being all cut edges.
Then it holds that ∑

u∈X

∑
v∈Y

Wuv ≤ Cap ·
∑

e∈Ecut

fmin
e .

Proof. See Appendix C.

In the computational experiments (Section 6) we investigated adding these valid
inequalities, which resulted in an improvement of the runtime of up to 50%.
Model 1 does not only yield some lower bound, but we can even construct an
optimal solution to (cost-opt LTS) if a particular assumption is met.

Theorem 5. Let Lwait = Lturn and let the graph G = (V, Ē) with Ē = {e ∈
E : fmin

e > 0} for an optimal solution fmin
e of Model 1 be connected. Then the

optimal objective of Model 1 is equal to the optimal objective of (cost-opt LTS).

Proof. See Appendix C.

In case the assumption Lwait = Lturn does not hold, we still get a feasible
solution and therefore an upper bound for (cost-opt LTS), when we slightly
modify Model 1.

Definition 6. We define an adjusted version of Model 1, where Lwait is replaced
by Lturn in constraint (10), to be Model 1*.

Corollary 7. The solution (L,R) constructed in the proof of Theorem 5 is an
upper bound for (cost-opt LTS) and can be found by solving Model 1*.

If we allow that lines do not have to be bidirectional and simple paths in the
PTN, we can always obtain an optimal solution to (cost-opt LTS) by just solving
Model 1. This can be done by converting the Eulerian Cycle constructed the
proof of Theorem 5 into one big line.

Corollary 8. Let Lwait ≤ Lturn. Then the optimal objective value of Model 1
is equal to the optimal objective of (cost-opt LTS) if we allow directed and
non-simple lines.

This, of course, may lead to non-practical lines, as can be seen in the following
example.

Example 9. We examine the solution provided by Corollary 8 on a small
example. Consider the PTN given in Figure 2, with Cap passenger traveling from
v1 to v5 and 1 passenger traveling from v2 to v3. Then the solution provided
by Model 1 is given by lower bounds of [1, 2, 1, 1] and the vehicle schedule of
Corollary 8 is depicted in Figure 2, where the edges are numbered in the order
of their usage. As can be seen here, the resulting line structure is not suitable
for a practical public transport system, since it contains a cycle.
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v1 v2 v3 v4 v5

1
2

3

4
5 6

78
9

10

Figure 2: Solution of Model 1 for Example 9

4 Model 2: Integrating Load Generation and
Line Planning

Although we can already find a cost-optimal solution using Model 1, this only
works in the special case of Lwait = Lturn. We have seen that for Lwait <
Lturn the resulting line plan consists of directed lines (without their symmetric
counterparts) and the lines may contain circles. We therefore further explore
the next steps for obtaining an LTS-plan in which the lines satisfy the usual
requirements. To this end, we combine the load generation of Model 1 with
line planning to improve the approximation of the cost objective of the overall
LTS-plan. This idea is approached by the following model.

Model 2. Given the input data from Notation 1, calculate a load fmin
e and a

line plan L that aim at minimizing the costs of an LTS-plan.

min ctime · dur · T + clength

L∑
l=1

∑
e∈E

2xe,llengthe (14)

s.t. (11) - (13)

L∑
l=1

(
2zl(L

turn − Lwait) +
∑
e∈E

2(Ldrive
e + Lwait) · xe,l

)
≤ dur · T (15)

L∑
l=1

xe,l ≥ fmin
e ∀e ∈ E (16)

xe,l ≤ zl ∀e ∈ E ∀l ∈ [L] (17)∑
e∈E

xe,l ≥ zl ∀l ∈ [L] (18)∑
e∈E:s∈e

xe,l ≤ 2 ∀s ∈ V ∀l ∈ [L] (19)

2xe,l ≤ yi,l + yj,l ∀l ∈ [L] ∀(i, j) = e ∈ E (20)∑
s∈V

ys,l =
∑
e∈E

xe,l + zl ∀l ∈ [L] (21)∑
(i,j)=e∈E:i∈C and j∈C

xe,l ≤ |C| − 1 ∀ circles C ⊆ E ∀l ∈ [L] (22)

Coefficients:

• L – maximal possible number of lines (integer) and [L] := {1, ..., L}.
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Variables:

• zl – is 1 iff line l is non-empty. (binary)

• ys,l – is 1 iff stop s is contained in line l. (binary)

• xe,l – is 1 iff edge e is contained in line l. (binary)

• dur – total duration of all lines (counted in periods) (integer)

• fmin
e – as in Model 1, including the variables fe,u and constraints (11)

- (13) from Model 1.

This model finds some feasible line plan. First the zl-variables determine if line
number l is a line or empty. Constraint (17) and (18) ensure this. Now we
need for every index l that for every stop of some line there are at most two
incident edges (constraint (19)). This ensures that the xe,l variables form circles
or paths. To ensure that they form only one connected path we could consider
them as flow variables. Here, we decided to add y-variables for every visited
stop and count the number of stops that a line visits. The y-variables are set
to one for the incident nodes of all edges the line visits in (20). We then can
ensure that there is some connected path by requiring that there exists exactly
one more stop than edges in a line in constraint (21). Finally we need to rule out
subtours which is done by constraint (22) (As usual they are added by constraint
generation procedures). The variables fmin

e taken from Model 1 help us to deter-
mine feasibility of the line plan, which is done by constraint (16). Finally we
round the duration up to the next multiple of a time period, which is done by (15).

The objective function is again a lower bound on the exact costs of an LTS-plan.
This is shown in the next theorem.

Theorem 10. The optimal objective value of Model 2 is a lower bound on the
optimal objective value of (cost-opt LTS) and an upper bound to the optimal
objective value of Model 1.

Proof. See Appendix C.

We can again construct a feasible solution for (cost-opt LTS) from the solution
of Model 2 in the case that we are only interested in line-pure vehicle schedules.
In such schedules, every vehicle serves the same line, alternating between its
forward and its backward direction. More formally:

Definition 11. A solution to (cost-opt LTS) is called line-pure if R = {rl :
l ∈ L}, with rl = (l+, l−) being the route that contains only the forward and
backward direction of line l ∈ L.

We now show that the following slight modification of Model 2 can find a cost-
optimal LTS-plan under the restriction that only line-pure vehicle schedules are
allowed.

Definition 12. Consider Model 2 and replace constraint (15) by

2zl(L
turn
e − Lwait

e ) +
∑
e∈E

2(Ldrive
e + Lwait

e ) · xe,l ≤ dl · T ∀l ∈ [L] (23)

L∑
l=1

dl = dur (24)
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with integer variables dl ∈ N. We call this modified version Model 2*.

Restricting ourselves to a special structure of the vehicle schedules, we are still
able to obtain the optimal solution to (cost-opt LTS) (under some assumptions)
by simply considering loads and the lines. This is the main result of this section.

Theorem 13. An optimal solution to Model 2* solves (cost-opt LTS) under the
restriction that only line-pure vehicle schedules are allowed.

Proof. See Appendix C.

For the general case of (cost-opt LTS), Model 2* still finds a feasible solution
and therefore provides an upper bound to (cost-opt LTS).

Corollary 14. The optimal objective value to Model 2* imposes an upper bound
on the optimal objective value of (cost-opt LTS).

Example 15.

v1 v2 v3 v4 v5

1
2

3 4

56
7

8

1

2

Figure 3: Solution of Model 2

We continue Example 9 and now consider the solution constructed in Theorem 10.
These now provide simple lines, resulting in the line-pure vehicle schedule depicted
in Figure 3, improving on the line structure of Example 9. The first line is
depicted in red, the second is dashed in green. The lines here look much more
reasonable for practical implementation than the solution which was obtained
by Model 1*.

5 Model 3: Integrating Timetabling and Vehicle
Scheduling

In Model 1 and Model 2 we did not consider all subproblems of (cost-opt LTS),
especially we did not include a proper vehicle scheduling. With the following
model we want to overcome this issue and formulate the whole problem in an
integrated way.

Model 3. Given the input data from Notation 1, find a feasible LTS-plan (L,R)
with minimal costs, i.e., minimizing g(L,R).

This problem can be formulated as an integer linear program. It is described in
Appendix B.
As can be seen in Section 6, the integrated problem cannot be solved even for
instances of small size. This is due to its enormous number of variables including
a trip for every possible line in the network. Nevertheless, Model 3 can be used
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if enough variables are fixed. We hence can combine it with Model 2 by fixing
the lines in Model 3 to the optimal lines computed by Model 2. This means
that we only need to consider the constraints (25)-(28) and (34), additionally
guaranteeing that every trip in L′ is covered exactly once. The result is a
tractable model for medium-sized instances.

6 Experiments

In the computational experiments we implemented the three proposed models
with LinTim (see [15, 30, 1]) and tested them on four different datasets. These
datasets are described in in Table 1 and depicted in Figure 5, Appendix A.

Instance Nodes Edges Passengers

Linear 5 4 141
Toy 8 8 2622
Grid 25 40 2546

Germany 250 326 385868

Table 1: Properties of the examined datasets

We implemented Model 1, Model 1*, Model 2, Model 2* and Model 3 using
Gurobi 8.0 as MIP solver with default settings. We tested all implementations
on a compute server (6 cores of Intel(R) Xeon(R) CPU X5650 @ 2.67GHz, 78
GB RAM) with a time limit of 3 hours per test case. For each model and each
instance we considered two different cases: Either Lturn = Lwait or Lturn > Lwait

to distinguish the cases where Model 1* is able to find an optimal solution and
where it is not. We obtained the results depicted in Tables 2 and 3. A symbol ◦

denotes that the problem has not been solved to optimality and hence only the
best found upper or lower bound is presented.

Instance Model 1 Model 2 Model 3
Model 1 Model 1∗ Model 2 Model 2∗ lb ub

Linear 80 80 80 130 80 80
Toy 1424 1424 1424 1696 1270◦ 1460◦

Grid 1034 1034 1034 1034 – –
Germany 61354◦ 84694◦ 54148◦ – – –

Table 2: Objective values for the case of Lturn = Lwait

For each of the three models there exist two columns. The left column contains
a lower bound to (cost-opt LTS), whereas the right column contains an upper
bound, i.e., the objective value of the best found feasible solution.
We observe for Model 1 that in the case Lturn = Lwait it almost always finds
the optimal objective value within the specified time limit of 3 hours. Only in
our biggest instance we cannot get an optimal solution within the time limit
(we still have a gap of 27.5% here). For the case Lturn > Lwait there exists a
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Instance Model 1 Model 2 Model 3
Model 1 Model 1∗ Model 2 Model 2∗ lb ub

Linear 80 130 130 130 130 130
Toy 1424 1474 1424 1696 1288◦ 1539◦

Grid 1034 1134 1030◦ 1140 – –
Germany 61354◦ 86086◦ 54148◦ – – –

Table 3: Objective values for the case of Lturn > Lwait

gap between the lower bound and upper bound of Model 1, but this model still
obtains the best solutions.
Model 2 can solve the two smallest instances easily, but starts having trouble
with the time limit for Grid. For Germany it is not able to find a feasible solution
within the specified time limit. Regarding the solution quality, we see that the
lower bound given by Model 2 is only in a single case sharper than the lower
bound given by Model 1. On the other hand, the upper bounds found by Model
2* never have smaller objective values than Model 1*.
Model 3 is already on the toy instance not able to find an optimal solution within
3 hours. The obtained objective values for Linear and the bounds for Toy are
consistent with the values given in Models 1 and 2. For the bigger instance,
even the precomputation of the complete line pool for Model 3 was not possible
anymore.
We included the optimal solution provided by Model 1 in the ongoing competition
on Grid started in [12]. The current progress can be found at [29]. The solution
with the smallest costs so far was P5, provided in [20]. As can be seen in Figure 4
in Appendix A, our cost-minimal solution decreases the costs by about 23%,
compared to P5.

We finally investigate the influence of valid inequalities introduced in Lemma 4
on the runtime of Model 1. We restricted this investigation to Grid, since the
runtime for the smallest two instances is already less than a second, and for
Germany it is already non-trivial to determine “good” cuts of the network. For
Grid, however, we took all horizontal and all vertical cuts of the network, whose
PTN is depicted in Figure 5, into the model. With this improvement we were
able to speed up the solution process significantly with respect to runtime and
number of explored MIP nodes, as can be seen in Table 4.

parameters no cuts cuts
Model 1 Model 1* Model 1 Model 1*

Nodes explored 46557 26391 2398 3845
Runtime in sec 23.18 12.6 10.61 8.99

Table 4: Runtime improvements with Lemma 4 on Grid for Lturn > Lwait
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7 Outlook

We propose three models to compute cost-optimal public transport plans. For
the first two models we derive optimality conditions and with the third model
we present an IP formulation for the integrated exact model. The computational
experiments show that the implementation of the models is computationally
tractable.
Model 1 is able to compute cost-optimal solutions up to Grid outperforming
previous approaches to tackle this problem. For large networks the model
provides bounds of good quality in a reasonable amount of time. Model 2 finds
optimal line-pure LTS-plans. Finally, Model 3 yields a cost-optimal LTS-plan
without requiring any further assumptions.

For future work we plan to sharpen the formulation of Model 1 by identifying
good cuts. It would hopefully be the case that better cuts lead to a further
decrease of the computation time, especially for the large instances.
Furthermore it would be interesting to not only find a solution with minimal costs,
but to find a lexicographic solution, i.e., the cost-optimal solution with the best
travel time for the passengers. To this end, we can include the passengers’ travel
time in Model 3 which will most likely further increase the computation time
of the model. To use this model effectively, more work in speed-up techniques
is necessary. Promising ideas include column generation and decomposition
techniques, similar to the methods presented in [21].

14



A Figures

Figure 4: Multiple solutions for Grid (see [29]), evaluated by their cost per hour
and perceived travel time. With our models we were able to find a cost-minimal
solution. Its objective value is depicted as a red line

(a) The Linear network (b) The Toy network (c) The Grid network

Figure 5: The instances used in the experiments

B The integrated model

To formulate the integrated model, we need a notation for the event-activity
network N = (E ,A) (see, e.g., [18, 19, 22, 26, 27]). The set of events E consists
of all departures and all arrivals of all lines at all stops and two additional
OD-events ((u,dep), (u, arr)) per stop u for passengers to enter and leave the
network, denoted as EOD. The set A connects the events by driving, waiting
and transfer activities. The OD-events are connected to each departure event
of the corresponding stop using OD-activities (AOD). Using this, we can now
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formulate the integrated model. Let further denote with Al′ all activities in
A \ AOD that are included in a directed line l′ ∈ L′.

Model (Model 3 continued). Given the input data from Notation 1, find a
feasible LTS-plan (L,R) with minimal costs, i.e., minimizing g(L,R).

min
∑
v∈V

costv

s.t. durr ≥
1

T
·
∑
l′∈L′

xl′,r · durl +
∑

l′1,l
′
2∈L′

x(l′1,l
′
2),r
· durl′1,l′2 ∀r ∈ [R] (25)

lengthr ≥
∑
l′∈L′

xl′,r · lengthl +
∑

l′1,l
′
2∈L′

x(l′1,l
′
2),r
· lengthl′1,l

′
2
∀r ∈ [R] (26)

costr ≥ clength · lengthr + ctime · durr ∀r ∈ [R] (27)∑
l∗∈L′

x(l′,l∗),r = xl′,r =
∑
l∗∈L′

x(l∗,l′),r ∀l′ ∈ L′, ∀r ∈ [R] (28)∑
r∈R

xl′,r =
∑
v∈V

xb(l′),r ∀l′ ∈ L′ (29)

Cap ·
∑
r∈R

xl′,r ≥
∑

u,v∈V
fa,(u,v) ∀l′ ∈ L′, ∀a ∈ Al′ (30)

∑
i∈E

(i,j)=a∈A

fa,(u,v) =
∑
i∈E:

(j,i)∈At

fa,(u,v) ∀p ∈ P, ∀j ∈ E \ EOD (31)

∑
i∈E:

(i,j)=a∈AOD

fa,(u,v) = Wuv ∀u, v ∈ V, ∀j = (v, arr) ∈ EOD (32)

∑
i∈E:

(j,i)=a∈AOD

fa,(u,v) = Wuv ∀u, v ∈ V, ∀j = (u,dep) ∈ EOD (33)

∑
(l′1,l

′
2)∈U ′

x(l′1,l
′
2),r
≤ |U ′| − 1 ∀U ′ ( L′ × L′, ∀r ∈ [R] (34)

durr ∈ N ∀r ∈ [R] (35)

Coefficients:

• R: number of possible vehicle routes, we assume it to be sufficiently large

• L′: the set of all possible directed lines in the network, b(l′) denotes the
backwards direction for a directed line l′, l is the corresponding undirected
line.

Variables:

• xl′,r – is 1 iff the directed line l′ is part of route r

• x(l′1,l
′
2),r

: is 1 iff lines l′1 and l′2 are served directly after each other in route
r
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• costr – the costs of route r

• durr – the duration of route r

• lengthr – the length of route r

• fa,(u,v) – the number of passenger traveling from u to v using activity a

This model finds a cost-optimal LTS-plan (i.e., line plan, timetable and vehicle
schedules). The f variables determine the passenger flow, satisfying the classical
flow conservation constraints ((31)-(33)) and creating coupling constraints for
the vehicle routes r in (30), determined by the x-variables. The duration and
length of the routes are determined in (25) and (26) and then combined in (27) to
determine the costs. Of course, the vehicle routes need to satisfy flow conservation
as well (see (28)). (34) are the subtour elimination constraints. Constraint (29)
ensures that every line is served in both directions.

The model is too large to be solved for realistic instances. One possibility to
reduce its size is to start with a line pool of limited size (e.g. as generated in [14]
or from Model 2) or to use column generation approaches as in [2].

C Proofs

Proof of Theorem 3. Let (L, R) be some feasible solution to (cost-opt LTS).
Since the line plan is feasible we can construct some feasible flow from it by
setting fmin

e = |{l ∈ L|e ∈ l}| and fe,u =
∑

p∈Pall:e∈p wp. Now we get for all
i, j ∈ V with {i, j} ∈ E∑

u∈V
f(i,j),u =

∑
p∈Pall:(i,j)∈p

wp ≤︸︷︷︸
by (1)

fmin
e · Cap

by definition of feasibility of a line plan, i.e., constraint (11) is satisfied. Since
the wp correspond to paths in the PTN the flow conservation constraints (12)
and (13) are also satisfied. By setting

dur =

⌈∑
e∈E 2fmin

e (Ldrive
e + Lwait)

T

⌉

we finally have constructed a feasible solution to Model 1.
We now show that the objective function value of the constructed solution is
better than g(L,R) = ctime · dur(L,R) + clength · length(L,R).
We first consider length(L,R): We know that for the constructed solution it
holds that
fmin
e = |{l ∈ L|e ∈ l}|, hence

length(L,R) ≥
∑
l′∈L′

lengthl′ =
∑
l∈L

∑
e∈l

2lengthe ≥
∑
e∈E

2lengthef
min
e .
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For dur(L,R) we calculate

dur(L,R) =
∑
r∈R

durr =
∑
r∈R

⌈∑
l′∈r

(durl′ + Lturn)

⌉
T

≥

⌈∑
r∈R

∑
l′∈r

(durl′ + Lturn)

⌉
T

=︸︷︷︸
(4)

⌈∑
r∈R

∑
l′∈r

(
(|l| − 1)Lwait + Lturn +

∑
e∈l′

Ldrive
e

)⌉
T

=

⌈∑
l′∈L

(
Lturn − Lwait +

∑
e∈l′

(Ldrive
e + Lwait)

)⌉
T

≥


∑
l∈L

2

(Lturn − Lwait︸ ︷︷ ︸
≥0

) +
∑
e∈l

(Ldrive
e + Lwait)


T

≥︸︷︷︸
fmin
e =|{l∈L|e∈l}|

⌈∑
e∈E

2fmin
e (Ldrive

e + Lwait)

⌉
T

= dur · T.

Overall it holds that

g(L,R) = ctimedur(L,R)+clengthlength(L,R) ≥ ctimedur·T+clength
∑
e∈E

2lengthe·fmin
e .

Thus every feasible solution to (cost-opt LTS) can be transformed to a solution
for Model 1 whose objective is smaller than g(L,R). Hence, the optimal objective
function value of Model 1 yields a lower bound to (cost-opt LTS).

Proof of Lemma 4. We start with constraint (12), i.e.,∑
i∈V :{i,v}∈E

f(i,v),u = Wuv +
∑

i∈V :{v,i}∈E

f(v,i),u ∀u ∈ V ∀v ∈ V \{u}

and argue that for any u ∈ X it holds that

∑
v∈Y

∑
i∈V :{i,v}∈E

f(i,v),u =
∑
v∈Y

Wuv +
∑

i∈V :{v,i}∈E

f(v,i),u


⇔︸︷︷︸

V=X∪Y

∑
v∈Y

 ∑
i∈X:{i,v}∈E

f(i,v),u +
∑

i∈Y :{i,v}∈E

f(i,v),u︸ ︷︷ ︸
=(∗)



=
∑
v∈Y

Wuv +
∑

i∈X:{v,i}∈E

f(v,i),u +
∑

i∈Y :{v,i}∈E

f(v,i),u︸ ︷︷ ︸
=(∗)


⇔︸︷︷︸

(∗) cancel out

∑
v∈Y

∑
i∈X:{i,v}∈E

f(i,v),u =
∑
v∈Y

Wuv +
∑

i∈X:{v,i}∈E

f(v,i),u


⇔

∑
v∈Y,i∈X:
{v,i}∈Ecut

f(i,v),u =
∑
v∈Y

Wuv +
∑

v∈Y,i∈X:
{v,i}∈Ecut

f(v,i),u
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Hence we can conclude∑
i∈X,v∈Y :{v,i}∈Ecut

f(i,v),u ≥
∑
v∈Y

Wuv ∀u ∈ X. (36)

Thus we get that

Cap ·
∑

e∈Ecut

fmin
e ≥︸︷︷︸

(11)

∑
i∈X,v∈Y :
{i,v}∈Ecut

∑
u∈V

f(i,v),u

≥︸︷︷︸
X⊆V

∑
u∈X

∑
i∈X,v∈Y :
{i,v}∈Ecut

f(i,v),u ≥︸︷︷︸
(36)

∑
u∈X

∑
v∈Y

Wuv.

Proof of Theorem 5. For every solution to Model 1, i.e., for some feasible fmin
e

with e ∈ E, we can construct some feasible solution (L,R) to (cost-opt LTS) as
follows: We define the line plan L that contains for each edge e ∈ E exactly
fmin
e lines containing exactly this one edge e, i.e., L := {e1, . . . , efmin

e : e ∈ E}.
Since fmin

e = |{l ∈ L|e ∈ l}| and fmin
e admits a feasible load, the line plan L is

feasible.
For this line plan we now generate a vehicle schedule R that consists of only one
large route. To this end, we consider the resulting set of directed lines L′

L′ =
{

(i, j)1, . . . , (i, j)f
min
e , (j, i)1, . . . , (j, i)f

min
e : e = {i, j} ∈ E

}
which contains fmin

e copies of both directions of every edge e ∈ E. This is a
set of directed edges which creates a directed multigraph (V,L′). Due to the
assumption in the theorem, this graph is strongly connected and every node
in (V,L′) has the same indegree as outdegree. Hence we can find an Eulerian
Cycle on it (see e.g. [11]). This means that we can form a route containing all
directed lines r = (l′1, . . . , l

′
k) (with |r| = |L′|) such that lengthl′i,l

′
i+1

= 0 and

timel′i,l′i+1
= 0. So we set the vehicle schedule R = {r} to contain exactly this

route r.
We hence have constructed some solution (L,R) to (cost-opt LTS) with

length(L,R) =
∑
l∈L′

lengthl +
∑

r=(l′1,...,l
′
kr

)∈R

kr∑
i=1

lengthl′i,l
′
i+1︸ ︷︷ ︸

=0

=
∑
l∈L

2 · lengthl =︸︷︷︸
fmin
e ={e∈L|e∈l}

∑
e∈E

2lengthef
min
e
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and

dur(L,R) =
∑
r∈R

durr =︸︷︷︸
|R|=1

⌈∑
l∈L′

(durl + Lturn)

⌉
T

=︸︷︷︸
fmin
e ={e∈L|e∈l}

⌈∑
e∈E

2fmin
e (Ldrive

e + Lturn)

⌉
T

=︸︷︷︸
Lturn=Lwait

⌈∑
e∈E

2fmin
e (Ldrive

e + Lwait)

⌉
T

= dur · T.

Hence, for every solution to Model 1 we can construct a solution (L,R) to
(cost-opt LTS) such that g(L,R) = ctimedur · T + clength

∑
e∈E 2lengthe · fmin

e .
Together with Theorem 3 (L,R) is optimal for (cost-opt LTS)and hence Model 1
has the same objective value as (cost-opt LTS).

Proof of Theorem 10. Let (L,R) be some feasible solution to (cost-opt LTS).
Then we know that we can set fmin

e = |{l ∈ L|e ∈ l}| (and fe,u accordingly) as
in the proof of Theorem 3 to some feasible flow which satisfies (16). Furthermore
we can enumerate all lines with some bijective mapping ϕ : L → [|L|] such that
xe,ϕ(l) = 1 iff e ∈ l for all l ∈ L and also ys,ϕ(l) = 1 iff s ∈ e for some e ∈ l and
zi = 1 for all i ∈ [|L|] and 0 else. Since L was some feasible line plan all lines
are simple paths and hence also constraints (17) to (22) are fulfilled. Now for
the objective function it holds that

length(L,R) =
∑
l′∈L′

lengthl′ +
∑

r=(l′1,...,l
′
kr

)∈R

kr−1∑
i=1

lengthl′i,l
′
i+1

≥
∑
l∈L

∑
e∈l

2lengthe =
∑
l∈L

∑
e∈E

2xe,ϕ(l)lengthe =

L∑
l=1

∑
e∈E

2xe,llengthe.

For the duration we get

dur(L,R) =
∑

r=(l′1,...,l
′
kr

)∈R

⌈
k∑

i=1

durl′i + durl′i,l′i+1

⌉
T

≥

⌈∑
r∈R

∑
l′∈r

(durl′ + Lturn)

⌉
T

=︸︷︷︸
(4)

⌈∑
r∈R

∑
l′∈r

(
(|l| − 1)Lwait + Lturn +

∑
e∈l′

Ldrive
e

)⌉
T

=

⌈∑
l′∈L

(
Lturn − Lwait +

∑
e∈l′

(Ldrive
e + Lwait)

)⌉
T

=

⌈
L∑

l=1

(
2zl(L

turn − Lwait) +
∑
e∈E

2(Ldrive
e + Lwait) · xe,l

)⌉
T

≥ dur · T

Hence, by finally setting

dur =

⌈∑L
l=1

(
2zl(L

turn − Lwait) +
∑

e∈E 2(Ldrive
e + Lwait) · xe,l

)
T

⌉
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we conclude that from any feasible solution (L,R) to (cost-opt LTS) we can
construct some feasible solution to Model 2 such that

g(L,R) ≥ ctimedur · T + clength

L∑
l=1

∑
e∈E

2xe,llengthe,

which means that the objective function value of Model 2 is a lower bound to
(cost-opt LTS).
On the other hand every feasible solution to Model 2 is a feasible solution to
Model 1. This can be seen by setting the three types of variables, fmin

e , fe,u and
dur, that are contained in both models, to be the same. Hence constraints (11)
- (13) are satisfied, and also (10) is satisfied since

dur·T ≥
L∑

l=1

2zl (Lturn − Lwait)︸ ︷︷ ︸
≥0

+
∑
e∈E

2(Ldrive
e + Lwait) · xe,l

 ≥∑
e∈E

2fmin
e (Ldrive

e +Lwait).

For the objective functions it additionally holds that

L∑
l=1

∑
e∈E

2xe,llengthe =
∑
e∈E

2fmin
e lengthe.

This means that every solution to Model 2 can be projected to a solution of
Model 1 with smaller objective value in Model 1, meaning that Model 2 is an
upper bound to Model 1.

Proof of Theorem 13. Let L,R be some line-pure feasible solution to (cost-opt
LTS). For the objective value of (L,R) we know that

length(L,R) =
∑

r=(l′1,...,l
′
kr

)∈R

kr∑
i=1

lengthl′i
+lengthl′i,l

′
i+1︸ ︷︷ ︸

=0

=
∑
l∈L

2lengthl =
∑
l∈L

∑
e∈l

2lengthe,

and that

dur(L,R) =
∑
r∈R

⌈∑
l′∈r

(durl′ + Lturn)

⌉
T

=
∑
l∈L

⌈
2(durl + Lturn)

⌉
T

=
∑
l∈L

⌈
2(Lturn − Lwait) +

∑
e∈E:e∈l

2(Ldrive
e + Lwait)

⌉
T

.

We can extend the line plan L to some feasible solution to Model 2* by again
defining a bijective mapping ϕ : L → [|L|] such that xe,ϕ(l) = 1 iff e ∈ l for l ∈ L
for all e ∈ E. Analogously a solution xe,l can be transformed into some feasible
line plan L by defining a line l to contain exactly all edges e ∈ E if xe,l = 1. Thus
there exists a bijection between the set of feasible solutions between (cost-opt
LTS) and Model 2* as well as the same objective function for both problems
since ∑

l∈L

∑
e∈l

2lengthe =
∑
l∈L

∑
e∈E

2xe,ϕ(l)lengthe =

L∑
l=1

∑
e∈E

2xe,llengthe

21



and

∑
l∈L

⌈
2(Lturn − Lwait) +

∑
e∈E:e∈l

2(Ldrive
e + Lwait)

⌉
T

=

L∑
l=1

⌈
2zl(L

turn − Lwait) +
∑
e∈E

2xe,llengthe(L
drive
e + Lwait)

⌉
T

=

L∑
l=1

dl.

Hence their optimal objective values coincide.
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