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Abstract

Blockwise coordinate descent methods have a long tradition in continuous optimization
and are also frequently used in discrete optimization under various names. New interest
in blockwise coordinate descent methods arises for improving sequential solutions for
problems which consist of several planning stages.

In this paper we systematically formulate and analyze the blockwise coordinate de-
scent method for integer programming problems. We discuss convergence of the method
and properties of the resulting solutions. We extend the notion of Pareto optimality for
blockwise coordinate descent to the case that the blocks do not form a partition and
compare Pareto-optimal solutions to blockwise optimal and to global optimal solutions.
Among others we derive a condition which ensures that the solution obtained by block-
wise coordinate descent is Pareto optimal and we confirm convergence of the blockwise
coordinate descent to a global optimum in matroid polytopes.

The results are interpreted in the context of multi-stage problems and illustrated for
integrated planning in public transportation.

1 Introduction and Literature

Coordinate descent methods have a long history in optimization. In the continuous case
the simplest form is the Gauß-Seidel method. In 1957, Hildreth [Hil57] analyzed this
method for quadratic programs and proved that the sequence of objective values converges
to the optimal objective value and that, if the constraint matrix has full rank, also the
sequence of solutions converges to an optimal solution. Two years later, D’Esopo [DE59]
generalized the procedure to convex optimization problems and proved that under rather
strong conditions (feasible set is a box, all subproblems have a unique optimal solution)
the sequence of objective values converges to the optimal objective value and every accu-
mulation point of the sequence of generated solutions is an optimal solution. Blockwise
coordinate descent was introduced by Warga [War63], who transferred the convergence
result of D’Esopo. Subsequently, several weaker conditions that ensure convergence to an
optimal solution appeared. For example, Grippo and Sciandrone [GS00] showed that if
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the feasible region is the product of the closed, convex feasible regions of the subprob-
lems, the objective function is continuously differentiable and pseudoconvex, and the set
of feasible solutions whose objective value is at most the objective value of the initial
solution is compact, then the sequence of solutions generated by the blockwise coordinate
descent method has limit points and every limit point is a global minimizer. Furthermore,
Jäger [Jäg16] proved that the compactness assumption can be replaced by the assumption
that the feasible sets of the subproblems are either polyhedra or intersections of sublevel
sets of strictly convex functions and that the sequence converges. For nonpseudoconvex
objective functions Zangwill [Zan69] gave a condition that only guarantees coordinatewise
optimality of the limit points because convergence to a globally optimal solution does not
hold in this case. This result was generalized for the blockwise coordinate descent by
Tseng [Tse01], who showed that if the feasible region is the product of the closed, convex
feasible regions of the subproblems, the objective function is continuous, the set of feasi-
ble solutions whose objective value is at most the objective value of the initial solution is
compact, and every subproblem has a unique optimal solution, then every limit point of
the sequence generated by the blockwise coordinate descent algorithm is blockwise opti-
mal. Similar algorithms are compass search and the Frank-Wolfe algorithm. The notion
of blockwise optimality is related to the notions of an equilibrium point from equilibrium
programming and of a Nash equilibrium from game theory, namely blockwise optimal
solutions correspond to Nash equilibria of potential games, introduced in [MS96]. Coor-
dinate descent applied to find them is known under the name of best-response paths and
for example treated by Voorneveld [Voo00].

In discrete optimization there are many approaches in which a problem is solved by in
turn fixing parts of the variables and solving the resulting subproblem. This is done
in many publications under many different names. We list a few examples. In facility
location, blockwise coordinate descent has become popular as Cooper’s method [Coo64].
Here a set of new facilities is randomly chosen as starting solution, then the assignment
of the customers to the facilities is determined, and then this assignment is kept fixed
and the facilities are re-optimized. Cooper’s method is still under research, see, e.g.,
[DBMS15, DS17]. A similar iterative method is used also in statistics for multi regression
lines or for trimmed regression, see, e.g., [Rou87, Haw94]. Here a (set of) regression lines
is randomly chosen and fixed, then the assignment and/or the outliers are determined
and the lines are further optimized according to these fixed assignments. Using a large
number of starting solutions provides good results. The same procedure is used for k-
means clustering and there known as Lloyd’s algorithm [Llo82]. It has been shown to
converge to the so-called centroidal Voronoi tessellation in [DEJ06]. Under the name
iterative variable fixing heuristics, blockwise coordinate descent is furthermore popular
in many applications in logistics, e.g., for solving a combined blending and distribution
planning problem [Bil07] or in transportation planning when combining vehicle and crew
scheduling [GSS05]. A general scheme on how to apply blockwise coordinate descent in
problems of transportation planning is proposed in the eigenmodel in [Sch17].

2 Problem definition

We consider integer programming problems given as

(P) min{f(x) : G(x) ≤ 0, x ∈ Zn}

for f : Rn → R, G : Rn → Rm. We denote the feasible set of P by X := {x ∈ Zn : G(x) ≤
0}. Note that (without loss of generality) we require the functions f and G to be defined
anywhere on Rn.

Let I ⊆ {1, . . . , n} be a group of variables (sometimes called block) and IC := {1, . . . , n}\I
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its complement. We split the variables in a part xI ∈ R|I| and xIC ∈ Rn−|I| such that we
may write f(x) = f(xI , xIC ) and G(x) = G(xI , xIC )
For any fixed y ∈ Rn−|I| we receive a subproblem

(PI(y)) min{f(x, y) : G(x, y) ≤ 0, x ∈ Z|I|}

in which we only determine values for the variables with indices in I. We often write
subproblem I referring to the subproblem PI determined by the variables in set I.

In the blockwise coordinate descent method we iteratively solve a sequence of such sub-
problems. To this end, let

I1, I2, . . . , Ip ∈ Pot({1, 2, . . . , n})

be the indices of the variables of the respective p subproblems. We require that every
variable appears in at least one of the subproblems, i.e.,

⋃
j=1,...,p Ij = {1, . . . , n}. We

write J := {I1, . . . , Ip} for the set of subproblems to be considered. Note that J is a cover
of {1, . . . , n}. Let nj := |Ij | be the number of variables of subproblem j.
In order to simplify notation, we use the index j instead of the subproblem Ij and formu-
late the subproblem PIj in which the variables from ICj are fixed and we only determine
new values for the variables in Ij as

(Pj(x−j)) min{f(x+j , x−j) : G(x+j , x−j) ≤ 0, x+j ∈ Znj},

where

Pj := PIj is the subproblem with variables only in Ij ,

x+j := xIj = (xi : i ∈ Ij) ∈ Rnj is its set of variables, and

x−j := xICj = (xi : i 6∈ Ij) ∈ Rn−nj are the remaining variables.

The blockwise coordinate descent method can then be formulated as follows.

Algorithm Blockwise Coordinate Descent (BCD)

Input: Problem P with objective function f : Rn → R and constraints G : Rn → Rm,
sequence of subproblems given by sets I1, . . . , Ip ∈ Pot({1, . . . , n}), initial solution x(0).

Set x := x(0), k := 0

Repeat
For j := 1 to p do

1. Solve Pj(x
(k)
−j ), let x∗ be an optimal solution thereof.

2. Set x(k+1) := (x∗, x
(k)
−j ), k := k + 1.

Until stopping criterion

We call a complete execution of the For-loop a round and the single execution of Steps
1 and 2 an iteration. When nothing else is mentioned, we use the following stopping
criterion: We terminate if in one round all problems I1, . . . , Ip have been executed without
an improvement in the objective function.

3 Properties of the sequence

We denote by x(k) the solution at the end of the k-th iteration of Algorithm BCD.
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3.1 Existence of optimal solutions in the subproblems

Since the solution x(k) of iteration k is a feasible solution to Pj(x
(k)
−j ) for all j = 1, . . . , p,

all subproblems occurring during the blockwise coordinate descent have a feasible solution
if the starting solution x(0) is feasible for P. However, if X is an unbounded set it might
happen that some of the problems Pj(x) are unbounded and hence admit no optimal
solution. We investigate this case for integer linear programs.

Lemma 1. Let P be an integer linear program with rational data, j ∈ {1, . . . , p}, and
x, y ∈ X such that Pj(x−j) and Pj(y−j) are feasible. Then Pj(x−j) is unbounded if and
only if Pj(y−j) is unbounded.

Proof. Suppose that Pj(y−j) is unbounded. Then also its LP relaxation is unbounded.
By the decomposition theorem for polyhedra (Minkowski’s theorem, see, e.g., [NW88]), its
feasible region can be written as conv({v(1), . . . , v(g)}) + conic({r(1), . . . , r(h)}) for some
v(1), . . . , v(g), r(1), . . . , r(h) ∈ Rnj , and ctjr

(k) < 0 for some k ∈ {1, . . . , h}. The vector

((r(k))T, 0T−j)
T lies in the recession cone (see, e.g., [Roc70]) of the LP relaxation of P, so

r(k) lies in the recession cone of the LP relaxation of Pj(x−j), i.e., of the convex hull of the
feasible region of Pj(x−j). As r(k) has a negative objective value, the latter is unbounded,
so the problem Pj(x−j) must be unbounded as well.

Note that the assumption of linearity is crucial in Lemma 1 since for integer non-linear
programs, the lemma does not hold in general as the following example shows.

Example 2. Consider the integer non-linear program

(P) min{x1 + x2 | x1 · x2 ≥ −1, x1 ≤ 0, x1, x2 ∈ Z}.

For I = {1} and x2 = 1 the subproblem PI(1) has the optimal solution x1 = −1 but for
x2 ≤ 0 the subproblem PI(0) is unbounded.

For integer linear programs with rational data, Lemma 1 tells us the following: If Al-
gorithm BCD finds an optimal solution for every problem in the first round (i.e., when
every subproblem I ∈ J has been considered once), then it will find an optimal solution in
every subproblem considered later. This can be tested by only looking at the first feasible
solution x(0).

Corollary 3. Let P be an integer linear program with rational data. If x(0) is feasible for

P and Pj(x
(0)
−j ) is bounded for all j = 1, . . . , p, then all subproblems Pj(x−j) which appear

when executing Algorithm BCD have an optimal solution.

3.2 Objective values

If all subproblems have an optimal solution, then the sequence (f(x(k)))k∈N of objective
values is monotonically decreasing since the solution x(k) of step k is a feasible solution to

Pj(x
(k)
−j ) for all j = 1, . . . , p. This implies convergence of the sequence if the optimization

problem P is bounded. Together with Corollary 3 we hence get the following condition
for convergence.

Corollary 4. Let P be an integer linear program with rational data. If x(0) is feasible for

P and Pj(x
(0)
−j ) is bounded for all j = 1, . . . , p, then the sequence (f(x(k)))k∈N of objective

values generated by Algorithm BCD is monotonically decreasing. Furthermore, if P is
bounded, the sequence converges.

Note that boundedness of all subproblems Pj(x−j) and for all x ∈ X does not imply
boundedness for P, also not in the case of integer linear programming of Corollary 4,
hence the assumption that P is bounded is in fact, necessary. We next investigate the
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question if the sequence (f(x(k)))k∈N (if it converges) becomes eventually constant, i.e.,
if Algorithm BCD terminates. This need not hold in general even if P has an optimal
solution, as the next example demonstrates.

Example 5. Consider the integer nonlinear program

min

{
2x1 + 2x2 − 4

(x1 + x2)2
: −x1 − x2 ≤ −1, x1 − x2 ≤ 1, −x1 + x2 ≤ 1, x1, x2 ∈ Z

}
.

An optimal solution to it is (0, 1) with objective value −2. However, for the initial solution
x(0) = (3, 3) the sequence generated by Algorithm BCD for I1 = {1} and I2 = {2} is given
by

x(k) =

{
(k + 3, k + 2) if k is odd
(k + 2, k + 3) if k is even

for k = 1, 2, . . .

and the resulting sequence of objective values for k ≥ 1 is f(x(k)) = 6+4k
(5+2k)2 → 0 which

converges to zero but never becomes constant.

The next lemma gives some cases in which the sequence (f(x(k)))k∈N becomes constant.

Lemma 6. Let P be given and let the sequence (x(k))k∈N exist (i.e., assume that Algorithm
BCD is executable). The sequence of objective values (f(x(k)))k∈N generated by Algorithm
BCD becomes constant if one of the following conditions hold.

(i) The set X is bounded.

(ii) The sublevel set {x ∈ X : f(x) ≤ f(x(l))} is bounded for some x(l).

(iii) The function f is a polynomial with rational coefficients and P is bounded.

Proof. We show that (f(x(k))) can only take finitely many different values. Since it is
monotonically decreasing, it then must become constant. For (i) this is clear, since a
bounded set of integers is finite. For (ii) we use that (f(x(k)))k∈N is decreasing, i.e.,
f(x(k)) ≤ f(x(l)) for all k ≥ l and hence the sequence (x(k)) remains for k ≥ l in the
bounded set of feasible solutions with objective value at most f(x(l)), which is a finite set.
In case (iii) this holds because f(x(k)) can only take values that are integer multiples of
the product of the denominators of the coefficients of f , and again there are only finitely
many such values between f(x(0)) and a finite lower bound.

In particular, for integer linear programming, f is certainly a polynomial. We hence
obtain the following condition for termination of Algorithm BCD.

Corollary 7. Let P be a bounded integer linear program with rational coefficients. Algo-

rithm BCD terminates if x(0) is feasible for P and Pj(x
(0)
−j ) is bounded for all j = 1, . . . , p.

Proof. If x(0) is feasible for P and Pj(x
(0)
−j ) is bounded for all j = 1, . . . , p, then the

sequence generated by Algorithm BCD exists due to Corollary 3. Hence the result follows
from Lemma 6, (iii).

We remark that Lemma 6 and Corollary 7 rely on the integrality of the variables: both
do not hold for continuous linear programming.

3.3 Sequence elements

We now investigate the localization of the sequence elements. For continuous strictly qua-
siconcave optimization problems, the following is well known: If there exists a minimum
then all minimizers lie on the boundary ∂X of the feasible set X. In this case, the se-
quence of points (x(k))k∈N (if it exists) is contained in the boundary of X. For continuous
quasiconcave functions, if a minimum exists, a minimizer can be chosen as a boundary
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set F

Figure 1: Let X be the integer points contained in F . The close-to-boundary points are the
filled circles. They are contained in a strip along the boundary ∂F .

point, which is in fact common for most algorithms (e.g. for the Simplex algorithm in
linear programming). If such an algorithm is chosen for solving the subproblems we again
receive that (x(k))k∈N ⊆ ∂X. In this section we transfer this localization result to integer
problems.

Definition 8. Let P be an integer optimization problem with feasible set X ⊆ Zn. We
call x ∈ X close-to-boundary if there is some y ∈ Zn \ X with ‖x− y‖1 = 1.

Note that ‖x − y‖1 = 1 if and only if there exists i ∈ {1, . . . , n} such that y = x + ei or
y = x − ei (ei ∈ Rn being the i-th unit vector). Let us first give some meaning to this
definition for the case that X = {x ∈ Zn : x ∈ F} is given as the set of integer points of
some set F . For example, F might be the feasible set of the linear programming relaxation
of an integer program.
Consider a close-to-boundary point x ∈ X and a point y ∈ Zn \X with ‖x− y‖1 = 1, say,
y = x + ei for some i ∈ {1, . . . , n}. Since x ∈ F and y 6∈ F , there exists a point z ∈ ∂F
on the straight line between x and y which satisfies ‖z − x‖2 = ‖z − x‖1 ≤ ‖y − x‖1 = 1.
This means that the (Euclidean) distance between a close-to-boundary point x and the
boundary ∂F satisfies

d(x, ∂F ) = inf
z′∈∂F

‖z′ − x‖2 ≤ ‖x− z‖2 ≤ 1,

i.e., all close-to-boundary points in X are located within a strip along the boundary of F
with a diameter of at most one.
The next lemma shows that for strictly quasiconcave functions the sequence (x(k))k∈N
generated by Algorithm BCD is contained in such a strip along the boundary of F .

Lemma 9. Let P be given with a strictly quasiconcave objective function f and let the
sequence (x(k))k∈N exist. Then x(k) is a close-to-boundary point for all k ≥ 1.

For an illustration of the lemma, see Figure 1.

Proof. Let x = x(k) be a solution generated by Algorithm BCD, let’s say after optimizing
the variables x+j of subproblem Ij ∈ J. This means that f(x) = f(x+j , x−j) ≤ f(y, x−j)
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for all y with (y, x−j) ∈ X. Now, choose i ∈ Ij as one of the variables of subproblem Ij
and consider the two points x′ := x − ei and x′′ := x + ei. Since i ∈ Jj we have that
x′ = ((x− ei)+j , x−j) and x′′ = ((x+ ei)+j , x−j). Furthermore, x is a convex combination
of x′ and x′′ and f is strictly quasiconcave; hence we get

f(x) > min{f(x− ei), f(x+ ei)} = min{f((x− ei)+j , x−j), f((x+ ei)+j , x−j)},

and due to the optimality of x we conclude that

f(y, x−j) > min{f((x− ei)+j , x−j), f((x+ ei)+j , x−j)} for all y with (y, x−j) ∈ X.

Hence, either x− ei or x+ ei has to be infeasible and x is close-to-boundary.

4 Properties of the resulting solutions

4.1 Notions of optimality

Definition 10. A feasible solution x∗ of P is called (globally) optimal if for every x′ ∈ X
we have f(x∗) ≤ f(x′).

We certainly would wish to receive an optimal solution, and we will see that in special
cases this is in fact the result of the Algorithm BCD. However, in general the algorithm
converges to some suboptimal solution which can be characterized as follows.

Definition 11 (see, e.g., [Tse01]). A feasible solution x∗ of P is called blockwise optimal
if for every j ∈ {1, . . . , p} and every x′+j ∈ Znj such that (x′+j , x

∗
−j) is feasible, it holds

that f(x∗) ≤ f(x′+j , x
∗
−j).

If Algorithm BCD terminates, i. e., if the objective value of the solution is not improved
during a whole round, then the resulting solution is obviously blockwise optimal. In
its game-theoretic interpretation, blockwise optimality is a stable situation since none of
the subproblems can be improved if only its own variables may be changed. Here, we
assume that all players have the same objective function. A more detailed description
of the relation to game theory can for example be found in [KT14, Section 13.7]. The
question arising is: what happens if also other variables can be changed? A state in
which no subproblem can improve its objective value without worsening at least one
other subproblem would be a Pareto solution. To use this concept, we first have to
define objective functions for each of the subproblems. This is easy if the subproblems
J = {I1, . . . , Ip} are a partition and the objective function f is additively separable with
respect to this partition, i.e.,

f(x) =

p∑
j=1

fj(x+j)

can be decomposed into a sum of functions fj where each function fj only depends on
variables from the subproblems Ij ∈ J. However, J does not need to be a partition of the
variables {1, . . . , n} but may be just a cover. We now transfer the notion of separability
to this situation.

To this end, we need the coarsest partition of {1, . . . , n} that is conform to the given cover
J.

Definition 12. For a given cover J = {I1, . . . , Ip} we define its induced partition.

K :=
{(⋂

j∈J
Ij

)
\
(⋃
j /∈J

Ij

)
: J ⊆ {1, . . . , p}

}
\ {∅}.
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K contains for every subset J ⊆ {1, . . . , p} the set of all variable indices that lie in exactly
the sets Ij with j ∈ J if this is non-empty. This is a partition of {1, . . . , n} into sets
K1, . . . ,Kq which satisfies

K` ⊆ Ij or K` ⊆ ICj for all ` = 1, . . . , q, j = 1, . . . , p

and is the coarsest partition (i.e., the one with the smallest number of sets) under this
condition.

The identification of the sets K1, . . . ,Kq is demonstrated in two examples.

Example 13. Let us consider five variables {1, 2, 3, 4, 5} and three subproblems J =
{I1, I2, I3} with I1 = {1, 2, 3}, I2 = {3, 4, 5}, and I3 = {1, 2, 4, 5}. This results in

K = {{1, 2}, {3}, {4, 5}} and q = 3

since for J = {1, 2} we receive (I1 ∩ I2) \ I3 = {3}, J = {1, 3} gives (I1 ∩ I3) \ I2 = {1, 2},
J = {2, 3} gives (I2 ∩ I3) \ I1 = {4, 5}, and all other subsets J result in empty sets.

Example 14. Changing I3 to I ′3 = {1, 5} also changes the partition K, in this case we
receive for J = {I1, I2, I ′3} that

K = {{1}, {2}, {3}, {4}, {5}} and q = 5

with, e.g., I = {1} leading to I1 \ (I2 ∪ I ′3) = {2}.
In case that the sets J = {I1, . . . , Ip} already form a partition we receive K = J and
q = p. Hence, the next definition is a proper generalization of separability as it is known
for partitions.

Definition 15. Let J ⊆ {1, . . . , n} and K be its induced partition. A function f : Rn → R
is called additively separable with respect to J if f(x) =

∑q
`=1 g`(xK`

) for some functions
g` : R|K`| → R.

If the objective function f is additively separable, we can assign one objective function to
each of the subproblems Ij ∈ J, namely, we determine which of the sets K` are contained
in Ij and sum up their corresponding functions g`. This is formalized next.

Definition 16. Let J be given and let K be its induced partition. Let f be additively
separable (with respect to J) with f(x) =

∑q
`=1 g`(xK`

), and let

fj(x+j) :=
∑

`∈{1,...,q}:K`⊆Ij

g`(xK`
).

A feasible solution x∗ to P is called

• weakly Pareto optimal if there does not exist a solution x′ which is feasible for P
such that fj(x

′
+j) < fj(x

∗
+j) for all j ∈ {1, . . . , p}.

• Pareto optimal if there does not exist a solution x′ which is feasible for P and
dominates x∗, i.e., such that fj(x

′
+j) ≤ fj(x∗+j) for all j ∈ {1, . . . , p} and such that

fj(x
′
+j) < fj(x

∗
+j) for some j ∈ {1, . . . , p}.

Let us demonstrate the construction of the objective functions for the subproblems by
continuing Example 13.

Example 17. We continue Example 13, i.e., we have n = 5, J = {I1, I2, I3} with I1 =
{1, 2, 3}, I2 = {3, 4, 5}, and I3 = {1, 2, 4, 5} and K = {{1, 2}, {3}, {3, 4}}. Let us consider
a polynomial

f(x) = x22 + 2x23 + x25 + x1x2 − 3x4x5 + 3x1 + x4 + 2x5

= 3x1 + x22 + x1x2︸ ︷︷ ︸
=:g1(x1,x2)

+ 2x23︸︷︷︸
=:g2(x3)

+ x25 − 3x4x5 + x4 + 2x5︸ ︷︷ ︸
=:g3(x4,x5)
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The resulting functions f1, f2, f3 for the subproblems I1, I2, I3 are then given as

f1(x1, x2, x3) = g1(x1, x2) + g2(x3) = 3x1 + x22 + x1x2 + 2x23

f2(x3, x4, x5) = g2(x3) + g3(x4, x5) = 2x23 + x25 − 3x4x5 + x4 + 2x5

f3(x1, x2, x4, x5) = g1(x1, x2) + g3(x4, x5) = 3x1 + x22 + x1x2 + x25 − 3x4x5 + x4 + 2x5

Note that
∑3
j=1 fj(x+j) = 2f(x) since each of the variables xi appears in exactly two of

the sets I1, I2, I3.

4.2 Relations between the notions

In this section, for the case that the objective function is additively separable and every
element of K is contained in exactly π ∈ N elements of J, the relations between the three
notions optimality, blockwise optimality, and Pareto optimality are investigated.
Clearly, Pareto optimality implies weak Pareto optimality. However, in general there is no
relation between Pareto optimality and blockwise optimality: Pareto optimality does not
imply blockwise optimality, nor does blockwise optimality imply weak Pareto optimality.

Example 18. In the integer linear program

(P) min x1 + x2
s. t. −x1 + 2x2 ≤ 1

2x1 − x2 ≤ 1
x1, x2 ∈ Z

with the two subproblems given by I1 = {1} and I2 = {2} the solution (1, 1) is block-
wise optimal since in P1(1) the only feasible solution is x1 = 1 and in P2(1) the only
feasible solution is x2 = 1. For discussing Pareto optimality we look at f1(x1) = x1 and
f2(x2) = x2 as the two parts of the additively separable objective function and receive that
(1, 1) is not weakly Pareto optimal since (0, 0) is a strict improvement for both subprob-
lems.

Example 19. We consider the integer linear program

(P) min x1 + x2 + x3
s. t. x1 + 2x2 = 0

x3 = 0
x2 ≤ 2
x2 ≥ 0

x1, x2, x3 ∈ Z

with the groups I1 = {1, 2}, I2 = {2, 3}, and I3 = {1, 3}, yielding the partition
K = {{1}, {2}, {3}}, and hence the objective functions for the subproblems are f1(x1, x2) =
x1 +x2, f2(x2, x3) = x2 +x3, and f3(x1, x3) = x1 +x3. The solution x∗ = (0, 0, 0) is then
Pareto optimal: To see this, we assume that x′ is also feasible. If x′2 = 0 then x′ = x∗.
If x′2 > 0 then f2(x′2, x

′
3) > 0 = f2(x∗2, x

∗
3), so x′ does not dominate x∗, and x∗ is Pareto

optimal.
On the other hand, x∗ is not blockwise optimal, since an optimal solution to

(P1(0)) min{x1 + x2 : x1 + 2x2 = 0, x2 ≤ 2, x2 ≥ 0}

is given as x′1 = −4, x′2 = 2 with an objective function value of f(x′1, x
′
2, 0) = −2 < 0 =

f(0, 0, 0).

Nevertheless, we now give conditions under which Pareto optimality implies blockwise
optimality and under which blockwise optimality implies weak Pareto optimality.
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Theorem 20. Let P be given with a partition {I1, . . . , Ip} of the variable indices and
an additively separable objective function f . Then every Pareto optimal solution of P is
blockwise optimal.

Proof. Since {I1, . . . , Ip} is a partition we have K = J and f(x) =
∑p
j=1 fj(x+j) with x+j

containing the variables from Ij , j = 1, . . . , p. Assume that x∗ is not blockwise optimal,
i. e., that there is a j0 ∈ {1, . . . , p} and an x′+j0 such that (x′+j0 , x

∗
−j0) is feasible and

f(x′+j0 , x
∗
−j0) < f(x∗). Define x′ := (x′+j0 , x

∗
−j0). Then for all j ∈ {1, . . . , p} \ {j0} it

holds that x′+j = x∗+j , whence fj(x
′
+j) = fj(x

∗
+j), and for j0 we have

fj0(x′+j0) = f(x′)−
∑

j∈{1,...,p}\{j0}

fj(x
′
+j) < f(x∗)−

∑
j∈{1,...,p}\{j0}

fj(x
∗
+j) = fj0(x∗+j0).

So x∗ is not Pareto optimal.

The interpretation of the theorem for subproblems forming a partition is: if it is not
possible to improve any of the subproblems without worsening at least another one, then
also none of the subproblems can improve its solution by changing only its own variables.
Intuitively, the reverse direction will usually not hold. This can be seen in Example 18
showing that blockwise optimality does not imply weakly Pareto optimality even for linear
programs and subproblems forming a partition.

However, as the next theorem shows, there exist cases in which the solutions of integer
programs with linear objective function found by Algorithm BCD are weakly Pareto
optimal. We need the following condition.

Definition 21. Let a set of subproblems J = {I1, . . . , Ip} with corresponding induced
partition K = {K1, . . . ,Kq} be given. We say that J has uniform structure if every set
K` is included in the same number π of sets in J, i.e., |{j ∈ {1, . . . , p} | K` ⊆ Ij}| = π
for every ` ∈ {1, . . . , q}.

We remark that J has uniform structure in Example 13 (π = 2), in Example 18 (π = 1),
and in Example 19 (again, π = 2). Also in typical settings in which J is chosen as the set
of all groups of variables with the same number of elements, i.e.,

J = {J ⊆ {1, . . . , n} : |J | = k}

for some given (usually small) number k ∈ N, it has uniform structure with π = k.
Using the uniform structure we now can give a sufficient condition under which each
blockwise optimal solution is weakly Pareto optimal.

Theorem 22. Let P be given with J = {I1, . . . , Ip} and induced partition K = {K1, . . . ,Kq}.
Let J have uniform structure. If the objective function f of P is linear and the feasible
set is given as

X = {x ∈ Zn : aTx ≤ b, G`(xK`
) ≤ 0 for ` ∈ {1, . . . , q}}

with one coupling constraint aTx ≤ b for a ∈ Rn, b ∈ R and for every ` ∈ {1, . . . , q} some
m` ∈ N constraints G` : R|K`| → Rm` only containing variables from the same set K` ∈ K,
then every blockwise optimal solution to P is weakly Pareto optimal.

Proof. Since f is linear, it is additively separable, i.e., f(x) =
∑q
`=1 g`(xK`

) for some
linear functions g`. Consequently, we have for every subproblem Ij and (x+j , 0−j) that

f(x+j , 0−j) =
∑

`∈{1,...,q}:K`⊆Ij

g`(xK`
) +

∑
`∈{1,...,q}:K`⊆ICj

g`(0K`
)︸ ︷︷ ︸

=0

= fj(x+j)
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with fj(x+j) the objective for subproblem Ij from Definition 16.
Let x∗ ∈ Rn be feasible, but not weakly Pareto optimal. So there is an x′ ∈ Rn with
aTx′ ≤ b, G`(x

′
K`

) ≤ 0, ` = 1, . . . , q, and fj(x
′
+j) < fj(x

∗
+j) for all j ∈ {1, . . . , p}. Let

y := x′−x∗, and β := max{0, aTy}. Since every variable is contained in exactly π blocks,
we have that

y =
1

π
·
p∑
j=1

(y+j , 0−j).

Hence,

β ≥ aTy =
1

π

p∑
j=1

aT(y+j , 0−j) ≥
p

π
min

j∈{1,...,p}
aT+jy+j .

Let j0 be an index where the minimum is attained, so p
πa

T(y+j0 , 0−j0) ≤ β. Since π ≤ p
and β ≥ 0, this implies that aT(y+j0 , 0−j0) ≤ β. Define

x′′ := x∗ + (y+j0 , 0−j0) = (x′+j0 , x
∗
−j0),

i.e., x′′ coincides with x′ for all variables i ∈ Ij0 and it coincides with x∗ for all variables
i 6∈ Ij0 . We obtain that x′′ is feasible:

• For every set K` we have either K` ⊆ Ij0 or K` ⊆ ICj0 . In the former case G`(x
′′) =

G`(x
′) ≤ 0 and in the latter case G`(x

′′) = G`(x
∗) ≤ 0.

• aTx′′ = aTx∗ + aT(y+j0 , 0−j0) ≤ aTx∗ + β = max{aTx∗, aTx′} ≤ b.
Furthermore, using that f is linear and the construction of x′, we receive

f(x′′) = f(x∗) + f(y+j0 , 0−j0) = f(x∗) + fj0(x′+j0)− fj0(x∗+j0) < f(x∗).

So x∗ was not blockwise optimal.

We now apply Theorem 22 to integer linear programs and assume that J forms a partition,
i.e., J = K.

Corollary 23. Let P be an integer linear program with a partition J = {I1, . . . , Ip} of the
variable indices with nj := |Ij |, which may have

• mj constraints involving variables from the same set Ij ∈ J,

• but only one coupling constraint,

i.e.,

min

p∑
j=1

cT+jx+j

s.t Ajx+j ≤ bj , j = 1, . . . , p,

aT(x+1, . . . , x+p) ≤ b

x+j ∈ Rnj , j = 1, . . . , p

with c+j ∈ Rnj , Aj ∈ Rmj ,nj , bj ∈ Rmj , and a ∈ Rn, b ∈ R.
Then Algorithm BCD terminates with a Pareto optimal solution for P.

Note that Algorithm BCD terminates with a global optimum in the case of Corollary 23
if no coupling constraint is present.
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4.3 Blockwise coordinate descent in matroids

In this section we discuss the properties of Algorithm BCD in matroids. Clearly, to find
an optimal solution of a matroid optimization problem, one would use the well-known
Greedy approach. Nevertheless, it is of theoretical interest to understand the behaviour
of Algorithm BCD in this case.

First, the matroid optimization problem can be formulated as follows. Given a set E with
n elements and a set of independent sets I on E, I ⊆ Pot(E). Let (E, I) be a matroid.
Furthermore, let weights ce for all e ∈ E be given. The matroid optimization problem
then asks for an independent set A ⊆ E with maximum weight, i.e.,

max{f(A) =
∑
e∈A

we : A ∈ I}.

A matroid optimization problem can be written as integer program with variables xe
being one if and only if e is contained in the independent set:

(P ) max{
∑

wexe :
∑
e∈E

xe ≤ r(A) for all A ⊆ E}

where r : I → R is the (submodular) rank function of the matroid. Each variable of P
corresponds to an element e ∈ E. We hence can use the elements of E directly to define
the subsets of variables in our optimization problems PIj .

For the minimum spanning tree problem, it is known (see, e.g., [DPV08]) that one can
start from a spanning tree and by swapping edges (adding an edge and removing another
one instead) one can reach any other spanning tree in the graph. When one starts from
an arbitrary spanning tree and moves towards a minimum spanning tree, the elements
of the sequence can easily be constructed such that they have decreasing costs. For
blockwise coordinate descent, we assume that the sequence of subproblems is fixed, i.e.,
it cannot be chosen according to the actual tree. Still, the following result confirms that
Algorithm BCD finds a global optimal solution in matroid optimization problems when
all two-element sets of variables are contained in the set of subproblems.

Theorem 24. Let P be a matroid optimization problem. Let all two-element subsets be
contained in J, i.e.,

{{e, e′} : e, e′ ∈ E and e 6= e′} ⊆ J.

Then Algorithm BCD terminates with a global optimal solution of P if the set A(0) = {e ∈
E : x

(0)
e = 1} obtained from the starting solution x(0) is an independent set.

Proof. Algorithm BCD terminates, since the set of feasible solutions {x ∈ {0, 1}n : A(x) ∈
I} is finite. Let xBCD be the solution with which Algorithm BCD stops. Assume that
xBCD is not optimal, i.e., there exists some solution x∗ to the matroid optimization prob-
lem P with f(x∗) < f(xBCD).

Define A(x) := {e ∈ E : xe = 1} for every solution x of P, and for every subset A ⊆ E
define its corresponding solution xA ∈ {0, 1}n through xAe = 1 if and only if e ∈ A. Let
ABCD := A(xBCD) ⊆ E. Let us choose an optimal solution x∗ as similar as possible to
xBCD, i.e., such that for A∗ := A(x∗) ⊆ E we have that∣∣A∗ ∩ABCD

∣∣
is maximal. We now construct a set I ∈ J for which xBCD can be improved.

Let e∗ be an element of A∗ \ ABCD with maximal weight. ABCD ∪ {e∗} contains a cycle
C with e∗ ∈ C. Since A∗ ∈ I we know that C \ A∗ 6= ∅. Let e′ ∈ C \ A∗. Removing e′

leads to a new independent set

Ã := ABCD \ {e′} ∪ {e∗} ∈ I.

12



Suppose we∗ ≤ we′ . Then A∗∪{e′} contains a cycle from which we can remove an element
ẽ ∈ A∗ \ ABCD to obtain an independent set A′ := A∗ ∪ {e′} \ {ẽ}. Since e∗ has been
chosen as an element with maximal weight in A∗ \ABCD we obtain

we′ ≥ we∗ ≥ wẽ,

hence f(A′) = f(A∗)+we′−wẽ ≥ f(A∗) and |A′∩ABCD| = |A∗∩ABCD|+1, a contradiction
to the choice of A∗ as optimal solution with maximal number of same elements as ABCD.
We conclude we∗ > we′ and hence compute

f(x(Ã)) =
∑
e∈Ã

we =
∑

e∈ABCD

we − we′ + we∗ >
∑

e∈ABCD

= f(x(ABCD)).

This finally shows that Algorithm BCD cannot have terminated with xBCD since for
I := {e′, e∗} ∈ J the algorithm would have improved xBCD to x(Ã).

5 Relation to the continuous relaxation

In many applications, even the subproblems PI(x) are hard to solve (in particular in
the application mentioned in the next section). Hence, one could try to find a solution
by not solving the integer programming problems, but their relaxations in every step of
Algorithm BCD. Here we investigate what we can conclude from a solution obtained by
applying Algorithm BCD to the continuous relaxation of P instead of applying it to the
problem P itself.

Let R denote the continuous relaxation of P. Clearly, applying Algorithm BCD to R
instead of P does not yield an upper bound on its objective value. The following example
of an integer linear program shows that it neither yields a lower bound, even if

• Algorithm BCD is started at the same feasible solution x(0) when solving R and P,
and,

• it is applied to the relaxation of the ideal formulation of P, and

• it terminates with an integer point when applied to the continuous relaxation R.

Example 25. Consider the integer linear program

(P) min x1 + x2
s. t. −2x1 + x2 ≤ 0

2x1 − x2 ≤ 10
−x1 − 2x2 ≤ 0

x1, x2 ∈ Z

This is the ideal formulation for the feasible set because every feasible point of its linear
programming relaxation R can be written as a convex combination of feasible points of
P. We apply Algorithm BCD to this problem as well as to its continuous relaxation R
w.r.t. the subproblems I1 = {1} and I2 = {2}. If x(0) = (9, 9), then for the integer

program, we obtain x
(1)
P = (5, 9), x

(2)
P = (5, 0), and x

(3)
P = (0, 0), where the algorithm

terminates. This point has objective value 0. Applied to the linear relaxation, we obtain

x
(1)
R =

(
9
2 , 9
)
, x

(2)
R =

(
9
2 ,−1

)
, and x

(3)
R = (2,−1), which has the objective value 1 being

worse than the value obtained from applying Algorithm BCD to P. Both sequences are
illustrated in Figure 2.

13



x1

x2

x1

x2

Figure 2: Illustration of Example 25, on the left Algorithm BCD applied to P, and on the
right to its ideal formulation

Note that in the example, the solution obtained by Algorithm BCD applied to the con-
tinuous relaxation is still blockwise optimal for the original problem P. In case Algorithm
BCD happens to find a solution which is feasible for P this holds in general, as the next
lemma shows. Moreover, the lemma gives a condition under which also Pareto optimality
for a solution to R is transferred to P.

Lemma 26. Let Y ⊂ Rn be a set containing the feasible set X of P, and let

(R) min f(x)
s. t. x ∈ Y.

Let J be the subproblems to be considered.

1. Let x∗ be a blockwise optimal solution to R which is feasible to P. Then x∗ is
(strictly) blockwise optimal to P.

2. Let f be additively separable with respect to J, and let x∗ be a (weakly) Pareto optimal
solution to R which is feasible to P. Then x∗ is (weakly) Pareto optimal to P.

Proof.

1. If x∗ were not blockwise optimal for P, there would be a j ∈ {1, . . . , p} and an x′+j
with (x′+j , x

∗
−j) ∈ X and f(x′+j , x

∗
−j) < f(x∗). Then (x′+j , x

∗
−j) ∈ Y so that x∗

would not be blockwise optimal for R. For strict blockwise optimality, the proof is
analogous.

2. If x∗ were not weakly Pareto optimal for P, there would be an x′ ∈ X with fj(x
′
+j) <

fj(x
∗
+j) for all j ∈ {1, . . . , p}. Since x′ ∈ Y , the solution x∗ would not be weakly

Pareto optimal to P. The statement for Pareto optimality can be proven in the same
way.

From Lemma 26 we obtain the following consequences for Algorithm BCD.

Corollary 27. Let R be the continuous relaxation of P, and let xR be the solution obtained
by applying Algorithm BCD to R. We then have:

• If xR is feasible for P, it is blockwise optimal for P.

• Under the conditions of Theorem 22, and if xR is feasible for P, then it is weakly
Pareto optimal for P.
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6 Application of Algorithm BCD for improving solu-
tions to sequential processes

Many applications deal with multi-stage optimization problems in which the stages are
optimized sequentially because it is computationally too complex to solve the integrated
problem as a whole. Let us look at such a series of p optimization problems. The sequential
process starts by solving the first problem (P′1), i.e., it determines the variables x+1 ∈ Zn1

appearing in the first stage. The obtained solution is then fixed in the second stage in
which the variables x+2 are determined. The process continues until in the last step, the
values of all previous stages, i.e., x+1, . . . , x+(p−1) are fixed and a solution x+p to the
last stage is determined. This gives the sequential solution xseq = (x+1, . . . , x+p) to the
multi-stage optimization problem.

(P′1) min{f1(x+1) : G1(x+1) ≤ 0, x+1 ∈ Zn1}
(P′2)(x+1) min{f2(x+1, x+2) : G2(x+1, x+2) ≤ 0, x+2 ∈ Zn2}

(P′3)(x+1, x+2) min{f3(x+1, x+2, x+3) : G3(x+1, x+2, x+3) ≤ 0, x+3 ∈ Zn3}
...

(P′p)(x+1, . . . , x+(p−1)) min{fp(x+1, . . . , x+p) : Gp(x+1, . . . , x+p) ≤ 0, x+p ∈ Znp}

In many applications the resulting solution xseq of the sequential process is then returned
as solution to the problem. However, it is usually not optimal for the (integrated) multi-
stage optimization problem

(MP) min{f(x+1, . . . , x+p) : G(x+1, . . . , x+p) ≤ 0, x ∈ Zn} (1)

where n :=
∑p
i=1 ni is the number of all variables of all stages, G : Rn → RM contains all

constraints of the single stages, and f is the objective function given as a positive linear
combination of the objective functions of the p planning steps, i.e.,

f(x+1, . . . , x+p) =

p∑
i=1

αifi(x+1, . . . , x+i). (2)

In order to improve the sequential solution xseq we propose to apply Algorithm BCD with
subproblems I1, . . . , Ip corresponding to the variables x+1, . . . , x+p of the stages 1, . . . , p,
i.e., |Ii| = ni. The p subproblems arising during the execution of Algorithm BCD are

(Pi) min{fi(x+i, x−i) : G(x+i, x−i) ≤ 0, x = (x+1, x−i) ∈ Zn}, i = 1, . . . , p

The problems (Pi) and (P′i) have the same variables and may be similar to each other
such that algorithms for solving the subproblems (Pi) may be easily derived from known
algorithms used in the sequential planning process. In fact, Pp and P′p coincide. The
resulting algorithm is depicted in Figure 3, where the construction of the starting solution
is shown in the first p steps, before Algorithm BCD iterates along a cycle to improve the
starting solution.

In the following we summarize what the results derived in this paper mean for improving
a sequential solution if all problems (Pi) are linear integer optimization problems. We
apply Algorithm BCD for the subproblems J = {I1, . . . , Ip} which correspond to the
different stages 1, . . . , p as described above. This is a special case since I1, . . . , Ip form a
partition, and the objective function (2) is a linear combination of the single objectives of
the p planning stages and hence additively separable. Using this, Theorem 20 gives the
following result.
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P’2(x+1)

P’1

. . .

. . .

P’3(x+1, x+2)

P’p(x+1, . . . , x+(p−1))

=Pp(x−p)

Pp−1(x−(p−1))

P2(x−2)

P1(x−1)

. . .

Figure 3: Construction of a starting solution and applying Algorithm BCD for a multi-stage
optimization problem MP.

Corollary 28. Let the multi-stage optimization problem (MP) be given. Then every
Pareto solution to (MP) is blockwise optimal.

We now summarize the results when we apply Algorithm BCD to integer linear multi-stage
optimization problems.

Corollary 29. Let the multi-stage optimization problem (MP) be a linear integer op-

timization problem with rational coefficients. Let x(0) = (x
(0)
+1, . . . , x

(0)
+p) be the starting

solution obtained by solving the problems P′1,P
′
2(x

(0)
+1), . . . ,P′p(x

(0)
+1, . . . , x

(0)
+(p−1)) sequen-

tially. Then the following hold:

1. Algorithm BCD is executable if any of the following two conditions is satisfied:

• Pi(x
(0)
i ) is a bounded optimization problem for all i = 1, . . . , p.

• The p problems appearing in the first round of Algorithm BCD have optimal
solutions.

2. If Algorithm BCD is executable, then we furthermore have:

(i) If none of the variables is constant in the objective function f , then all sequence
elements are close-to-boundary.

(ii) If (P) is bounded, then the sequence of objective function values converges and
becomes constant, i.e., Algorithm BCD terminates.

3. Finally, if Algorithm BCD terminates with a solution x, then we have:

(i) x is blockwise optimal.

(ii) If G contains only one coupling constraint, x is Pareto optimal.

Proof. The first statement follows from Lemma 1 and Corollary 3. Statement 2(i) follows
from Lemma 9 since the (linear) objective function is strictly quasiconcave if it is not
constant with respect to any of the variables. Statement 2(ii) follows from Corollary 7.
Finally, Statement 3(i) is always true, and Statement 3(ii) follows from Theorem 22.

For the special case that P is a combinatorial optimization problems, boundedness of the
problem and of the subproblems is guaranteed. We can hence strengthen the result of
Corollary 29 as follows.

Corollary 30. Let the multi-stage optimization problem (MP) be a combinatorial opti-

mization problem with rational data. Let x(0) = (x
(0)
+1, . . . , x

(0)
+p) be the starting solution
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timetabling

timetabling
given a line plan

vehicle scheduling
given a line plan 
and a timetable

line planning
given a timetable

and vehicle schedules

given a line plan

and vehicle schedules

line planning

Figure 4: Construction of a starting solution and applying Algorithm BCD for the case of
the three stages line planning, timetabling, and vehicle scheduling in public transportation.

obtained by solving the problems P′1,P
′
2(x

(0)
+1), . . . ,P′p(x

(0)
+1, . . . , x

(0)
+(p−1)) sequentially. Then

Algorithm BCD is executable, stops after a finite number of iterations and the solution
obtained is blockwise optimal.

We finally illustrate the application of Algorithm BCD using the multi-stage optimization
problems arising in planning of public transportation. The planning process in public
transportation can be split into the following planning stages: After the design of the
public transportation network, the lines have to be planned. After that, the timetable
can be designed, followed by vehicle scheduling, crew scheduling, and crew rostering. For
all of these planning problems, models are known and advanced solution techniques are
available. However, going through all these stages sequentially leads only to suboptimal
solutions. This motivates the tremendous amount of recent research on integrated plan-
ning in which two or even more of the planning stages are treated simultaneously, see, e.g.,
[LM07, GH08, SGSK10, CM12, PLM+13, SE16, BBLV17, PSSS17, MCZT18, FvdHRL18].
In [Sch17], Algorithm BCD has been set up for the three stages line planning, timetabling,
and vehicle scheduling, and [GSS16] presents experimental results showing that the solu-
tion quality can be improved by Algorithm BCD in this application. Figure 4 shows the
process: First, a starting solution is found by the classic sequential approach in which
first the line planning problem is solved, then a timetable is determined and finally the
vehicle schedules are planned. This sequential solution is then treated as starting solution
and improved by iterating through the circle depicted in Figure 4.

We finally give an interpretation of results for multi-stage problems when applied to MP
arising in public transportation depicted in Figure 4. The notion of blockwise optimal of
Definition 11 means that we cannot improve any of the planning stages without changing
another one. E.g., we cannot improve the timetable without changing the vehicle schedules
or the line plan. Looking at Pareto optimality, we may change all variables, and not only
the variables of one of the stages. A solution is Pareto optimal if we cannot improve
one of the planning stages without worsening another one. In general, blockwise optimal
solutions need not be Pareto optimal. For example, we might be able to improve the
timetable when making a few changes to the vehicle schedules and this may be done
without increasing the costs of the vehicle schedule. According to Theorem 22 Pareto
optimality only follows from blockwise optimality if there is only one coupling constraint,
i.e., when the subproblems are almost independent of each other.
Finally, planning a public transportation system involves integer linear optimization prob-
lems with only a finite number of feasible solutions. For this case we can use Corollary 29

17



and Corollary 30 showing that Algorithm BCD is always executable and terminates after
a finite number of iterations with a blockwise optimal solution.

7 Conclusion and further research

In this paper we presented a systematic analysis for blockwise coordinate descent methods
applied for integer (linear or nonlinear) programs. We analyzed existence of the sequence
elements, convergence of the algorithm, and discussed properties of the (local) minima
found. We in particular discussed not only blockwise coordinate descent on a partition of
the variables but also on a cover.

For further research we plan to discuss how to construct a good set of subproblems J as
input for Algorithm BCD. Clearly, nested sets Ij ⊆ Ij+1 can be avoided in an efficient
sequence since the smaller one is always redundant. However, an overlap between the
sets seem to be beneficial as first experiments [Spü18] show that using covers instead
of partitions yields better results in less time. Using this as a starting point, different
strategies on how to choose the cover J should be discussed, among them having all
equal-size subsets of the variables (yieldings J with uniform structure), having larger or
smaller sets and sets with big or small overlap to others.

Based on the observations on matroids and on the decomposition results, we furthermore
aim at identifying problem classes in which the gap between the quality of the solution
obtained by Algorithm BCD compared to an optimal solution can be bounded.

Finally, blockwise coordinate descent methods should be further refined and applied to
public transportation, and location problems, both classes having practical applications
and being suitable to study the performance of the respective approaches.
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[LM07] C. Liebchen and R. Möhring. The modeling power of the periodic event
scheduling problem: Railway timetables and beyond. In Algorithmic Meth-
ods for Railway Optimization, volume 4359 of Lecture Notes in Computer
Science, pages 3–40. Springer, 2007.

[MCZT18] L. Meng, F. Corman, X. Zhou, and T. Tang. Special issue on integrated
optimization models and algorithms in rail planning and control (editorial).
Transportation Research C, 88:87–90, 2018.

[MS96] Dov Monderer and Lloyd S. Shapley. Potential games. Games and Economic
Behavior, 14(1):124–143, May 1996.

[NW88] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley, 1988.

[PLM+13] H.L. Petersen, A. Larsen, O.B.G. Madsen, B. Petersen, and S. Ropke. The
simultaneous vehicle scheduling and passenger service problem. Transporta-
tion Science, 47(4):603–616, 2013.

[PSSS17] J. Pätzold, A. Schiewe, P. Schiewe, and A. Schöbel. Look-Ahead Ap-
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