
Institut für Numerische und Angewandte Mathematik

The line planning routing game

A. Schiewe, P. Schiewe, M. Schmidt

Nr. 16

Preprint-Serie des
Instituts für Numerische und Angewandte Mathematik

Lotzestr. 16-18
D - 37083 Göttingen



The line planning routing game∗

Alexander Schiewe1, Philine Schiewe1, and Marie Schmidt2
1: Institute for Numerical and Applied Mathematics, University of Goettingen

Lotzestr. 16-18, 37083 Göttingen, Germany, phone: +49 551 397872
email: a.schiewe@math.uni-goettingen.de,

p.schiewe@math.uni-goettingen.de
2: Rotterdam School of Management, Erasmus University

Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands,
phone: +31 10 4082199, email: schmidt2@rsm.nl

16th April 2018

Abstract

In this paper, we take a novel perspective on line planning in public transportation: We
interpret line planning as a game where the passengers are players who aim at minimizing
individual objective functions composed of travel time, transfer penalties, and a share of the
overall cost of the solution. We discuss the relation among equilibria of this game and line
planning solutions found by optimization approaches. Furthermore, we investigate the algo-
rithmic viability of our approach as a solution method for line planning problems, using a
best-response algorithm to find equilibria. We investigate under which conditions a passen-
ger’s best-response can be calculated efficiently and which properties are needed to guarantee
convergence of the best-response algorithm.

Keywords: Transportation, Game Theory, Routing, Line Planning, Routing Game

1 Introduction

Due to the high complexity of public transportation planning, the planning process is normally
subdivided in subsequent steps, such as network design, line planning, timetabling, vehicle schedul-
ing, etc. The line planning problem aims at determining the routes, called lines, which are served
regularly by a vehicle and the frequencies of these services. When evaluating such a set of lines
both the emerging costs and the quality from the passengers’ perspective are taken into account.
Various variants of line planning have been formulated and solved as optimization problems. We
take a new perspective on line planning: we propose to model line planning as a routing game
where passengers choose routes based on travel quality and a cost share, which depends on the
amount of passengers who share (parts of) the route. In this paper we address the question on
how to find equilibria of this so-defined line planning routing game (LPRG) and compare them to
line planning solutions found by optimization approaches.
The remainder of this paper is structured as follows. In Section 1.1 we review literature on line
planning before we detail our contribution in Section 1.2. We then briefly introduce some concepts
from game theory in Section 2. In Section 3 we introduce the line planning problem we study,
both in its centralized version (Section 3.1) and as line planning routing game (Section 3.2) and
discuss the relations between the two problems (Section 3.3).
In Section 4 we investigate properties of the line planning routing game. We sketch the best-
response algorithm used to find equilibria to LPRG, and in Section 4.1 we investigate under which
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conditions on the line planning model a passenger’s best-response can be calculated efficiently.
The existence of equilibria and the convergence of the best-response algorithm are investigated in
Section 4.2. Section 4.3 evaluates the solutions found by the best-response algorithm with respect
to solutions found with a centralized approach. Finally, in Section 5 we illustrate and compare
the different models on some small line planning instances.

1.1 Related literature

Line planning is an important step in the public transportation planning process. There are
many line planning models which differ with respect to the decisions covered by the term line
planning, the level of detail with which real-world constraints are included in the model, and the
way of measuring the travel quality of a line plan. In this paper, we give a brief overview on
the line planning models and solution methods which are most relevant for this paper. See, e.g.,
[Sch11, Sch14] for more extensive overviews on line planning.
Line planning aims at finding a line concept (that means: line routes and frequencies) which is
good from an operational point of view and offers good travel quality for the passengers. Cost-
oriented line planning models focus on minimizing the operational costs subject to the constraint
that passenger demand has to be satisfied (see, e.g., [CvDZ98, Bus98, GvHK06, BHK+13]).
Possible ways to measure the quality of a line concept from the point of view of a passenger are
the (generalized) travel time and the number of transfers on the route that a passenger would
choose.
A few passenger-oriented line planning models aim at minimizing the overall travel time while
keeping the costs below a predefined threshold [SS06a, Sch14]. There are also passenger-oriented
models which measure quality by the number of direct travelers [Die78, Bus98, BKZ97]. Several
models combine quality and cost into one objective [BGP08, GYW06, PB06].
Line planning problems are often modeled and solved as integer programs. Solution approaches
for cost-oriented models often assign the demand to the network edges in a preprocessing step
and formulate covering or packing models. Solution techniques include branch-and-bound [Bus98,
CvDZ98], branch-and-cut [GvHK04], and variable fixing heuristics [BLL04].
Passenger-oriented line planning assumes that passengers choose the ”best” route with respect
to the chosen line concept (where ”best” is often understood as travel-time minimal). For this
purpose, passengers’ routes cannot be determined in a preprocessing step but have to be de-
termined together with the line concept. [SS06a] model passengers as flows in a change-and-go
network, which allows to include transfer times in the travel time, and solve the LP-relaxation us-
ing Dantzig-Wolfe decomposition. However, this leads to very large IP models and relatively long
solution times. [BGP07, BN10, BK12] use column generation to generate passengers’ routes. In
[BN10] it is shown that this can lead to a significant speed-up with respect to flow formulations in
change-and-go networks. However, in order to achieve problem formulations which can be solved
for practical instances, these models use several simplifications. Often, transfer times are assumed
to be independent of line frequencies (see, e.g., [SS06a, BN10, BK12, Sch14]) or not taken into
account at all [BGP07]. [GvHK06, GvHK04] use a model that allows to adjust transfer times to
frequencies, but make a different restriction: for each passenger, the path in the network on which
he travels is fixed beforehand (even if the exact connection, i.e., the sequence of lines used on this
path, is not).
A further drawback of the described passenger-oriented models is that they determine a system-
optimum with respect to the cumulated objective functions of all passengers. In order to achieve
a system-optimal solution, single passengers may be assigned to routes which are significantly
worse than their individually optimal route. [Sch14, GS17] introduce a model where only line
concepts which allow all passengers to travel on shortest paths (with respect to the line concept)
are considered feasible and propose an IP formulation as well as a genetic algorithm.
Solution approaches to line planning which are not IP-based, often concentrate on the line routes
only and postpone frequency setting to a later step. They use greedy strategies [CW91, PRR95,
Qua03] to construct lines or successively remove lines from a big line pool [Pat25, Son79]. Fur-
thermore, metaheuristics like genetic algorithms [FGP02, FM06a, SW11, GS17], neighborhood
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search [SW11, CDLSLM17], and simulated annealing [FM06b] are used. [Man80, JBT10, Sch14]
describe iterative approaches, where line planning/frequency setting and route assignment steps
are iterated.
Furthermore, the trend in research goes towards the integration of different planning steps in
public transportation, like line planning and rolling stock planning [CDLSLM16], line planning
and timetabling [BBVL17] or even all three problems [Sch17, PSSS17].
There are also game-theoretic approaches to line planning which model line operators as players
who compete for a good utilization of the lines they offer [SS06b, Sch09, BKZ09, BKZ11, SS13,
Neu14]. In [LMP10], the problem of finding a line concept which is robust against link failures is
modeled as a game between the network provider and an adversary. However, to the extent of our
knowledge, so far no attempt has been made to model line planning as a game with passengers as
players.

In the field of transit assignment, models from game theory are used to model passenger flows
on networks (see, e.g., [SF89, She85, DCF93, NP88, SFS+11, SSJ11, CF95, FHSS17b]). These
models take into account different modeling requirements from practice, like e.g., limited seat
capacity or uncertain information about the next arriving vehicles. Equilibria are often found by
mathematical programming.

Routing games on networks are also studied from a more theoretical perspective in the area of
algorithmic game theory. A good overview of this line of research, both for atomic and non-atomic
flow, is given, e.g., in [Rou07]. Questions of interest cover the existence and quality of equilibria
and algorithmic approaches to identify equilibria (see, e.g., [Ros73, AAE05, Rou05, ADK+04,
Rou07, TW07]

1.2 Contribution of this paper

In this paper, we propose a new perspective on line planning problems with cost and travel quality
objective, which motivates a novel algorithmic approach to solve line planning problems. Instead
of integrating planning and routing steps or iterating between both as done in the approaches
described above, we regard only the routing step and include all planning decisions in this step.
To this end, we define an individual objective function for each passenger which is composed of
travel time, transfer penalties, and a share of the overall cost of the solution. This way, the line
planning problem can be interpreted as a game in which the passengers are the players who aim
at minimizing their objective functions.
To find equilibria we propose a best-response algorithm. We investigate the algorithmic viability
of this approach, that is, under which conditions on the line planning model a passenger’s best-
response can be calculated efficiently and which properties are needed to guarantee convergence
of the best-response algorithm. For cases where we do not have these properties, we propose
heuristics which simplify the routing step.
We compare the solutions found by our algorithm to solutions found by centralized approaches,
both theoretically, by investigating the price of anarchy, and experimentally. Furthermore, we
show that the solutions found by our approach are more balanced in the sense that passengers
with the same origin and destination are assigned to paths with the same generalized costs.

2 Basics from game theory

In this section we describe some basic concepts from game theory which are used in the remainder
of this paper. See, e.g., [NRTV07] for a more comprehensive introduction to game theory.
Game theory studies the dynamics of situations where players try to minimize individual, conflict-
ing objective functions. In a game (Q,Strat, h), each player q ∈ Q has a set of strategies Stratq
among which he can choose. The individual objective function hq(S) = hq(Sq,S−q) of player q de-
pends on his chosen strategy Sq, but also on the strategies S−q = (S1, S2, . . . , Sq−1, Sq+1, . . . , S|Q|)
chosen by the other players.
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A central concept of game theory is the concept of equilibria. A set of strategies (S1, . . . , S|Q|)
is called (Nash) equilibrium if none of the players can improve his individual objective function
by changing his strategy given that all other players do not change their strategies. I.e., Ŝ =
(Ŝ1, . . . , Ŝ|Q|) is an equilibrium if for all q ∈ Q it holds that

hq(Ŝq, Ŝ−q) ≤ hq(Sq, Ŝ−q) ∀Sq ∈ Stratq.

Not all games have equilibria, and even if equilibria exist, they can be hard to find and they do
not need to be unique.

A special class of games with good properties is the class of potential games. We call a function
Φ : Strat = Strat1 × Strat2 × . . .× Strat|Q| → R potential function, if it satisfies the relation

Φ(S)− Φ(S ′) = hq(Sq,S−q)− hq(S′q,S−q) (1)

for all solutions S = (S1, . . . , S|Q|) ∈ Strat, all players q ∈ Q and all solutions
S ′ = (S1, . . . , Sq−1, S

′
q, Sq+1, . . . , S|Q|) ∈ Strat which can be obtained from S by exchanging the

strategy of player q. A game with potential function is called potential game. The existence of a
potential function allows us to interpret the problem of finding an equilibrium to (Q,Strat, h) as
an optimization problem. As we can easily verify in (1), an optimal solution to Φ is an equilibrium
for the considered game (although there may be equilibria which are not optimal for Φ).
Furthermore, the relation (1) implies that every time a player changes his strategy to improve his
personal objective (while the other players’ strategies remain unchanged), the solution becomes
better with respect to Φ and, in this sense, closer to an equilibrium. This motivates the approach
of using best-response algorithms to find equilibria: in every step, one of the players changes his
strategy to the best response with respect to the other players’ strategies, i.e., he picks a solution
of the optimization problem minSq∈Stratq hq(Sq,S−q) as a new strategy. If there is only a finite
number of strategies, this procedure converges to an optimum of Φ, and hence to an equilibrium
of the game in a finite number of steps.

A centralized way to evaluate a solution S = (S1, . . . , S|Q|) is to sum up the individual objective
functions to a centralized objective function H(S) =

∑
q∈Q hq(Sq,S−q). We call S ∈ Strat system-

optimal if it minimizes H.
There exist different concepts to measure the inefficiency of equilibria with respect to the central-
ized objective. The price of anarchy is defined as

max
S∗ is an equilibrium

H(S∗)
minS∈StratH(S)

.

Assuming that over time, selfish behavior will converge to equilibrium solutions, the price of
anarchy gives a worst-case bound on the quality of such a convergence process.
The price of stability,

min
S∗ is an equilibrium

H(S∗)
minS∈StratH(S)

,

in contrast, quantifies how far the best equilibrium (i.e., the best solution that would be accepted
by the players) is away from system optimality.

3 Line planning with travel quality and cost objective

3.1 The centralized approach

Line planning aims at determining routes and frequencies of vehicles like trains, metros, or buses.
As a basis, we consider the underlying public transportation network (PTN) G = (V,E). The
nodes V of this network represent stations. Two stations are connected by an edge e ∈ E if there
is a direct track connection between the corresponding stations. In this paper, we consider a line
pool L of possible lines, which are simple paths in the network, as input to the problem. The
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main task of line planning is to find a line concept, i.e., to assign a frequency fl ∈ N0 to every line
l in the line pool L. In many line planning models from the literature, constraints on the number
of lines which can pass an edge e are imposed. While this is certainly important in practice, in
order to keep our line planning model as simple as possible, we do not consider this constraint in
this paper.
We denote the costs of a line, depending on its frequency, as costl(f). We model costl(f) as
composed of a frequency-independent cost k1l , which represents, e.g., administration costs, and a
frequency-based cost k2l , e.g., fuel or labor costs. We obtain costl(f) = γ1k

1
l +γ2k

2
l fl if fl > 0 and

0 otherwise, where γ1 and γ2 are non-negative constants. The cost of a line concept represented
by frequencies f is thus given as cost(f) :=

∑
l:fl>0(γ1k

1
l + γ2k

2
l fl).

We consider passenger demand per period given in form of origin-destination (OD)-pairs (uq, vq),
specifying origin uq and destination vq of passenger q from the set of passengers Q. To be able
to evaluate the quality of the line plan from the passengers’ perspective, together with the line
concept we determine a set of passenger routes R := {Rq : q ∈ Q}. A route Rq for passenger q
specifies a path P ′q = (e1, . . . , en) from uq to vq and for every edge ei ∈ P ′q a line li which is used
while traveling on ei. I.e., Rq can be written as a sequence Rq = ((e1, l1), (e2, l2), . . . , (en, ln)).
For a given set of routes R we denote the number of passengers who use line l ∈ L on edge e ∈ l
by x(e,l)(R) := |{q ∈ Q : (e, l) ∈ Rq}|.
We call a pair of frequencies f and passenger route set R feasible, if the number of passengers
does not exceed the vehicle capacity in any run of any line on any edge, under the assumption
that passengers spread evenly over all vehicles runs of one line. That is, if for every l and every
e ∈ l it holds that x(e,l)(R) ≤ fl ·B, where B denotes the capacity of a single vehicle.

To evaluate a line concept, we use a weighted sum of costs, travel time, and transfers. Here, travel
time consists of in-vehicle time and transfer time, that is, we do not take waiting times at the origin
station into account. The in-vehicle time on route Rq depends only on the chosen route in the PTN.
It is given as cq(Rq) :=

∑
(e,l)∈Rq

c(e), where c(e) is the in-vehicle time for an edge e ∈ G. The

transfer time τq(Rq, f) is estimated based on the frequencies of the lines involved in the transfers
on the route. In this paper, for a transfer from line l to line l′ we assume a transfer time of T

fl+fl′
,

where T is the period length (often one hour). This models the expected transfer time under the
assumption that passengers choose their route based on a periodic timetable. The overall transfer
time of passenger q on route Rq is τq(Rq, f) :=

∑n−1
i=1

T
fli+fli+1

, where (l1, l2, . . . , ln) is the sequence

of lines used on Rq. Furthermore, we include the number of transfers transferq(Rq) = (n− 1) into
the evaluation of each route. This models the inconvenience arising for the passenger from ea ch
transfer.

Definition 3.1. Given a PTN G, a line pool L, a capacity bound B, a set of passengers Q, a
parameter set (α1/α2, β, γ1/γ2), and a period length T , the line planning with travel quality and
cost objective (LPQC) is defined as follows: find a pair of frequencies f and routes R which fulfills
x(e,l)(R) ≤ fl ·B and minimizes the objective function

H(R, f) :=
∑
q∈Q

(
α1 · cq(Rq) + α2 · τq(Rq, f) + β · transferq(Rq)

)
︸ ︷︷ ︸

=:travel(R,f)

+ γ1 ·
∑
l:fl>0

k1l + γ2 ·
∑
l:fl>0

k2l fl︸ ︷︷ ︸
=:cost(f)

.

(2)

(LPQC) takes a centralized perspective on line planning: we aim to minimize the sum of costs and
total travel time (summed up over all passengers). This does not necessarily mean that the travel
time for each individual passenger is short. In fact, particular passengers may be forced to take
detours for the ’greater good’ of allowing short routes for others. See Section 3.3 for an example.

The following observation from [Sch14] will be useful in the remainder of this paper:

Observation 3.2. Given a route set R we can easily determine a corresponding line concept

f(R) = (fl(R))l∈L by setting fl(R) := maxe∈l

⌈
x(e,l)(R)

B

⌉
.
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Observation 3.2 allows us to omit the line concept as argument in the function H, thus in the
following we use the notation H(R) := H(R, f) when convenient. The same holds for the functions
τq, where we write τq(R) or τq(Rq,R−q) instead of τq(R, f(R)).

3.2 The line planning routing game

In this paper, we interpret line planning as a routing game. The passengers Q are the players.
The strategies of a passenger q are the routes Rq from his origin uq to his destination vq. Based
on a set of routes chosen by the passengers R, we determine the line concept as f(R) as described
in Observation 3.2. Each passenger has an individual objective function hq(Rq,R−q) on which
he bases the route choice. It depends on his chosen route Rq and the routes chosen by the other
passengers R−q. We call this game line planning routing game (LPRG) and interpret equilibria
R∗ of this game as solutions (R∗, f(R∗)) of the line planning problem. The choice of the individual
objective functions hq is of course crucial for the quality of the obtained solutions. We want the
individual objective functions to

• account for individual travel quality as well as costs in order to find a solution which is bal-
anced between the two partly contradicting objectives of minimizing costs while maximizing
quality, and

• model passengers’ behavior as realistically as possible.

We propose the following general model. The passengers’ individual objective functions are com-
posed of the travel quality of the solution travelq := α1 · cq(Rq) + α2 · τq(Rq) + β · transferq(Rq)
and a share of the overall costs, costq(Rq,R−q), that is, we have

hq(Rq,R−q) := travelq(Rq,R−q) + costq(Rq,R−q).

To share the costs among the passengers, we propose two models:

1. equally divide the cost of all lines among all passengers that are choosing this line as part
of their route

costq(R) :=
∑
l∈Rq

costl(f(R))

|{q′ ∈ Q : l ∈ Rq′}|

(called line-based cost model in the following), or

2. split the line costs of line l among the edges e ∈ l as edge costs cost(e,l) (referred to as
edge-based cost model in the following) and compute the cost for passenger q as

costq(R) :=
∑

(e,l)∈Rq

cost(e,l)(f(R))

x(e,l)(R)
.

In this paper, we assume that the edge costs are proportional to the edge lengths c(e), i.e.,

cost(e,l)(f(R)) := (γ1k
1
l + γ2k

2
l fl)

c(e)∑
e∈l c(e)

.

In Definition 3.3 we summarize the definition of the LPRG:

Definition 3.3. In the line planning routing game (LPRG), the passengers q ∈ Q act as play-
ers. Every passenger (player) chooses among the routes from his origin uq to his destination vq
(strategies) to minimize his individual objective function hq(Rq,R−q) which depends both on the
route Rq chosen by q and the routes chosen by the other passengers R−q.

Note that in the definition of the quality functions in Section 3.1 and the individual objective
functions in the section, we implicitly assumed that all passengers have the same perception of
quality of a travel route since we assume the weighting factors α1, α2, β, γ1, and γ2 to be the
same for each passenger. It would be possible to replace these common weighting factors by a
set of individual weighting factors for each passenger. However, for the sake of simplicity, in this
paper we only consider the case of common weighting factors for all passengers.
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Figure 1: Example instance where LPQC finds undesirable solution.

3.3 Relation between LPQC and LPRG

In this section we discuss the relation between the objective function H of the line planning
problem with travel quality and cost objective (LPQC) and the individual objective functions hq
of the line planning routing game (LPRG).
By definition

∑
q∈Q travelq(Rq,R−q) = travel(R, f(R)). Furthermore, in the line-based cost

model, we have
∑
q∈Q costq(Rq,R−q) = cost(f(R)). This is also true in the edge-based cost

model, as long as it is ensured that a line does not contain an edge which no passenger is using
on this particular line, which we will assume in the following. We conclude that∑

q∈Q
hq(Rq,R−q) = H(R, f(R)).

That is, a system-optimal route set for LPRG corresponds to an optimal solution of LPQC. Hence,
if the price of anarchy in the LPRG is small, an equilibrium R∗ of the game provides us with a
good approximation (R∗, f(R∗)) for LPQC.

Lemma 3.4. Denote by I an instance of the LPQC. Assume that the price of anarchy for the
corresponding instance IRG of LPRG is bounded by ξ. Then any equilibrium R∗ of IRG is a
ξ-approximation (R∗, f(R∗)) for I.

So, on the one hand, finding an equilibrium to LPRG may be regarded as a new, decentralized,
way of solving LPQC. On the other hand, one may argue that in some cases, optimal solutions
to LPQC are not desirable in practice. Indeed, it may happen that the route set R in a solution
(R, f) to LPQC allots very long routes to some passengers for the ’greater good’ of a solution
which is optimal with respect to the centralized objective function H.

We discuss an example for the latter in the remainder of this section. Consider the situation shown
in Figure 1: There are seven (railway) stations and two lines (depicted by gray arrows) from station
v1 to station v7. One is a fast line which stops only at one intermediate station, the other one
is a regional line which serves a geographically different route and visits many small stations in
between. Assume that the transportation capacity of each line is B = 100. The demand situation
is as follows: 100 passengers want to travel from v1 to v7, 50 want to travel from v2 to v7, and
some smaller amounts of passengers are traveling to and from the regional stations. Hence, both
lines have to be established. Now, if the cost parameters γ1 and γ2 in the centralized objective
function H are comparatively large, both lines will be established with frequency 1 in an optimal
solution (R̂, f̂) to LPQC. This means that 50 of the 100 passengers from v1 to v2 will be sent via
the regional train route in an optimal solution.
However, if this solution was implemented in real life, at station v1, when the passengers from v1
and v7 have to make a decision which train to board, the fast train is still empty. To implement
the solution (R̂, f̂) into practice, somebody would have to convince these 50 passengers to use a
slower connection to reserve the seats in the fast train for the passengers from v2 to v7 boarding
later. It is not hard to imagine, that the passengers from v1 to v7 would board the train anyway
so that the ones starting in v2 could not board or the train would be overcrowded.
This would not happen in the solution (R∗, f(R∗)) provided by an equilibrium R∗ of the corre-
sponding routing game LPRG. In this solution, all passengers from v1 to v7 would choose the fast
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train and the planner would be forced to provide enough frequency here to avoid overcrowding
- unless taking the slow line would be cheap enough to be a favorable option for the passengers.
Hence, if we assume that costq(Rq) is an estimate of the real costs that a passenger pays on a
route Rq, in this example the solution (R∗, f(R∗)) defined by an equilibrium R∗ of LPRG models
passenger behavior in a better way, provides better estimates of actual solution quality and helps
to avoid overcrowding and is therefore, from this perspective, preferable to the solution (R̂, f̂)
found by the centralized perspective taken in LPQC.

4 Finding equilibria to LPRG

To find equilibria to the LPRG, we use a best-response algorithm which is outlined below.

Algorithm 1 Best response algorithm

Require: PTN, line pool, set of passengers Q, individual objective functions hq, maximal number
of iterations m ∈ N ∪∞

Ensure: A route set R
Start with an empty route set (or with an arbitrary non-empty route set).
while improvements for the passengers possible and m not reached do

for Passenger q ∈ Q do
Calculate optimal passenger route Rq according to hq.

end for
end while

In the remainder of this paper we discuss under which assumptions we can find routes for passengers
in the routing step of Algorithm 1 in polynomial time (Section 4.1), for which instances of the
LPRG Algorithm 1 converges to an equilibrium (Section 4.2), and the quality of the equilibria
(Section 4.3). We conclude the section in 4.4 with the description of heuristic modifications of
the individual objective functions which guarantee polynomial solvability of the routing step and
convergence.

4.1 The routing problem

In every step of Algorithm 1 we have to solve the following routing problem for passenger q:

Definition 4.1. Given PTN G, line pool L, origin uq, destination vq and individual objective
function hq for passenger q (defined by parameter set (α1/α2, β, γ1/γ2) and period length T ), and
routes Rq′ for all passengers q′ ∈ Q \ {q}, the routing problem for passenger q (RPq) consists of
finding a route Rq from uq to vq such that hq(Rq,R−q) is minimized.

Unfortunately, the routing problem which has to be solved in each iteration of Algorithm 1 is NP-
hard in general. We see in Section 4.1.1 that there are two components which make the problem
hard: 1.) line-based costs (Theorem 4.2), and 2.) frequency-based transfer times (Theorem 4.3).
However, if costs are assumed to be edge-based with γ2 = 0 and transfer times are neglected, the
problem becomes much better tractable, as we are going to discuss in Section 4.1.2. Heuristics to
incorporate frequency-based transfer times are discussed in Section 4.4.

4.1.1 NP-hardness of the routing problem

For determining the complexity of our problems we use reductions from the set cover problem
(SCP). An instance of SCP is given by a set of elements M = {m1, . . . ,mn}, a set of subsets C
with C ⊆M for every C ∈ C and an integer K ∈ N. The problem is to determine whether there
exists a subset C′ ⊆ C such that

⋃
C∈C′ C ⊇M and |C′| ≤ K.

We first show that the assumption of line-based costs leads to an NP-hard routing problem.

8



v0 v1 v2 v3 v4
e1 e2 e3 e4

e5

Figure 2: PTN used in the proof of Theorem 4.2.

Theorem 4.2. The routing problem (as in Definition 4.1) with line-based costs is NP-hard, even
if there is only one passenger and neither transfer times nor transfer penalties nor frequency-based
costs are taken into account, i.e. if α2 = β = γ2 = 0.

Proof. We show that SCP given by (M, C,K) can be reduced to the decision version of the routing
problem with line-based costs. Given an instance (M, C,K) of SCP we construct an instance of
the decision version of the routing problem as follows.
We create a station v0 and for each mi ∈M, i = 1, . . . , n a station vi and an edge ei = (vi−1, vi).
For all C ∈ C we create a line lC ∈ L containing all edges {ei : mi ∈ C} and additional edges
to ensure that the lines are connected paths in the PTN. We set edge lengths to c(e) := 0 for all
edges related to m ∈M and to c(e) := K + 1 for all additional edges. We consider a passenger q
who wants to travel from v0 to vn. Furthermore we assume line costs of costl = 1 for all lines l.
The parameters of the objective function are α1 = γ1 = 1 and α2 = β = γ2 = 0. T can be set to
an arbitrary value since α2 = 0. An example for the construction is given below.
Now there is a solution to the routing problem with objective value less or equal to K if and only
if there is a solution to SCP with objective value less or equal to K:
Let C′ be a solution to SCP. Then the set of lines L′ := {lC : C ∈ C′} has costs less or equal to
K and allows q to travel from origin to destination with zero travel time. On the other hand, in
every solution to the constructed instance of the routing problem with travel time less or equal
toK, q uses the edge sequence (e1, . . . , en), because otherwise his travel time would be greater
than K. Hence, C′ = {C ∈ C : q uses lC} is a solution to SCP.

The following example illustrates the construction of an instance of the routing problem from an
instance of SCP. Consider the instance of SCP given by M = {1, 2, 3, 4}, C = {C1 = {1, 2}, C2 =
{1, 3}, C3 = {3, 4}}, and K = 2. This leads to the PTN shown in Figure 2 where e1, . . . , e4
correspond toM and have length c(ei) = 0 for i = 1, . . . , 4 and e5 is an auxiliary edge for C2 with
c(e5) = K + 1 = 3.
The line pool is L = {l1 = (e1, e2), l2 = (e1, e5, e3), l3 = (e3, e4)}. It is easy to see that any path
from v0 to v4 with zero travel time must contain all edges ei, i = 1, . . . , 4, and hence for each of
these edges a line needs to be included.

Note that analogously, we can show that the routing problem is NP-hard even for one passenger
for frequency-independent costs γ1 = 0 (and α2 = β = 0), by interchanging the roles of frequency-
based cost and frequency-independent costs in the construction made in the proof of Theorem 4.2.

Due to the result of Theorem 4.2, in the remainder of this paper we restrict ourselves to edge-based
cost functions. However, even without considering costs, the routing problem with frequency-based
transfer times is NP-hard.

Theorem 4.3. The routing problem as in Definition 4.1 is NP-hard, even if transfer penalties
and operational costs are not taken into account, i.e., β = 0 and γ1 = γ2 = 0.

See the appendix for a proof of this result.

4.1.2 Cases with polynomially solvable routing problem

A convenient way to represent route choice in line planning problems is the change-and-go network
(CGN) G = (V,A), which was first introduced in [SS06a]. The set of nodes of the CGN consists
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of station nodes Vstat := {(v,board) : v ∈ V } ∪ {(v, alight) : v ∈ V } and travel nodes Vtrav :=
{(v, l) : l ∈ L, v ∈ l}. The set of arcs is A := AOD ∪ Atrans ∪ Aline with

• line arcs Aline := {(e, l) : l ∈ L, e ∈ l} for each edge e covered by a line l,

• transfer arcs Atrans := {((v, l1), (v, l2)) : v ∈ V, l1 3 v, l2 3 v},

• and arcs for boarding and alighting

AOD := {((v,board), (v, l)) : l ∈ L, v ∈ l} ∪ {((v, l), (v, alight)) : l ∈ L, v ∈ l}.

For an example of a CGN, see Figure 4.
Now every route Rq for a passenger q can be uniquely represented in G as a path Pq from (uq,board)
to (vq, alight) in G.
For a ∈ A we denote by xa(R) the number of passengers, using arc a of the CGN, i.e., xa(R) :=
|{q ∈ Q : Pq 3 a}| where Pq is the path in the CGN corresponding to Rq. To abbreviate, we
sometimes omit the route set and use the notation xa := xa(R).
Let us now assume that, given R−q, we can express the objective value of a route Rq as the sum of
edge weights over all edges contained in the corresponding path Pq, i.e., that there are arc weights
wqa(R−q) ≥ 0∀a ∈ A such that

hq(Rq,R−q) =
∑
a∈Pq

wqa(R−q). (3)

This is the case if costs are edge-based with γ2 = 0 and α2 = 0. Indeed, since in this case the

edge cost function cost(e,l) := cost(e,l)(f(R)) = γ1k
1
l

c(e)
x(e.l)(R) is independent of the routing of the

current passenger, it is easy to check that the weights

wqa(R−q) :=

{
α1c(e) +

cost(e,l)
x(e,l)(R−q)+1 if a = (e, l) ∈ Aline

β if a ∈ Atrans

satisfy (3). In Section 4.4, different approaches to define arc weights are studied.
If edge weights of the form (3) can be found, we obtain the following lemma:

Lemma 4.4. Consider an instance I of the routing problem (Definition 4.1). If there are arc
weights wqa(R−q) as defined in (3), (RPq) can be solved in polynomial time.

Proof. In this case, any shortest path from (uq,board) to (vq, alight) with respect to the edge
weights wqa(R−q) is an optimal solution to I. Hence, we can find a solution using, e.g., Dijkstra’s
algorithm.

Hence, in this case, we can use Algorithm 1 with, e.g., Dijkstra’s algorithm in the routing step to
search for an equilibrium of the LPRG.

4.2 Existence of equilibria and convergence of the best-response algo-
rithm

In this section we study under which assumptions equilibria to the LPRG exist and can be found
by Algorithm 1 . We start with an example which shows that in the general case the existence of
an equilibrium is not guaranteed.
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Figure 3: PTN for an example instance where there are no equilibria for LPRG and Algorithm 1
does not converge.

4.2.1 Non-existence of equilibria

In this section, we give an intuition for why some instances of LPRG do not have equilibria. A
more detailed description of the example and proof of non-existence of equilibria for this example
can be found in the appendix.
We regard the PTN from Figure 3 and assume that every edge is served by one directed line
(which contains only this edge). Because of this one-to-one correspondence of lines and edges, in
this example we use ’edges’ as a synonym for ’lines’. We set the vehicle capacity to B = 1, so
that the frequency of an edge is given by the number of passengers on it. We consider three main
passengers q1 from u1 to v1, q2 from u2 to v2, and q3 from u3 to v3. For each of these passengers,
there exist two routes from origin to destination, we denote the route starting with edge (ui, v

1
i )

as R1
i and the route starting with edge (ui, v

2
i ) as R2

i . Note that each of this routes consists of a
sequence of dotted edge, two thick edges, and a dashed edge.
For the sake of simplicity, in our objective function we take only the transfer time into account,
i.e., (α1/α2, β, γ1/γ2) = (0/1, 0, 0/0). We assume that the line frequency on the dashed edges in
the PTN is already very high (which we ensure by adding auxiliary OD-pairs which have to use
these edges). The dotted edges, which originate in the nodes ui, will have a frequency of 1 if the
passenger qi travels on them, or 0 otherwise. Consequently, the transfer time of a passenger only
depends on whether he shares the thick edges with other passengers or not. Furthermore, transfer
time towards the dashed edges is small anyway, due to their high frequency. Hence, the first two
transfers on a passengers’ route make up for most part of the objective function.
Now we show that in this example there is no equilibrium in which passenger q1 travels on route
R1

1 by contradiction. Assume that R is an equilibrium of the described line planning routing game
where q1 travels on R1

1. We can conclude that q2 travels on route R1
2, because no matter which

route q3 chooses, the transfer time on R1
2 will be lower than on R2

2 (see the appendix for details).
Given the routes R1

1 and R1
2 for q1 and q2, it is easy to see that for q3 the transfer times are lowest

on R1
3.

However, if q2 travels on R1
2 and q3 travels on R1

3, for q1 transfer times would be lower on R1
2,

which contradicts the assumption that R is an equilibrium.
Analogously, we can show that there is no equilibrium in which q1 travels on R2

1. Hence, there is
no equilibrium in this example.

4.2.2 Line planning routing games with potential functions

In contrast to the example from Section 4.2.1 we show in Lemma 4.5 that existence of equilibria
and convergence can be guaranteed if for every a ∈ A there is an arc weight function w̄a : N→ R
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Figure 4: CGN of two equilibria with different objective values

such that

hq(Rq,R−q) =
∑
a∈Pq

w̄a(xa) (4)

for every route Rq from uq to vq and its corresponding path Pq in the CGN.
In case of edge-based costs with γ2 = 0 (in this case, again, we can write cost(e,l) instead of
cost(e,l)(f(R))) and α2 = 0, such arc weight functions are given by

w̄a(x) :=

{
α1c(e) +

cost(e,l)
x if a = (e, l) ∈ Aline

β if a ∈ Atrans
. (5)

Lemma 4.5. Let I := (G,L,Q, {hq : q ∈ Q}) be an instance of the LPRG such that arc weight
functions as specified in (4) exist. Then

1. Φ(R) :=
∑
a∈A

∑xa(R)
i=1 w̄a(i) is a potential function for I,

2. there exists an equilibrium to I,

3. Algorithm 1 converges to an equilibrium in a finite number of steps,

4. each of the steps can be executed in polynomial time.

The proof follows standard arguments for convergence of atomic routing games, and can be found
in the appendix.
We conclude that in particular for all line planning routing games with γ2 = 0 and α2 = 0 and
edge-based costs, Algorithm 1 finds an equilibrium after a finite number of steps.

4.3 Quality of equilibria

4.3.1 Two examples for ’bad’ equilibria

We start with an example which illustrates that the LPRG can have different equilibria and that
Algorithm 1 does not necessarily find a good one, even when convergence to some equilibrium is
guaranteed because the conditions of Lemma 4.5 are fulfilled.
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Figure 5: CGN where the system optimum is not necessarily an equilibrium.

We consider a PTN consisting of four nodes v1, v2, v3, v4, edges {v1, v2} and {v1, v3} with length
99 and edges {v1, v4}, {v2, v3}, and {v3, v4} with length 0. Our line pool consists of five lines, the
corresponding CGN is shown in Figure 4. Note that for the sake of a more compact representation,
we contracted boarding and alighting node for each station vi to a node (vi, 0).
We consider two passengers: q1 wants to travel from v1 to v2 and q2 wants to travel from v1 to
v4. The parameters of the individual objective functions are α1 = γ1 = 1 and α2 = β = γ2 = 0,
that is, we only take in-vehicle time and frequency-independent costs into account.
Line l3 has costs 100, while all other line costs are 0.
For the reader’s convenience, we specify the arc-weight functions as a sum of in-vehicle travel time
and costs for the line arcs next to the corresponding arcs in Figure 4, all other arc weight functions
are 0 in this example. There are two equilibria:

1. R′: q1 uses line 1 and q2 uses line 3. For both passengers, the individual objective values
are hqi = 99.

2. R∗: q1 uses line 2 and 4, q2 uses line 2 and 5. For both passengers, the individual objective
values are hqi = 50.

Clearly, the second equilibrium is preferable to the first one, since for both passengers the individual
objective functions are almost twice as high in the first one. However, e.g., when starting with an
empty solution, Algorithm 1 will find the first equilibrium.
It can be easily seen that in this example, the second and ’better’ equilibrium is also a system-
optimum, that is, it optimizes H = hq1 + hq2 , the objective function of LPQC. Hence, in this
example the price of anarchy is 198

100 , but the price of stability is 1.

However, system-optima to LPRG (that is: optimal solutions to LPQC) are not necessarily equi-
libria. To illustrate this, we use a slightly modified version of the previous example:
We consider a PTN consisting of four nodes v1, v2, v3, v4, edges {v1, v2} with length 32, {v1, v3}
with length 49, and edges {v1, v4}, {v2, v3}, and {v3, v4} with length 0.
Again, our line pool consists of five lines, of which line l2 has frequency-independent costs 100
and the other lines have costs 0. The corresponding CGN is shown in Figure 5, where, again, we
contract boarding and alighting node for each station vi to a node (vi, 0). This time, we consider
three passengers: q1 wants to travel from v1 to v2, q2 wants to travel from v1 to v4, q3 wants to
travel from v1 to v3. As in the previous example, for the (individual) objective function(s) we use
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the parameters α1 = γ = 1, α2 = β = γ2 = 0. Again, the conditions of Lemma 4.5 are met and
we specify the arc-weight functions for the line arcs next to the corresponding arcs in Figure 4, all
other arc weight functions are 0.
In this case, there is only one equilibrium R∗: q1 uses line 1, q2 uses line 3, q3 uses line 2; with
H(R∗) = 32 + 49 + 100 = 181. The system-optimal solution (and optimal solution to LPQC) is
defined by the route set R̂: q1 uses line 2 and 4, q2 uses line 2 and 5, q3 uses line 2, with overall
objective value H(R̂) = 100

3 + 100
3 + 100

3 = 100. So for this example, both price of anarchy and
price of stability equal 181

100 .
By extending the example given in Figure 5 in a straight-forward way, we see that for instances
with an unbounded number of passengers, the price of stability is not bounded for the considered
games: for n passengers we can construct an instance with price of stability (and price of anarchy)
close to Hn =

∑n
i=1

1
i .

4.3.2 Bounding the price of anarchy

However, we can bound the price of anarchy by the number of passengers if the arc weight functions
(4) fulfill the property described in Lemma 4.6.

Lemma 4.6. If there exist non-increasing arc weight functions w̄a with w̄a(1) ≤ x · w̄a(x) for all
x ∈ N, the price of anarchy in the LPRG is at most the number of passengers.

Proof. Let the route set X := {X1, . . . , Xn} represent a social optimum (in the way described
in Observation 3.2) and let the route set R := {R1, . . . , Rn} represent an equilibrium. Assume
that H(R) > |Q|H(X ). Then there is at least one passenger q with hq(R) > |Q|hq(X ). For this
passenger q it follows that

hq(Xq,R−q) =
∑
a∈Xq

w̄a(x′a) ≤
∑
a∈Xq

w̄a(1) ≤
∑
a∈Xq

x̂aw̄a(x̂a) ≤
∑
a∈Xq

|Q|w̄a(x̂a) < hq(Rq,R−q),

where x̂a := xa(Xq,R−q) denotes the number of passengers on arc a when passengers follow
routing (Xq,R−q) and x′a := xa(R) the number of passengers on arc a when passengers follow
routing R. This is a contradiction to the assumption that R is a equilibrium.

Corollary 4.7. If edge-based cost functions with γ2 = 0 are considered and α2 = 0, the price of
anarchy is bounded by the number of passengers.

Proof. The functions given in (5) are non-increasing. Furthermore, for x ≥ 1, we have for a ∈ Aline

xw̄a(x) = xα1c(a) + γ1cost(a) ≥ α1c(a) + γ1cost(a) = w̄a(1) and for a ∈ Atrans

x · w̄a(x) = xβ ≥ β = w̄a(1).

To see that there are indeed instances I with a price of anarchy that equals |Q| consider the
example given in Figure 4. If we set the travel time on (v1, v2) and (v1, v4) to 100, R′ and R∗ are
still both equilibria and the price of anarchy is 2. We can easily extend this construction to an
arbitrary number of passengers.

4.3.3 Algorithm 1 as a heuristic for LPQC

Corollary 4.7 implies that if we use Algorithm 1 for instances of LPQC with α2 = γ2 = 0, we have
an approximation ratio |Q| where |Q| is the number of passengers (as long as we ensure that each
edge of each established line is used by at least one passenger).

However, convergence to an equilibrium may be slow. In the next lemma we show that we can
achieve the same quality bound after computing the best response for each passenger once.
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Lemma 4.8. If there exist non-increasing arc weight functions w̄a with w̄a(1) ≤ x · w̄a(x) for all
x ∈ N, given an empty state of the game, calculating the best response once for every passenger in

Algorithm 1 leads to a route set R with H(R)
H(X ) ≤ |Q|, where X is a system-optimal solution.

Proof. Let Q = {1, . . . , n} be the set of passengers and Sq for q = 1, . . . , n the route combination
after choosing the best response Rq for passenger q, i.e., Sq = (R1, R2, . . . , Rq, ∅, ∅, . . . , ∅). Fur-
thermore, let X be the system-optimal solution, where the passengers choose the route Xq with
corresponding paths Yq in the CGN.
Since arc weight functions are non-increasing, it holds that hq(S

n) ≤ hq(S
q). Since Rq is a best

response to (R1, R2, . . . , Rq−1, ∅, ∅, . . . , ∅) we have

hq(Sq) =
∑
a∈Pq

w̄a(xa(Sq)) =
∑
a∈Pq

w̄a(xa(Sq−1) + 1) ≤
∑
a∈Yq

w̄a(xa(Sq−1) + 1) (6)

where Pq denotes the path in the CGN corresponding to Rq. With this, the following holds:

H(Sn) =
∑
q∈Q

hq(Sn) ≤
∑
q∈Q

hq(Sq)

≤
∑
q∈Q

∑
a∈Yq

w̄a(xa(Sq−1) + 1) due to (6)

≤
∑
q∈Q

∑
a∈Yq

w̄a(1) since w̄a non-increasing

≤
∑
q∈Q

∑
a∈Yq

xa(X ) · w̄a(xa(X )) since w̄a(1) ≤ xw̄a(x)

≤ |Q|
∑
q∈Q

∑
a∈Yq

w̄a(xa(X ))

= |Q|
∑
q∈Q

hq(Xn) = |Q| ·H(Xn).

That means that for instances of the LPQC/LPRG for which there exist non-increasing arc weight
functions w̄a with w̄a(1) ≤ x · w̄a(x) for all x ∈ N, that is, in particular if α2 = γ2 = 0, a solution
(R, f) to the line planning problem with approximation ratio |Q| can be found in polynomial time.
As described in the previous section, we can show that this bound is tight, i.e., there are instances
where Algorithm 1 can get stuck in an equilibrium whose objective value is |Q|-times the optimal
solution value.

4.4 Heuristic approaches to the routing problem

In the preceding Sections 4.1-4.3 we have seen that in order to achieve polynomial running time of
Algorithm 1, to be able to prove convergence to an equilibrium, and give bounds on the quality of
an equilibrium, strong restrictions on the parameters of the objective function have to be imposed.
In this section we investigate heuristic approaches to the routing problem with general individ-
ual objective functions hq(Rq,R−q) = travelq(Rq,R−q) + costq(Rq,R−q) using edge-based costs

costq(Rq,R−q) = (γ1k
1
l + γ2k

2
l fl) ·

∑
(e,l)∈Rq

cost(e,l)(f(R))

x(e,l)(Rq,R−q) .

In this general case, the routing problem is NP-hard (Theorem 4.3) and Algorithm 1 does not
necessarily converge (see Section 4.2.1). To overcome these difficulties in a heuristic way, we
simplify the transfer time function τq and the edge-based cost function costq in this section.
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4.4.1 Auxiliary frequencies

In our first approach, we replace the frequencies f(R) by auxiliary frequencies f̃(R−q) when
determining a route for passenger q. This small trick allows us to define arc weights in accordance
to Lemma 4.4 and hence, to solve the routing problem using Dijkstra’s algorithm in the CGN.
Let Q be a set of passengers and let R = {Rq : q ∈ Q} be a set of strategies represented by paths
in the CGN. We call an edge (e, l) ∈ A critical for R if one additional passenger on the edge would
increase the frequency, i.e., if x(e,l)(R) ≡ 0 mod B. A line l ∈ L is critical for R if it contains
an edge which is critical for R. In order to find a route, given the routes for all other passengers
R−q, we define the auxiliary frequencies

f̃l(R−q) :=

{
fl(R−q) + 1 if l is critical for R−q
fl(R−q) otherwise.

We observe that for every line l and every passenger q ∈ Q, f̃l(R−q) ≥ fl(R) ≥ fl(R−q). For all
non-critical lines we even have equality. Plugging in the auxiliary frequencies into τq we obtain an
auxiliary transfer time function

τ̃ lbq (R) :=

n−1∑
i=1

T

f̃li(R−q) + f̃li+1
(R−q)

(where l1, . . . , ln are the lines used in Rq) which underestimates the transfer times τ(R) in a route
set R. To find an overestimating heuristic measure for transfer times, we can consider

τ̃ubq (R) := τq(R−q) =

n−1∑
i=1

T

fli(R−q) + fli+1
(R−q)

.

Using the same approach, we can define overestimating auxiliary edge-based cost functions as

˜cost
ub
q (R) := ˜costq(R−q) :=

∑
(e,l)∈Rq

cost(e,l)(f̃(R−q))
x(e,l)(Rq,R−q)

≥ costq(R)

and underestimating auxiliary edge-based cost functions

˜cost
lb
q (R) := costq(R−q) =

∑
(e,l)∈Rq

cost(e,l)(f(R−q))
x(e,l)(Rq,R−q)

≤ costq(Rq).

We define over- and underestimated versions of the individual objective functions

h̃ubq (Rq,R−q) := α1 · c(R) + α2 · τ̃ub(R−q) + β · transferq(Rq) + ˜cost
ub
q (Rq,R−q),

h̃lbq (Rq,R−q) := α1 · c(R) + α2 · τ̃ lb(R−q) + β · transferq(Rq) + ˜cost
lb
q (Rq,R−q)

and obtain
h̃lbq (Rq,R−q) ≤ hq(Rq,R−q) ≤ h̃ubq (Rq,R−q).

Given a passenger q and a set of strategies R−q for the remaining passengers, the auxiliary
frequencies allow us to define weights for the arcs in the CGN which depend only on the strategy
choices of the remaining passengers R−q. This observation is summarized in the following lemma.

Lemma 4.9. For arc weights

w̃ub
a (R−q) :=

{
α1c(e) +

cost(e,l)(f̃(R−q))

xa(R−q)+1 ∀a = (e, l) ∈ Aline
1

fl(R−q)+fl′ (R−q) + β ∀a = ((v, l), (v, l′))

or w̃lb
a (R−q) :=

{
α1c(e) + γ

cost(e,l)(f(R−q))

xa(R−q)+1 ∀a = (e, l) ∈ Aline
1

f̃l(R−q)+f̃l′ (R−q)
+ β ∀a = ((v, l), (v, l′))
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we have

h̃ubq (Rq,R−q) =
∑
a∈Pq

w̃ub
a (R−q) and h̃lbq (Rq,R−q) =

∑
a∈Pq

w̃lb
a (R−q)

(where Pq denotes the path in the CGN corresponding to Rq) and the routing problem can be solved
in polynomial time.

Here, the last statement follows from Lemma 4.4.

Note that the use of the auxiliary objective functions h̃q does not guarantee the existence of an

equilibrium: In fact, in the counter example shown in Section 4.2.1 we have fl(R) = f̃l(R−q) for
all choices of q and Rq. Hence, this example also proves the possibility that no equilibrium for

objective functions h̃lbq exists.

4.4.2 Auxiliary arc weights

Since the heuristic from section 4.4.1 does not always lead to an equilibrium, we consider a further
heuristic simplification which guarantees the existence of an equilibrium and the convergence of
the best-response-algorithm.
Consider a set of passenger routes R and a transfer edge a = ((v, l), (v, l′)). Then the frequency of

l and l′, respectively, is at least
⌈
xa(R)
B

⌉
, since at least all passengers transferring from l to l′ have

to use l and l′, respectively. Additionally, all frequencies are at most
⌈
|Q|
B

⌉
since no more than all

passengers can use any given line. This leads to the following approximate arc weight functions:

w̄lb
a (x) :=

α1c(e) +
γ1k

1
l +γ2k

2
l d x

B e
x · c(e)∑

e∈l c(e)
if a = (e, l) ∈ Aline

α2T

2·d |Q|B e
+ β if a ∈ Atrans

(7)

and

w̄ub
a (x) :=

α1c(e) +
γ1k

1
l +γ2k

2
l d |Q|B e

x · c(e)∑
e∈l c(e)

if a = (e, l) ∈ Aline

α2T

2·d x
B e

+ β if a ∈ Atrans,
(8)

where w̄a is defined as in (5).
With h̄lbq (Rq,R−q) :=

∑
a∈Pq

w̄lb
a (xa) and h̄ubq (Pq,R−q) :=

∑
a∈Pq

w̄ub
a (xa) (where Pq is the path

in the CGN corresponding to Rq), we obtain:

Lemma 4.10. For every passenger p ∈ Q with route Rq and R = (Rq,R−q) we have

h̄lbq (Rq,R−q) =
∑
a∈Pq

w̄lb
a (xa) ≤ hq(Rq) ≤

∑
a∈Pq

w̄ub
a (xa) = h̄ubq (Rq,R−q).

From Lemma 4.4, Lemma 4.5, Lemma 4.6, and Lemma 4.8 we conclude:

Corollary 4.11. For individual objective functions h̄lbq and h̄ubq , the routing step of Algorithm 1

can be executed in polynomial time using arc weights w̄lb
a (xa) or w̄ub

a (x), respectively, in the CGN.
With respect to these objective functions equilibria exist and Algorithm 1 converges towards an
equilibrium. The price of anarchy is at most |Q|, and when starting with an empty state, this
quality is already reached after computing the best response once for every passenger.

5 Experiments

In this section we describe a first experimental evaluation of our routing game approach. We
tested the best response strategy with the five different variants for solving the routing problem
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(a) Underlying public transportation network for
instance GRID

(b) Underlying public transportation network for
instances GOE

Figure 6: Infrastructure networks

described in this paper: solving the routing problem exactly (abbreviated as BR), using the
auxiliary frequency (AF ) heuristic with overestimated (ub)/ underestimated (lb) transfer times,
and using the auxiliary arc weight (AW ) heuristic with overestimated (ub)/ underestimated (lb)
transfer times. We furthermore compare it to the exact solution of the non-linear integer program
(LPQC) which we solved as a semidefinite quadratic problem with Gurobi 7 [Gur16] (abbreviated
as MP). Note that this is only possible for α2 = 0 (because otherwise it is a non-semidefinite
quadratic program).

We tested the different approaches on two different instances. The first instance GRID is based
on a 5×5-grid instance which was introduced in [FHSS17a] with a modified line pool. The PTN is
depicted in Figure 6a. It consists of 25 stations and 40 edges, the line pool has 13 lines and there
are 1927 passengers in 567 OD pairs. The second instance, GOE, is taken from the LinTim toolbox
[Lin14]. The PTN, shown in Figure 6b, is derived from the bus-network in Göttingen, Germany.
The instance consists of 257 stations, 548 edges, 6114 OD pairs and 6321 passengers. A line pool
consisting of 44 lines was generated for these experiments. All experiments were done on a CPU
of 16 cores with 2.4GHz and 132GB of RAM. The standard parameter set P3 = (1/1, 10, 3/3) was
chosen to represent a realistic assessment of the generalized costs, provided by practical public
transport planners. The parameter sets P1 and P2 are simplifications for the presented algorithms
which are chosen to approximate P3.

Table 1 shows the objective values with respect to the (LPQC), running times, and number of
iterations for running a best-response strategy, compared to the mathematical program MP, on
the instance GRID with parameter set P1 = (1/0, 20, 3/3). Note that BR is computed according
to P2 = (1/0, 20, 6/0) in order to be able to solve the routing problem exactly but it is evaluated
according to P1. Objective values are reported relative to the optimal solution/best solution found.
We see that BR and our heuristics converge to equilibria after 6 or 7 iterations, but that these
equilibria are not identical to the system optimum, i.e., the solution found by the (LPQC). We
also observe that the running times of the best response strategies are only 3.6% to 7.7% of the
running time of MP where BR and the simpler heuristics AW ub/lb are faster than AF ub/lb. In
turn, the more complicated heuristics AF ub/lb yield on average better solutions than AW lb/ub.
Note that the heuristics cannot utilize their full potential in this experiment, since transfer times
are neglected here.

In Section 3.3 we describe how in an extreme case, (LPQC) can find a solution which has a better
centralized objective value, but is unrealistic in the sense that some passengers have to choose
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relative objective P1 runtime # iterations
MP 1 5:36 -
BR 1.391 0:14 7

AF ub 1.357 0:23 6
AF lb 1.481 0:26 7
AW ub 2.329 0:14 7
AW lb 1.391 0:12 6

Table 1: Comparison of solutions for (LPQC) under parameter settings P1 = (1/0, 20, 3/3) for
MP and the heuristics, P2 = (1/0, 20, 6/0) for BR on instance GRID. Runtime in min:sec.

much longer routes than others. Table 2 shows that, to a lesser degree, this is also the case for
the experiment presented here.

MP BR&heuristics
average standard deviation drive time 0.002 0

average standard deviation transfer time 0.067 0
average standard deviation number of transfers 0 0

Table 2: Comparison of solutions for (LPQC) under parameter settings P1 = (1/0, 20, 3/3) for
MP and the heuristics, P2 = (1/0, 20, 6/0) for BR on instance GRID

Here, we compute a more balanced solution using BR instead of MP. Using MP, passengers for
the same OD pair are assigned paths of different quality. While the number of transfers does not
deviate within an OD pair, the average standard deviation over the number of passengers of the
drive time of passengers belonging to the same OD pair is 0.002 with a maximum of 0.227 and
the average standard deviation of the transfer time is 0.067 with a maximum of 7.071. Such a
system optimal solution may not be possible to implement in reality, similarly as described in the
example from Section 3.3. This problem does not occur when applying BR, where all passengers
can choose a path of identical quality.

In Table 3 we see a comparison of the different variants of the best-response strategy with respect
to the objective value of the (LPQC), running times, and number of iterations for the parameter
set P3 = (1/1, 10, 3/3) on instance GRID. For MP the solution is computed with parameter set
P1 = (1/0, 20, 3/3) and for BR with parameter set P2 = (1/0, 20, 6/0) (compare Table 1), since
we can only apply these methods for α2 = 0 and γ2 = 0 in case of BR. Preliminary experiments
have indicated that among the parameter sets with α2 = 0, P1 approximates P3 best and among
those with α2 = γ2 = 0, P2 approximates P3 best.

rel. objective P1 rel. objective P3 runtime # iterations
MP∗ 1 1 5:36 -
BR� 1.391 1.168 0:14 7

AF ub 1.362 1.147 0:26 7
AF lb 1.405 1.152 0:24 6
AW ub 1.977 1.484 0:10 5
AW lb 1.645 1.3 0:12 6

Table 3: Comparison of solutions for (LPQC) under parameter settings P1 = (1/0, 20, 3/3) for MP,
P2 = (1/0, 20, 6/0) for BR and P3 = (1/1, 10, 3/3) for the heuristics on instance GRID. Runtime
in min:sec.

We see that in all versions of the best-response strategy, convergence to the equilibrium is reached
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after 5 to 7 iterations. When comparing the solutions based on the objective value of the (LPQC)
we see that the MP, executed with the parameter set P1, still outperforms the best-response
heuristics, although this parameter set neglects the transfer times. However, among the best
response strategies, we see that the inclusion of transfer times seems to yield a benefit, since
multiple heuristics find better solution than BR w.r.t. P3.
To further investigate the different heuristics when transfer times are taken into account, Table 4
shows a comparison for different parameter sets on the instance GRID. We see that the more
complex heuristics AF ub/lb always find the best solutions and often both outperform AW ub/lb.
The simpler algorithms BR, AW ub/lb are faster than the more complex ones AF ub/lb which in
turn are much faster than the optimization model MP.

P4 P5 P6 P7 P8

obj time it obj time it obj time it obj time it obj time it
AF ub 1.005 32 9 1.008 43 12 1.026 33 9 1 23 6 1 29 8
AF lb 1 28 8 1 37 10 1 29 8 1.055 19 5 1.065 26 7

AW ub 1.532 20 5 1.448 12 6 1.576 12 6 1.002 11 5 1.372 15 8
AW lb 1.169 14 7 1.283 12 6 1.173 17 9 1.022 12 6 1.05 12 5

Table 4: Heuristic solutions on GRID. P4 = (2/1, 10, 3/3), P5 = (1/2, 10, 3/3), P6 = (1/1, 20, 3/3),
P7 = (1/1, 10, 6/3), P8 = (1/1, 10, 3/6) relative objective values w.r.t best solution. Runtime in
seconds.

Additionally to instance GRID, we tested our algorithms on the larger instance GOE as shown in
Table 5. Here, the solution found by BR is only 8.3% worse than the one found by MP and the
solution quality of mosts heuristics is similarly good. The runtime of BR and the heuristics range
between 12.6% and 28.6% of the runtime of MP, again showing that BR and the simpler heuristics
AW ub/lb are significantly faster than AF ub/lb while the more complex heuristics perform better.

relative objective P1 runtime # iterations
MP 1 1:03:32 -
BR 1.083 0:08:34 5

AF ub 1.132 0:18:10 5
AF lb 1.143 0:14:20 4
AW ub 1.577 0:08:01 5
AW lb 1.156 0:11:42 7

Table 5: Comparison of solutions for (LPQC) under parameter settings P1 = (1/0, 20, 3/3) for
MP and the heuristics, P2 = (1/0, 20, 6/0) for BR on instance GOE, runtime in h:min:sec

6 Conclusions and further research

We presented a new idea to approach line planning by solving a routing game where the passengers
are the players who aim at minimizing a weighted sum of their travel time, transfer penalties, and
a cost share. Under strong assumptions on the objective function (transfer time is not taken into
account and line costs can be assigned to edges and are independent of frequencies) equilibria of this
game can be found using the described best-response algorithm. In case that the objective function
does not fulfill these properties, applicability and convergence of the best-response approach can
be achieved by a slight modification of the individual objective functions.

A logical next step will be to evaluate whether the line planning routing game, besides being an
interesting object of study in itself, does indeed lead to a good heuristic for line planning.
First, more experiments of the type presented in Section 5 on instances of realistic size (in par-
ticular also with respect to passenger numbers) may lead to more insights on the performance of
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the different approaches presented in Section 4.4. A positive effect of increasing passenger num-
bers is that the approximate frequencies f(R−q) and f̃(R−q) become better estimates of actual
frequencies f(R). However, in the current version of the best-response strategy, in each iteration
a shortest path for each passenger has to be found, hence running time increases with increasing
number of passengers. For large passenger numbers it may thus make sense to use flow equili-
bration techniques in the inner loop instead of shortest path computations for each individual
passenger.
Second, line planning solutions obtained with the routing game approach should be compared to
state-of-the-art exact and heuristic solution methods for line planning with respect to objective
value, running time, and practicability of the found solution (in the sense of Section 3.3).
While the terms for travel time and transfers are quite intuitive, many different choices are possible
for the cost-sharing among passengers. It remains an interesting question how to divide operational
costs among passengers such that, on the one hand, the algorithmic approach is still viable,
and on the other hand, cost shares are comparable to real-world travel costs. Furthermore, it
would be interesting to investigate whether the routing game approach can also be applied to
line planning with additional constraints and other planning problems which can be considered
integrated network design and routing problem like, e.g., timetabling or delay management with
integrated routing.
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tegrating Passengers’ Assignment in Cost-Optimal Line Planning. In 17th Work-
shop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS 2017), pages 5:1–5:16. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2017.

[FM06a] Wei Fan and Randy B. Machemehl. Optimal transit route network design problem
with variable transit demand: genetic algorithm approach. Journal of transportation
engineering, 132(1):40–51, 2006.

22



[FM06b] Wei Fan and Randy B Machemehl. Using a simulated annealing algorithm to solve
the transit route network design problem. Journal of transportation engineering,
132(2):122–132, 2006.

[GS17] M. Goerigk and M. Schmidt. Line planning with user-optimal route choice. European
Journal of Operational Research, 259:424436, 2017. Available online before print.

[Gur16] Gurobi Optimizer, 2016. Gurobi Optimizer Version 7.0, Houston, Texas: Gurobi
Optimization, Inc.

[GvHK04] J.-W. Goossens, S. van Hoesel, and L. Kroon. A branch-and-cut approach for solving
railway line planning problems. Transportation Science, 38(3):379–393, 2004.

[GvHK06] J.-W. Goossens, S. van Hoesel, and L. Kroon. On solving multi-type railway line
planning problems. European Journal of Operational Research, 168(2):403–424,
2006. Feature Cluster on Mathematical Finance and Risk Management.

[GYW06] J. F. Guan, Hai Yang, and S.C. Wirasinghe. Simultaneous optimization of transit
line configuration and passenger line assignment. Transportation Research Part B,
40(10):885–902, 2006.
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Appendix

NP-hardness of the routing problem with transfer times

Theorem 4.3. The routing problem as in Definition 4.1 is NP-hard, even if transfer penalties
and operational costs are not taken into account, i.e., β = 0 and γ1 = γ2 = 0.

Proof. Similarly to the proof of Theorem 4.2 we prove this theorem by reduction from SCP. Let
(M, C, K) denote an instance of SCP and denote n := |M|. Our PTN consists of two parts: The
first part is used to ensure that at most K sets are chosen from C. The second part is similar to
the construction in the proof of Theorem 4.2 and is used to determine whether the chosen sets
cover M.
The first part of the PTN consists of vertices vi for i = 1, . . . , 2K + 1 and edges ei = (vi, vi+1),
i = 1, . . . , 2K with c(ei) = 0. For every edge e2i−1 with an odd index we introduce a line l̄2i−1
which consists of this edge only.
The second part of the PTN consists of vertices wi for i = 1, . . . , 2n+ 1 and edges ai = (wi, wi+1)
for i = 1, . . . , 2n with c(ai) = 0. Furthermore, we add edges āij which connect all pairs of vertices
wi and wj with i < j and whose length is c(āij) := K ′ + 1, where K ′ := 2K+2n

3 . For each

i = 1, . . . , n we introduce a line l̃2i−1 which covers the edge a2i−1. We connect both parts of the
PTN by a transition edge t = (v2K+1, w1).
For every C ∈ C we create a line lC ∈ L containing all edges {e2i : mi ∈ C} from the first part
of the PTN, the transition edge t, and the edges a2i with mi ∈ C from the second part of the
PTN. We add additional edges with lengths K ′ + 1 wherever needed to ensure that the lines are
connected paths in the PTN.
In contrast to the proof of Theorem 4.2, in this proof we have |C|+ 1 passengers. Each passenger
qC with C ∈ C has origin v1 and destination v2K+1 and his route RqC is identical to line lC from
v1 to v2K+1. The passenger q for which we have to solve the routing problem has origin v1 and
destination w2n+1. We set the capacity in each vehicle to B := 1. For the objective function we
use the parameters α1 = α2 = 1, β = γ1 = γ2 = 0 and T = 1. Note that line costs can be set to
arbitrary values, since γ1 = γ2 = 0.

We now show that there is a solution to the considered instance of SCP if and only if there is a
solution Rq to the routing problem (RPq) with individual objective value hq(Rq,R−q) ≤ K ′.
First note that any such route Rq in the first part of the PTN will use the lines l̄i on edges with an
odd index and some lines lC on the ones with an even index, because otherwise hq(Rq,R−q) > K ′.
Note that whenever the passenger uses a line lC , the frequency of this line is set to flC := 2.
Consequently, for all of these paths the contribution from the first part of the PTN to the transfer
time component τq in the individual objective function is 2K

3 , since the length of every used edge
is 0 and on each such path there is a transfer at each station between a line l̄2i−1 with frequency
1 (used only by passenger q) and a line lC with frequency 2. In the second part of the PTN, only
edges ai can be used in such a route Rq, because otherwise hq(Rq,R−q) > K ′. Hence cq(Rq) = 0.
Now consider the contribution to τq of route Rq in the second part of the PTN. At each node

in the second part of the PTN a transfer has to take place, between a line l̃2i−1 and a line lC .
Thereby, transfer time is 1

2 if passenger q did not use line lC in the first part of the PTN, 1
3 if he

used it. Since there are 2n such transfers, any path with individual objective value less or equal to
K ′ uses on edge a2i a line that was already used in the first part of the PTN (because otherwise
hq(Rq,R−q) > K ′).
Due to the construction of the lines lC , this means that if there is a route Rq with hq(Rq,R−q) ≤
K ′, for each element mi ∈M at least one line lC with C 3 mi is used in the first part of the PTN.
Since not more than K such lines can be used in Rq, there must be a solution to the considered
instance of SCP.
On the other hand, if there is a solution C′ = {C1, . . . , Ck} with k ≤ K to the considered instance
of SCP, using line lCi on edge e2i for i = 1, . . . , k (and arbitrary lines on e2i for i = k + 1, . . . ,K)
allows the passenger to choose a path with transfer time n

3 in the second part of the PTN and
thus yields an individual objective value of at most K ′.
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Non-existence of equilibria

We now describe the example for non-existence of equilibria from Section 4.2.1 more formally and
prove that no equilibrium exists.
We consider the PTN from Figure 3 with 12 nodes and 18 edges. Every edge is served by one
directed line which contains only this edge, so that we have a one-to-one correspondence between
edges and lines. The capacity of a vehicle is B = 1. There are three main passengers q1 from u1 to
v1, q2 from u2 to v2, and q3 from u3 to v3 and six sets of auxiliary passengers: Qji for i = 1, . . . , 3

and j = 1, 2 contains M passengers from vji to vi (where M is a sufficiently large number, e.g.,
M > 12). We denote by Q′ the union of the auxiliary passengers.
In our objective function we take only the transfer time into account, i.e., α1 = β = γ1 = γ2 = 0
and hq(R) := τq(Rq,R−q). We set T = 1.
Note that for the auxiliary passengers there is only one route from origin to destination, hence,
each of them only has one strategy. Let R′ denote the set of these strategies. Each of the main
passengers qi has two different strategies: to take the route R1

i starting with edge (ui, v
1
i ) or to

take the route R2
i starting with edge (ui, v

2
i ).

We now show that there does not exist an equilibrium in the described situation. Assume that R
is an equilibrium of the described line planning routing game. Denote by Rjii the strategy chosen
by qi. Without loss of generality, assume that j1 = 1. Then

g2(R1
1, R

1
2, R

j3
3 ,R′) =

{ 1
1+2 + 1

2+2 + 1
2+M+1 = 7

12 + 1
M+3 if j3 = 1

1
1+2 + 1

2+1 + 1
1+M+1 = 8

12 + 1
M+2 if j3 = 2

and

g2(R1
1, R

2
2, R

j3
3 ,R′) =

{ 1
1+1 + 1

1+1 + 1
1+M+1 = 12

12 + 1
M+2 if j3 = 1

1
1+1 + 1

1+2 + 1
2+M+1 = 10

12 + 1
M+2 if j3 = 2

Since R is an equilibrium, we conclude that j2 = 1, i.e., Rj22 = R1
2.

Now

g3(R1
1, R

1
2, R

1
3,R′) =

1

1 + 2
+

1

2 + 1
+

1

1 +M + 1
=

4

6
+

1

M + 2

and

g3(R1
1, R

1
2, R

2
3,R′) =

1

1 + 1
+

1

1 + 2
+

1

2 +M + 1
=

5

6
+

1

M + 3
.

Since R is an equilibrium, we conclude that j3 = 1, i.e., Rj33 = R1
3.

Now we have a look at the strategies for q1:

g1(R1
1, R

1
2, R

1
3,R′) =

1

1 + 1
+

1

1 + 2
+

1

2 +M + 1
=

5

6
+

1

M + 3

and

g1(R2
1, R

1
2, R

1
3,R′) =

1

1 + 2
+

1

2 + 1
+

1

1 +M + 1
=

4

6
+

1

M + 2
.

Thus, g1(R1
1, R

1
2, R

1
3,R′) > g1(R2

1, R
1
2, R

1
3,R′). This is a contradiction to R1

1 being part of an
equilibrium.
Due to the symmetry of the construction of the instance, the assumption that R2

1 is part of an
equilibrium leads to a contradiction in the same way.
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Proof of existence of potential functions for games with arc weight func-
tions

Lemma 4.5. Let I := (G,L,Q, {hq : q ∈ Q}) be an instance of the LPRG such that arc weight
functions as specified in (4) exist. Then

1. Φ(R) :=
∑
a∈A

∑xa(R)
i=1 w̄a(i) is a potential function for I,

2. there exists an equilibrium to I,

3. Algorithm 1 converges to an equilibrium in a finite number of steps,

4. each of the steps can be executed in polynomial time.

Proof. This proof follows standard arguments for convergence of atomic routing games, compare,
e.g., [Rou07].

1. Let R and R′ be two route sets. We denote with Pq and P ′q the corresponding paths for
passenger q in the CGN and with xa := xa(R) and x′a := xa(R′) the corresponding flows on
edge a of the CGN. We first observe that

Φ(Rq,R−q)− Φ(R′q,R−q) =
∑

a∈Pq\P ′q

w̄a(xa)−
∑

a∈P ′q\Pq

w̄a(x′a)

= hq(Rq,R−q)− hq(R′q,R−q),

hence Φ indeed is a potential function by (1).

2. Hence, every optimum of Φ is an equilibrium of the game. Since the number of solutions is
finite, there exists at least one optimum of Φ/equilibrium of I.

3. Since in each step of Algorithm 1 there is a non-zero improvement in the individual objective
function and thus also in the potential function, and the number of solutions is bounded,
Algorithm 1 converges to an optimum of Φ which is an equilibrium.

4. We set wqa(R−q) := w̄a(xa(R−q) + 1). Then

hq(Rq,R−q) =
∑
a∈Pq

w̄a(xa(R))

=
∑
a∈Pq

w̄a(xa(R−q) + 1)

=
∑
a∈Pq

wqa(R−q).

The proposition follows from Lemma 4.4.
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