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Abstract

Periodic timetabling is an important yet computationally challenging problem in public
transportation planning. The usual objective when designing a timetable is to minimize
passengers’ travel time. However, in most approaches it is ignored that the routes of the
passengers depend on the timetable, so handling their routing separately leads to timetables
which are suboptimal for the passengers. This has recently been recognized, but integrating
the passengers’ routing in the optimization is computationally even harder than solving the
classic periodic timetabling problem. In our paper we consider an integer programming
model for integrating timetabling and passenger routing for which we develop an exact
preprocessing method for reducing the problem size as well as two optimization problems
which provide upper and lower bounds on the objective with considerably less computation
time compared to solving the exact problem. The bounds are experimentally analyzed on a
small benchmark example.

Keywords Timetabling - PESP - Passenger routing - Integrated public transportation
planning - Preprocessing
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1 Introduction

The Periodic Scheduling Problem (PESP) is a well researched and important problem in math-
ematical optimization. Its main application deals with periodic timetables in public transporta-
tion. Given a line plan, PESP can be used to find a periodic timetable with the goal to minimize
the traveling times of the passengers. PESP has been introduced in [25] and shown to be NP
complete. An important application of PESP is periodic timetabling for public transport, see
e.g., [17, 11, 13, 14]. Advanced integer programming methods as in [18, 13, 4, 10], many of them
using cycle bases, were the first approach and are still subject of ongoing research [2, 6]. SAT
solvers have been used in [12, 5]. However, PESP is too hard to get optimal solutions even for
instances of medium size, hence also heuristics have been developed, among them the modulo
simplex [16, 7, 8] or a fast matching approach [19].

∗This work was partially supported by DFG under SCHO 1140/8-1.
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However, all these approaches are based on fixed passengers’ weights and neglect that the
route a passenger finally chooses depends on the timetable to be determined. [1] show that fixing
passenger paths can lead to arbitrarily bad results compared to routing the passengers during
the optimization and that integrated routing may lead to significant improvements on realistic
instances. In [5] a SAT approach is used for integrating passengers routes. The importance of
integrated routing has also been noted in [23, 24, 22]. However, integrating the routing decisions
further increases the complexity of PESP significantly. We hence cannot hope to solve the
problem exactly for instances of realistic size.

Based on an integer programming model to integrate passenger routing into timetabling, we
propose an exact preprocessing method to reduce the problem size and a heuristic which improves
the traveling time for the passengers as well as a second heuristic which provides a lower bound.
Together, both heuristics admit an a-posteriori bound for an optimal solution. Both heuristics
make use of an exact solution algorithm as subroutine for smaller problem instances. Using an
IP solver for these subproblems, they are analyzed on a benchmark instance.

2 Model

For modeling the integrated timetabling and passenger routing problem, we follow the usual
approach (see, e.g., [15, 11, 13, 14]). Timetabling requires an event activity network (EAN )
N 0 = (E0,A0) consisting of nodes E0 which are called events and of arcs A0 which are called
activities. Each activity a ∈ A0 has a lower and upper bound La ≤ Ua which restricts its
duration. In PESP we look for a timetable π which assigns a time πi to each event i ∈ E0. The
timetable should be feasible in the sense that all durations of the activities lie between their
lower and upper bounds. For non-periodic timetabling this condition is given as

La ≤ πj − πi ≤ Ua for all a = (i, j) ∈ A0.

However, in PESP we look for a periodic timetable which is repeated every time period T . In
this case, the feasibility condition is given as

(πj − πi − La) mod T + La ≤ Ua for all a = (i, j) ∈ A0. (1)

In public transportation, the event activity network represents a timetable as follows: Given
a public transportation network (PTN) (V,E) with stops or stations V and direct connections
E, e.g., tracks, between them as well as a set of lines L that are operated, we start with an event
activity network N 0 = (E0,A0). Its events represent arrival or departures of lines at stations
while the activities represent the driving of vehicles between stations, vehicles waiting at stations
or passengers transferring at stations between different lines. For a driving activity a ∈ A0 its
lower and upper bounds La and Ua represent restrictions on the driving time, for trains waiting
in a station, the lower bound sets the minimum time the train has to wait to allow passengers
to board and alight, and the lower and upper bounds an transfer activities are used to ensure
smooth transfers. Often, timetables are periodic with a period length of T = 60 minutes. A
periodic timetable hence assigns a time πi ∈ {0, . . . , T − 1} to all events i ∈ E0 which is then
repeated every hour. As in (1) it is feasible if the actual duration of all activities lies between
the given upper and lower bounds. In the classic PESP, weights wa approximating the number
of passengers who use activity a ∈ A0 are additionally given and the goal is to minimize∑

a=(i,j)∈A0

wa · (πj − πi − La) mod T.
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The weights wa can be computed by routing the passengers beforehand, e.g., according to shortest
paths with respect to the lower bounds La on the activities. However, the routes the passengers
really choose depend on the timetable to be computed. This chicken-and-egg causality dilemma
has been recognized by many researchers, e.g., [23, 24, 22, 1, 5], hence, as mentioned in the
introduction, integration of passengers routes is a topic of ongoing research.

In order to integrate the passenger routing into PESP, let a set of OD pairs OD ⊆ V × V
be given, representing the pairs of stations between which passengers wish to travel. The event
activity network has to be extended to include nodes and arcs representing the beginning or end
of the passengers’ journeys. The extended EAN N = (E ,A) therefore contains source and target
nodes (v, source), (v, target) for all stations v ∈ V as well as auxiliary arcs Aaux linking these
new nodes to corresponding departure and arrival events as done in [24, 1, 5]. The upper and
lower bounds of the auxiliary arcs are set to zero.

For formally stating the problem definition, we need further notation. To this end, let N =
(E ,A) be the event activity network constructed above and La, Ua the the lower and upper
bounds on its activities.

Definition 1. For an activity a = (i, j) ∈ A0 we define its duration w.r.t a timetable π as

da(π) = (πj − πi − La) mod T + La.

The duration of auxiliary activities a ∈ Aaux is defined as da(π) = 0 for all timetables π. We
abbreviate the vector of durations as d(π) = (da(π))a∈A and the vector of lower/upper bounds
as L = (La)a∈A and U = (Ua)a∈A, respectively.

For every feasible timetable π, the duration of an activity is larger than its lower and smaller
than its upper bound, i.e.,

La ≤ da(π) ≤ Ua. (2)

Let β = (βa)a∈A be a vector of activity lengths, then a shortest path for OD pair (u, v) from
(u, source) to (v, target) according to these activity lengths is defined as SPu,v(β). The length
of a path P according to the activity lengths β is defined as

len(P, β) =
∑
a∈P

βa,

i.e., len(SPu,v(β), β) is the length of the shortest path with respect to the activity lengths β
while len(SPu,v(β), γ) describes the length of SPu,v(β) with respect to other activity lengths γ.
Note that due to (2) the length of a shortest path w.r.t the lower bounds La on the activities is
a lower bound on the duration for every feasible timetable π:

len(SPu,v(L), L) ≤ len(SPu,v(d(π)), L) ≤ len(SPu,v(d(π)), d(π)). (3)

Let Cu,v be the number of passengers of OD pair (u, v) ∈ OD. Then we can state the
integrated timetabling and passenger routing problem.

Integrated timetabling and passenger routing problem (P )
Find a feasible periodic timetable π with period length T minimizing the total travel
time on shortest paths w.r.t d(π) for all passengers, i.e.,

min RSP(π) =
∑

(u,v)∈OD

Cu,v · len(SPu,v(d(π)), d(π))

such that π is a feasible periodic timetable with period length T .
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RSP(π) evaluates a timetable π w.r.t shortest path routing. The problem is called integrated
because the paths for the OD pairs are not precomputed but determined within the optimization.
Note that this is not the case in the classical PESP in which the OD pairs are routed beforehand,
usually on shortest paths with respect to the lower bounds La on the activities. This means, in
the classical PESP we only look for the timetable, but not for the paths. In view of the notations
here, the (classical) PESP can be given as follows:

Periodic event scheduling problem (PESP )
Find a feasible periodic timetable π with period length T minimizing the total travel
time on fixed shortest paths w.r.t the lower bounds L for all passengers, i.e.,

min RLB(π) =
∑

(u,v)∈OD

Cu,v · len(SPu,v(L), d(π))

such that π is a feasible periodic timetable with period length T .

RLB(π) evaluates a timetable π w.r.t lower bound routing.

As we are solving (P ) with integer programming methods, we give the IP model (along the
lines of [22, 1, 5]) combining PESP constraints for the timetable on the EAN with a passenger flow
model on the extended EAN. πi are variables representing the (periodic) time of the events while
za are so-called modulo parameters for the activities modeling the periodicity of the timetable.
The passenger flow is represented by the flow variables pu,va .

(P ) min
∑

(u,v)∈OD

Cu,v ·
∑

a=(i,j)∈A0

pu,va · (πj − πi + za · T ) (4)

πj − πi + za · T ≥La a = (i, j) ∈ A0 (5)

πj − πi + za · T ≤Ua a = (i, j) ∈ A0 (6)

A · (pu,va )a∈A =bu,v (u, v) ∈ OD (7)

πi ∈{0, . . . , T − 1} i ∈ E0

za ∈Z ∀a ∈ A0

pu,va ∈{0, 1} (u, v) ∈ OD, a ∈ A

Note that the objective function can easily be linearized which is omitted here. While constraints
(5) and (6) are the standard PESP constraints modeling the timetable, the passenger flow is
handled in constraint (7) accounting for the majority of the constraints. The passenger flow is
modeled separately for each OD pair (u, v) ∈ OD using flow variables pu,va where A is the node-
arc-incidence matrix of the extended EAN N and the vector bu,v ensures that the flow starts at
the source node belonging to the OD pair and ends at the corresponding target node.

The standard PESP constraints (5) and (6) can be substituted by cycle base PESP con-
straints, see e.g., [15, 20] leading to a significant decrease in runtime for the classical PESP. In
Section 4 we experimentally see that this also holds for the integrated formulation (P ).

3 Two approaches for reducing the problem size

In this section we describe the two main ideas that make the integrated timetable and passenger
routing problem (P ) tractable. These ideas can also be applied to any other problem in which
OD pairs should be routed along shortest paths, e.g., network design problems and problems in
telecommunication.
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3.1 Combining shortest path routing with routing along fixed paths

The major factor for the size of the problem is the number of OD pairs as for each OD pair
and each activity a new variable has to be created. The first idea for reducing the problem size
therefore is to only route a subset ODroute ⊂ OD of the passengers as described in Heuristic LB.
To this end, we split OD into two disjoint sets OD = ODroute tODfix.

Heuristic LB
Find a feasible periodic timetable π with period length T minimizing the total travel
time on shortest paths w.r.t d(π) for all passengers in ODroute, i.e.,

min RSP(ODroute, π) =
∑

(u,v)∈ODroute

Cu,v · len(SPu,v(d(π)), d(π))

such that π is a feasible periodic timetable with period length T .

In RSP(ODroute, π), the evaluation based on shortest path routing is restricted to OD pairs in
ODroute. In order to better compare the solution found by Heuristic LB with other solutions, we
add lower bounds for every OD pair from ODfix to the value of RSP(ODroute, π). For OD ⊆ OD
we define

L̃(OD) =
∑

(u,v)∈OD

Cu,v · len(SPu,v(L), L)

summing for all OD pairs in OD the length of a shortest path w.r.t the lower bounds of the
activities measured by these lower bounds. Due to (3) we have that

L̃(OD) ≤ RSP(OD, π) (8)

for any feasible timetable π. We define

h(ODroute, π) = RSP(ODroute, π) + L̃(ODfix)

which yields a better approximation of RSP(π). However, completely disregarding the passengers
not in ODroute in the optimization can lead to objective values that are even worse than the values
of the original PESP as can be seen in the experiments in Section 4.3. The heuristic is hence
useless for generating a good solution, but can nevertheless be used as a good lower bound on
(P ) as we will see in Theorem 3.

The better idea is to include also the OD pairs in ODfix in the optimization by routing them
beforehand on shortest paths w.r.t the lower bounds of the activities and add their travel times
as weights to the objective function. This is described in Heuristic UB.

Heuristic UB
Find a feasible periodic timetable π with period length T minimizing the sum of the
total travel time on shortest paths w.r.t d(π) for all passengers in ODroute and the total
travel time on fixed shortest paths w.r.t the lower bounds L for all passengers in ODfix,
i.e.,

min f(ODroute, π) =
∑

(u,v)∈ODroute

Cu,v · len(SPu,v(d(π)), d(π))

+
∑

(u,v)∈ODfix

Cu,v · len(SPu,v(L), d(π))

a such that π is a feasible periodic timetable with period length T .
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For OD ⊆ OD define

RLB(OD, π) =
∑

(u,v)∈OD

Cu,v · len(SPu,v(L), d(π)),

i.e., we evaluate the timetable π w.r.t lower bound routing restricted to OD pairs in OD. We
then receive

f(ODroute, π) = RSP(ODroute, π) +RLB(ODfix, π), (9)

i.e., Heuristic UB combines shortest path routing for the OD pairs in ODroute with fixed routing
w.r.t the lower-bounds for the OD pairs in ODfix. Although Heuristic LB may provide better
solutions than Heuristic UB, our experiments show that the latter performs significantly better.
For ODroute = OD we get problem (P ) in which all passengers are routed during the optimization
and for ODfix = OD we get the classical PESP. In Section 4.1 we have a look at different strategies
for choosing ODroute.

We can easily see that both, Heuristic LB and Heuristic UB, behave monotonously when the
set ODroute is extended.

Lemma 2. Let OD1,OD2 with OD1 ⊂ OD2 be two sets of OD pairs.

1. Let π̃1, π̃2 be solutions for Heuristic LB w.r.t OD1 and OD2.

Then h(OD1, π̃1) ≤ h(OD2, π̃2).

2. Let π1, π2 be solutions for Heuristic UB w.r.t OD1 and OD2.

Then f(OD1, π1) ≥ f(OD2, π2).

Proof.

1. Since π̃1 is optimal for OD1 we compute

h(OD1, π̃1) ≤ h(OD1, π̃2)

= RSP(OD1, π̃2) + L̃(OD2 \OD1, π̃2) + L̃(OD \OD2)

(8)

≤ RSP(OD1, π̃2) +RSP(OD2 \OD1, π̃2) + L̃(OD \OD2)

= h(OD2, π̃2).

2. Here, π2 is optimal for OD2 and we obtain

f(OD2, π2) ≤ f(OD2, π1)

= RSP(OD1, π1) +RSP(OD2 \OD1, π1) +RLB(OD \OD2, π1)

(∗)
≤ RSP(OD1, π1) +RLB(OD2 \OD1, π1) +RLB(OD \OD2, π1)

= f(OD1, π1)

where (*) holds since RSP(OD, π) ≤ RLB(OD, π) for all OD ⊆ OD and all feasible π.

Lemma 2 is the main ingredient for the following theorem which shows that h and f are lower
and upper bounds on the optimal objective value of (P ) and improve when ODroute is extended.
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Theorem 3. Let OD1,OD2 with OD1 ⊂ OD2 be two sets of routed OD pairs, π̃1, π̃2 the respective
solutions for Heuristic LB and π1, π2 the respective solutions for Heuristic UB. Let π∗ be an
optimal solution for the integrated timetabling and passenger routing problem (P ).

1. h(ODi, π̃i) is a lower bound on RSP(π∗) for i ∈ {1, 2}.

2. f(ODi, πi) is an upper bound on RSP(π∗) for i ∈ {1, 2}.

3. h(OD1, π̃1) ≤ h(OD2, π̃2) ≤ RSP(π∗) ≤ f(OD2, π2) ≤ f(OD1, π1).

Proof. Part 1 and 2 are clear from Lemma 2 as for ODroute = OD both Heuristic LB and
UB compute the optimal solution of (P ). Part 3 is a direct implication of parts 1 and 2 and
Lemma 2.

We can also approximate the resulting gap as the following corollary shows.

Corollary 4. Let π̃ be a solution for Heuristic LB and π a solution for Heuristic UB for
ODroute ⊂ OD and ODroute t ODfix = OD. Let π∗ be an optimal solution for the integrated
timetabling and passenger routing problem (P ). Then the optimality gap can be bounded by

RSP(π)−RSP(π∗) ≤
∑

(u,v)∈ODfix

Cu,v · len(SPu,v(L), U − L).

Proof.

RSP(π)−RSP(π∗) ≤ f(ODroute, π)− h(ODroute, π̃) ≤ f(ODroute, π̃)− h(ODroute, π̃)

= RSP(ODroute, π̃) +RLB(ODfix, π̃)−RSP(ODroute, π̃)− L̃(ODfix)

=
∑

(u,v)∈ODfix

Cu,v · len(SPu,v(L), d(π̃)− L)

(2)

≤
∑

(u,v)∈ODfix

Cu,v · len(SPu,v(L), U − L).

For example, if Ua and La differ only by a fixed percentage p, i.e., if Ua = La(1 + p
100 ), the

optimality gap for the solution computed by Heuristic UB is at most

p
100

∑
(u,v)∈ODfix

Cu,v · len(SPu,v(L), L).

3.2 Preprocessing

When integrating passenger routing into timetabling, we create flow variables for all passengers
and all activities. However, if OD pairs use shortest paths, usually some activities can be sorted
out beforehand. E.g., an OD pair traveling from l’Aquila to Rome is unlikely to pass through
Milano on a shortest path no matter which timetable we choose. We try to find for each OD pair
a small subset of activities such that no matter what timetable is chosen in the end, this subset
contains a shortest path for the OD pair. This means that it suffices to generate flow variables
for this OD pair only for this subset of activities instead of all activities.

For each activity a ∈ A we know that it is not part of a shortest path from s to t for any
timetable if the best case shortest path from s to t via a is longer than the worst case shortest
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path from s directly to t. Here, the best and worst case depend on the timetable, i.e., the best
case shortest path is the shortest s− a− t path for the timetable which is best for this OD pair
while the worst case shortest path is the shortest s− t paths in the worst possible timetable.

But as finding a feasible timetable is NP complete, see [25], the construction of a best or
worst case timetable is difficult as well. Instead, we use the lower and upper bounds on the
activities as bounds on the length of the best/worst case shortest paths.

Theorem 5. Let (u, v) ∈ OD be an OD pair and let a = (i, j) ∈ A be an activity, such that

len(SPu,v(U), U) < len(SPu,i(L), L) + La + len(SPj,v(L), L).

Then, for any timetable π no shortest path SPu,v(d(π)) w.r.t π contains activity a.

Proof. Let π be any timetable and SPu,v(d(π)) be a shortest path w.r.t π. Then its length
satisfies

len(SPu,v(d(π)), d(π)) ≤ len(SPu,v(U), d(π)) ≤ len(SPu,v(U), U)

< len(SPu,i(L), L) + La + len(SPj,v(L), L) for a = (i, j)

≤ len(P,L) for any path P containing activity a

≤ len(P, d(π)) for any path P containing activity a.

Based on Theorem 5 we propose the following algorithm.

Algorithm 1 Preprocessing for integrated timetabling and passenger routing

1: Input: EAN N = (E ,A), interval [La, Ua] of possible arc length for all activities a ∈ A,
starting event s, ending event t.

2: Output: list of activities Ā which are not needed.
3: Initialize Ā = ∅.
4: Compute β := len(SPs,t(U), U).
5: for event i ∈ E do
6: Compute γi := len(SPs,i(L), L).
7: Compute δi := len(SPi,t(L), L).
8: end for
9: for activity a = (i, j) ∈ A do

10: if γi + La + δj > β then
11: Ā = Ā ∪ {a}
12: end if
13: end for

As shown in Figure 1 the number of activities which are not needed highly depends on the
length of the worst case shortest path. Especially if origin and destination are close, almost all
other activities can be discarded when looking for a shortest path.

Another important factor is the variability of the path length. In many publications on
periodic timetabling, it is assumed that the durations of the driving and waiting activities are
fixed, e.g. in [1, 19, 12]. We analyzed the effect of this assumption on the preprocessing step:
Figures 1b and 1c show the same event activity network differing in the bounds on the duration
of the activities. In this case we used a close-to-real world network based on the long-distance

8



train network of Germany. While in Figure 1b all activity durations are allowed to be in a given
interval, in Figure 1c most activity durations are fixed and only the durations of transfer activities
are variable (restricted to intervals). This decreases the problem size a lot and additionally
increases the effect of the preprocessing algorithm as the difference between best and worst case
paths decreases. We conclude that preprocessing is significantly more effective for fixed durations
of the waiting and driving activities.
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(a) All OD pairs of dataset grid.
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(b) 10 % of OD pairs of dataset long-distance.
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(c) 10 % of OD pairs of dataset long-distance with fixed durations of drive and wait activities.

Figure 1: Percentage of unused activities depending on the length of the worst case shortest path.
Dataset grid is the benchmark example used in Section 4, datset long-distance is derived from
the German long-distance train network.

4 Computational results

We show the influence of passenger routing as well as the benefits of preprocessing on two
datasets from the software framework LinTim, see [21]. The evaluations in Sections 4.1 to 4.4
are done on the benchmark dataset grid which was introduced in [3]. It models an urban traffic
network which consists of 25 stations arranged as a 5×5 grid and 40 edges, resulting in an event
activity network with 392 events and 2382 activities. There are 567 OD pairs with a total of
2546 passengers. Note that contrasting to many other publications on periodic timetabling, for
dataset grid we do not assume that the duration of drive and wait activities is fixed, yielding a
larger but more realistic problem.

9



To demonstrate some technical aspects of the bounds, we use a very small artificial dataset
toy with 8 stations and 8 edges with two different line plans resulting in a an event activity
network with 32 events and 44 activities for toy-1 and 156 events and 1088 activities for toy-2.

We use Gurobi 8 [9] to solve the IP model presented in Section 2 and an IP formulation of
the cycle base variant on a computer with 6 CPUs at 3.06 GHz and 132 GB RAM.

For all datasets we use a 4 hour limit on the solver time which is never reached for datasets
toy-1 and toy-2.

Our experiments investigate what happens if the number of OD pairs to be routed is increased.
To this end we determine sets ODk which contain k OD pairs to be routed. This is done as follows:
We sort the OD pairs according to some given rule as described in Section 4.1. ODk is then
defined as the set of the first k OD pairs according to the sorting. We run the two heuristics with
the sets ODroute = ODk, k = 0, . . . , |OD|. The timetables resulting from Heuristic UB are called
πk and the timetables resulting from Heuristic LB are denoted by π̃k. The optimal timetable for
(P ) minimizing RSP(π) is denoted by π∗.

4.1 Which OD pairs should be routed?

In order to determine which OD pairs should be routed during the optimization, we compare
different methods to choose the OD pairs in ODk for dataset grid, namely routing the k largest or
the k smallest OD pairs, k random OD pairs, the k OD pairs with the largest Euclidean distance
between origin and destination or choose k OD pairs according to Corollary 4. Therefore, we
take the k OD pairs for which the differences Ua − La between the upper and lower bounds on
their shortest paths (w.r.t lower bound routing) weighted by the number of passengers Cuv are
largest. Figure 2 shows that, especially when few OD pairs are routed, the choice of the routed
OD pairs strongly impacts the solution quality. Routing the “wrong” set of OD pairs can even
lead to solutions which are worse than not routing any OD pairs. When many OD pairs are
routed the influence of the method to choose routed OD pairs diminishes. Choosing OD pairs
for ODroute according to Corollary 4 yields by far the best results leading to an improvement in
the objective by only routing 5 OD pairs which is not matched by most of the other methods
when 150 OD pairs are routed.

4.2 Influence of preprocessing and chosen IP formulation

We now have a look at the influence of the preprocessing method presented in Section 3.2 and
of the different IP formulations on the runtime of our algorithm.

Figure 3a shows that, as in the classical PESP, the IP model for PESP with integrated
routing has a shorter runtime if the cycle base formulation is used instead of the standard IP
formulation. The positive effect of the preprocessing method can be better observed in Figure 3b
as in Figure 3a the solver time limits are hit earlier.

As the preprocessing method does not change the optimal solution of (P ) and both IP for-
mulations are equivalent, we only consider the version of the algorithm which uses the cycle
base IP model and the preprocessing method in the following sections. Note that the runtime
of Heuristic LB is considerably shorter than the runtime of Heuristic UB. Section 4.3 shows the
large differences in solution quality between them.

4.3 Comparing Heuristic LB and Heuristic UB

Figure 4 shows the solution quality of the Heuristics LB and UB when both are evaluated w.r.t
shortest path routing for all passengers, i.e., when evaluating the objective function RSP(πk)
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Figure 2: Comparison of different methods to choose ODk for dataset grid.

and RSP(π̃k) of the original problem. We see that the solution quality for Heuristic UB is better
with a maximal difference of 9.3%. Additionally, the quality of solutions found by Heuristic UB
improves monotonously while the quality of solutions found by Heuristic LB fluctuates a lot. As
we have seen in Section 4.1 this can also be the case for solutions found by Heuristic UB depending
on the routing method. The more OD pairs are routed the better Heuristic LB becomes as the
influence of the neglected OD pairs in ODfix diminishes. For 150 routed OD pairs the difference
between both heuristics is only 1%.

4.4 Best configuration with bounds

Sections 4.2 and 4.3 show that using Heuristic UB with cycle bases and preprocessing is the
fastest way to get good solutions for the integrated timetabling and passenger routing problem.
We test this approach for dataset grid to find solutions when more (and even all) OD pairs are
routed. This is shown in Figure 5 together with the behavior of the resulting bounds f(ODk, πk)
and h(ODk, π̃k) where both heuristics are run for increasing sizes of ODroute = ODk. When at
least 50 OD pairs are routed, the time limit of 4 hours does not suffice to solve the problem
optimally such that the bounds also are only approximations. The lower bound h(ODk, π̃k)
is adjusted according to the gap such that it is still a lower bound on RSP(π∗) where π∗ is an
optimal timetable for (P ) while the upper bound f(ODk, πk) does not need to be adjusted. When
routing all OD pairs the gap of the IP solver is with 3% so large that the solution is slightly
worse than the solution for routing 400 passengers. Compared to the solution of the classical
PESP the excess travel time, i.e., the travel time that is needed additionally to the lower bound∑

(u,v)∈OD Cu,v ·SPu,v(L,L) when all passengers travel on shortest paths and these paths are all

realized with the lower bounds, is reduced by 51.8% when 400 OD pairs are routed. Note that
the lower bound does not change from the trivial lower bound no matter how many OD pairs
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(a) Routing k OD pairs according to Corollary 4.

0 25 50 150 250

k = |ODk|

0

2000

4000

6000

8000

10000

12000

14000

16000

so
lv
er

ti
m
e
[s
]

Heuristic UB with

no preproc., no cycle base

preproc., no cycle base

not solved optimally

Heuristic LB with

no preproc., cycle base

preproc., cycle base
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Figure 3: Influence of preprocessing and of the choice of the IP formulation on the runtime for
dataset grid for Heuristic LB and Heuristic UB.

are routed. This is due to the fact that for routing many OD pairs the problem was not solved
optimally and the solver did not find a better lower bound during the optimization process. In
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Figure 4: Comparing Heuristic LB and Heuristic UB for dataset grid. Here, πk,π̃k are the
optimal timetables for Heuristic UB and Heuristic LB routing the OD pairs in ODk.

Section 4.5 we show that the lower bound does change depending on the number of OD pairs
routed and can be used to prove optimality even when not all OD pairs are routed.

4.5 Bounds for instance toy

Although for the presented dataset grid the lower bound could not be improved from the trivial
lower bound, this is not always the case. Figure 6 shows the value of the lower bound h(ODk, π̃k)
as in Figure 6a the actual gap can be bounded early on and in Figure 6b it helps to show that
the solution found by routing 5 OD pairs is already optimal.

5 Outlook

The heuristics and the preprocessing method presented in this paper can also make use of other
solution approaches to the integrated timetabling and passenger routing problem. Replacing the
IP solver for example by the column generation approach used in [1] might yield even better
solutions. Also, selecting the OD pairs to be routed is ongoing research. This may even be
combined with iterative approaches: Start with finding a timetable for ODroute = ∅. Determine
the OD pairs whose rerouted path does not coincide with the path determined by the lower
bound routing, and add them to ODroute in the next step.

It is subject of current research to integrate not only timetabling and routing, but also
timetabling, line planning, and routing. In an adapted form the two heuristics presented in this
paper can also be applied to this extension of the integrated timetabling and passenger routing
problem.

Since the ideas presented here are of general nature, they can also be applied to other problems
where routing is a part of the objective, e.g., in location planning or in telecommunication.
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Figure 5: Evaluation of Heuristic UB and Heuristic LB with cycle based IP formulation and
preprocessing for routing k OD pairs according to Corollary 4. We depict the lower and upper
bound on the optimal objective valueRSP(π∗) for dataset grid together with the objective values
RSP(πk) for the solutions πk obtained by Heuristic UB.
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(a) Dataset toy-1.
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(b) Dataset toy-2.

Figure 6: Evaluation of Heuristic UB and Heuristic LB with cycle based IP formulation and
preprocessing for routing k OD pairs according to Corollary 4. We depict the lower and upper
bound on the optimal objective value RSP(π∗) together with the objective values RSP(πk) for
the solutions πk obtained by Heuristic UB.
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in Periodic Timetabling: A SAT approach. In Marc Goerigk and Renato Werneck, editors,
16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS 2016), volume 54 of OpenAccess Series in Informatics (OASIcs), pages
1–15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[6] M. Goerigk and C. Liebchen. An Improved Algorithm for the Periodic Timetabling Prob-
lem. In Gianlorenzo D’Angelo and Twan Dollevoet, editors, 17th Workshop on Algorith-
mic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017),
volume 59 of OpenAccess Series in Informatics (OASIcs), pages 12:1–12:14, Dagstuhl, Ger-
many, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
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[12] M. Kümmling, P. Großmann, K. Nachtigall, J. Opitz, and R. Weiß. A state-of-the-art
realization of cyclic railway timetable computation. Public Transport, 7(3):281–293, 2015.

[13] C. Liebchen. Finding short integral cycle bases for cyclic timetabling. In Proceedings of
European Symposium on Algorithms (ESA) 2003, pages 715–726, 2003.

[14] C. Liebchen. Periodic Timetable Optimization in Public Transport. dissertation.de – Verlag
im Internet, Berlin, 2006.

[15] K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. PhD thesis,
University of Hildesheim, 1998.

15



[16] K. Nachtigall and J. Opitz. Solving Periodic Timetable Optimisation Problems by Mod-
ulo Simplex Calculations. In Matteo Fischetti and Peter Widmayer, editors, 8th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (AT-
MOS’08), volume 9 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany,
2008. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[17] K. Nachtigall and S. Voget. A genetic algorithm approach to periodic railway synchroniza-
tion. Computers & Operations Research, 23(5):453–463, 1996.

[18] M. Odijk. A constraint generation algorithm for the construction of periodic railway timeta-
bles. Transportation Research Part B: Methodological, 30(6):455–464, 1996.
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of ATMOS10, volume 14 of OpenAccess Series in Informatics (OASIcs), pages 156–169,
Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
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