
Institut für Numerische und Angewandte Mathematik

An Iterative Approach for Integrated Planning in Public
Transportation

Schiewe, A., Schiewe, P.

Nr. 1

Preprint-Serie des
Instituts für Numerische und Angewandte Mathematik

Lotzestr. 16-18
D - 37083 Göttingen



An Iterative Approach for Integrated Planning in Public

Transportation∗

Alexander Schiewe1 and Philine Schiewe1

1University of Göttingen, Lotzestr. 16-18, 37083 Göttingen, Germany,

{a,p}.schiewe@math.uni-goettingen.de

Abstract

Optimization in public transport planning is an important topic of ongoing research.

Traditionally, the planning process is separated hierarchically into several stages, e.g. line

planning, timetabling and vehicle scheduling. Recently, integrated public transport plan-

ning, i.e., optimizing several of the planning stages simultaneously, has gained in importance

as this can improve the solution quality immensely. However, since the resulting integrated

problems are computationally challenging for close-to real-world instances, heuristic solu-

tions are commonly used. We here introduce a new iterative approach for re-optimizing an

existing public transport system. For this, two of the three planning stages line planning,

timetabling and vehicle scheduling are fixed while the remaining one is re-optimized. To

model the re-optimization, traditional approaches do not suffice and therefore new optimiza-

tion problems need to be defined. We model these problems and propose solution algorithms

for each stage which are theoretically analyzed. Additionally, convergence of the proposed

iterative approach is discussed theoretically and computationally tested on a benchmark

case study and a close-to real-world data set.

Keywords: Public Transport Planning, Line Planning, Timetabling, Vehicle Scheduling, Iter-

ative Heuristic, Integrated Planning

1 Introduction

With rising population numbers in urban areas the need for transportation rises as well. As

public transportation is a very efficient, and - compared to individually traveling by car -

∗This work was partially supported by DFG under SCHO 1140/8-1.
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environmentally friendly mode of transport, its importance is increasing. However, the supply

of public transport will only increase if its quality - both from an operator’s and a passenger’s

perspective - is sufficiently high. Mathematical public transport planning aims to ensure this

quality at various stages of the planning process. Here, we consider three of the most important

and well researched problems of public transport planning: line planning, timetabling and vehicle

scheduling.

All three problems are well researched on their own. For an overview on line planning, see [Sch12],

literature on timetabling can be found in [LLER11] and [BK09] contains an overview of vehicle

scheduling models.

Traditionally, these problems are solved sequentially, as depicted in Figure 1.

Line Planning
Input: PTN

Output: line plan

Timetabling
Input: line plan
Output: timetable

Vehicle Scheduling
Input: line plan, timetable
Output: vehicle schedule

Figure 1: Sequential approach.

However, these problems highly depend on each other as the output of one stage is the input for

the next stage. Additionally, we are interested in the overall outcome, i.e., the line plan with

corresponding timetable and vehicle schedule which we call a public transport plan. Thus, our

goal is to solve the following integrated problem:

Problem 1 (Public Transport Plan). Find a line plan with a corresponding timetable

and vehicle schedule such that the travel time of the passengers and the operational

costs are minimized.

Recently, the focus of research concerning public transportation planning has shifted to inte-

grated planning to harvest the benefits of integration.

An important focus is the integration of passenger routing into the single stages, see e.g. [Sch14].

This can be included in the line planning problem ([PB06, SS06, SS15a]) or the timetabling
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stage ([Sie11, SS15b, GGNS16, BHK17, SS18]). The differences between route assignment which

focuses on a system-optimal solution and route choice which models the passengers’ behavior

more naturally are considered in [GS17].

Another topic of research is the integration of multiple of the three separate stages, i.e., line

planning and timetabling, see e.g. [RN09], or timetabling and vehicle scheduling, see e.g. [Lie08,

CM12], or even combining all three steps, see e.g. [LPSS18, Sch18].

But as the problems drastically increase in size and thus become even more computationally

challenging, heuristic approaches to the integrated problems are more promising. Of course, the

traditional sequential approach shown in Figure 1 is such a heuristic but other, more specialized

heuristics often perform better.

[BBVL17] developed an iterative approach to line planning and timetabling, solving both steps

sequentially. Another approach to the integration of these two problems is the usage of meta-

heuristics, as done in [TI14]. Both approaches are also applied to the integration of timetabling

and vehicle scheduling, see [SE15, FvdHRL18] for a metaheuristic and [GH10, PLM+13] for

iterative approaches. Finally, there are also iterative approaches for the integration of all three

problems in [MS09] and [PSSS17].

Our Contribution

Here, we present a novel iterative heuristic for the integrated line planning, timetabling and

vehicle scheduling problem, attending to the main issue with the sequential approach, i.e., the

interdependence of the problems. If a line plan is fixed first and only afterwards a timetable and a

vehicle schedule are constructed, this may lead to bad, or even infeasible, solutions, see [GSS13].

Therefore, we develop an iterative approach to re-optimize a given public transport plan where

in each step one of the stages is re-optimized and the other ones are regarded as fixed such that

a feasible solution is guaranteed, as depicted in Figure 2. For this, two completely new public

transportation problems are identified and modeled. An overview can be found in Figure 2.

This iterative approach specifies the three steps in the inner circle of the algorithmic scheme

called eigenmodel which is introduced in [Sch17].

Of the three algorithms shown in Figure 2, only ReVehicleScheduling has been studied before,

while ReLinePlanning and ReTimetabling are newly defined and discussed in Section 3.
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Algorithm ReVehicleScheduling

Input: line plan, timetable
Output: vehicle schedule

Algorithm ReTimetabling

Input: line plan, vehicle schedule
Output: timetable

Algorithm ReLinePlanning

Input: timetable, vehicle schedule
Output: line plan

Figure 2: Overview of the algorithms.

Overview of the paper

The remainder of this paper is structured as follows: In Section 2 we formally define a public

transport plan by using the classical problems line planning, timetabling and vehicle scheduling.

In Section 3 we introduce the models and algorithms for the re-optimization problems where

always one of the three stages is re-optimized while the other two stages are fixed. The iterative

approach and some theoretical implications are presented in Section 4 while computational

experiments on a benchmark data set and close-to real-world data is presented in Section 5.

2 Definition of a Public Transport Plan

In this section, we formally define the parts of a public transport plan, namely line plans,

timetables and vehicle schedule, and how to measure its quality.

Note that we consider binary line frequencies in the following which is a common assumption

for timetabling, see e.g. [SU89].

We assume the following data to be given. Let PTN=(V,E) be an infrastructure network or

public transport network with stops or stations V and direct connections E between them. The

lower and upper bounds on the wait times at stops are given as Lwait and Uwait while the lower

and upper bounds on the transfer times at stops are given as Ltrans and Utrans. We assume that

transfers are always possible, i.e.,

Utrans = Ltrans + T − 1.

For each edge e ∈ E consider the length lene and a lower and upper bound Le and Ue on the

drive time on this edge. The passenger demand is given as an OD matrix C = (Cu,v)u,v∈V

where Cu,v represents the number of passengers traveling from u to v in the planning period.
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The line plan and the timetable are periodic and the length of the planning period is T .

2.1 Line Planning

In the line planning stage, the goal is to cover the edges of the PTN by lines chosen from a line

pool L0. A line is a path in the PTN which has to be covered by a vehicle end-to-end while a

line pool is a set of lines. The length lenl of a line l is given by the lengths of its edges, i.e.,

lenl =
∑
e∈l

lene.

In order to facilitate reasonable travel times for the passengers, lower frequency bounds fmin
e

have to be satisfied for all edges e ∈ E.

Finding a line plan L amounts to assigning a frequency fl ∈ {0, 1} to each line l ∈ L0. We say

a line l is part of line plan L or l ∈ L if fl = 1. A line plan is feasible if the following condition

is satisfied for all edges e ∈ E: ∑
l∈L:
e∈l

fl ≥ fmin
e .

We assume that the lower frequency bounds fmin
e , e ∈ E, are given such that the vehicle capacity

suffices for routing all passengers in every feasible line plan.

2.2 Timetabling

As we consider periodic timetabling that can be represented by the periodic event scheduling

problem (PESP) defined in [SU89], we need an event-activity network (EAN) N = (E ,A). For

a given line plan L, the EAN consists of a set of events E which represent the arrival and

departure of lines at stops and a set of activities A representing driving of vehicles on lines,
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vehicles waiting at stops or passengers transferring at stops.

E = Earr ∪ Edep

Earr = {(v, l, arr) : v ∈ l ∩ V, l ∈ L}

Edep = {(v, l, dep) : v ∈ l ∩ V, l ∈ L}

A = Adrive ∪ Await ∪ Atrans

Adrive = {((v1, l, dep), (v2, l, arr)) : {v1, v2} ∈ l ∩ E, l ∈ L}

Await = {((v, l, arr), (v, l, dep)) : v ∈ l ∩ V, l ∈ L}

Atrans = {((v, l1, arr), (v, l2, dep)) : v ∈ l1 ∩ l2 ∩ V, l1, l2 ∈ L}.

Each activity a ∈ A has a lower and an upper bound La and Ua, respectively. Here, the bounds

on waiting or transferring at stops are derived from the corresponding PTN bounds Lwait, Uwait

and Ltrans, Utrans, respectively, while the bounds on driving activities ((v1, l, dep), (v2, l, arr)) are

derived from the corresponding edge e = {v1, v2} ∈ E with bounds Le, Ue.

To find a timetable π, a time point πi ∈ {0, . . . , T − 1} is assigned to each event i ∈ E . The

duration d(a) of activity a = (i, j) ∈ A, is defined as

d(a) = (πj − πi − La) mod T + La.

A timetable π is feasible if the duration of each activities lies within its lower and upper bounds,

i.e., if

La ≤ d(a) ≤ Ua.

To evaluate the quality of a timetable, we assume that the passenger paths are fixed and for

each activity a ∈ A the number of passengers using it is given as wa. We call w = (wa)a∈A

passenger weights. These weights are determined by a routing step ahead of the optimization,

e.g. by assigning to each OD pair a shortest path according to the lower bounds on the activities.

The goal of the optimization is to minimize the travel time of the passengers, i.e.,

Rfix(π,w) =
∑

a=(i,j)∈A

wa · d(a). (1)
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2.3 Vehicle Scheduling

Vehicle scheduling for a fixed line plan and a fixed timetable is a well researched problem, see

e.g. [BK09]. There exist many different variants, with or without one or multiple depots, with

or without a maximal number of vehicles which can be used and with different objectives.

We here consider a model with an unlimited number of vehicles, without a depot and minimize

a weighted sum of the number of vehicles, the time needed and the distance covered.

In contrast to line planning and timetabling where a plan is computed for a relatively short time

span and then repeated, vehicle schedules are computed for longer time spans. For example, a

timetable might repeat every hour, while the vehicle schedule is computed for the whole day

and only repeated the next day. We therefore consider an aperiodic problem where each line l

of the line plan is to be covered pmax times by a vehicle and the p-th covering of line l is called

trip (p, l). A trip (p, l) is determined by the line l it covers, the period repetition p it starts

in, its start time startp,l and its end time endp,l. The duration of trip (p, l), durationp,l, is

the time between startp,l and endp,l. The length of a trip (p, l), lenp,l, is the length of the

corresponding line l, i.e., lenp,l = lenl. A vehicle route is a list of compatible trips where two

trips (p1, l1), (p2, l2) are compatible if there is sufficient time to get from the last station of line

l1 to the first station of line l2 on a fixed shortest path P , i.e., if

startp2,l2 − endp1,l1 ≥ Ll1,l2 ,

where Ll1,l2 is the needed time to directly drive from the last stop of l1 to the first stop of l2

and Dl1,l2 as the corresponding distance. We assume that

Ll1,l2 =
∑
e∈P

Le

Dl1,l2 =
∑
e∈P

lene

is satisfied. A vehicle schedule is a set of vehicle routes such that all trips in

T = {(p, l) : p ∈ {1, . . . , pmax}, l ∈ L} are covered exactly once.

2.4 Objectives

To evaluate the quality of a public transport plan, we consider two objectives, namely the

operational costs and the travel time for the passengers.
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The travel time of the passengers is measured on shortest paths according to the timetable.

Note that this may not be the same as the objective function of the timetabling problem as

passengers can choose a new, possibly shorter, path. For this, let Pu,v(π) be a shortest path

from any departure event at stop u to any arrival event at stop v w.r.t the timetable π. We

therefore measure the rerouted travel time

RSP(π) =
∑

(u,v)∈C

Cu,v ·
∑

a∈Pu,v(π)

d(a).

It is also possible to instead measure the perceived travel time where transfers are penalized by

a fixed penalty term. This can easily be added to the models presented here by modifying the

duration of transfer activities. For easier notation, we consider travel time in the remainder of

this paper.

The operational costs are determined by the vehicle schedule and include duration based costs

costtime, distance based costs costlen and costs per vehicle costveh. In addition to the distance and

time needed to cover the trips, vehicles also have to relocate between trips. In order to compute

the costs of this relocation, we define connecting trips. Let r = ((p1, l1), (p2, l2), . . . , (pn, ln))

be a vehicle route. Then for each i ∈ {1, . . . , n − 1} the tuple ((pi, li), (pi+1, li+1)) is called a

connecting trip. The duration of connecting trip ci = ((pi, li), (pi+1, li+1)), durationci , is the

time between the end of trip (p1, l1) and the start of trip (p2, l2) and its length, lenci , is Dli,li+1
,

i.e., the distance to cover when driving from li to li+1.

Let V = {r1, . . . , rn} be a vehicle schedule with vehicle routes ri. Then the operational costs of

V are
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cost(V) =
∑
r∈V

( ∑
trip

t=(p,l)∈r

costlen · lent + costtime · durationt

+
∑

connecting trip
c=((p1,l1),(p2,l2))∈r

costlen · lenc + costtime · durationc
)

+ costveh · |V|

=
∑
r∈V

( ∑
trip

(p,l)∈r

costlen · lenl + costtime · (endp,l − startp,l)

+
∑

connecting trip
((p1,l1),(p2,l2))∈r

(
costlen ·Dl1,l2

+ costtime · (startp2,l2 − endp1,l1)
))

+ costveh · |V|.

3 Modelling the Re-Optimization Problems

In this section, we define the re-optimization problems ReVehicleScheduling, ReTimetabling

and ReLinePlanning that we need for the iterative approach. For a given public transport

plan, our goal is to always fix the solutions of two of the three stages line planning, timetabling

and vehicle scheduling while re-optimizing the third stage.

3.1 Re-Optimizing the Vehicle Schedule

As mentioned in Section 2.3, vehicle scheduling for a fixed line plan and a fixed timetable is

part of the classical sequential planning process and a well researched problem. Therefore, we

can use a standard vehicle scheduling model for ReVehicleScheduling. Here, we use a vehicle

scheduling model without depot and we minimize the operational costs as defined in Section 2.4.

The algorithm used for the experimental evaluation is implemented in the open source software

tool LinTim, see [SAP+18].
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Problem 2 (ReVehicleScheduling). Given a public transport plan (L, π,V) with

line plan L, periodic timetable π and vehicle schedule V covering pmax period rep-

etitions. Let Ll1,l2 , l1, l2 ∈ L, be the minimal durations of the potential connect-

ing trips and Dl1,l2 , l1, l2 ∈ L, the lengths of the potential connecting trips. Let

(costtime, costlen, costveh) be given cost parameters.

Find a new feasible vehicle schedule V ′ for timetable π, minimal durations of connect-

ing trips Ll1,l2 , l1, l2 ∈ L, and trips T = {(p, l) : p ∈ {1, . . . , pmax}, l ∈ L} such that

the operational costs cost(V ′) are minimized.

3.2 Re-Optimizing the Timetable

So far, we only described the standard timetabling problem. As mention in Section 2.2, a

timetable which is feasible already adheres to the line plan, as it is part of the input and the

structure of the EAN. To achieve that also a given vehicle schedule V stays feasible after a new

timetable is found, we need to add further constraints.

Therefore, we consider the set C of all connecting trips of vehicle routes in V. Remember that

connecting trip c = ((p1, l1), (p2, l2)) ∈ C means that trip (p2, l2) is operated directly after trip

(p1, l1) by the same vehicle. In order to check that the vehicle schedule remains feasible, we

need to ensure that the minimal time Ll1,l2 between trips on lines l1 and l2 is complied with for

all connecting trips c = ((p1, l1), (p2, l2)) ∈ C.

An important factor is the distribution of passengers to activities of the event-activity net-

work, especially when the event-activity network is modified during the iteration scheme.

Thus the passenger weights w = (wa)a∈A, have to be determined before applying Algorithm

ReTimetabling by a passenger routing. We choose to route the OD pairs on shortest paths in

the EAN according to the previous timetable which allows for a convergence result later on.
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Problem 3 (ReTimetabling). Given a public transport plan (L, π,V) with line plan

L, periodic timetable π for period length T and bounds La, Ua on the activities

a ∈ A of the corresponding EAN N = (E ,A) and vehicle schedule V. Let Ll1,l2 ,

((p1, l1), (p2, l2)) ∈ r, r ∈ V, be the minimal durations of the connecting trips. Let

w = (wa)a∈A be passenger weights corresponding to a passenger routing on shortest

paths according to timetable π.

Find a new periodic timetable π′ that is feasible corresponding to the minimal and

maximal bounds on the activities as well as the minimal times for the connecting trips

and minimizes the travel time of the passengers for fixed weights w = (wa)a∈A.

IP Formulation To give an integer program for the problem ReTimetabling we adapt the

classical PESP formulation and use the following variables. Let πi ∈ {0, . . . , T − 1} be the

scheduled periodic time of event i ∈ E , za ∈ Z the modulo parameter of activity a ∈ A and

durationl ∈ N the time it takes in the timetable to get from first(l) to last(l). Here, first(l)

is the first event in line l while last(l) is the last event in line l. For easier notation we define

variables startp,l ∈ N for the start time of trip (p, l) and endp,l ∈ N for its end time. Let A(l)

be the activities belonging to line l, i.e., all activities a = (i, j) where both events i and j are

departure or arrival events of line l. Then we get the following IP formulation.
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(ReTimetabling) min
∑

a=(i,j)∈A

wa · (πj − πi + za · T )

s.t. πj − πi + za · T ≤ Ua a = (i, j) ∈ A (2)

πj − πi + za · T ≥ La a = (i, j) ∈ A (3)

durationl =
∑

a=(i,j)∈A(l)

(πj − πi + za · T ) l ∈ L (4)

startp,l = p · T + πfirst(l) (p, l) : (•, (p, l)) ∈ C (5)

endp,l = p · T + πfirst(l) + durationl (p, l) : ((p, l), •) ∈ C (6)

Ll1,l2 ≤ startp2,l2 − endp1,l1 ((p1, l1), (p2, l2)) ∈ C (7)

πi ∈ {0, . . . , T − 1} i ∈ E

za ∈ Z a ∈ A

durationl ∈ N l ∈ L

startp,l ∈ N (p, l) : (•, (p, l)) ∈ C

endp,l ∈ N (p, l) : ((p, l), •) ∈ C

Constraints (2) and (3) are the standard timetabling constraints while equation (4) determines

the time it takes to traverse line l ∈ L. Equations (5) and (6) determine the actual start and

end times of trip (p, l) ∈ r, r ∈ V, respectively. Note that to determine endp,l it is not sufficient

to use the time of last(l) for period repetition p as the duration of the traversal of l can be

longer than the period length T , see Example 5. Constraint (7) makes sure that the minimal

time for connecting trips is complied with.

Remark 4. The given IP formulation can easily be extended to the integrated timetabling

and vehicle scheduling problem, by making the vehicle connecting trips variable and adding

corresponding flow constraints which makes the problem substantially larger. For details,

see [LPSS18, Sch18].

Example 5 ([Sch18]). Consider two lines l1, l2 with Ll1,l2 = Ll2,l1 = 5. Let the trip length of l1

which is determined by the bound of the activities belonging to l1 be in [60, 120] and the trip

length of l2 be fixed to 50 with a planning period of length 60. A possible timetable is given in
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Figure 3.

Depending on the actual duration of line l1 which might be 60 or 120, we need to implement

two different vehicle schedules. If the duration is 60, we can find a vehicle schedule with two

vehicles. Vehicle V1 operates trips (1, l1), (2, l2), (3, l1) etc. and Vehicle V2 operates trips

(1, l2), (2, l1), (2, l2) etc. But if the duration is 120, the vehicle operating (1, l1) cannot operate

(2, l2) and we need a third vehicle to cover all trips although the periodic difference between

last(l1) and first(l2) is large enough to accommodate a connecting trip.

l1

l2

Ll1,l2 = 5Ll2,l1 = 5

πfirst(l1) = 0 πlast(l1) = 0

πfirst(l2) = 5πlast(l2) = 55

[60,120]

[50,50]

Figure 3: A possible timetable for Example 5.

3.3 Re-Optimizing the Line Plan

For defining the problem ReLinePlanning, we first need to understand how to generate new

lines that are consistent with the timetable and the vehicle schedule which are already in place.

As lines define a physical path that has to be covered by one vehicle end-to-end, they are an

integral part of both the vehicle schedule and the timetable. As lines have to appear periodically,

we have to make sure that a path can only be a line if it is covered by one vehicle end-to-end

in each planning period at the same periodic time. This is especially difficult as we consider

the general case of aperiodic vehicle schedules instead of periodic ones as it is done, e.g. in

[DRB+17, BKLL18].

For formally defining when lines are consistent with a given timetable and vehicle schedule, let

r = ((p1, l1), . . . , (pn, ln)) be a vehicle route. As every connecting trip between two trips (pi, li),

(pi+1, li+1) is operated on a fixed shortest path, we can determine the physical path of the

vehicle, i.e., the path the vehicle takes in the PTN, which we call P (r). For an edge e ∈ (p, l)

with l = (l′, e, l′′) we determine the aperiodic departure time as

τ(e,p,l) = p ·T +
∑

v∈l′∩V
duration((v, arr, l), (v,dep, l)) +

∑
(u,v)∈l′∩E

duration((u,dep, l), (v, arr, l)).
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Note that due to Example 5 we cannot simply compute the aperiodic departure time of e by

adding p · T to the periodic departure time of e.

Let c = ((p1, l1), (p2, l2)) be a connecting trip with path (e1, . . . , ek). Note that due to our

assumptions this path is a fixed shortest path from the last station of line l1 to the first station

of line l2. For an edge ej ∈ (e1, . . . , ek), we define the departure time as

τ(ej ,c) = p · T + durationl +

j−1∑
i=1

duration(ei, c).

Here, duration(ei, c) is the duration of the edge in the connecting trip, i.e., the time the vehicle

takes to cover ei. These durations have to satisfy

duration(ei, c) ≥ Lei , i ∈ {1, . . . , k} (8)

k∑
i=1

duration(ei, c) = durationc. (9)

As changing lines influences the basic level of the corresponding timetable and vehicle schedule,

lines cannot even change names without formally changing the timetable and vehicle schedule

as lines are used for encoding events and trips. Therefore, we slightly adapt the timetable and

the vehicle schedule for a new line plan without changing the physical routes of vehicles during

the operation of trips and without changing the times of events that are covered by the new

line plan. We thus define consistency of transport plans which are derived from one another by

changing the line plan.

Definition 6. Let (L, π,V) be a public transport plan that is feasible according to upper and

lower activity bounds derived from the corresponding PTN bounds Le, Ue, e ∈ E, Lwait, Uwait,

Ltrans, U trans. Let Ll1,l2 , l1, l2 ∈ L be the minimal durations of the potential connecting trips.

A public transport plan (L′, π′,V ′) is consistent with (L, π,V), if the following conditions are

satisfied.

• L′ is a set of lines with corresponding timetable π′ and vehicle schedule V ′ which are

feasible according to upper and lower activity bounds derived from the corresponding

PTN bounds and the minimal times for connecting trips.

• There exists a bijection b : V → V ′.

• For all vehicle routes r ∈ V the paths of all trips in b(r) are contained in the path P (r),
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i.e., the new vehicle routes cover the same paths as the old vehicle routes when operating

trips but might deviate from them for connecting trips. For an edge e contained in trip

(p, l) ∈ r and in a trip (p′, l′) ∈ b(r) at the same part of the vehicle route, we denote (p′, l′)

as b′(e, p, l). Analogously, for an edge e contained in connecting trip c ∈ r and in a trip

(p′, l′) ∈ b(r) at the same part of the vehicle route, we denote (e, c) as b̄(e, p′, l′).

• For all edges e contained in a trip (p, l) in vehicle route r and in a trip b′(e, p, l) = (p′, l′)

in vehicle route b(r) the aperiodic departure times coincide, i.e., τ(e,l,p) = τ(e,l′,p′).

• There have to be durations duration(e, c), e ∈ c, c ∈ r, r ∈ V, according to (8) and (9)

such that the following condition is satisfied: Let (e1, . . . , ek) ⊂ l′ be the largest subpath of

(p′, l′) in vehicle route b(r) that is completely contained in c. Then the aperiodic departure

times τ(ei,p′,l′) satisfy

τ(ek,p′,l′) − τ(e1,p′,l′) =
k∑
i=1

duration(b̄(ei, p
′, l′)),

i.e., the duration of connecting trip c allows for the operation of line l′.

With this definition, we call a line l consistent with a public transport plan (L, π,V) if there

exists a public transport plan ({l}, π′,V ′) that is consistent with (L, π,V). If a line l is consistent

to (L, π,V), the following requirements have to be satisfied as direct implications of Definition 6.

• Line l is operated periodically and all corresponding activity durations are feasible as π′

is a feasible periodic timetable.

• Line l is covered by one vehicle end-to-end in each planning period as V ′ is a feasible

vehicle schedule.

• For each trip (p, l), p ∈ {1, . . . , pmax}, the path of line l is part of an old vehicle route due

to bijection b.

• The departures times at stations that have formerly also been part of a line are the same

as before due to the constraints on the aperiodic departure times.

• The duration of the parts of the line that have formerly been connecting trips fit to the

duration of the connecting trip.
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To ensure a certain service level for the passengers when minimizing the costs of the new

line concept, we use the standard line planning constraints, i.e., we consider fixed minimal

frequencies on all PTN edges as described in Section 2.1.

As the operational costs do not only depend on the line plan, we approximate them by using

costs per line as it is commonly done in line planning, see e.g. [CvDZ98]. We determine the

line costs costl by using a fixed cost part, a part depending on the length of the edges and

one depending on the number of edges, as done e.g. in [GHS17]. The costs of the line plan are

therefore

cost(L) =
∑
l∈L

costl. (10)

The problem ReLinePlanning can now be stated as follows.

Problem 7 (ReLinePlanning). Given a public transport plan (L, π,V) for PTN

(V,E) with line plan L with minimal edge frequencies fmin
e , e ∈ E, duration bounds

Le, Ue, e ∈ E, Lwait, Uwait, Ltrans, U trans, periodic timetable π for period length T and

vehicle schedule V for pmax period repetitions. Let Ll1,l2 , l1, l2 ∈ L, be the minimal

durations of the potential connecting trips.

Find a new public transport plan (L′, π′,V ′) that is consistent with (L, π,V) and min-

imizes the line costs cost(L′).

In order to find a new line plan, we first need to create a line pool consisting of lines that are

consistent with the original public transport plan. In a second step, we chose a line plan from

this pool that can be extended to a public transport plan consistent with the original one. Both

steps are described in Algorithm 1.
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Algorithm 1 ReLinePlanning

1: Input: PTN=(V,E), lower frequency bounds fmin
e , e ∈ E, lower and upper duration bounds

Le, Ue, e ∈ E, Lwait, Uwait, Ltrans, U trans, period length T , number of period repetitions pmax,

minimal times for potential empty trips Ll1,l2 , l1, l2 ∈ L, public transport plan (L, π,V) with

V = {r1, . . . , rn} and vehicle Vi operating route ri.

2: Output: A public transport plan (L′, π′,V ′) consistent to (L, π,V).

3: . Define line network.

4: Initialize line network L = (VL, EL) with VL = V , EL = ∅.

5: for route ri ∈ V do

6: for trip edges e ∈ (p, l), (p, l) ∈ ri do

7: . Add edge e labeled by aperiodic departure time and vehicle.

8: EL = EL ∪ {(e, τ(e,p,l), Vi)}

9: end for

10: Fix durations duration(e, c), e ∈ c, c ∈ ri satisfying (8) and (9).

11: for connecting trip edges ej ∈ c, c ∈ ri with c = (e1, . . . , ek), ej = (u, v) do

12: . Add edge ej labeled by aperiodic departure time

13: . and vehicle id if it can be used by passengers.

14: if τ(ej+1,c) − τ(ej ,c) ∈ [Lej + Lwait, Uej + Uwait] then

15: EL = EL ∪ {(ej , τ(ej ,c), Vi)}

16: end if

17: end for

18: end for
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19: . Define collapsed line network

20: Initialize collapsed line network C = (VC , EC) with VC = V , EC = ∅.

21: for (e, τ, Vi) ∈ EL with τ ∈ {T, . . . , 2 · T − 1} do

22: . Combine parallel edges from the line network

23: . with the same periodic departure time.

24: EL = EL \ {(e, τ, Vi)}, VehList=[Vi], Etemp = ∅.

25: for p = 1, . . . , pmax − 1 do

26: if ∃(e, τ + p · T, Vk) ∈ EL then

27: VehList=[VehList, Vk], Etemp = Etemp ∪ {(e, τ + p · T, Vk)}

28: else

29: Start next iteration in line 21.

30: end if

31: end for

32: EL = EL \ Etemp, EC = EC ∪ {(e, τ mod T,VehList)}

33: end for

34: . Construct line pool.

35: Find set of longest paths P in collapsed line network C, s.t. all edges in a path

have identical labels VehList and the departure times of two consecutive edges

(e1 = (u, v), π1,VehList), (e2 = (v, w), π2,VehList) satisfy

(π2 − π1 − Le1 − Lwait) mod T + Le1 + Lwait ∈ [Le1 + Lwait, Ue1 + Uwait].

36: Set the line pool L0 as the set of all subpaths of P.

37: Find a line plan L′ by solving a line planning problem for pool L0 such that

38: all PTN edges are covered according to the lower frequency bounds fmin
e ,

39: all edges e ∈ EC are part of at most one line in L′

40: and the line costs are minimized.

41: . Find the corresponding timetable and vehicle schedule.

42: Construct timetable π′ and vehicle schedule V ′ by using the periodic times from the collapsed

line network for the departure times, adding the corresponding arrival times and updating

the vehicle routes according to the new lines.
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The functionality of Algorithm 1 is demonstrated in the following Example 8.

Example 8. We consider the PTN shown in Figure 4, consisting of five nodes and six edges.

There are three lines with their corresponding periodic timetable given. The first number stands

for the arrival time of the line in the specified station, the second one for the departure time.

n1

n2 n3

n4

n5

Lines

l1 = (n1[00′, 05′], n2[15′, 20′], n3[25′, 30′])

l2 = (n3[30′, 35′], n5[40′, 45′], n1[55′, 00′])

l3 = (n1[00′, 05′], n4[20′, 25′], n3[35′, 40′])

Figure 4: PTN and line plan.

The next figure, Figure 5, shows the vehicle schedule which consists of two vehicle routes. The

first vehicle V1 operates line l1 and line l2 alternately while the second vehicle V2 operates only

line l3.

n1

n2 n3

n5

n1

n3

n4

Vehicle V1:
l1 [01:00, 01:30], l2 [01:30, 02:00]
l1 [02:00, 02:30], l2 [02:30, 03:00]
l1 [03:00, 03:30], l2 [03:30, 04:00]

Vehicle V2:
l3 [01:00, 01:40], ∅ [01:40, 02:00]
l3 [02:00, 02:40], ∅ [02:40, 03:00]
l3 [03:00, 03:40], ∅ [03:40, 04:00]

Figure 5: Vehicle schedule.

From this information we now create the line network shown in Figure 6a. Here, we see each

driving of a PTN edge marked by the vehicle id and the starting time for the three period

repetitions we are looking at where the period length is 60 minutes.

The collapsed line network is shown in Figure 6b. Here, the periodic drivings are shown, marked

by the periodic departure time and the corresponding list of vehicles. Note that a vehicle list

does not have to consist of only one vehicle, as is the case in this simple example, but could

also consist of different vehicles.

19



n1

n2 n3

n4

n5

V
1
,

0
1
:0

0

V
1
,

0
2
:0

0

V
1
,

0
3
:0

0

V1, 01:15

V1, 02:15

V1, 03:15

V 1
, 01

:3
0

V 1
, 02

:3
0

V 1
, 03

:3
0

V 1
, 01

:4
0

V 1
, 02

:4
0

V 1
, 03

:4
0

V2, 01:00

V2, 02:00

V2, 03:00

V
2
,

0
1
:2

0

V
2
,

0
2
:2

0

V
2
,

0
3
:2

0

n5

(a) Line network.
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(b) Collapsed line network.

Figure 6: Line networks for Example 8.

The last figure, Figure 7, shows which edges of the collapsed line network can be joined to a new

line. We get the old line l3 as l11 and all its subpaths as well as a new line l12 with its subpaths

in which the old lines l1 and l2 are contained.
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n2 n3
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2
,V

2
,V
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Lines

l11 = (n1, n4, n3)

l21 = (n1, n4)

l31 = (n4, n3)

l12 = (n1, n2, n3, n5, n1)

l22 = (n1, n2, n3, n5)

l32 = (n2, n3, n5, n1)

l42 = (n3, n5, n1)

. . .

Figure 7: Coinciding labels.

The line pool generation is now complete and it remains to find a cost-minimal line concept

based on this new line pool.

In the following theorem we show that Algorithm 1 finds a public transport plan that is consis-

tent with the public transport plan (L, π,V) used as input.

Theorem 9. The public transport plan (L′, π′,V ′) constructed by Algorithm 1 is consistent
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with the public transport plan (L, π,V) used as input and line plan L′ is feasible w.r.t the lower

frequency bounds.

Proof. The construction of the line network in lines 4 to 18 assigns an aperiodic departure time

for each PTN edge e ∈ P (r) covered by vehicle route r ∈ V that can be part of a trip according

to the lower and upper bounds. In the collapsed line network constructed in line 20 to 33 these

aperiodic coverings of edges are accumulated to a periodic one if the edge is covered in each

period repetition at the same periodic time point. These collapsed edges are labeled by the

list of vehicles which cover them in each period repetition. The construction of the paths in

line 35 guarantees that each line is covered by one vehicle end-to-end in each planning period

and that the corresponding timetable is feasible as transfers pose no restriction due to Section 2.

Additionally, line concept L′ is feasible as the minimal frequencies are respected due to line 38.

It remains to show that the new vehicle schedule V ′ is feasible, that there exists a bijection

b : V → V ′ of the vehicle routes and that the trips of b(r) are part of the path P (r) fitting to

the duration of the connecting trips if applicable. As bijection b we map route ri of vehicle Vi

to the new route of vehicle Vi. Here, the new route of Vi consists of trips (p, l) where line l

corresponds to a path in the collapsed line network with label VehList where vehicle Vi starts in

period repetition p. This correspondence is unique as each edge (e, πi,VehList) of the collapsed

line network can only be part of one line, see line 39, and the covering of a PTN edge by Vehicle

Vi in period repetition p, represented by line network edge (e, πi + p · T, Vi), can only be part of

one edge (e, πi,VehList) of the collapsed line network, see line 32.

The construction of the collapsed line network also guarantees that all trips (p, l) in vehicle

route b(r) are part of P (r) and that the corresponding aperiodic times coincide. The duration

of trips that are part of an old connecting trip is fitting to the durations fixed in line 10 and

therefore satisfies (8) and (9). The duration of connecting trips ((p1, l1), (p2, l2)) ∈ b(r), r ∈ V

is feasible as well: Let v1 be the last station of line l1 and v2 the first station in line l2. Then

there is a v1 − v2 path Pv1,v2 which is part of P (r). Covering Pv1,v2 in vehicle route r takes at

least as long as Ll1,l2 which is defined as the length of the shortest v1 − v2 paths in the PTN

according to the lower bounds on the drive times. Therefore, the trips (p1, l1) and (p2, l2) are

compatible and the vehicle schedule V ′ is feasible as well.

To prove that this line concept is also cost-minimal under a technical assumption, we start by

showing that the line pool constructed in Algorithm 1 contains all consistent lines.
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Lemma 10. Let the duration of the edges in connecting trips in V be uniquely determined by

(8) and (9) and let for each edge e ∈ E the aperiodic departure times τ(e,p,l), τ(e,c) be unique for

all trips (p, l) ∈ V with e ∈ (p, l) and connecting trips c ∈ V with e ∈ c, i.e., there is a most one

departure using edge e at any point in time. Then all lines that are consistent with the public

transport plan (L, π,V) used as input are in the line pool L0 constructed in Algorithm 1.

Proof. Note that due to the fixed duration of edges in connecting trips, the aperiodic departure

times of edges in connecting trips can be uniquely determined. Due to the uniqueness of the

departure times, the collapsed line network constructed in lines 20 to 33 is unique as well and

thus especially the labels VehList.

Let l be a line that is not in L0, i.e., that is not constructed in line 36. We show that this line

l is not consistent with (L, π,V).

At first we consider the case where each edge ei ∈ l corresponds to an edge (ei, πi,VehListi)

in EC . As l /∈ L0 there either is no common label VehList for all edges ei ∈ l or the periodic

departure times of two consecutive edges do not fit to the lower and upper bounds. As the

aperiodic departure times of all edges are unique, the list of vehicles operating this edge in each

planning period is unique and found by Algorithm 1. Therefore, differing labels for different

edges show that line l is not covered by one vehicle end-to-end in each period repetition, i.e.,

the line is not consistent with (L, π,V). If the periodic departure times do not fit to the lower

and upper bounds, the corresponding timetable π′ is not feasible, i.e., line l is not consistent

with (L, π,V).

We therefore only have to consider the case where at least one edge e ∈ l has no corresponding

edge in EC . Due to the uniqueness of the aperiodic departure times, this means that for edge e

there is no departure in each period repetition at the same periodic time. Thus, edge e cannot

be part of a line consistent with public transport plan (L, π,V).

Using Theorem 9 and Lemma 10, we show that the line plan constructed by Algorithm 1 is

cost-minimal.

Theorem 11. Let the duration of the edges in connecting trips in V be uniquely determined by

(8) and (9) and let for each edge e ∈ E the aperiodic departure times τ(e,p,l), τ(e,c) be unique for

all trips (p, l) ∈ V with e ∈ (p, l) and connecting trips c ∈ V with e ∈ c, i.e., there is a most

one departure using edge e at any point in time. Then Algorithm 1 finds a public transport plan

(L′, π′,V ′) that is consistent with the public transport plan (L, π,V) used as input such that line
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plan L′ is feasible w.r.t the lower frequency bounds and minimizes the line costs (10).

Proof. Due to Theorem 9, the public transport plan (L′, π′,V ′) found by Algorithm 1 is con-

sistent with (L, π,V) and line plan L′ is feasible according to the lower frequency bounds. The

line pool which is used for the optimization problem contains all consistent lines according to

Lemma 10. Therefore, it only remains to show that the constraints of the optimization problem

posed in lines 38 to 39 of Algorithm 1 are necessary.

The constraints posed in line 38 are necessary to ensure that L′ is feasible w.r.t the lower

frequency bounds. The constraints posed in line 39 are needed to ensure a bijection between

the old and the new vehicle routes, i.e., they are necessary to guarantee a consistent line plan.

Thus, the line plan constructed by Algorithms 1 is cost-optimal for all feasible line plans that

can be extended to a consistent public transport plan.

To show the optimality of the line plan constructed in Algorithm 1 we need two technical

assumptions, namely that the duration of edges in connecting trips is unique and that for any

edge there is at most one departure at any given point in time. The second assumption is easy to

ensure by headway activities and is satisfied for realistic instances due to security concerns. On

the other hand, the first assumption is unlikely to be satisfied for realistic instances as it allows

for no buffer times in connecting trips. If it is not satisfied, the solution quality of Algorithm 1

depends on the durations fixed in line 10.

4 Iteration Scheme

As described in [Sch17], the re-optimization problems defined in Section 3 can be used in an

iterative scheme to modify an existing public transport plan. In theory, the three algorithms

ReLinePlanning, ReTimetabling and ReVehicleScheduling can be used in any order. How-

ever, not all concatenations of algorithms lead to improvements. In this section, we investigate

the influence of different iteration schemes on both the passenger-oriented and the cost-oriented

objective of the resulting public transport plan as described in Section 2.4. Remember that the

passenger-oriented objective is to minimize the travel time of all passengers on shortest paths

according to the timetable while the costs-oriented objective is to minimize the operational costs

of the corresponding vehicle schedule.

At first, we consider the influence of the individual algorithms on the travel time and the

operational costs. The influence of Algorithm ReVehicleScheduling can be determined most
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easily.

Lemma 12. Let (L, π,V) be a public transport plan and (L′, π′,V ′) the public transport plan

after applying Algorithm ReVehicleScheduling to (L, π,V). Then the operational costs do not

increase and the travel time is unchanged, i.e.,

cost(V ′) ≤ cost(V)

RSP(π′) = RSP(π).

Proof. Note that ReVehicleScheduling does not change the line plan or the timetable, i.e.,

L′ = L and π′ = π. Therefore, we get RSP(π′) = RSP(π). Additionally, ReVehicleScheduling

minimizes the operational costs and as V is a feasible solution of ReVehicleScheduling we get

cost(V ′) ≤ cost(V).

Algorithm ReTimetabling has a clear effect on the travel time while its effect on the operational

costs depends on their composition.

Lemma 13. Let (L, π,V) be a public transport plan and (L′, π′,V ′) the public transport plan

after applying Algorithm ReTimetabling to (L, π,V). Then the travel time does not increase,

i.e.,

RSP(π′) ≤ RSP(π).

If the duration based costs are neglected, i.e., for costtime = 0, the operational costs are not

changed, i.e.,

cost(V ′) = cost(V).

Proof. Note that Algorithm ReTimetabling does not change the line plan, i.e., L′ = L and the

composition of the vehicle routes in V ′ is the same as in V. However, the start and end times

of trips and connecting trips may change.

RSP(π) evaluates the travel time of all passengers on shortest path w.r.t timetable π and Al-

gorithm ReTimetabling sets the passenger weights w according to the same paths. As Algo-

rithm ReTimetabling optimizes the travel time of the passengers on these fixed paths, i.e.,
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Rfix(π′, w), and π is a feasible solution, we get

RSP(π) ≥ Rfix(π′, w).

By rerouting the passenger on optimal routes according to timetable π′ we get

RSP(π) ≥ Rfix(π′, w) ≥ RSP(π′).

When evaluating the costs of a public transport plan without regarding the duration-based costs

and without depots, we get

cost(V) =
∑
r∈V

costlen ·
(∑

trip
t∈r

lent +
∑

connecting trip
c∈r

lenc

)
+ costveh · |V|.

As the composition of the vehicle routes in V and V ′ are the same, i.e., they contain the same

trips and the same connecting trips, we get

cost(V) =
∑
r∈V

costlen ·
(∑

trip
t∈r

lent +
∑

connecting trip
c∈r

lenc

)
+ costveh · |V|

=
∑
r∈V ′

costlen ·
(∑

trip
t∈r

lent +
∑

connecting trip
c∈r

lenc

)
+ costveh · |V ′|

= cost(V ′).

Example 14 shows that for positive duration based costs, i.e., for costtime > 0, the operational

costs can be increased by Algorithm ReTimetabling.

Example 14. Consider an event-activity network as given in Figure 8. Suppose there are W

passengers transferring at station n1 from line l2 to line l1 and W passengers transferring from

line l1 to line l2 at station n2. Suppose that in the original timetable the departure of line l2

at station n2 is schedule shortly before the arrival of line l1 at the same station such that the

transfer takes almost a full planning period. Then by delaying the departure of line l2 at station

n2, the transfer time gets shorter improving the travel time of the passengers but the duration

of line l2 increases, leading to higher operational costs.
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l1

l2

WW

n1 n2

Figure 8: Excerpt of the event-activity network.

The effects of Algorithm ReLinePlanning are the most difficult to determine. First note that

the travel time can be increased as shown in Example 15.

Example 15. Consider the PTN and line plan given in Figure 9a. After applying Algorithm

ReLinePlanning we can get the situation depicted in Figure 9b, if the minimal frequency of

edge (n2, n3) is 1 and the fixed costs of a line are relatively low.

n1 n2 n3 n4

n5 n6 Lines

l1 = (n1, n2, n3, n4)

l2 = (n5, n2, n3, n6)

(a) Line plan before applying Algorithm ReLinePlanning.

n1 n2 n3 n4

n5 n6
Lines

l2 = (n5, n2, n3, n6)

l3 = (n1, n2)

l4 = (n3, n4)

(b) Line plan after applying Algorithm ReLinePlanning.

Figure 9: Line plans for Example 15.

This means that passengers driving from n1 to n4 have to transfer at station n2 and station n3

and therefore might have significantly higher travel times.

It remains to examine the influence of Algorithm ReLinePlanning on the operational costs.

Lemma 16. Let (L, π,V) be a public transport plan and (L′, π′,V ′) the public transport plan af-

ter applying Algorithm ReLinePlanning to (L, π,V). Then the operational costs do not increase,

i.e.,

cost(V ′) ≤ cost(V).
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Proof. We analyze the operational costs of (L′, π′,V ′) by looking at the different parts of the

operational costs separately. We write

cost(V) = costtime ·
∑
r∈V

duration(r) + costlen ·
∑
r∈V

len(r) + costveh · |V|

where duration(r) describes the duration of vehicle route r and len(r) its length.

From Definition 6 we get bijection b of the vehicle routes. Thus we get

|V| = |V ′|. (11)

The duration of a vehicle route r = ((p1, l1), . . . , (pn, ln)), is defined by the duration of its trips

and connecting trips, i.e.,

duration(r) =
n∑
i=1

(endpi,li − startpi,li) +
n−1∑
i=1

(startpi+1,li+1
− endpi,li) = endpn,ln − startp1,l1

Route r and route b(r) differ from one another as not all edges in r have to be covered by b(r).

Especially, the route might start later or end earlier. Thus we get

duration(r) ≥ duration(b(r)). (12)

The length of a vehicle route r = ((p1, l1), . . . , (pn, ln)), is defined by the length of its trips and

connecting trips.

len(r) =

n∑
i=1

lenli +

n−1∑
i=1

Dli,li+1

With Dli,li+1
being the length of a shortest path and the definition of P (r) in the beginning of

Section 3.3 we get

len(r) =
( n∑
i=1

lenli +

n−1∑
i=1

Dli,li+1

)
=
∑
e∈P (r)

lene.

From Definition 6 we get that the paths of all trips of b(r) are contained in the path P (r) but

connecting trips of b(r) use a shortest path. With the triangle inequality we get

len(r) ≥ len(b(r)). (13)
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Combining equations (11), (12) and (13) we get

cost(V) =
∑
r∈V

duration(r) +
∑
r∈V

len(r) + costveh · |V|

≤
∑
r∈V

duration(b(r)) +
∑
r∈V

len(b(r)) + costveh · |V ′|

= cost(V ′).

We now use Lemmas 12, 13 and 16 to formulate convergence results for iteratively applying the

Algorithms ReLinePlanning, ReTimetabling and ReVehicleScheduling. As the travel time

is more difficult to improve, we can only guarantee convergence for applying ReTimetabling

and ReVehicleScheduling although the objectives of both algorithms differ.

Theorem 17. Let P0 be a feasible public transport plan with travel time t0. Let Pi, i ∈ N+, be a

public transport plan derived from Pi−1 by applying either ReTimetabling or

ReVehicleScheduling and let ti be the travel time of Pi. Then the sequence of travel time

values (ti)i∈N decreases monotonically and converges.

Proof. As all feasible activity durations are positive, the sequence is bounded from below by 0.

From Lemmas 12 and 13 we get that the travel time is not increased by ReTimetabling while

ReVehicleScheduling has no influence on it. Therefore, (ti)i∈N is monotonic and bounded and

converges by the monotone convergence theorem, see e.g. [Sut09].

For the operational costs, we can guarantee convergence if duration based costs are neglected,

i.e., if costtime = 0.

Theorem 18. Let P0 be a feasible public transport plan with operational costs c0 where duration

based costs are neglected, i.e., with costtime = 0. Let Pi, i ∈ N+, be a public transport plan de-

rived from Pi−1 by applying either ReLinePlanning, ReTimetabling or ReVehicleScheduling

and let ci be the operational costs of Pi. Then the sequence of operational cost values (ci)i∈N

decreases monotonically and converges.

Proof. As all vehicle schedules have positive costs, the sequence is bounded from below by

0. From Lemmas 12, 13 and 16 we get that the operational costs are not increased by

ReLinePlanning and ReVehicleScheduling as well as ReTimetabling if duration based costs
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are neglected, i.e., if costtime = 0 is satisfied. Therefore, (ci)i∈N is monotonic and bounded and

converges by the monotone convergence theorem, see e.g. [Sut09].

Especially, we get convergence for travel time and costs if duration based costs are neglected,

i.e., if costtime = 0 is satisfied, and only ReTimetabling and ReVehicleScheduling are applied.

Corollary 19. Let P0 be a feasible public transport plan with travel time t0 and operational costs

c0 where duration based costs are neglected, i.e., costtime = 0 is satisfied. Let Pi, i ∈ N+, be a

public transport plan derived from Ti−1 by applying either ReTimetabling or

ReVehicleScheduling. Let ti and ci be the travel time and the operational costs of Pi, re-

spectively. Then both the sequence of travel time values (ti)i∈N and the sequence of operational

cost values (ci)i∈N decrease monotonically and converge.

Proof. The sequence (ti)i∈N converges by Theorem 17 and (ci)i∈N converges by Theorem 18.

5 Computational Experiments

We test the iterative scheme to modify an existing public transport plan on two different data

sets. The first one, grid, is a benchmark instance described in [FHSS17], while the second

one, regional, is a close-to real-world data set derived from the regional train system in Lower

Saxony, Germany. The public transportation network of grid is a 5×5 grid network consisting

of 25 stations and 40 edges. The PTN of regional consists of 35 stations and 36 edges. Both

networks are depicted in Figure 10.

(a) PTN of data set grid. (b) PTN of data set regional.

Figure 10: PTNs of data sets grid and regional.

We use data set grid as a case study with a fixed OD matrix described in [FHSS17]. For data

set regional we apply the algorithms to ten different demand scenarios and report the average

increases and decreases of the objectives.
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The computations are conducted on a compute server with an Intel(R) Xeon(R) X5675 CPU

@ 3.07 GHz and 132 GB of RAM.

To test the iterative algorithms, we at first compute an initial public transport plan using the

LinTim software framework, see [SAP+18]. Here, the cost model of line planning, see [CvDZ98,

Sch12], the standard periodic timetabling problem, see [SU89], and a cost-oriented vehicle

scheduling model without a depot, see [BK09], are used. The timetabling problem is solved

by a modulo simplex heuristic, see [GS13]. Afterwards, we apply one of the following iteration

schemes:

forward Iteratively compute a public transport plan by applying the Algorithms

ReLinePlanning, ReTimetabling and ReVehicleScheduling.

backward Iteratively compute a public transport plan by applying the Algorithms

ReVehicleScheduling, ReTimetabling and ReLinePlanning.

mixed Iteratively compute a public transport plan by applying the Algorithms ReLinePlanning,

ReTimetabling, ReVehicleScheduling and again ReTimetabling.

passenger convenience Iteratively compute a public transport plan by alternately applying

the Algorithms ReTimetabling and ReVehicleScheduling.

We use two different cost parameter sets for the computations, either normal which reflects a

close-to real-world cost evaluation or convergence which differs from normal by setting the

duration based costs to 0, i.e., setting costtime = 0. Note that due to Theorem 18, cost pa-

rameter set convergence guarantees the convergences of the operational costs. For each public

transport plan we compute the travel time on shortest paths according to the corresponding

timetable and the operational costs depending on the cost parameter set that was used for

the computation. Instead of the absolute values, we plot the relative values depending on the

travel time and operational costs of the initial public transport plan, respectively. For both

data sets, the runtime of each iteration is in the range of minutes. However using larger data

sets for long-distance networks increases the runtime dramatically as not only the network size

but also the trip length increases which both contribute to the problem size. Note that for

Algorithm ReTimetabling we use the current timetable as starting solution to speed up the

computation.
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(a) Iteration scheme forward.
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(b) Iteration scheme backward.
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(c) Iteration scheme mixed.

Figure 11: Applying different iteration schemes for data set grid with cost parameter set
normal.

For data set grid we compare the influence of the different iteration schemes for cost parameter

set normal on the convergence and the solution quality.

Figure 11 shows that although convergence is not guaranteed, both travel time and operational

costs do not change anymore after a few iterations. However, the travel time does not decrease

31



monotonically. Especially for iteration scheme backward, depicted in Figure 11b, the travel

time increases multiple times. Note that although for the operational costs monotonicity and

convergence is not guaranteed as duration based costs are not neglected, i.e., for costtime > 0,

the costs decrease monotonically for all iteration schemes considered here.

The solutions found by the different iteration schemes vary in respect to travel time and oper-

ational costs. While backward yields the highest operational cost decrease of 18%, the travel

time increases by 8%. On the other hand mixed yields a lower decrease of 5% of the initial

operational costs but the increase in travel time is much lower, with only 5%. Depending on the

preference corresponding to the trade-off between travel time and operational costs, both solu-

tions are interesting options. In contrast, the solution for iteration scheme forward is clearly

worse than the one for iteration scheme backward, as both the decrease in operational costs is

lower with 10% and the increase in travel time is higher with 15%.

Figure 12 shows the impact of convergence scheme backward on the line plan. The coverage

of the PTN edges decreases, yielding the large improvements in operational costs but also the

increase in travel time. While often lines are simply shortened, see, e.g. the orange dashed

line or stay the same, see, e.g. the dark blue dotted line, also new lines are formed. The cyan

dash-dotted line now directly connects station v6 to the stations v12, v17 and v22. In the initial

line plan there is at least one transfer necessary to connect these stations.
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(a) Initial solution.
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(b) After applying iteration scheme backward.

Figure 12: Line concepts of data set grid.

For data set regional, we get even better results when considering iteration scheme mixed

for the cost parameter sets normal and convergence. Although monotonically decreasing

costs are only guaranteed for cost parameter set convergence, Figure 13 shows that the costs
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(a) Cost parameter set normal.
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(b) Cost parameter set convergence

Figure 13: Applying iteration scheme mixed for data set regional with different cost parameter
sets.

decrease monotonically for both parameter sets. This can also be observed for data set grid,

see Figure 11, showing that in practice Algorithm ReTimetabling does not often increase the

costs even if duration based costs are considered. Furthermore, the costs decrease is even higher

than for data set grid with 24% decrease for parameter set normal and 25% for parameter set

convergence. Even though for both parameter sets the travel time does not decrease, the

increase is relatively low compared to the reduction in operational costs with 6% and 7% for

cost parameters sets normal and convergence, respectively. For parameter set normal there

even is one instance where the travel time is slightly reduced by 2% while the operational costs

are also reduced by 25%.

When considering iteration scheme passenger convenience with cost parameter set

convergence, as depicted in Figure 14, we see that both the travel time and the operational
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costs decrease monotonically as expected due to Corollary 19. Note that here only the first

two iterations are illustrated as no further changes occur in the later iterations. For data set

grid the improvement is relatively small with 1% decrease of travel time and 2% decrease in

operational costs. However, for data set regional the travel time is decreased significantly by

9% with a small improvement of the operational costs by 2%. This makes the solution clearly

preferable to the initial solution and makes for an interesting additional choice to the solution

found by iteration scheme mixed for regional with the same cost parameter set convergence

with lower costs but significantly higher travel time.
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(a) Data set grid.
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(b) Data set regional.

Figure 14: Applying iteration scheme passenger convenience with cost parameter set
convergence.

In order to investigate the influence of the initial solution on the quality of the solution found

the iteration schemes, we apply the iteration schemes forward, backward and mixed to two

different initial solutions for data set grid with cost parameter set normal. Initialization cost

is the initial solution described above, computed by using the cost model of line planning, a

periodic timetabling model and a standard vehicle scheduling model. Initialization direct uses

the direct travelers model of line planning, see [Bus98], combined with the same timetabling and

vehicle scheduling models. Figure 15 shows that the solutions derived from applying the iteration

schemes to initialization cost and initialization direct differ. Especially, the set of solutions found

for initialization direct is preferable to the set of solutions found for initialization cost as for

each solution derived from initialization cost there exists a strictly dominating solution derived

from initialization direct. However, the solution found by the iterative schemes are all similar in

travel time and operational costs, with average travel times varying from 23 to 25.8 and average

operational costs varying from 890 to 984, although the initial solutions differ a lot with average

travel times of 22.29 and 18.65 and average operational costs of 1144 and 2051.28, respectively.
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Figure 15 especially shows that the iteration schemes forward, backward and mixed are mainly

focused on minimizing operational costs instead of minimizing travel time.
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Figure 15: Comparing different initial solutions for iteration schemes forward, backward and
mixed on data set grid with cost parameter set normal.

6 Outlook

There are several possible extensions to the models presented in this paper. First of all, the

experiments show a clear tendency towards optimizing the cost, due to both vehicle scheduling

and line planning both using costs as an objective. But especially for line planning, multiple

possible models and objective functions are described in the literature. These could be adapted

to serve as the last step of Algorithm 1, replacing the cost-optimization. This may lead to more

balanced solutions, favouring the quality for the passengers.

Another possibility is to embed the iterative scheme in the eigenmodel approach discussed

in [Sch17]. The problems described here form the “inner circle” of this model, see Figure 16.

Therefore, it would be interesting to model the remaining problems that are not researched yet

to create an meta-model for public transport planning. Several paths in the eigenmodel, repre-

senting different sequential solution approaches, are already researched (e.g. [MS09, PSSS17]),

but there are still several challenges to discuss, considering new and already researched solution
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Figure 16: Algorithmic scheme called eigenmodel. Nodes represent algorithms while edges
represent possible concatenations of them. All possible sequential approaches to finding a
public transport plan are shown, where the algorithms presented above are depicted in black.
The classical sequential approach to public transport planning is depicted with dashed edges.
For more information, see [Sch17].

approaches. In the end it would be interesting to determine good paths in the eigenmodel which

approximate an integrated approach to public transport planning. One possibility would be to

use machine learning techniques in developing a meta-algorithm for the planning process.
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Integrated Planning in Public Transportation. In Gianlorenzo D’Angelo and Twan

Dollevoet, editors, 17th Workshop on Algorithmic Approaches for Transportation

Modelling, Optimization, and Systems (ATMOS 2017), volume 59 of OpenAc-

cess Series in Informatics (OASIcs), pages 17:1–17:16, Dagstuhl, Germany, 2017.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[RN09] M. Rittner and K. Nachtigall. Simultane Liniennetz- und Fahrlagenoptimierung.

Der Eisenbahningenieur, 2009.

[SAP+18] A. Schiewe, S. Albert, J. Pätzold, P. Schiewe, A. Schöbel, and J. Schulz. LinTim:
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[SS15b] M. Schmidt and A. Schöbel. Timetabling with passenger routing. OR spectrum,

37(1):75–97, 2015.
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