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Preface

In recent decades radial basis functions have proven to be very useful

in solving problems in Scientific Computing which arise in application

areas like

• Computational Mechanics, including elasticity and stress analysis,

• Fluid dynamics, including shallow water equations, reaction-diffusion

and convection-advection problems,

• Computer Graphics and image analysis, including shape modeling and

animated deformations, and

• Economics, including pricing of options.

These seemingly unrelated applications are linked via certain common

mathematical concepts and problems like

• Recovery of functions from scattered data,

• Meshless methods solving partial differential equations (PDEs),

• Ill–posed and inverse problems,

• Neural networks, and

• Learning algorithms

which can be handled easily and successfully by radial basis functions.

The mathematical reasons for this are covered by books of M.D. Buhmann

[Buh03] and H. Wendland [Wen05] providing the necessary theoretical

background, while a new book of G.E. Fasshauer [Fas07] additionally

covers MATLAB implementations of algorithms.

In contrast to these, this text focuses almost entirely on applications,

with the goal of helping scientists and engineers apply radial basis func-

tions successfully. This book is intended to meet this need. We do not

assume that readers are familiar with the mathematical peculiarities

of radial basis functions. We do, however, assume some knowledge of

vi



Preface vii

the partial differential equations arising in applications, and we include

many computational examples without dealing with implementation is-

sues.

In preparing this text, we soon realized that it was impossible to

cover all of the interesting techniques and applications, as summarized

in a recent Acta Numerica article [SW06]. We decided to leave out

neural networks and kernel-based learning algorithms completely, since

the latter currently supersede the former and are covered in several books

including applications [CST00, SS02, STC04]. Instead we focused on

meshless methods

• for reconstruction of multivariate functions from scattered data, and

• for solving partial differential equations.

Even within these seemingly small areas we had to confine ourselves

to a few core techniques which include Kansa’s method, the method of

fundamental solutions, the method of particular solutions, etc. These

techniques allowed us to extend the radial basis functions to numeri-

cally solving a large class of partial differential equations without mesh

generation. In particular, we devoted a great deal of our effort to the

derivation of particular solutions using radial basis functions for certain

differential operators. Furthermore, this book should enable the reader

to follow the references to other methods not covered here and to keep

up with the pace of new developments in the area. To this end, we

included some unpublished material at various places.

This manuscript has been used as lecture notes to teach at the grad-

uate special topic courses in scientific computing at the University of

Nevada, Las Vegas (UNLV) during 2004–2005 and the University of

Southern Mississippi (USM) during 2006–2007. During the course of

teaching these classes, we have been fortunate that our students have

enthusiastically given us a great amount of feedback and have allowed

us to constantly make revision of the content of the book. It is worth

mentioning that, due to these courses, two Master’s theses in meshless

methods were produced at UNLV and two potential Ph.D. theses in a

similar topic at USM are currently being done. We are pleased to see

some of our students were able to adopt new concepts they learn from

the book, and had turned them into research projects, and presenting

their results in conferences and conference proceedings. As such, we be-

lieve the book is suitable for a one year graduate or post-graduate course

in the area of scientific computing.
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Introduction

1.1 Radial Basis Functions

Scientific Computing with Radial Basis Functions focuses on the recovery

of unknown functions from known data. The functions are multivariate

in general, and they may be solutions of partial differential equations

satisfying certain additional conditions. However, the reconstruction

of multivariate functions from data may cause problems if the space

furnishing the “trial” functions is not fixed in advance, but is data–

dependent [Mai56]. Finite elements (see e.g. [Bra01, BS02]) provide

such data–dependent spaces. They are defined as piecewise polynomial

functions on regular triangularizations.

To avoid triangularizations, re-meshing and other geometric program-

ming efforts, meshless methods have been suggested [BKO+96]. This

book focuses on a special class of meshless techniques for generating

data–dependent spaces of multivariate functions. The spaces are spanned

by shifted and scaled instances of radial basis functions (RBF) like

the multiquadric [Har71]

x 7→ Φ(x) :=
√

1 + ‖x‖2
2, x ∈ IRd

or the Gaussian

x 7→ Φ(x) := exp(−‖x‖2
2), x ∈ IRd.

These functions are multivariate, but reduce to a scalar function of the

Euclidean norm ‖x‖2 of their vector argument x, i.e. they are radial in

the sense

Φ(x) = φ(‖x‖2) = φ(r), x ∈ IRd

for the “radius” r = ‖x‖2 with a scalar function φ : IR → IR. This

1
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makes their use for high–dimensional reconstruction problems very effi-

cient, and it induces invariance under orthogonal transformations.

Recovery of functions from meshless data is then made by trial func-

tions u which are linear combinations

u(x) :=
n∑

k=1

αkφ(‖x − yk‖2) (1.1.1)

of translates φ(‖x − yk‖2) of a single radial basis function. The trans-

lations are specified by vectors y1, . . . ,yn of IRd, sometimes called cen-

ters or trial points, without any special assumptions on their number

or geometric position. This is why the methods of this book are truly

“meshless.” In certain cases one has to add multivariate polynomials in

x to the linear combinations in (1.1.1), but we postpone these details.

Our main goal is to show how useful radial basis functions are in appli-

cations, in particular for solving partial differential equations (PDE) of

science and engineering. Therefore we keep the theoretical background

to a minimum, referring to recent books [Buh03, Wen05, Fas07] on ra-

dial basis functions whenever possible. Furthermore, we have to ignore

generalizations of radial basis functions to kernels. These arise in many

places, including probability and learning theory, and they are surveyed

in [SW06]. The rest of this chapter gives an overview of the applications

we cover in this book.

1.2 Multivariate Interpolation and Positive Definiteness

The simplest case of reconstruction of a d–variate unknown function u∗

from data occurs when only a finite number of data in the form of val-

ues u∗(x1), . . . , u
∗(xm) at arbitrary locations x1, . . . ,xm in IRd forming

a set X := {x1, . . . ,xm} are known. In contrast to the n trial cen-

ters y1, . . . ,yn of (1.1.1), the m data locations x1, . . . ,xm are called

test points or collocation points in later applications. To calcu-

late a trial function u of the form (1.1.1) which reproduces the data

u∗(x1), . . . , u
∗(xm) well, we have to solve the m× n linear system

n∑

k=1

αkφ(‖xi − yk‖2) ≈ u∗(xi), 1 ≤ i ≤ m (1.2.1)

for the n coefficients α1, . . . , αn. Matrices with entries φ(‖xi−yk‖2) will

occur at many places in the book, and they are called kernel matrices

in machine learning.

Of course, users will usually make sure that m ≥ n holds by picking at
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least as many test points as trial centers, but the easiest case will occur

when the centers yk of trial functions (1.1.1) are chosen to be identical

to the data locations xj for 1 ≤ j ≤ m = n. If there is no noise in the

data, it then makes sense to reconstruct u∗ by a function u of the form

(1.1.1) by enforcing the exact interpolation conditions

u∗(xj) =

n∑

k=1

αjφ(‖xj − xk‖2), 1 ≤ j ≤ m = n. (1.2.2)

This is a system of m linear equations in n = m unknowns α1, . . . , αn

with a symmetric kernel matrix

AX := (φ(‖xj − xk‖2))1≤j,k≤m (1.2.3)

In general, solvability of such a system is a serious problem, but one of

the central features of kernels and radial basis functions is to make this

problem obsolete via

Definition 1.2.4 A radial basis function φ on [0,∞) is positive defi-

nite on IRd, if for all choices of sets X := {x1, . . . ,xm} of finitely many

points x1, . . . ,xm ∈ IRd and arbitrary m the symmetric m×m matrices

AX of (1.2.3) are positive definite.

Consequently, solvability of the system (1.2.2) is guaranteed if φ satis-

fies the above definition. This holds for several standard radial basis

functions provided in Table 1.1, but users must be aware that problems

may occur when using other scalar functions such as exp(−r). A more

detailed list of radial basis functions will follow later on page 15.

Name φ(r)

Gaussian exp(−r2)

Inverse multiquadrics (1 + r2)β/2, β < 0

Matern/Sobolev Kν(r)rν , ν > 0

Table 1.1. Positive definite radial basis functions

But there are some very useful radial basis functions which fail to be

positive definite. In such cases one has to add polynomials of a certain

maximal degree to the trial functions of (1.1.1). Let P d
Q−1 denote the

space spanned by all d-variate polynomials of degree up to Q − 1, and

pick a basis p1, . . . , pq of this space. The dimension q then comes out to



4

be q =
(
Q−1+d

d

)
, and the trial functions of (1.1.1) are augmented to

u(x) :=

n∑

k=1

αkφ(‖x − yk‖2) +

q∑

ℓ=1

βℓpℓ(x). (1.2.5)

Now there are q additional degrees of freedom, but these are removed

by q additional homogeneous equations

n∑

k=1

αkpℓ(xk) = 0, 1 ≤ ℓ ≤ q (1.2.6)

restricting the coefficients α1, . . . , αn in (1.2.5). Unique solvability of

the extended system

n∑

k=1

αkφ(‖xj − yk‖2) +

q∑

ℓ=1

βℓpℓ(xj) = u(xj), 1 ≤ j ≤ n

n∑

k=1

αkpℓ(xk) = 0, 1 ≤ ℓ ≤ q

(1.2.7)

is assured if

p(xk) = 0 for all 1 ≤ k ≤ n and p ∈ P d
Q−1 implies p = 0. (1.2.8)

This is the proper setting for conditionally positive definite radial

basis functions of order Q, and in case Q = 0 it will coincide with what

we had before, since then q = 0 holds, (1.2.6) is empty, and (1.2.5) re-

duces to (1.1.1). We leave details of this to the next chapter, but we

want the reader to be aware of the necessity of adding polynomials in

certain cases. Table 1.2 provides a selection of the most useful condi-

tionally positive definite functions, and again we refer to Table 1.3 on

page 15 for other radial basis functions.

Name φ(r) Q condition

multiquadric (−1)⌈β/2⌉(1 + r2)β/2 ⌈β/2⌉ β > 0, β /∈ 2IN

polyharmonic (−1)⌈β/2⌉rβ ⌈β/2⌉ β > 0, β /∈ 2IN

polyharmonic (−1)1+β/2rβ log r 1 + β/2 β > 0, β ∈ 2IN

thin–plate spline r2 log r 2

Table 1.2. Conditionally positive definite radial basis functions
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1.3 Stability and Scaling

Solving the system (1.2.2) is easy to program, and it is always possible

if φ is a positive definite radial basis function. But it also can cause

practical problems, since it may be badly conditioned and is non–sparse

in case of globally non–vanishing radial basis functions. To handle bad

conditions of moderately large systems, one can rescale the radial basis

function used, or one can calculate an approximate solution by solving a

properly chosen subsystem. Certain decomposition and preconditioning

techniques are also possible, but details will be postponed to the next

chapter.

In absence of noise, systems of the form (1.2.2) or (1.2.7) will in most

cases have a very good approximate solution, because the unknown

function u providing the right-hand side data can usually be well ap-

proximated by the trial functions used in (1.1.1) or (1.2.5). This means

that even for high condition numbers there is a good reproduction of the

right-hand side by a linear combination of the columns of the matrix.

The coefficients are in many cases not very interesting, since users want

to have a good trial function recovering the data well, whatever the co-

efficients are. Thus users can apply specific numerical techniques like

singular value decomposition or optimization algorithms to get

useful results in spite of bad conditions. We shall supply details in the

next chapter, but we advise users not to use primitive solution methods

for their linear systems.

For extremely large systems, different techniques are necessary. Even

if a solution can be calculated, the evaluation of u(x) in (1.1.1) at

a single point x has O(n) complexity, which is not tolerable in gen-

eral. This is why some localization is necessary, cutting the evaluation

complexity at x down to O(1). At the same time, such a localization

will make the system matrix sparse, and efficient solution techniques

like preconditioned conjugate gradients become available. Finite ele-

ments achieve this by using a localized basis, and the same method

also works for radial basis functions, if scaled functions with compact

support are used. Fortunately, positive definite radial functions with

compact support exist for all space dimensions and smoothness require-

ments [Wu95, Wen95, Buh98]. The most useful example is Wendland’s

function

φ(r) =

{
(1 − r)4(1 + 4r), 0 ≤ r ≤ 1,

0, r ≥ 1,

which is positive definite in IRd for d ≤ 3 and twice differentiable in x
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when r = ‖x‖2 (see Table 1.1 and other cases in Table 1.3 on page 15).

Other localization techniques use fast multipole methods [BGP96,

BG97] or a partition of unity [Wen02]. This technique originated from

finite elements [MB96, BM97], where it served to patch local finite

element systems together. It superimposes local systems in general,

using smooth weight functions, and thus it also works well if the local

systems are made up using radial basis functions.

However, all localization techniques require some additional geometric

information, e.g. a list of centers yk which are close to any given point

x. Thus the elimination of triangulations will, in case of huge systems,

bring problems of Computational Geometry through the back door.

A particularly local interpolation technique, which does not solve any

system of equations but can be efficiently used for any local function

reconstruction process, is the method of moving least squares [LS81,

Lev98, Wen01]. We have to ignore it here. Chapter 2 will deal with

radial basis function methods for interpolation and approximation in

quite some detail, including methods for solving large systems in Section

2.8.

1.4 Solving Partial Differential Equations

With some modifications, the above observations will carry over to solv-

ing partial differential equations. In this introduction, we confine our-

selves to a Poisson problem on a bounded domain Ω ⊂ IR3 with a

reasonably smooth boundary ∂Ω. It serves as a model case for more

general partial differential equations of science and engineering that we

have in mind. If functions fΩ on the domain Ω and fΓ on the boundary

Γ := ∂Ω are given, a function u on Ω ∪ Γ with

−∆u = fΩ in Ω

u = fΓ in Γ
(1.4.1)

is to be constructed, where ∆ is the Laplace operator

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

in Cartesian coordinates x = (x1, x2, x3)
T ∈ IR3. This way the prob-

lem is completely posed in terms of evaluations of functions and deriva-

tives, without any integrations. However, this requires taking second

derivatives of u, and a careful mathematical analysis shows that there

are cases where this assumption is questionable. It holds only under
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certain additional assumptions, and this is why the above formulation is

called a strong form. Except for the next section, we shall deal exclu-

sively with methods for solving partial differential equations in strong

form.

A weak form is obtained by multiplication of the differential equation

by a smooth test function v with compact support within the domain

Ω. Using Green’s formula (a generalization of integration by parts), this

converts to

−
∫

Ω

v · (∆u∗)dx =

∫

Ω

v · fΩdx

︸ ︷︷ ︸
=:(v,fΩ)L2(Ω)

=

∫

Ω

(∇v) · (∇u∗)dx
︸ ︷︷ ︸

=:a(v,u∗)

or, in shorthand notation, to an infinite number of equations

a(v, u∗) = (v, fΩ)L2(Ω) for all test functions v

between two bilinear forms, involving two local integrations. This tech-

nique gets rid of the second derivative, at the cost of local integration,

but with certain theoretical advantages we do not want to explain here.

1.5 Comparison of Strong and Weak Problems

Concerning the range of partial differential equation techniques we han-

dle in this book, we restrict ourselves to cases we can solve without

integrations, using radial basis functions as trial functions. This im-

plies that we ignore boundary integral equation methods and finite el-

ements as numerical techniques. For these, there are enough books on

the market. Since there is no integration, we need no “background” or

“integration” mesh, and some authors call such methods “truly mesh-

less”.

On the analytical side, we shall consider only problems in strong

form, i.e. where all functions and their required derivatives can be eval-

uated pointwise. Some readers might argue that this rules out too many

important problems. Therefore we want to provide some arguments in

favor of our choice. Readers without a solid mathematical background

should skip over these remarks.

First, we do not consider the additional regularity needed for a strong

solution to be a serious drawback in practice. Useful error bounds and

rapidly convergent methods will always need regularity assumptions on

the problem and its solutions. Thus our techniques should be compared

to spectral methods or the p–technique in finite elements. If a solution
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of a weak Poisson problem definitely is not a solution of a strong problem,

the standard finite element methods will not converge with reasonable

orders anyway, and we do not want to compete in such a situation.

Second, the problems to be expected from taking a strong form instead

of a weak form can in many cases be eliminated. To this end, we look

at those problems somewhat more closely.

The first case comes from domains with incoming corners. Even if

the data functions fΩ and fΓ are smooth, there may be a singularity of

u∗ at the boundary. However, this singularity is a known function of the

incoming corner angle, and by adding an appropriate function to the set

of trial functions, the problem can be overcome.

The next problem source is induced by non–smooth data functions.

Since these are fixed, the exceptional points are known in principle, and

precautions can be taken by using nonsmooth trial functions with sin-

gularities located properly. For time–dependent problems with moving

boundaries or discontinuities, meshless methods can be adapted very

flexibly, but this is a research area which is beyond the scope of this

book.

The case of data functions which do not allow point evaluations (i.e.

fΩ ∈ L2(Ω) or even distributional data for the Poisson problem) and

still require integration can be ruled out too, because on the one hand

we do not know a single case from applications, and on the other hand

we would like to know how to handle this case with a standard finite

element code, which usually integrates by applying integration formulae.

The latter can never work for L2 functions.

Things are fundamentally different when applications in science or

engineering insist on distributional data. Then weak forms are un-

avoidable, and we address this situation now.

Many of the techniques here can be transferred to weak forms, if

absolutely necessary. This is explained to some extent in [HS05] for

a class of symmetric meshless methods. The meshless local Petrov–

Galerkin (MLPG) method [AZ98a, AZ98b, AZ00] of S.N. Atluri and

collaborators is a good working example of a weak meshless technique

with plenty of successful applications in engineering, Because it is both

weak and unsymmetric, its mathematical analysis is hard, and thus it

only recently was put on a solid theoretical foundation [Sch06c].

Finally, mixed weak and strong problems are possible [HS05, Sch06c],

confining the weak approach to areas where severe regularity problems

occur or data are distributional. Together with adaptivity, mixed meth-

ods will surely prove useful in the future.
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1.6 Collocation Techniques

This approach applies to problems in strong form and does not require

numerical integration. Consequently, it avoids all kinds of meshes. In

order to cope with scattered multivariate data, it uses methods based

on radial basis function approximation, generalizing the interpolation

problem described in Section 1.2. Numerical computations indicate that

these meshless methods are ideal for solving complex physical problems

in strong form on irregular domains. Section 3 will select some typical

examples out of a rich literature, but here we want to sketch the basic

principles.

Consider the following linear Dirichlet boundary value problem:

Lu = fΩ in Ω ⊂ IRd

u = fΓ on Γ := ∂Ω
(1.6.1)

where L is a linear differential or integral operator. Collocation is a

technique that interprets the above equations in a strong pointwise sense

and discretizes them by imposing finitely many conditions

Lu(xΩ
j ) = fΩ(xΩ

j ), xΩ
j ∈ Ω, 1 ≤ j ≤ mΩ

u(xΓ
j ) = fΓ(xΓ

j ), xΓ
j ∈ Γ 1 ≤ j ≤ mΓ

(1.6.2)

on m := mΩ +mΓ test points in Ω and Γ. Note that this is a general-

ization of a standard multivariate interpolation problem as sketched in

Section 1.2 and to be described in full generality in the following chap-

ter. The exact solution u∗ of the Dirichlet problem (1.6.1) will satisfy

(1.6.2), but there are plenty of other functions u which will also satisfy

these equations. Thus one has to fix a finite-dimensional space U of

trial functions to pick solutions u of (1.6.2) from, and it is reasonable

to let U be at least m-dimensional. But then the fundamental prob-

lem of all collocation methods is to guarantee solvability of the linear

system (1.6.2) when restricted to trial functions from U . This problem

is hard to solve, and therefore collocation methods have not attracted

much attention so far from the mathematical community.

However, as we know from Chapter 1, kernel-based trial spaces al-

low nonsingular matrices for multivariate interpolation problems, and

so there is some hope that kernel-based trial spaces also serve well for

collocation. Unfortunately, things are not as easy as for interpolation,

but they proved to work well in plenty of applications.

The first attempt to use radial basis functions to solve partial differ-

ential equations is due to Ed Kansa [Kan86]. The idea is to take trial
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functions of the form (1.1.1) or (1.2.5), depending on the order of the

positive definiteness of the radial basis function used. For positive q one

also has to postulate (1.2.6), and thus one should take n := m + q to

arrive at a problem with the correct degrees of freedom. The collocation

equations come out in general as

n∑

k=1

αk∆φ(‖xΩ
j − yk‖2) +

q∑

ℓ=1

βℓ∆pℓ(x
Ω
j ) = fΩ(xΩ

j ), 1 ≤ j ≤ mΩ

n∑

k=1

αkφ(‖xΓ
j − yk‖2) +

q∑

ℓ=1

βℓpℓ(x
Γ
j ) = fΓ(xΓ

j ), 1 ≤ j ≤ mΓ

n∑

k=1

αkpℓ(yk) + 0 = 0, 1 ≤ ℓ ≤ q,

(1.6.3)

forming a linear unsymmetric n× n = (mΩ +mΓ + q)× (mΩ +mΓ + q)

system of equations. In all known applications, the system is nonsingu-

lar, but there are specially constructed cases [HS01] where the problem

is singular.

A variety of experimental studies, e.g. by Kansa [Kan90a, Kan90b],

Golberg and Chen [GCK96], demonstrated this technique to be very

useful for solving partial differential and integral equations in strong

form. Hon et. al. further extended the applications to the numeri-

cal solutions of various ordinary and partial differential equations in-

cluding general initial value problems [HM97], the nonlinear Burgers

equation with a shock wave [HM98], the shallow water equation

for tide and current simulation in domains with irregular boundaries

[Hon93], and free boundary problems like the American option

pricing [HM99, Hon02]. These cases will be reported in Chapter 3.

Due to the unsymmetry, the theoretical possibility of degeneration, and

the lack of a seminorm-minimization in the analytic background, a the-

oretical justification is difficult but was provided recently [Sch07b] for

certain variations of the basic approach.

The lack of symmetry may be viewed as a bug, but it also can be

seen as a feature. In particular, the method does not assume ellipticity

or self-adjointness of differential operators. Thus it applies to a very

general class of problems, as many applications show.

On the other hand, symmetry can be brought back again by a suitable

change of the trial space. In the original method, there is no connection

between the test points xΩ
j , xΓ

j and the trial centers yk. If the trial

points are dropped completely, one can recycle the test points to define
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new trial functions by

u(x) :=

mΩ∑

i=1

αΩ
i ∆φ(‖x−xΩ

i ‖2)+

mΓ∑

j=1

αΓ
j φ(‖x−xΓ

j ‖2)+

q∑

ℓ=1

βℓpℓ(x) (1.6.4)

providing the correct number n := mΩ +mΓ + q of degrees of freedom.

Note how the test points xΩ
i and xΓ

j lead to different kinds of trial

functions, since they apply “their” differential or boundary operator to

one of the arguments of the radial basis function.

The collocation equations now come out as a symmetric square linear

system with block structure. If we define vectors

fΩ := (fΩ(xΩ
1 ), . . . , fΩ(xΩ

mΩ
))T ∈ IRmΩ

fΓ := (fΓ(xΓ
1 ), . . . , fΓ(xΓ

mΓ
))T ∈ IRmΓ

0q := (0, . . . , 0)T ∈ IRq

aΩ := (αΩ
1 , . . . , α

Ω
mΩ

)T ∈ IRmΩ

aΓ := (αΓ
1 , . . . , α

Γ
mΓ

)T ∈ IRmΓ

bq := (β1, . . . , βq)
T ∈ IRq,

we can write the system with a slight abuse of notation as



∆2φ(‖xΩ
r − xΩ

i ‖2) ∆φ(‖xΩ
r − xΓ

j ‖2) ∆pℓ(x
Ω
r )

∆φ(‖xΓ
s − xΩ

i ‖2) φ(‖xΓ
s − xΓ

j ‖2) pℓ(x
Γ
s )

∆pt(x
Ω
i ) pt(x

Γ
j ) 0






aΩ

aΓ

bq


 =




fΩ

fΓ

0q




where indices in the submatrices run over

1 ≤ i, r ≤ mΩ

1 ≤ j, s ≤ mΓ

1 ≤ ℓ, t ≤ q.

The first set of equations arises when applying ∆ to (1.6.4) on the domain

test points xΩ
r . The second is the evaluation of (1.6.4) on the boundary

test points xΓ
s . The third is a natural generalization of (1.2.6) to the

current trial space. Note that the system has the general symmetric

form 


AΩ,Ω AΩ,Γ PΩ

AΩ,ΓT
AΓ,Γ PΓ

PΩT
PΓT

0q×q








aΩ

aΓ

bq



 =




fΩ

fΓ

0q



 (1.6.5)

with evident notation when compared to the previous display.

Under weak assumptions, such matrices are nonsingular [Wu92, Isk95]

because they arise as Hermite interpolation systems generalizing (1.2.2).

The approach is called symmetric collocation and has a solid math-

ematical foundation [FS98b, FS98a] making use of the symmetry of the
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discretized problem. We provide specific applications in Chapter 3 and

some underlying theory in Section 2.2.

1.7 Method of Fundamental Solutions

This method is a highly effective technique for solving homogeneous

differential equations, e.g. the potential problem (1.4.1) with fΩ = 0.

The basic idea is to use trial functions that satisfy the differential equa-

tion and to superimpose the trial functions in such a way that the ad-

ditional boundary conditions are satisfied with sufficient accuracy. It

reduces a homogeneous partial differential equation problem to an ap-

proximation or interpolation problem on the boundary by fitting the

data on the boundary. Since fundamental solutions are special homoge-

neous solutions which are well-known and easy to implement for many

practically important differential operators, the method of fundamental

solutions is a relatively easy way to find the desired solution of a given

homogeneous differential equation with the correct boundary values.

For example, the function uy(x) := ‖x− y‖−1
2 satisfies (∆uy)(x) = 0

everywhere in IR3 except for x = y, where it is singular. But if points

y1, . . . ,yn are placed outside the domain Ω, any linear combination u

of the uy1 , . . . , uyn
will satisfy ∆u = 0 on all of Ω. Now the freedom

in the coefficients can be used to make u a good approximation to fΓ

on the boundary. For this, several methods are possible, but we do not

want to provide details here. It suffices to see that we have got rid of

the differential equation, arriving at a plain approximation problem on

the boundary of Ω.

The method of fundamental solutions was first proposed by Kupradze

and Aleksidze [KA64b] in 1964. During the past decades, the method

has re-emerged as a popular boundary-type meshless method and has

been applied to solve various science and engineering problems. One

of the reasons for the renewed interest for this method is that it has

been successfully extended to solve inhomogeneous and time–dependent

problems. As a result, the method now is applicable to a larger class of

partial differential equations. Furthermore, it does not require numerical

integration and is “truly meshless” in the sense that no tedious domain

or boundary mesh is necessary. Hence the method is extremely simple

to implement, making it especially attractive to scientists and engineers

working in applications.

In many cases, e.g. for the potential equation, the underlying math-

ematical analysis has a maximum principle [PW67, Jos02] for homo-
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geneous solutions, and then the total error is bounded by the error on

the boundary, which can be evaluated easily. Furthermore, adaptive

versions are possible, introducing more trial functions to handle places

where the boundary error is not tolerable. In very restricted cases, con-

vergence of these methods can be proven to be spectral (i.e. faster than

any fixed order), and for “smooth” application problems this technique

shows an extremely good convergence behavior in practice.

This book is the first to give a comprehensive treatment of the method

of fundamental solutions (MFS). The connection to radial basis func-

tion techniques is that fundamental solutions of radially invariant dif-

ferential operators like the Laplace or the Helmholtz operator have ra-

dial form around a singularity, as in the above case. For example, one

of the most widely used radial basis functions, the thin–plate spline

φ(r) := r2 log r is the fundamental solution at the origin to the thin–

plate equation ∆2u = 0 in IR2.

Methods which solve homogeneous equations by superposition of gen-

eral solutions and an approximation on the boundary have quite some

history, dating back to Trefftz [Tre26]. In particular, the work of L. Col-

latz [MNRW91] contains plenty of examples done in the 1960’s. Later,

this subject was taken up again and called Boundary Knot Method

[CT00, Che02, CH03, HC03], but we stick to the Method of Fundamen-

tal Solutions here. A recent technique [Sch07c] for solving homogeneous

problems is based on singularity–free kernels. It has a full mathematical

background theory, but is still rather special and under investigation.

1.8 Method of Particular Solutions

Inhomogeneous differential equations with linear differential operators

L can be reduced to homogeneous cases, if trial functions uj are used

for which Luj = fj is known. If Lu = fΩ is to be solved, a good

approximation f to fΩ by a linear combination of the fj will have the

form f = Lu with u being a linear combination of the uj , using the same

coefficients. This is the Method of Particular Solutions (MPS). It

reduces the solution of an inhomogeneous differential equation to an

approximation problem for the inhomogeneity.

After this first stage, Lu = f is close to fΩ, and the original problem

Lu = fΩ can be replaced by a homogeneous problem due to

L(u∗ − u) ≈ fΩ − f ≈ 0,

and then the Method of Fundamental Solutions (MFS) can be
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applied. The approximation of fΩ by f can be done by interpolation or

approximation techniques of the previous sections, provided that the fj

are translates of radial basis functions.

Inhom. PDE
MPS⇒

{
App. in interior

Homog. PDE
MFS⇒ App. on boundary

This is how the major techniques of this book are related. For the most

important differential operators and radial basis functions, we provide

useful (uj, fj) pairs with Luj = fj and show their applications.

1.9 Time–dependent Problems

In the final chapter, we extend the method of fundamental solutions and

the method of particular solutions to solving time–dependent problems.

A common feature of the methods in this chapter is that a given time–

dependent problem is reduced to an inhomogeneous modified Helmholtz

equation through the use of two basic techniques:

• Laplace transforms and

• time–stepping algorithms.

Using the Laplace transform, the given time–dependent problem can be

solved in one step in Laplace space and then converted back to the orig-

inal time space using the inverse Laplace transform. By time-stepping,

the given time–dependent problem is transformed into a sequence of

modified Helmholtz equations which in turn can be solved by the nu-

merical procedures described in the previous chapters. In the parabolic

case, we consider both linear and nonlinear heat equations. In the hyper-

bolic case, we only consider the wave equation using the time-stepping

algorithm. Readers are encouraged to apply this approach to solve more

challenging time–dependent problems.

1.10 Lists of Radial Basis Functions

Table 1.3 shows a selection of the most popular radial basis functions

φ(r) with non–compact support. We provide the minimal order Q of

conditional positive definiteness and indicate the range of additional

parameters.

Classes of compactly supported radial basis functions were pro-

vided by Wu [Wu95], Wendland [Wen95], and Buhmann [Buh98]. We list
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Name φ(r) Q condition

Gaussian exp(−r2) 0

Matern rνKν(r) 0 ν > 0

inverse multiquadric (1 + r2)β/2 0 β < 0

multiquadric (−1)⌈β/2⌉(1 + r2)β/2 ⌈β/2⌉ β > 0, β /∈ 2IN

polyharmonic (−1)⌈β/2⌉rβ ⌈β/2⌉ β > 0, β /∈ 2IN

polyharmonic (−1)1+β/2rβ log r 1 + β/2 β > 0, β ∈ 2IN

Table 1.3. Global RBFs

a selection of Wendland’s functions in Table 1.4. These are always pos-

itive definite up to a maximal space dimension dmax, and have smooth-

ness Ck as indicated in the table. Their polynomial degree is minimal for

given smoothness, and they have a close connection to certain Sobolev

spaces.

φ(r) k dmax

(1 − r)2+ 0 3

(1 − r)4+(4r + 1) 2 3

(1 − r)6+(35r2 + 18r + 3) 4 3

(1 − r)8+(32r3 + 25r2 + 8r + 1) 6 3

(1 − r)3+ 0 5

(1 − r)5+(5r + 1) 2 5

(1 − r)7+(16r2 + 7r + 1) 4 5

Table 1.4. Selection of Wendland’s compactly supported radial basis

functions
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Basic Techniques for Function Recovery

This chapter treats a basic problem of Scientific Computing: the recov-

ery of multivariate functions from discrete data. We shall use radial

basis functions for this purpose, and we shall confine ourselves to re-

construction from strong data consisting of evaluations of the function

itself or its derivatives at discrete points. Recovery of functions from

weak data, i.e. from data given as integrals against test functions, is a

challenging research problem [Sch06b, Sch06c], but it has to be ignored

here. Note that weak data require integration, and we want to avoid

unnecessary background meshes used for this purpose.

2.1 Interpolation of Lagrange Data

Going back to Section 1.2, we assume data values y1, . . . , ym ∈ IR to be

given, which are supposed to be values yk = u∗(xk) of some unknown

function u∗ at scattered points x1, . . . ,xm in some domain Ω in IRd. We

then pick a positive definite radial basis function φ and set up the linear

system (1.2.2) of m equations for the m coefficients α1, . . . , αm of the

representation (1.1.1) where n = m and yk = xk for all k. In case of

conditionally positive radial basis functions, we have to use (1.2.5) and

add the conditions (1.2.6).

In Figure 2.1 we have 150 scattered data points in [−3, 3]2 in which

we interpolate the MATLAB peaks function (top right). The next row

shows the interpolant using Gaussians and the absolute error. The lower

row shows MATLAB’s standard technique for interpolation of scattered

data using the griddata command. The results are typical for such

problems: radial basis function interpolants recover smooth functions

very well from a sample of scattered values, provided that the values are

noiseless and the underlying function is smooth.

17
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Fig. 2.1. Interpolation by radial basis functions

The ability of radial basis functions to deal with arbitrary point lo-

cations in arbitrary dimensions is very useful when geometrical objects

have to be constructed, parametrized, or warped, see e.g. [ADR94,

CFB97, NFN00, CBC+01, OBS03, RTSD03, WK05, BK05]. In par-

ticular, one can use such transformations to couple incompatible finite

element codes [ABW06].

Furthermore, interpolation of functions has quite some impact on

methods solving partial differential equations. In Chapter 5 we shall

solve inhomogeneous partial differential equations by interpolating the

right-hand sides by radial basis functions which are related to particular

solutions of the partial differential equation in question.

Another important issue is the possibility parametrizing spaces of

translates of kernels not via coefficients, but via function values at the

translation centers. This simplifies meshless methods “constructing

the approximation entirely in terms of nodes” [BKO+96]. Since kernel

interpolants approximate higher derivatives well, local function values

can be used to provide good estimates for derivative data [WHW05].

This has connections to pseudospectral methods [Fas04].
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2.2 Interpolation of Mixed Data

It is quite easy to allow much more general data for interpolation by

radial basis functions. For example, consider recovery of a multivariate

function f from data including the values ∂f
∂x2

(z),
∫
Ω f(t)dt. The basic

trick, due to Z.M. Wu [Wu92], is to use special trial functions

∂φ(‖x − z‖2)

∂x2
for

∂f

∂x2
(z)

∫

Ω

φ(‖x − t‖2)dt for

∫

Ω

f(t)dt

to cope with these requirements. In general, if a linear functional λ

defines a data value λ(f) for a function f as in the above cases with

λ1(f) = ∂f
∂x2

(z), λ2(f) =
∫
Ω f(t)dt, the special trial function uλ(x) to

be added is

uλ(x) := λtφ(‖x − t‖2) for λt(f(t))

where the upper index denotes the variable the functional acts on. If

m = n functionals λ1, . . . , λm are given, the span (1.1.1) of trial functions

is to be replaced by

u(x) =
n∑

k=1

αkλ
t
kφ(‖x − t‖2).

The interpolation system (1.2.2) turns into

λju =
n∑

k=1

αkλ
t
kλ

x
j φ(‖x − t‖2), 1 ≤ j ≤ n (2.2.1)

with a symmetric matrix composed of λt
kλ

x
j φ(‖x − t‖2), 1 ≤ j, k ≤

n which is positive definite if the functionals are linearly independent

and φ is positive definite. Thus a fully general Hermite–Birkhoff

interpolation is possible as long as the entries of the matrix in (2.2.1)

are meaningful.

To give an example with general functionals, Figure 2.2 shows an

interpolation to Neumann data +1 and -1 on each half of the unit circle,

respectively, in a total of 64 points by linear combinations of properly

scaled Gaussians.

In case of conditionally positive definite radial basis functions, the

span of (1.2.5) turns into

u(x) :=

n∑

k=1

αkλ
t
kφ(‖x − t‖2) +

q∑

ℓ=1

βℓpℓ(x)
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Fig. 2.2. Generalized interpolant to Neumann data

while the additional condition (1.2.6) is replaced by

n∑

k=1

αkλ
t
kpℓ(t) = 0, 1 ≤ ℓ ≤ q,

and the interpolation problem is solvable, if the standard polynomial

unisolvency constraint

λt
kp(t) = 0 for all 1 ≤ k ≤ n and p ∈ P d

Q−1 implies p = 0

is imposed, replacing (1.2.8).

Another example of recovery from non–Lagrange data is the construc-

tion of Lyapounov basins from data consisting of orbital derivatives

[GW06a, GW06b].

The flexibility to cope with general data is the key to various applica-

tions of radial basis functions within methods solving partial differential

equations. Collocation techniques, as sketched in Section 1.6 and treated

in Chapter 3 in full detail, solve partial differential equations numeri-

cally by interpolation of values of differential operators and boundary

conditions.

Another important aspect is the possibility of implementing addi-
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tional linear conditions or constraints like

λ(u) :=

∫

Ω

u(x)dx = 1

on a trial function. For instance, this allows us to handle conservation

laws and is inevitable for Finite Volume Methods. A constraint like

the one above, when used as additional data, adds another degree of

freedom to the trial space by addition of the basis function uλ(x) :=

λtφ(‖x − t‖2), and at the same time it uses this additional degree of

freedom to satisfy the constraint. This technique deserves much more

attention in applications.

2.3 Error Behavior

If exact data come from smooth functions f , and if smooth radial basis

functions φ are used for interpolation, users can expect very small in-

terpolation errors. In particular, the error goes to zero when the data

samples are getting dense. The actual error behavior is limited by the

smoothness of both f and φ. Quantitative error bounds can be ob-

tained from the standard literature [Buh03, Wen05] and recent papers

[NWW06]. They are completely local, and they are in terms of the fill

distance

h := h(X,Ω) := sup
y∈Ω

min
x∈X

‖x − y‖2 (2.3.1)

of the discrete set X = {x1, . . . ,xn} of centers with respect to the do-

main Ω where the error is measured. The fill distance is the radius of

the largest data–less ball around points of the domain, i.e. it measures

the largest gap in the data.

The interpolation error then converges to zero for h → 0 at a rate

dictated by the minimum smoothness of f and φ. For infinitely smooth

radial basis functions like the Gaussian or multiquadrics, convergence is

even exponential [MN92, Yoo01, RZ06]. Derivatives are also convergent

as far as the smoothness of f and φ allows, but at a smaller rate, of

course. This is particularly important when applications require good

reproductions of derivatives, e.g. velocity fields or stress tensors.

For interpolation of the smooth peaks function provided by MATLAB

and used already in Figure 2.1, the error behavior on [−3, 3]2 as a func-

tion of fill distance h is given by Figure 2.3. It can be clearly seen that

smooth φ yield smaller errors with higher convergence rates. In contrast



22

10
−0.7

10
−0.5

10
−0.3

10
−0.1

10
0.1

10
0.3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Gauss, scale=0.5
Wendland C2, scale=50
Thin−plate spline, scale=1

Inverse Multiquadric, scale=1
Multiquadric, scale=0.8

Fig. 2.3. Nonstationary interpolation to a smooth function as a function of fill
distance

to this, Figure 2.4 shows interpolation to the nonsmooth function

f(x, y) = 0.03 ∗ max(0, 6 − x2 − y2)2, (2.3.2)

on [−3, 3]2, where now the convergence rate is dictated by the smooth-

ness of f instead of φ and is thus more or less fixed. Excessive smoothness

of φ never spoils the error behavior but induces excessive instability, as

we shall see later.

2.4 Stability

But there is a serious drawback when using radial basis functions on

dense data sets, i.e. with small fill distance. The condition of the matri-

ces used in (1.2.2) and (2.2.1) will get extremely large if the separation

distance

S(X) :=
1

2
min

1≤i<j≤n
‖xi − xj‖2

of points of X = {x1, . . . ,xn} gets small. Figure 2.5 shows this effect in

the situation of Figure 2.3.
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Fig. 2.4. Nonstationary interpolation to a nonsmooth function as a function
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If points are distributed well, the separation distance S(X) will be

proportional to the fill distance h(X,Ω) of (2.3.1). In fact, since the

fill distance is the radius of the largest ball with arbitrary center in

the underlying domain Ω without any data point in its interior, the

separation distance S(X) is the radius of the smallest ball anywhere

without any data point in its interior, but with at least two points of

X on the boundary. Thus for convex domains one always has S(X) ≤
h(X,Ω). But since separation distance depends only on the closest pair

of points and ignores the rest, it is reasonable to avoid unusually close

points leading to some S(X) which is considerably smaller than h(X,Ω).

Consequently, a distribution of data locations in X is called quasi–

uniform if there is a positive uniformity constant γ ≤ 1 such that

γ h(X,Ω) ≤ S(X) ≤ h(X,Ω). (2.4.1)

To maintain quasi-uniformity, it suffices in most cases to delete “du-

plicates”. Furthermore, there are sophisticated thinning algorithms

[FI98, DDFI05, WR05] to keep fill and separation distance proportional,
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i.e. to assure quasi-uniformity at multiple scaling levels. We shall come

back to this in Section 5.8. Finally, we point out that adding a properly

scaled positive regularization parameter into the diagonal of the kernel

matrix allows to get rid of the negative influence of small separation

distance [WR05].

Unless radial basis functions are rescaled in a data-dependent way,

it can be proven [Sch95] that there is a close link between error and

stability, even if fill and separation distance are proportional. In fact,

both are tied to the smoothness of φ, letting stability become worse and

errors become smaller when taking smoother radial basis functions. This

is kind of an Uncertainty Principle:

It is impossible to construct radial basis functions which guarantee

good stability and small errors at the same time.

We illustrate this by an example. Since [Sch95] proves that the square

of the L∞ error roughly behaves like the smallest eigenvalue of the inter-

polation matrix, Figure 2.6 plots the product of the MATLAB condition

estimate condest with the square of the L∞ error for the nonstationary

interpolation of the MATLAB peaks function, used already for Figures
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Fig. 2.6. Squared L∞ error times condition as a function of fill distance

2.3, 2.5, and 2.7 to show the error and condition behavior there. Note

that the curves do not vary much if compared to Figure 2.5. Example

4.5.1 for the Method of Fundamental Solutions shows a similarly close

link between error and condition. But the inherent instability of inter-

polation matrices for small separation distances is dependent on having

chosen the standard basis consisting of translates of the given radial ba-

sis function. More sophisticated bases will show a better behaviour, in

particular those which parametrize trial functions in terms of values at

nodes [BKO+96].

Thus smoothness of radial basis functions must be chosen with some

care and selected dependent on the smoothness of the function to be

approximated. From the point of view of reproduction quality, smooth

radial basis functions can well recover nonsmooth functions, as proven

by papers concerning error bounds [NWW06]. On the other hand, non–

smooth radial basis functions will not achieve high convergence rates

when approximating smooth functions [SW02]. This means that using

too much smoothness in the chosen radial basis function is not critical

for the error, but rather for the stability. But in many practical cases,
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the choice of smoothness is not as sensible as the choice of scale, as will

be discussed in Section 2.6.

2.5 Regularization

The linear systems arising in radial basis function methods have a special

form of degeneration: the large eigenvalues of kernel matrices usually are

moderate, but there are very small ones leading to bad condition. This is

a paradoxical consequence of the good error behavior we demonstrated

in Section 2.3. In fact, since trial spaces spanned by translates of radial

basis functions have very good approximation properties, the linear sys-

tems arising in all sorts of recovery problems throughout this book will

have good approximate solutions reproducing the right-hand sides well,

no matter what the condition number of the system is. And the condi-

tion will increase if trial centers are getting close, because then certain

rows and columns of the matrices AX of (1.2.3) are approximately the

same.

Therefore it makes sense to go for approximate solutions of the lin-

ear systems, for instance by projecting the right-hand sides to spaces

spanned by eigenvectors corresponding to large eigenvalues. One way

to achieve this is to calculate a singular value decomposition first

and then use only the subsystem corresponding to large singular val-

ues. This works well beyond the standard condition limits, as we shall

demonstrate now. This analysis will apply without changes to all linear

systems appearing in this book.

Let G be an m× n matrix and consider the linear system

Gx = b ∈ IRm (2.5.1)

which is to be solved for a vector x ∈ IRn. The system may arise

from any method using radial basis functions, including (1.2.1), (1.6.3),

(1.6.5), (2.2.1) and those of subsequent chapters, e.g. (4.2.7), and (5.4.4).

In case of collocation (Chapter 3) or the Method of Fundamental Solu-

tions (Chapter 4), or already for the simple recovery problem (1.2.1)

there may be more test or collocation points than trial centers or source

points. Then the system will have m ≥ n and it usually is overdeter-

mined.

But if the user has chosen enough well-placed trial centers and a suit-

able radial basis function for constructing trial functions, the previous

section told us that chances are good that the true solution can be well
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approximated by functions from the trial space. Then there is an ap-

proximate solution x̂ which at least yields ‖Gx̂− b‖2 ≤ η with a small

tolerance η, and which has a coefficient vector x̂ representable on a stan-

dard computer. Note that η may also contain noise of a certain unknown

level. The central problem is that there are many vectors x̂ leading to

small values of ‖Gx̂ − b‖2, and the selection of just one of them is an

unstable process. But the reproduction quality is much more impor-

tant than the actual accuracy of the solution vector x̂, and thus matrix

condition alone is not the right aspect here.

Clearly, any reasonably well-programmed least-squares solver [GvL96]

should do the job, i.e. produce a numerical solution x̃ which solves

min
x∈IRn

‖Gx− b‖2 (2.5.2)

or at least guarantees ‖Gx̃ − b‖2 ≤ η. It should at least be able not

to overlook or discard x̂. This regularization by optimization works

in many practical cases, but we shall take a closer look at the joint

error and stability analysis, because even an optimizing algorithm will

recognize that it has problems in determining x̂ reliably if columns of

the matrix G are close to being linearly dependent.

By singular value decomposition (SVD) [GvL96], the matrix G

can be decomposed into

G = UΣVT (2.5.3)

where U is an m×m orthogonal matrix, Σ is an m×n matrix with zeros

except for singular values σ1, . . . , σn on the diagonal, and where VT is

an n×n orthogonal matrix. Due to some sophisticated numerical tricks,

this decomposition can under normal circumstances and within standard

accuracy limits be done with O(mn2 +nm2) complexity, though it needs

an eigenvalue calculation. One can assume

σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
n ≥ 0,

and the σ2
j are the nonnegative eigenvalues of the positive semidefinite

n× n matrix GT G.

The condition number of the non–square matrix G is then usually

defined to be σ1/σn. This is in line with the usual spectral condition

number ‖G‖2‖G−1‖2 for the symmetric case m = n. The numerical

computation of U and V usually is rather stable, even if the total con-

dition is extremely large, but the calculation of small singular values is

hazardous. Thus the following arguments can rely on U and V but not

on small singular values.
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Using (2.5.3), the solution of either the minimization problem (2.5.2)

or, in the case m = n, the solution of (2.5.1) can be obtained and

analyzed as follows. We first introduce new vectors

c := UT b ∈ IRm and y := VT x ∈ IRn

by transforming the data and the unknowns orthogonally. Since orthog-

onal matrices preserve Euclidean lengths, we rewrite the squared norm

as

‖Gx − b‖2
2 = ‖UΣVT x − b‖2

2

= ‖ΣVT x− UT b‖2
2

= ‖Σy − c‖2
2

=

n∑

j=1

(σjyj − cj)
2 +

m∑

j=n+1

c2j

where now y1, . . . , yn are variables. Clearly, the minimum exists and is

given by the equations

σjyj = cj , 1 ≤ j ≤ n,

but the numerical calculation runs into problems when the σj are small

and imprecise in absolute value, because then the resulting yj will be

large and imprecise. The final transition to the solution x = Vy by an

orthogonal transformation does not improve the situation.

If we assume existence of a good solution candidate x̂ = Vŷ with

‖Gx̂− b‖2 ≤ η, we have

n∑

j=1

(σj ŷj − cj)
2 +

m∑

j=n+1

c2j ≤ η2. (2.5.4)

A standard regularization strategy to construct a reasonably stable

approximation y is to choose a positive tolerance ǫ and to define

yǫ
j :=

{
cj

σj
|σj | ≥ ǫ

0 |σj | < ǫ

i.e. to ignore small singular values, because they are usually polluted by

roundoff and hardly discernible from zero. This is called the truncated

singular value decomposition (TSVD). Fortunately, one often has

small c2j whenever σ2
j is small, and then chances are good that

‖Gxǫ − b‖2
2 =

∑

1 ≤ j ≤ n

|σj | ≥ ǫ

c2j +

m∑

j=n+1

c2j ≤ η2
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holds for xǫ = Vyǫ.
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Fig. 2.7. Error and condition of linear subsytems via SVD

Figure 2.7 is an example interpolating the MATLAB peaks function

in m = n = 441 regular points on [−3, 3]2 by Gaussians with scale 1,

using the standard system (1.2.2). Following a fixed 441× 441 singular

value decomposition, we truncated after the k largest singular values,

thus using only k degrees of freedom. The results for 1 ≤ k ≤ 441

show that there are low-rank subsystems which already provide good

approximate solutions. A similar case for the Method of Fundamental

Solutions will be provided by Example 4.5.1 in Chapter 4.

But now we proceed with our analysis. In case of large cj for small σj ,

truncation is insufficient, in particular if the dependence on the unknown

noise level η comes into focus. At least, the numerical solution should

not spoil the reproduction quality guaranteed by (2.5.4), which is much

more important than an exact calculation of the solution coefficients.

Thus one can minimize ‖y‖2
2 subject to the essential constraint

n∑

j=1

(σjyj − cj)
2 +

m∑

j=n+1

c2j ≤ η2, (2.5.5)
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but we suppress details of the analysis of this optimization problem.

Another, more popular possibility is to minimize the objective function

n∑

j=1

(σjyj − cj)
2 + δ2

n∑

j=1

y2
j

where the positive weight δ allows placing more emphasis on small co-

efficients if δ is increased. This is called Tikhonov regularization.

The solutions of both settings coincide and take the form

yδ
j :=

cjσj

σ2
j + δ2

, 1 ≤ j ≤ n,

depending on the positive parameter δ of the Tikhonov form, and for

xδ := Vyδ we get

‖Gxδ − b‖2
2 =

n∑

j=1

c2j

(
δ2

δ2 + σ2
j

)2

+
m∑

j=n+1

c2j ,

which can me made smaller than η2 for sufficiently small δ. The optimal

value δ∗ of δ for a known noise level η in the sense of (2.5.5) would be
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Fig. 2.9. Coefficients |cj | as function of j

defined by the equation ‖Gxδ∗ − b‖2
2 = η2, but since the noise level is

only rarely known, users will be satisfied to achieve a tradeoff between

reproduction quality and stability of the solution by inspecting the error

‖Gxδ − b‖2
2 for varying δ experimentally.

We now repeat the example leading to Figure 2.7, replacing the trun-

cation strategy by the above regularization. Figure 2.8 shows how the

error ‖Gxδ −b‖∞,X depends on the regularization parameter δ. In case

of noise, users can experimentally determine a good value for δ even for

an unknown noise level. The condition of the full matrix was calculated

by MATLAB as 1.46 · 1019, but it may actually be higher. Figure 2.9

shows that the coefficients |cj | are indeed rather small for large j, and

thus regularization by truncated SVD will work as well in this case.

From Figures 2.9 and 2.8 one can see that the error ‖Gxδ−b‖ takes a

sharp turn at the noise level. This has led to the L–curve method for

determining the optimal value of δ, but the L-curve is defined differently

as the curve

δ 7→ (log ‖yδ‖2
2, log ‖Gxδ − b‖2

2).

The optimal choice of δ is made where the curve takes its turn, if it does
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Fig. 2.10. The L-curve for the same problem

so, and there are various ways to estimate the optimal δ (see [Han92,

Han94, Han00]) including a MATLAB software package.

Figure 2.10 shows the typical L-shape of the L-curve in case of noise,

while in the case of exact data there is no visible sharp turn within

the plot range. The background problem is the same as for the previous

figures. A specific example within the Method of Fundamental Solutions

will be presented in Section 4.9 on inverse problems.

Consequently, users of radial basis function techniques are strongly

advised to take some care when choosing a linear system solver. The

solution routine should incorporate a good regularization strategy or at

least automatically project to stable subspaces and not give up quickly

due to bad condition. Further examples for this will follow in later

chapters of the book.

But for large systems the above regularization strategies are debat-

able. A singular-value decomposition of a large system is computation-

ally expensive, and the solution vector will usually not be sparse, i.e. the

evaluation of the final solution at many points is costly. In Section 2.9 we

shall demonstrate that linear systems arising from radial basis functions

often have good approximate solutions with only few nonzero coeffi-
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cients. The corresponding numerical techniques are other, and possibly

preferable regularizations which still are under investigation. A simple

but efficient recent strategy [Sch07a] is to project the right–hand side of

the system (2.5.1) to the span of adaptively selected columns of G.

2.6 Scaling

If radial basis functions are used directly, without any additional tricks

and treats, users will quickly realize that scaling is a crucial issue. The

literature has two equivalent ways of scaling a given radial basis function

φ, namely replacing it by either φ(‖x− y‖2/c) or by φ(ǫ‖x− y‖2) with

c and ǫ being positive constants. Of course, these scalings are equiva-

lent, and the case ǫ → 0, c → ∞ is called the flat limit [DF02]. In

numerical methods for solving differential equations, the scale factor c

is preferred, and it is called shape factor there. Readers should not be

irritated by slightly different ways of scaling, e.g.

φc(‖x‖2) :=
√
c2 + ‖x‖2

2 = c ·
√

1 +
‖x‖2

2

c2
= c · φ1

(‖x‖2

c

)
(2.6.1)

for multiquadrics, because the outer factor c is irrelevant when forming

trial spaces from functions (1.1.1). Furthermore, it should be kept in

mind that only the polyharmonic spline and its special case, the

thin–plate spline, generate trial spaces which are scale-invariant.

Like the tradeoff between error and stability when choosing smooth-

ness (see the preceding section), there often is a similar tradeoff induced

by scaling: a “wider” scale improves the error behavior but induces in-

stability. Clearly, radial basis functions in the form of sharp spikes will

lead to nearly diagonal and thus well-conditioned systems (1.2.2), but

the error behavior is disastrous, because there is no reproduction quality

between the spikes. The opposite case of extremely “flat” and locally

close to constant radial basis functions leads to nearly constant and thus

badly conditioned matrices, while many experiments show that the re-

production quality is even improving when scales are made wider, as far

as the systems stay solvable.

For analytic radial basis functions (i.e. in C∞ with an expansion into

a power series), this behavior has an explanation: the interpolants often

converge towards polynomials in spite of the degeneration of the linear

systems [DF02, Sch05, LF05, LYY05, Sch06a]. This has implications

for many examples in this book which approximate analytic solutions

of partial differential equations by analytic radial basis functions like
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Gaussians or multiquadrics: whatever is calculated is close to a good

polynomial approximation to the solution. Users might try using poly-

nomials right away in such circumstances, but the problem is to pick a

good polynomial basis. For multivariate problems, choosing a good poly-

nomial basis must be data-dependent, and it is by no means clear how

to do that. It is one of the intriguing properties of analytic radial basis

functions that they automatically choose good data-dependent polyno-

mial bases when driven to their “flat limit”. There are new techniques

[LF03, FW04] which circumvent the instability at large scales, but these

are still under investigation.

Figure 2.11 shows the error for interpolation of the smooth MATLAB

peaks function on a fixed data set, when interpolating radial basis func-

tions φ are used with varying scale relative to a φ-specific starting scale

given in the legend. Only those cases are plotted which have both an

error smaller than 1 and a condition not exceeding 1012. Since the data

come from a function which has a good approximation by polynomials,

the analytic radial basis functions work best at their condition limit.

But since the peaks function is a superposition of Gaussians of different
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scales, the Gaussian radial basis function still shows some variation in

the error as a function of scale.

Interpolating the nonsmooth function (2.3.2) shows a different behav-

ior (see Figure 2.12), because now the analytic radial basis functions

have no advantage for large scales. In both cases one can see that the

analytic radial basis functions work well only in a rather small scale

range, but there they beat the other radial basis functions. Thus it of-

ten pays off to select a good scale or to circumvent the disadvantages of

large scales [LF03, FW04].

As in finite element methods, users might want to scale the basis func-

tions in a data-dependent way, making the scale c in the sense of using

φ(‖x − y‖2/c) proportional to the fill distance h as in (2.3.1). This is

often called a stationary setting, e.g. in the context of wavelets and

quasi-interpolation. If the scale is fixed, the setting is called nonsta-

tionary, and this is what we have been considering up to this point.

Users must be aware that the error and stability analysis, as described

in the previous sections, apply to the nonstationary case, while the sta-

tionary case will not converge for h → 0 in case of unconditionally
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positive definite radial basis functions [Buh88, Buh90]. But there is a

way out: users can influence the “relative” scale of c with respect to

h in order to achieve a good compromise between error and stability.

The positive effect of this can easily be observed [Sch97], and for special

situations there is a sound theoretical analysis called approximate ap-

proximation [MS96]. Figure 2.13 shows the stationary error behavior

for interpolation of the smooth MATLAB peaks function when using

different radial basis functions φ at different starting scales. It can be

clearly seen how the error goes down to a certain small level depending

on the smoothness of φ and then stays roughly constant. Using larger

starting radii decreases these saturation levels, as Figure 2.14 shows.

Due to the importance of relative scaling, users are strongly advised

to always run their programs with an adjustable scale of the underlying

radial basis functions. Experimenting with small systems at different

scales give a feeling of what happens, and users can fix the relative

scale of c versus h rather cheaply. Final runs on large data can then

use this relative scaling. In many cases, given problems show a certain

“intrinsic” preference for a certain scale, as shown in Figure 2.12, but this
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is an experimental observation which still is without proper theoretical

explanation.

2.7 Practical Rules

If users adjust the smoothness and the scaling of the underlying radial

basis function along the lines of the previous sections, chances are good

to get away with relatively small and sufficiently stable systems. The

rest of the book contains plenty of examples supporting this observation.

For completeness, we add a few rules for Scientific Computing with

radial basis functions, in particular concerning good choices of scale and

smoothness. Note that these apply also to methods for solving partial

differential equations in later chapters.

• Always allow a scale adjustment.

• If possible, allow different RBFs to choose from.

• Perform some experiments with scaling and choice of RBF before you

turn to tough systems for final results.
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• If you do not apply iterative solvers, do not worry about large con-

dition numbers, but use a stabilized solver, e.g. based on Singular

Value Decomposition (SVD). Remember that unless you apply cer-

tain tricks, getting a good reproduction quality will always require

bad condition. If you need k decimal digits of final accuracy for an

application, do not bother about condition up to 1012−k.

• If you use compactly supported radial basis functions, do not expect

them to work well when each support contains less than about 50

neighbors. This means that the bandwidth of large sparse systems

should not be below 50. Increasing bandwidth will usually improve

the quality of the results at the expense of computational complexity.

• When using either compactly supported or quickly decaying radial

basis functions of high smoothness, the theoretical support and the

practical support do not coincide. In such cases one should enforce

sparsity by chopping the radial basis functions, in spite of losing pos-

itive definiteness properties. But this should be done with care, and

obeying the “50 neighbors” rule above.

• If systems get large and ill–conditioned, and if change of scale and

RBF do not improve the situation, try methods described in the fol-

lowing section.

• Use blockwise iteration (“domain decomposition”) first, because it is

simple and often rather efficient.

• Blockwise iteration can be speeded up by precalculation of LR de-

compositions of blocks.

• If all of this does not work, try partitions of unity, multilevel methods,

or special preconditioning techniques. You are now at current research

level, and you should look into the next section.

2.8 Large Systems: Computational Complexity

Handling unavoidably large problems raises questions of computational

complexity which deserve a closer look. First, there is the difference be-

tween the complexities of solving and evaluation. The latter addresses

the evaluation of trial functions like (1.2.5) for large n at many evalu-

ation points x ∈ IRd, while the former concerns the calculation of the

coefficients.

Evaluation complexity can be kept at bay by localization techniques

needing only a few “local” coefficients to evaluate the trial function.

There are several possibilities for localization:
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• Using compactly supported radial basis functions [Wu95, Wen95,

Buh98] leads to sparse systems and localized evaluation. In particu-

lar, Wendland’s functions have been applied successfully in plenty of

applications, e.g. [FI96, CBP99, SW99, CBP99, CMC99, WHL+99,

CYT00a, CYT00b, GCG00, MYP+01, CGGC02, WHG02a, WHG02b,

KSBH02, OBS03, Fas03, RTSD03, WK05, ABW06] and many others.

Since the correspondent radial basis functions have limited smooth-

ness (and thus low convergence rates, following section 2.3), the er-

ror will be larger than when using analytic radial basis functions,

but the stability is much better. However, they again need care-

ful scaling, which now influences the evaluation complexity and the

sparsity. “Flat” scaling improves the error behavior at the price of

increasing instability and complexity. Together with thinning algo-

rithms providing data at different resolution levels, compactly sup-

ported radial basis functions also allow efficient multiscale tech-

niques [FI96, Fas98, Fas99, NSW99, GFJ00, CGGC02, Isk04].

• partition of unity methods [MB96, BM97, GS00, GS02a, GS02b,

Wen02, Sch03, OBS03, TRS04] are a flexible and general tool for lo-

calizing any trial space. They have the advantage of not spoiling the

local error behavior of the original trial space while localizing both

the evaluation and the solving. The basic idea is to start with a se-

lection of smooth “weight” functions ϕi : IRd → IR with overlapping

compact supports Ωi and summing up to 1 globally. If a trial space

Ui is given on each of the subdomains Ωi, a global trial function u can

be superimposed from local trial functions ui ∈ Ui by the localized

summation

u(x) :=
∑

i

ui(x)ϕi(x) =
∑

i : x∈Ωi

ui(x)ϕi(x).

Depending on the problem to be solved, one can plug the above rep-

resentation into the full problem or use local methods to generate

the local trial functions ui more or less independently, thus localizing

also the solution stage. This class of techniques deserves much more

attention from scientists and engineers working in applications.

• multipole expansions work best for radial basis functions with se-

ries expansions around infinity. They aggregate “far” points into “pan-

els” and use expansions to simplify evaluation. This technique is very

successful in certain applications [BN92, BG97, BL97, BC00, BCR00,

CBN02] though it is not easy to code.



40

• Fast evaluation using transforms is another choice [PS03, FS04,

RB05], but it has not yet found its way into applications.

The dominant methods for reducing the complexity of solving large sys-

tems like (1.2.2) are domain decomposition and preconditioning.

In classical analysis, domain decomposition means the splitting of a

boundary value problem into smaller boundary value problems, using in-

terface conditions for coupling the local problems. This was also done for

problems solved via radial basis functions (e.g. [ZHL03a, LH04, ICT04]),

but the majority of authors working with radial basis functions use the

term in a different way. We explain it below, together with its close

connection to preconditioning.

Of course, one can solve a huge problem (1.2.2) or (1.2.7) by a block–

wise Gauss-Seidel or Jacobi iteration, where each “block” is defined by

taking a small set of points in a small subdomain. Each block defines a

local linear system where the unused data are shifted to the right-hand

side [WHL+99]. These local systems are solved independently and in

turn. It does not matter whether the domains overlap or not. In most

cases the numerical results for suitably chosen subdomains usually are

much better than for direct iterative methods. In particular, the LU

decompositions of the small local systems can be stored and re-used all

over again in order to save computation time. Furthermore, there are

different strategies for choosing “good” blocks.

This basic technique comes in various forms. It can be reformulated

as a block–wise preconditioner or as a Krylov subspace iteration

[FP00, FGP05] employing local cardinal functions in case of plain

interpolation [BCM99, BLB00, KH00, Mou01, LK04, LK05, BLKL05].

It can also be seen as an additive [HW00] or as a multiplicative Schwarz

decomposition [BLB00] depending whether Jacobi or Gauss-Seidel is

used as the inner iteration. For regular data these preconditioners can

achieve a fixed accuracy by a fixed number of iterations of the conjugate

gradient method which is not dependent on the number of equations

[Bax02].

Altogether, there are many successful techniques for handling large

and ill–conditioned systems (see e.g. an overview in [KH00]), and there

are a few promising theoretical investigations [BCM99, FP00, Bax02,

BLKL05, FGP05, Sch05], but a general and complete mathematical

foundation for handling large RBF–based systems arising in Partial Dif-

ferential Equations still is missing.
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2.9 Sensitivity to Noise

So far the discussion has focused on noiseless data, with the exception of

Figure 2.8. If users expect noise in the data, an interpolatory recovery

along the lines of Section 2.1 is not appropriate, because it treats noise as

data. In most of the later sections of this book, data are right-hand sides

or boundary values for partial differential equations, and they usually

are given as noiseless functions which can be evaluated anywhere. Thus

the rest of the book does not treat noisy inputs in detail. But at this

point some remarks are appropriate.

In all noisy situations, interpolation should be replaced by approxi-

mation. This can be done in various ways leading to stabilization.

A primitive, but often quite sufficient technique is to run a smoothing

process on the raw data and to recover the unknown function from the

smoothed data instead of the raw data.

Another standard trick is to solve (1.2.2) in the L2 sense with over-

sampling, if only n << m trial centers xj are used for m data points yk.

The trial centers can then be placed rather freely with a large separation

distance, while a small separation distance of data points will not have a

dramatic effect on stability any more. However, there is not very much

theoretical and practical work done on unsymmetric recovery techniques

[Sch07b, Sch06c, Sch06a].

A third possibility is the old Levenberg–Marquardt trick of adding

a positive value λ into the diagonal of the kernel matrix of (1.2.2)

with entries φ(‖xj − xk‖2). As is well-known from literature on spline

smoothing, this leads to an approximant achieving a tradeoff between

smoothness and reproduction quality which can be controlled by λ. If

a stochastic background is available, there are methods to estimate λ

properly, e.g. by cross–validation. However, in most cases users adjust

λ experimentally. This technique also helps to fight instability when

working on irregularly distributed data [WR05], because it is able to shift

the stability from dependence on the separation distance to dependence

on the fill distance (see Section 2.4).

A fourth possibilty is regularization, for example, using a singular-

value decomposition as described in Section 2.5.

In general, one can replace the system (1.2.2) by an optimization

method which penalizes the reproduction error on the one hand and

either a complexity or smoothness criterion on the other, allowing a fair

amount of control over the tradeoff between error and stability. Penalties

for the discrete reproduction error can be made in various discrete norms,
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the ℓ1 and ℓ∞ case having the advantage of leading to linear optimization

restrictions, while the discrete ℓ2 norm leads to quadratic ones. For

radial basis functions of the form (1.1.1) or (1.2.5), the quadratic form

‖u‖2
φ :=

n∑

j,k=1

αjαkφ(‖xj − xk‖2) (2.9.1)

is a natural candidate for penalizing high derivatives without evaluating

any. This is due to the standard fact that the above expression is a

squared norm in a native Hilbert space of functions with about half

the smoothness of φ, penalizing all available derivatives there. For de-

tails, we have to refer to basic literature [Buh03, Wen05] on the theory

of radial basis functions. But even though we skip over native spaces

here, all users should be aware that they always lurk in the theoreti-

cal background, and that all methods based on radial basis functions

implicitly minimize the above quadratic form under all functions in the

native space having the same data. This has a strong regularization ef-

fect which is the background reason why radial basis functions or more

general kernel methods work well for many ill-posed and inverse

problems [HW03, Li04, TWN04, CC05b, CC05a, HW05, JZ05, Li05,

Sai05, Nas06]. The above strategy of minimizing the quadratic form

(2.9.1) also is central for modern methods of machine learning, but

we cannot pursue this subject in detail here [CST00, SS02, STC04].

Let us use minimization of the quadratic form (2.9.1) to provide an

example of the tradeoff between error and complexity. Again, the basic

situation is interpolation to the MATLAB peaks function, this time in

14×14=196 regularly distributed points in [−3, 3]2 by Gaussians of scale

1. The global L∞[−3, 3]2 error of the exact interpolation on these data

is 0.024, evaluated on a fine grid with 121×121=14641 points. But now

we minimize the quadratic form (2.9.1) under the constraints

−ǫ ≤
n∑

j=1

αjφ(‖xj − xk‖2) − f(xk) ≤ ǫ, 1 ≤ k ≤ n (2.9.2)

for positive ǫ. The case of ǫ = 0 is exact interpolation using all 196 data

points and trial functions. For positive ǫ, the usual Karush-Kuhn-Tucker

conditions imply that only those points xk are actually used where one

of the bounds in (2.9.2) is attained with equality. The number n(ǫ) of

required points increases to the maximally possible n(0) = 196 when ǫ

decreases. Figure 2.15 shows this for the case of exact and noisy data.

But even more interesting is the behavior of the global L∞[−3, 3]2
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Fig. 2.15. Connection between ǫ and the number n(ǫ) of necessary points

error E(ǫ) as a function of ǫ. Figure 2.16 shows that E(ǫ) roughly follows

the behavior of ǫ when plotted as a function of the required points n(ǫ).

Both curves are experimentally available, and one can read off that the

optimal choice of ǫ in the noisy case is at the point where the curve takes

its L-turn, i.e. at the point of largest curvature around n = 40. This

can be viewed as an experimental method to determine the noise level.

Note that it does not pay off to use more points, and note the similarity

to the L-curve technique [HO93].

But these curves are also useful for exact data,. Since the maximum

value of the peaks function is about 8.17, one can get a relative global

accuracy of 1% using roughly 60 points for exact data. It makes no

sense to use the full 196 points, even for exact data, if exact results are

not required. Of course, larger noise levels lead to smaller numbers of

required points, but a thorough investigation of these tradeoff effects

between error and complexity is still a challenging research topic.
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Fig. 2.16. Error E(ǫ) as a function of the number n(ǫ) of necessary points

2.10 Time–dependent Functions

Interpolation and approximation of time–dependent functions u(x, t) can

easily be achieved by choosing a fixed spatial discretization via points

y1, . . . ,yn and letting the coefficients in the representations (1.1.1) and

(1.2.5) be time–dependent. If βij are the coefficients of the fixed inverse

of the matrix in (1.2.2) (the case of (1.2.7) can be treated similarly),

then the approximation to u(x, t) is of the simple form

ũ(x, t) =

n∑

k=1

n∑

j=1

βkju(xj , t)

︸ ︷︷ ︸
αk(t)

φ(‖x − xk‖2)

=

n∑

k=1

αk(t)φ(‖x − xk‖2)

(2.10.1)

which can be plugged into other parts of the underlying problem. For

instance, it allows an easy spatial resampling for fixed t, and it provides
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arbitrary approximate derivatives such as

∂ũ

∂xj
=

n∑

k=1

αk(t)
∂φ(‖x − xk‖2)

∂xj
=

n∑

k=1

n∑

j=1

βkju(xj , t)
∂φ(‖x − xk‖2)

∂xj

in terms of time–dependent values of either u or the coefficients αk.

Formulas like this are useful when considering time-dependent meshless

spatial discretizations, because they make resampling easy, avoiding re-

meshing.

But the above technique can also serve for line methods solving

partial differential equations like

∂u

∂t
(x, t) = F (L(u(x, t)),x, t) (2.10.2)

with a linear spatial differential operator L because of

α′
k(t) =

n∑

j=1

βkj
∂ũ

∂t
(xj , t), 1 ≤ k ≤ n

=

n∑

j=1

βkjF

(
n∑

k=1

αk(t)L(φ(‖x − xk‖2))|x=xj
,xj , t

)
.

leading to a system of ordinary differential equations. Along these lines.

radial basis function methods will be used in later parts of the book, in

particular in chapters 3 and 6.
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Collocation Techniques

The history of Scientific Computing shows that important numerical

techniques like

• finite difference methods,

• finite element methods,

• finite volume methods,

• boundary element methods,

• particle methods, and

• multipole methods

were introduced and improved by engineers or physicists working in ap-

plications. Similarly, the use of radial basis functions for scattered data

interpolation, as described in Chapter 2, was first introduced in 1951 by

the South African geophysicist D.G. Krige [Kri51] within a statistical

background, and called Kriging afterwards. It was further developed

by G. Matheron [Mat62] and used without any statistical background

by the geophysicist R. Hardy [Har71] who introduced multiquadrics.

Also, the use of radial basis functions for solving partial differential

equations was started not by a mathematician, but rather by the physi-

cist E. Kansa [Kan86] who proposed the meshless collocation method

for solving partial differential equations using multiquadrics, as sketched

in Section 1.6. Since the resulting system (1.6.3) of linear equations is

asymmetric, the method is now known as the asymmetric collocation

method.

Subsequently, meshless methods based on radial basis functions

have reached more and more application areas, because they provide

efficient and easy-to-use numerical techniques for solving various kinds

of partial differential equations. In the following sections, the advantages

of the asymmetric meshless collocation method are demonstrated by

46
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solving some typical partial differential equation problems. Since it is

impossible to give a comprehensive survey over all relevant applications,

we confine ourselves to a few special cases. These include time-dependent

problems where we use asymmetric collocation in the spatial variables

only, letting the coefficients of the spatial representation (1.1.1) be time-

dependent as in (2.10.1) of Section 2.10. Readers will notice that the

general rules governing error, stability, and scaling will be the same as

in the previous chapter.

For other time-dependent problems, the combination of the asymmet-

ric meshless collocation method with Laplace transform techniques

was successfully demonstrated in [ME94] to greatly reduce the spatial

and temporal truncation errors, and we shall deal with this special ap-

proach in Chapter 6 because it is closely related to the Helmholtz equa-

tion arising in Chapters 4 and 5.

3.1 High Dimensional Problems

Due to the restrictive requirements of grid generation when using fi-

nite difference methods or mesh generation in finite elements, the ex-

tendability of these mesh-dependent numerical methods to solve high-

dimensional problems or problems with complicated boundaries has been

prohibitive. To illustrate the adaptability of the asymmetric meshless

collocation method described in Section 1.6 for problems in higher di-

mensions, we consider the following

Example 3.1.1

∆u = fΩ in Ω := [0, 1]d

u = fΓ in Γ := ∂Ω,
(3.1.2)

where d is the dimension of the space. This is of the form (1.6.1) with

the Laplace operator L := ∆.

The exact solution of (3.1.2) is given by

u(x) =

d∏

i=1

sin(xi), x = (x1, x2, . . . , xd)
T

from which the values fΩ and fΓ can then be determined.

For numerical comparison we use both the asymmetric and symmet-

ric collocation methods described in Section 1.6 to solve the bound-

ary value problem (3.1.2), respectively. In the computations, the radial
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basis function φ(r) is chosen to be r5 to avoid scaling problems. To

keep the maximum total number of points used in the computations less

than 750, we chose the trial centers and the test points to be the same

xi, i = 1 . . .m := mΩ + mΓ which are uniformly distributed in the do-

main Ω ∪ Γ so that m = sd where s = 5, . . . , 21 for d = 2, s = 5, . . . , 9

when d = 3, s = 4 and 5 when d = 4. The maximal degree of the

additional polynomials is 2.

By assuming that the solution u of (3.1.2) can be approximated by

u(x) :=

m∑

i=1

αiφ(‖x − xi‖2) +

q∑

ℓ=1

βℓpℓ(x),

where φ(r) := r5, it follows from Section 1.6 that the system of linear

equations for asymmetric collocation is a special case of (1.6.3) in the

form

m∑

k=1

αk∆φ(‖xΩ
j − xk‖2) +

q∑

ℓ=1

βℓ∆pℓ(x
Ω
j ) = fΩ(xΩ

j ), j ≤ mΩ

m∑

k=1

αkφ(‖xΓ
j − xk‖2) +

q∑

ℓ=1

βℓpℓ(x
Γ
j ) = fΓ(xΓ

j ), j ≤ mΓ

n∑

k=1

αkpℓ(xk) + 0 = 0, ℓ ≤ q.

For symmetric collocation, the system of linear equations is similarly

obtained from Section 1.6 as (1.6.5). Both resultant systems of equations

for the undetermined coefficients are solved by Gaussian elimination.

The results of computations for dimensions 2, 3, and 4 are listed in

Tables 3.1 and 3.2. 2

Two features can be read from these tables:

(i) For each fixed space dimension, the accuracy of the numerical

solution improves with the total number of trial centers.

(ii) If rows with m = sd points are compared for fixed s, leading

to a dimension-independent fill distance of h = 1/2s in the L∞
norm, the convergence rates of both asymmetric and symmetric

collocation increase with the space dimension.

The first feature must be expected from results on interpolation and

approximation, as summarized in Section 2.3, but the second observa-

tion is surprising. It is well known from certain stationary interpolation

processes on regular data [Buh03], but its mathematical foundation must
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Table 3.1. Asymmetric collocation with φ(r) = r5

Dimension Points Max Error Average Error Condition Number

2 52 2.605E-3 1.391E-3 2.673E+5
2 102 2.179E-4 1.345E-4 1.580E+8
2 152 5.774E-5 3.292E-5 3.926E+9
2 202 2.036E-5 1.200E-5 3.445E+10

3 53 2.521E-3 1.255E-3 9.420E+6
3 73 5.973E-4 3.756E-4 2.083E+8
3 93 2.126E-4 1.440E-4 1.964E+9

4 44 7.475E-3 2.788E-3 4.555E+7
4 54 1.041E-3 8.518E-4 6.313E+8

2 52 2.605E-3 1.391E-3 2.673E+5
3 53 2.521E-3 1.255E-3 9.420E+6
4 54 1.041E-3 8.518E-4 6.313E+8

Table 3.2. Symmetric collocation with φ(r) = r5

Dimension Points Max Error Average Error Condition Number

2 52 4.429E-3 3.138E-3 2.897E+6
2 102 4.667E-4 3.307E-4 1.924E+9
2 152 1.246E-4 8.440E-5 5.190E+10
2 202 5.011E-5 3.196E-5 4.888E+11

3 53 4.749E-3 2.054E-3 1.188E+8
3 73 2.811E-3 1.073E-3 5.054E+9
3 93 1.448E-3 5.895E-4 6.120E+10

4 44 6.489E-3 2.807E-3 1.370E+8
4 54 3.343E-3 1.668E-3 4.673E+9

2 52 4.429E-3 3.138E-3 2.897E+6
3 53 4.749E-3 2.054E-3 1.188E+8
4 54 3.343E-3 1.668E-3 4.673E+9

be omitted here. For solving partial differential equations, the observed

increase of the convergence rate with the space dimension has no theo-

retical basis yet.
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3.2 Transport Problems

The advantage of using radial basis functions within collocation methods

will further be illustrated by solving the nonlinear Burgers equation

ut + uux = νuxx, ν > 0. (3.2.1)

It is an extremely simplified limit form of the Navier-Stokes equation,

and it models flows of viscous liquids as well as of cars in traffic. This

equation has been studied by many researchers for the following reasons:

(i) It contains the simplest form of a nonlinear advection term uux

and a dissipation term νuxx for simulating the physical phenom-

ena of wave motion,

(ii) its analytical solution was obtained by Cole [Col51], so that errors

of numerical computations can be evaluated, and

(iii) its solutions show a shock wave behavior [Bur40] when the Rey-

nolds number 1/ν is large, i.e. when ν is small.

Various techniques have been applied to solve equation (3.2.1) numeri-

cally under the boundary conditions

u(0, t) = 0 = u(1, t), t > 0, (3.2.2)

and the initial condition

u(x, 0) = f(x), x ∈ Ω = (0, 1). (3.2.3)

We first discretize the equation (3.2.1) by using a forward difference

approximation for the time derivative to obtain

uk + δt(u
k−1uk

x − νuk
xx) = uk−1, k ≥ 1, (3.2.4)

where δt is the length of the time step and uk denotes the kth iterate of

the solution. We approximate uk at each iteration k by multiquadrics

uk(x) ≃
m∑

j=0

αk
j

√
(x− xj)2 + c2j + αk

m+1x+ αk
m+2, (3.2.5)

where xj are (m + 1) distinct uniformly distributed centers in [0, 1].

The scale factor cj is one of the key factors for obtaining an accurate

solution, but we do not elaborate on its choice here. We just note that

an exponential variation in the scaling factors was proposed in [Kan90b],

and the ill–conditioning problem was further studied experimentally in

[KH00].
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For each iteration k we have to determine the m + 3 coefficients αk
j

for 0 ≤ j ≤ m + 2. The boundary conditions (3.2.2) already give the

two equations

uk(x0) = 0 = uk(xm). (3.2.6)

We then collocate uk at m+1 distinct uniformly distributed collocation

points x̂j in (0, 1) using equation (3.2.4) to obtain

uk(x̂j) + δt

(
uk−1(x̂j)

d

dx
uk(x̂j) − ν

d2

dx2
uk(x̂j)

)
= uk−1(x̂j), k ≥ 1,

(3.2.7)

for j = 1, 2, . . . ,m+1, where u0(x̂j) is taken to be f(x̂j) from the initial

condition (3.2.3). The system of equations (3.2.6) and (3.2.7) can then

be solved by using Gaussian elimination with partial pivoting to obtain

the coefficients αk
j . Note that the test points xj in (3.2.5) are different

from the trial centers x̂j in (3.2.7).

The analytical solution given in [Col51] for the Burgers equation

(3.2.1) subject to the boundary conditions (3.2.2) and the initial condi-

tion (3.2.3) is

u(x, t) =

2πν

∞∑

k=1

kAk sin(kπx) exp(−k2νπ2t)

A0 +
∞∑

k=1

Ak cos(kπx) exp(−k2νπ2t)

,

where

Ak = 2

∫ 1

0

cos(kπx) exp

(
− 1

2ν

∫ x

0

f(y)dy

)
dx, k ≥ 1,

and

A0 =

∫ 1

0

exp

(
− 1

2ν

∫ x

0

f(y)dy

)
dx.

In the case when f(x) = sin(πx), the analytical solution derived in

[CS82] is

u(x, t) =

4πν

∞∑

k=1

kIk(1/2πν) sin(kπx) exp(−k2νπ2t)

I0(1/2πν) + 2

∞∑

k=1

Ik(1/2πν) cos(kπx) exp(−k2νπ2t)

, (3.2.8)

where Ik denotes the modified Bessel function of first kind and order

k. The difficulty in evaluating an accurate solution u(x, t) based on the
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analytical formula (3.2.8) is due to the exponentially increasing term

Ik(1/2πν) in the series when ν is small. Using double precision floating-

point numbers with a total word length of 64 bits, we can compute u(x, t)

to four decimal digits by evaluating the two series in formula (3.2.8) for

ν down to 0.01 approximately. Unless an asymptotic formula is used, it

is not possible to compute u(x, t) using formula (3.2.8) for smaller ν. In

fact, the magnitude of Ik(1/2πν) already exceeds the limits of a 64 bit

computation when ν ≤ 1/4500. For comparison purposes, in the case

when ν = 0.0001, we adopt the accurate solution computed in [CM78]

using the Galerkin method with fully upwinded cubic functions and a

particularly small value of the spatial fill distance h.
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Fig. 3.1. Solution of the Burgers equation for ν = 10

We solve the Burgers equation (3.2.1) subject to the boundary condi-

tions (3.2.2) and the initial condition f(x) = sin(πx) using m = 10 for

different values of ν:

Case ν = 10 Here, the dissipation term dominates the advection term.

In fact, the curve of the solution u drops dramatically from the

initial data to zero within the first 0.05 seconds.

Case ν = 0.1 Now both the dissipation term and the advection term

have a balanced influence on the solution.

Case ν = 0.01 This is a first case when the advection term dominates

the dissipation term. The behavior of the solution u is very

different from the previous case as soon as advection dominates.

The solution u is a shock wave moving to the right with speed
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Fig. 3.2. Solution of the Burgers equation for ν = 0.1
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Fig. 3.3. Solution of the Burgers equation for ν = 0.01

proportional to the magnitude of u. The numerical value of the

analytical solution is still available for comparison.

Case ν = 0.0001 Here, the advection term strongly dominates the dis-

sipation term. The peak of the shock wave remains high and

moves to the right during the first 0.5 seconds. The numerical

value of the analytical solution cannot be computed accurately

by standard methods.
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Fig. 3.4. Solution of the Burgers equation for ν = 0.0001

In Figure 3.1 to Figure 3.4, we display the profiles of the numerical

solutions uk using the global formula (3.2.5) for all cases. Similar re-

sults can also be found in [OP86] for comparison. For ν = 0.0001, we

compare the numerical results with the values obtained using the Com-

pact Difference Technique [MG80], the Finite Element Method

with a special splitting technique [IM92], and with moving nodes [CS82].

The meshless spatial collocation method offers better results than the

finite element method with moving nodes and much better results than

both the compact difference technique and finite elements with split-

ting. Results are shown in Table 3.3. With a fixed number of spatial

points, the ℓ∞-norm errors of the numerical scheme are approximately

10−2, 10−3, and 10−4 for time steps δt = 0.001, 0.0001, and 0.00001,

respectively. Altogether, this truly meshless method not only is easy to

implement, but also offers an excellent approximation for large values of

the Reynolds number. Finally, we refer the reader to [IK04] for a rather

sophisticated adaptive meshless treatment of 2D advection using radial

basis functions.

3.3 Free Boundary Value Problems

As another illustration of the advantages of meshless collocation, we

now treat the Black–Scholes equation for both European and Amer-

ican option valuation. In particular, the American option valuation can

be treated as a free boundary diffusion problem in which no analytic
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Compact FEM FEM Meshless
accurate difference splitting moving (m = 10 points)

x solution δt=0.001 δt=0.1* δt=0.001* δt=0.1 δt=0.001

0.00 0.000 0.000 0.000 0.000 0.000 0.000
0.05 0.042 0.050 0.041 0.042 0.042 0.042
0.11 0.084 0.075 0.083 0.084 0.084 0.084
0.16 0.126 0.147 0.125 0.126 0.126 0.126
0.22 0.168 0.135 0.169 0.168 0.168 0.168
0.27 0.210 0.261 0.203 0.210 0.210 0.210
0.33 0.252 0.209 0.266 0.252 0.251 0.252
0.38 0.293 0.334 0.252 0.294 0.293 0.293
0.44 0.335 0.304 0.396 0.336 0.334 0.335
0.50 0.376 0.417 0.235 0.377 0.375 0.376
0.55 0.418 0.374 0.548 0.419 0.415 0.418
0.61 0.459 0.505 0.257 0.460 0.455 0.459
0.66 0.500 0.463 0.604 0.500 0.495 0.499
0.72 0.540 0.580 0.601 0.541 0.534 0.540
0.77 0.580 0.536 0.463 0.581 0.572 0.580
0.83 0.620 0.667 0.701 0.621 0.609 0.620
0.88 0.659 0.620 0.671 0.660 0.645 0.660
0.94 0.698 0.741 0.726 0.699 0.678 0.695
1.00 0.000 0.000 0.000 0.000 0.000 0.000

* with 16 intervals

Table 3.3. Comparison of results for ν = 0.0001.

solution is available. The difference between the two only lies in the

boundary conditions, and this is why we start with the Black–Scholes

equation and postpone the boundary conditions.

As outlined in Section 2.10 concerning line methods for time-dependent

problems, we discretize the spatial part of the computational domain

by superpositions (1.1.1) of translates of a positive definite radial ba-

sis function φ and then let the coefficients be functions of time as in

(2.10.1). Since the radial basis function can be chosen to be arbitrar-

ily continuously differentiable, higher order partial derivatives of the

trial functions can directly be computed via derivatives of the radial

basis function. This is particularly useful in computing special finan-

cial derivative terms like Delta values. To handle the time derivative

variable, the Black–Scholes equation is transformed as in (2.10.2) to a

system of first order differential equations in time whose solution can be

obtained by using an ad-hoc time integration scheme.
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To be more explicit, consider the Black–Scholes equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, 0 < t < T, S > 0, (3.3.1)

with the terminal condition

V (S, T ) = max(E − S, 0) (3.3.2)

for European put options, where r is the risk-free interest rate, σ is the

volatility of the stock price S, and V (S, t) is the option value at time t

and stock price S. The transformations

S = Eex, t = T − τ

σ2/2
, V = Eeαx+βτu(x, τ)

given in [WDH95] change equations (3.3.1) and (3.3.2) to the simple

diffusion equation

∂u

∂τ
=
∂2u

∂x2
, −∞ < x <∞, 0 < τ <

1

2
σ2T, (3.3.3)

with initial condition

u(x, 0) = max(e
1
2 (γ−1)x − e

1
2 (γ+1)x, 0), (3.3.4)

where γ = rσ2/2, α = −(γ − 1)/2, and β = α2 + (γ − 1)α− γ.

Using meshless collocation in the spatial variable, an approximation

of the solution of (3.3.3) subject to the initial condition (3.3.4) is sought

as in (2.10.1) by

ũ(x, τ) =
m∑

k=1

αk(τ)φ(x − xk), (3.3.5)

where (x, τ) ∈ [a, b] × [0, σ2T/2], and X := {x1 . . . , xm} is a set of m

distinct points in the interval [a, b]. Define

ΦT
X(x) := (φ(x − x1), . . . , φ(x− xm)) ∈ IRm

aT (t) := (α1(t), . . . , αm(t)) ∈ IRm.

The trial space is then spanned by all functions of the form ΦT
X(x)a(τ).

It is well known from the theory of radial basis function approxima-

tions that smooth functions on Ω× [0, σ2T/2] can be well approximated

by functions ΦT (x)a(τ) if the scattered points from X := {x1, . . . , xm}
have a sufficiently small fill distance (2.3.1) in the spatial domain Ω ⊂
IRd. This was outlined in Section 2.3 and has a long history dating back

to e.g. [MN88, WS93] and summarized in [Buh03, Wen05]. To handle
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time derivatives, an approximation of the solution in the trial space is

constructed which satisfies (3.3.3) on the lines x = xj .

Assume that a function ũ of the form (3.3.5) satisfies equation (3.3.3)

on the lines x = xj . Then the vector function

ũ(τ)T := (ũ(x1, τ), . . . , ũ(xm, τ)) ∈ IRm

has the form ũ(τ) = AXa(τ) with the time-independent positive definite

kernel matrix

AX := (φ(‖xj − xk‖2))1≤j,k≤m

arising already in (1.2.2).

Substituting the representation ũ(τ) = AXa(τ) into equation (3.3.3),

we obtain the following system

AXa′(τ) = −AX,2a(τ)

of ordinary differential equations (ODEs) for the unknown vector func-

tion a(τ), where AX,2 is defined to be the matrix with entries consisting

of spatial derivatives −φ′′(xj − xk) for 1 ≤ j, k ≤ m.

Since AX is positive definite, its inverse A−1
X exists and we have

a′(τ) = −A−1
X AX,2a(τ) (3.3.6)

or equivalently

ũ′(τ) = −AX,2A
−1
X ũ(τ). (3.3.7)

Since φ(x) is a positive definite function, the function −φ′′(x) is a pos-

itive definite function (this follows from univariate Fourier transform

arguments we omit here), and hence AX,2 is also a positive definite

matrix.

These linear ODE systems (3.3.6) or (3.3.7) can then be solved by

using various methods. With the initial condition u(0) obtained from

the initial condition (3.3.4), the systems (3.3.6) or (3.3.7) are standard

linear initial value problems from any textbook in ordinary differential

equations, and they have explicitly available exponentially decaying so-

lutions due to the negative definiteness of the system matrix −AX,2A
−1
X .

Using the matrix exponential

etBx :=

∞∑

n=0

tn

n!
Bnx
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for square m × m matrices B, scalars t and vectors x ∈ IRm, our ap-

proximate solution is

ũ(τ) = e−τAX,2A
−1
X u(0). (3.3.8)

So far, the above results hold for positive definite radial basis functions,

but they can be extended to conditionally positive definite functions.

For instance, if we use scaled multiquadrics φ(x) =
√
c2 + x2, an ap-

proximation order O(hρ) for any ρ > 0 can be achieved if the time steps

are small enough. Note that the time stepping cannot be avoided since

the numerical computation of the eigenvalues and eigenvectors from the

explicit formula can be difficult.

We can treat the case of American options similarly. Their pricing

can be treated as a free boundary value problem, but until recently no

analytical formula was available. American options allow early exercise

at any time t ∈ [0, T ] with an optimal exercise stock value of S =

B(t). The difficulty for most numerical methods to compute an accurate

solution for the American options is due to the unknown free boundary

B(t). To model an optimal early exercise, the Black–Scholes equation

for the American put options valuation now is

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, S > B(t)

V (S, t) = V (S, T ), S ≤ B(t).
(3.3.9)

The same transformations as given before change equations (3.3.9) and

(3.3.2) to

∂u

∂τ
=

∂2u

∂x2
, x > xf (τ),

u(x, τ) = u(x, 0), x ≤ xf (τ),
(3.3.10)

with the initial condition

u(x, 0) = max(e
1
2 (γ−1)x − e

1
2 (γ+1)x, 0) (3.3.11)

where xf (τ) = log(B(t)/E) is the corresponding optimal exercise point.

The region x ≤ xf (τ) corresponds to where the American options should

be early exercised to attain the optimal value u(x, τ) = u(x, 0) (i.e.

∂u/∂τ = 0).

The difficulty in solving equation (3.3.10) under (3.3.11) is due to the

unknown optimal exercise point xf (τ). It is possible to find a suitable

transformation which can translate the unknown xf (τ) into the equation

[WK97]. However, the difficulty still persists due to the nonlinearity

added to the equation.
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From a physical point of view, the only difference between the Amer-

ican options and the European options problem is the propagation pro-

cess induced by the moving unknown boundary value xf (τ). This places

an additional restriction at any time τ on the solution to let its value be

at least u(x, 0).

To solve this free boundary value problem, we apply the meshless col-

location method to solve equations (3.3.10) under the initial condition

(3.3.11), additionally guaranteeing at each time τ that u(x, τ) is at least

u(x, 0). Then there will be a similar estimate as in the European op-

tion case for the error between the exact solution and the approximate

solution.

Since the only difference in the valuation of the European and the

American options is reflected by the updating procedure at the free

boundary, the American options case still is relatively simple. For illus-

tration, we show how to use the first order explicit forward difference

scheme with the necessary modification at the free boundary. Handling

higher order forward difference or implicit difference schemes is similar.

We employ the following algorithm:

• Time discretization: With chosen discrete time values {τk} we can

discretize equation (3.3.7) by using a first order forward difference

scheme to get an intermediate value

u†(τk+1) := ũ(τk) − (τk+1 − τk)AX,2A
−1
X ũ(τk).

• Updating at the free boundary: To satisfy the optimal exercise condi-

tion for the American options valuation, we update the approximate

solution ũ(τk+1) before the next time step to satisfy the free boundary

condition via

ũ(τk+1) := max(u†(τk+1),u(0)).

• The numerical approximation ũ(x, τ) to the exact solution u∗(x, τ) is

then given by

ũ(x, τ) := ΦT
X(x)A−1

X ũ(τ),

where we can use values ũ(τk), ũ(τk+1) to approximate ũ(τ) for τ ∈
(τk, τk+1).

As the Black–Scholes equation for the American put options is the lim-

iting case of the above algorithm when δτ ≥ τk+1 − τk tends to zero
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(see [WDH95] page 112), the proposed algorithm is a reasonable dis-

cretization of the Black–Scholes equation for the American put options

represented by equations (3.3.10) and (3.3.11).

The spatial error estimation for the radial basis function approxima-

tion for the American options problem is the same as for the European

options. The remaining question is then the time discretization error of

the above algorithm when handling the free boundary condition for the

American options. From [WH03] we have the error behavior

O(δτ‖AX,2A
−1
X ‖2

2) + O(h
ρ
2 )

provided that δτ‖AX,2A
−1
X ‖2

2 and h tend to zero.

Remark: The spectral radius of the matrix AX,2A
−1
X is less than

O(h−ρ−1). Hence, δτ ≤ o(h3ρ/2+1) is a reasonable choice for practical

computation.

For illustration, we consider a European put option with

E = 10, r = 0.05, σ = 0.20 and T = 0.5 (year)

as given in [WDH95]. Assume S ∈ [Smin, Smax] and hence

x ∈ [log(Smin/E), log(Smax/E)].

In our computations, we chose Smin = 1 and Smax = 30 sufficiently

large so that V (Smax, τ) is very close to zero. Let

δx = log(Smax/E)/(m− 1)

and

xj = (j − 1)δx for j = 1, 2, . . . ,m.

With these fixed values of xj , the constant matrices AX and AX,2 can

be determined, using the conditionally positive definite polyharmonic

spline r3 plus a linear polynomial in x. By Gaussian elimination with

partial pivoting, the inverse matrix A−1
X is obtained. Note that our

theoretical description above ignores the additional linear polynomials

for simplicity of presentation.

From the initial condition (3.3.4), the initial vector u(0) of values

u(xj , 0) is given by u(xj , 0) = max(e
1
2 (γ−1)xj − e

1
2 (γ+1)xj , 0). The nu-

merical approximation ũ(x, τ) can then be computed directly by us-

ing the analytical formula (3.3.8). If all the eigenvectors of the matrix

−AX,2A
−1
X are linearly independent (this still needs to be proven), the
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analytical formula (3.3.8) can be computed by

ũ(τ) =

m∑

i=1

cie
λiτwi, (3.3.12)

where λi and wi are the m eigenvalues and linearly independent eigen-

vectors of the matrix −AX,2A
−1
X . Denote W to be the m ×m matrix

of (w1,w2, . . . ,wm). Since the eigenvectors are assumed to be linearly

independent, the matrix W is invertible. The constant vector c of ci
can then be determined from u(0) as

c = W−1u(0).

In the numerical computation, the eigenvalues λi and eigenvectors wi

in equation (3.3.12) are computed by using the standard matrix com-

putation software MATLAB. For a real and physical solution, we take

the real part of the right-hand side of equation (3.3.12) to obtain the

analytical approximated solution u. The European put option values

V (S, 0) ·E · exp
(
α log(S/E) + βσ2T/2

)
· ũ(log(S/E), σ2T/2)

can then be determined. Unlike finite difference methods, which ap-

proximate the solution at grid points only, this meshless method gives

a global approximation formula. With the obtained values of the coeffi-

cients a(τ), the option values and all of their derivatives can be obtained

directly by using the derivatives of the radial basis function used.

To indicate the numerical accuracy of the meshless spatial collocation

method, we also used the analytical time integration scheme to com-

pute the European put option values with m equals 41, 81, and 121,

respectively. The comparison with the exact solution is given in Table

3.4. These numerical results indicate that meshless spatial collocation

provides a highly accurate approximation to the solution of the Euro-

pean option pricing problem. With δx = 0.0283 when m = 121, the

root-mean-square-error (RMSE) has already been reduced to 0.0002.

Furthermore, the benefit of this truly meshless computational method

can be seen from the following example calculating the value of an Amer-

ican put option with

E = 100, r = 0.1, σ = 0.30 and T = 1 (year).

Let S ∈ [1, 450] so that x ∈ [log(0.01), log(4.5)]. Assume

δx = [(log(4.5) − log(0.01)]/(m− 1) and δτ = σ2T/2n
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Analytical Solution
Stock S Exact m=41 m=81 m=121

2.00 7.7531 7.7531 7.7531 7.7531
4.00 5.7531 5.7531 5.7531 5.7531
6.00 3.7532 3.7531 3.7531 3.7532
7.00 2.7568 2.7537 2.7562 2.7566
8.00 1.7987 1.7912 1.7974 1.7985
9.00 0.9880 0.9833 0.9881 0.9879

10.00 0.4420 0.4407 0.4432 0.4417
11.00 0.1606 0.1575 0.1609 0.1603
12.00 0.0483 0.0433 0.0476 0.0481
13.00 0.0124 0.0082 0.0115 0.0123
14.00 0.0028 0.0006 0.0023 0.0027
15.00 0.0006 0.0003 0.0004 0.0005
16.00 0.0001 0.0001 0.0001 0.0001

RMSE 0.0034 0.0006 0.0002

Table 3.4. Comparison of accuracy for the European put option

so that

xj = (j − 1)δx for j = 1, 2, . . . ,m

τk = (k − 1)δτ for k = 1, 2, . . . , n.

In our computation, we take m = 101, n = 100 and apply our algorithm

with the first order explicit time discretization scheme. Table 3.5 gives

the result of comparisons of meshless spatial collocation (MSC) with the

Binomial method (Bin) and the Front Finite Difference method

(F-F-F) [WK97] for the American put option values V and their Delta

values ∂V (S, 0)/∂S. In the numerical comparison, the parameter h =

0.045 used in the F-F-F method generated a total of 134 grid points

whereas the MSC used only m = 101 to calculate the values given in the

table.

Since there is still no exact solution for the American options valua-

tion, the RMSE values are not given in Table 3.5. However, it can be

observed that meshless spatial collocation provides a reasonable approx-

imation to the American put option. A better approximation can be

expected by using higher order or implicit time discretization schemes.

More computational examples for meshless spatial collocation solving

the option pricing problem can be found in [HM99].

Unlike the finite element method, which interpolates the solution

by low-order piecewise continuous polynomials, or the finite difference
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Option values Delta values
S Bin F-F-F MSC Bin F-F-F MSC

80.0 20.2689 20.2662 20.3041 -0.8631 -0.8661 -0.8666
85.0 16.3467 16.3396 16.3646 -0.7109 -0.7133 -0.7137
90.0 13.1228 13.1124 13.1269 -0.5829 -0.5848 -0.5851
95.0 10.4847 10.4733 10.4797 -0.4755 -0.4769 -0.4770

100.0 8.3348 8.3277 8.3278 -0.3856 -0.3866 -0.3865
105.0 6.6071 6.5936 6.5893 -0.3108 -0.3116 -0.3113
110.0 5.2091 5.2004 5.1932 -0.2491 -0.2497 -0.2492
115.0 4.0976 4.0872 4.0784 -0.1986 -0.1990 -0.1984
120.0 3.2059 3.2023 3.1928 -0.1575 -0.1578 -0.1572

Table 3.5. Comparison of accuracy for the American put option

method where the derivatives of the solution are approximated by di-

vided differences, the proposed meshless spatial collocation method pro-

vides a global interpolation, not only for the solution but also for the

derivatives of the solution. This provides a cheap and stable computa-

tion of important indicators like Delta values as a bonus without the

need to use extra interpolation techniques. The free boundary condition

in the valuation of the American options usually leads to difficulties for

most existing numerical methods. This, however, does not apply to the

meshless spatial collocation method. The valuation of American options

is roughly the same as the valuation of European options except for a

special updating formula on the free boundary.

But a disadvantage of the method is the full matrix AX,2A
−1
X which

normally hinders its application to large scale problems. Fortunately, re-

cent developments (see Section 2.8) including preconditioning, domain

decomposition [WHL+98], and compactly supported radial basis func-

tions [WHG02b] have shown to successfully improve the computational

efficiency.

3.4 Moving Boundary Value Problems

Finally, the advantages of meshless spatial collocation will be illustrated

by solving a wave–runup and a dam–breaking problem, which are

typical moving boundary value problems.

We first consider the following nonlinear, nondispersive shallow wa-

ter model based on hydrostatic pressure and uniform velocity distribu-

tions in the depth direction. Let h(ζ) be the water depth, g the grav-
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itational acceleration, and t and ζ denote the time and spatial depth

variable, respectively. Furthermore, let y(ζ, t) denote the wave ampli-

tude and u(ζ, t) the depth-average velocity. Then the one-dimensional

governing equations in Eulerian form are given by

∂y

∂t
+
∂(h+ y)u

∂ζ
= 0, t > 0, (3.4.1)

∂u

∂t
+ u

∂u

∂ζ
+ g

∂y

∂ζ
= 0. (3.4.2)

The Lagrangian–Eulerian hybrid method [BS87] captures the moving

waterline by combining the Lagrangian description for the moving wa-

terline with the Eulerian description for the interior flow field. If W (t)

denotes the position of the waterline, then

dW

dt
= u(W (t), t) =: U0(t).

Transformation of the equation (3.4.2) to the Lagrangian form gives

dU0(t)

dt
= −g ∂y

∂ζ
(W (t), t), (3.4.3)

where U0(t) represents the Lagrangian velocity of the waterline. Intro-

ducing a geometric transformation

ζ = (1 +W (t)/L)x+W (t)

replacing the spatial variable ζ by x, the variable domain is converted

to [−L, 0], with −L denoting the fixed end of the spatial computational

region, while the time-varying region −L ≤ ζ ≤ W (t) is transformed

into the fixed spatial region −L ≤ x ≤ 0. If we rewrite the unknown

functions U and y as functions of x and t, the equations (3.4.1), (3.4.2)

and (3.4.3), respectively, become

∂y

∂t
− c1(x,W (t))U0(t)

∂y

∂x
+ c2(W (t))

∂(h+ y)u

∂x
= 0, (3.4.4)

∂u

∂t
− c1(x,W (t))U0(t)

∂u

∂x
+ c2(W (t))

(
u
∂u

∂x
+ g

∂y

∂x

)
= 0, (3.4.5)

dU0(t)

dt
= −c2(W (t))g

∂y

∂x
(0, t), (3.4.6)
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in which

c1(x,W (t)) :=
1 + x/L

1 +W (t)/L
,

c2(W (t)) :=
1

1 +W (t)/L
.

The Lagrangian–Eulerian transformation introduces additional nonlin-

ear terms into the shallow water equations (3.4.4) and (3.4.5) in ex-

change for a time-independent domain. These nonlinear terms need to

be accurately evaluated to provide a good numerical solution.

The surface elevation y and the depth-average velocity u in the shallow-

water equations (3.4.4) and (3.4.5) are approximated by using the mesh-

less spatial collocation method like in (2.10.1) as

y(x, t) =

m∑

j=1

αj(t)φj(x),

u(x, t) =

m∑

j=1

βj(t)φj(x),

where φj(x) = φ(‖x − xj‖2) are translates of a single radial basis func-

tion.

Collocation of the governing equations at the same m testing points

of X := {x1, . . . , xm} transforms equations (3.4.4) and (3.4.5) into a

nonlinear first-order system of ordinary differential equations

P · Ḃ(t) + Q(t, U0(t),W (t),B(t)) · B(t) = F (3.4.7)

where F is the zero vector in IRm and Q(t, U0(t),W (t),B(t)) is a rather

complicated m ×m matrix whose detailed form we suppress here. The

system uses standard notation

AX := (φ(‖xj − xk‖2))1≤j,k≤m

a(t)T := (α1(t), . . . , αm(t)), ȧ(t)T :=

(
∂α1

∂t
, . . . ,

∂αm

∂t

)

and

b(t)T := (β1(t), . . . , βm(t)), ḃ(t)T :=

(
∂β1

∂t
, . . . ,

∂βm

∂t

)
,

B(t) =

(
a(t)

b(t)

)
, Ḃ(t) =

(
ȧ(t)

ḃ(t)

)
, P =

(
AX 0

0 AX

)
.
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The coefficient matrix AX that we know well from (1.2.2) is usually full

and symmetric, and may become ill-conditioned when a large system

of equations is involved. The recently developed domain decomposition

method in [ZHL03b] and other techniques summarized in Section 2.8

will enable to solve large-scale problems.

Analogously, the differential equation (3.4.6) turns after spatial dis-

cretization into

U̇0(t) = R(W (t),B(t))

after introduction of a suitable function R.

Altogether, the full system of 2m+2 differential equations consists of

Ḃ(t) = P−1 (F− Q(t, U0(t),W (t),B(t)) ·B(t))

U̇0(t) = R(W (t),B(t))

Ẇ (t) = U0(t).

(3.4.8)

The numerical solution is obtained by a time integration based on given

initial conditions. The vector F becomes non–zero after implementing

the boundary conditions at x = −L and x = 0. At each time step tk,

the governing equations (3.4.8) are written respectively in the form

Ḃk = P−1
(
Fk − Qk · Bk

)

U̇k
0 = R(W k,Bk)

Ẇ k = Uk
0

with Qk = Q(tk, U
k
0 ,W

k,Bk). By employing the Wilson-θ method to

Bk we get the system

Bk = Bk−1 + δt

(
(1 − θ)Ḃk−1 + θḂk

)
,

and similarly for Uk
0 and W k we obtain

(
Pk + θδtQ

k
)
Ḃk = Fk − Qk

(
Bk−1 + (1 − θ)δtḂ

k−1
)
, (3.4.9)

Uk
0 = Uk−1

0 + δt

(
(1 − θ)U̇k−1

0 − θR(W k,Bk)
)
,

W k = W k−1 + δt

(
(1 − θ)Ẇ k−1 + θUk

0

)
,

where δt is the time-step and 0 ≤ θ ≤ 1. When θ is equal to 0 or 1, the

integration scheme is explicit and may need an extra stability constraint

for convergence. In the following computations, the choice of θ = 0.5

makes the time integration scheme implicit and unconditionally stable.
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Newton’s iterative method provides a fast convergent solution to the

nonlinear matrix equation (3.4.9).

To verify the efficiency and accuracy of the meshless spatial collocation

method, we implement the formulation derived in the last section to

calculate the flow of floodwater resulting from the collapse of a reservoir

dam. The analytical solution is known for a semi-infinite reservoir with

a constant initial depth h. The bottom of the semi-infinite channel in

front of the reservoir is flat and the bottom frictionless. The solution

provided in [Sto92] is given as:

u(ζ, t) =
2

3

(
ζ

t
+ c0

)
, −c0t ≤ ζ ≤ 2c0t, t > 0, (3.4.10)

y(ζ, t) =
1

9g

(
−ζ
t

+ 2c0

)2

− h, −c0t ≤ ζ ≤ 2c0t, t > 0, (3.4.11)

where u denotes the flow velocity, y is the flood wave amplitude, and

c0 =
√
gh. The dam is located at ζ = 0 and the solution describes the

propagation of the flood wave in both directions following the collapse

of the dam at time t = 0. Equations (3.4.10) and (3.4.11) reveal that

the waterline has a zero surface slope and moves at a constant speed of

2c0, while the water depth and flow velocity at ζ = 0 are always equal

to 4
9h, and 2

3c0 respectively.

For comparison purposes, the finite difference method (FDM) is also

applied to obtain numerical approximations to the solutions y and u

of equations (3.4.4) and (3.4.5) by using the Richtmyer two-step Lax-

Wendroff scheme with the following parameters:

• Spatial domain for ζ : [-10m, 0]

• Time domain: [0, 12s]

• Initial water depth behind the dam: h=1m

• Total number of time steps: 600 (in the meshless method) and 1200

(in FDM)

• Total number of spatial discretization points: 101 (in the meshless

method) and 201 (in FDM)

• The radial basis function used: r3.

The boundary conditions y(0, t) = −h and u(−10, t) = 0 of the

transformed domain can be implemented directly in the finite difference

scheme. In the meshless collocation scheme, the boundary conditions
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gives rise to the following numerical approximations:

m∑

j=1

αj(t)φj(xm) = −h,

m∑

j=1

βj(t)φj(x1) = 0,

which are incorporated into equation (3.4.7) to obtain the non–zero vec-

tor F as a right-hand side of the system.

Figures 3.5 and 3.6 respectively give the time histories of the water

surface and flow velocity. The meshless spatial collocation method accu-

rately describes the zero surface slope and the finite propagation velocity

at the waterline. These features at the waterline have presented a chal-

lenge to most traditional numerical methods. The comparison with the

analytical solution and the finite difference approximation is made at

time t = 1.7s and indicates excellent agreement. Figure 3.7 shows the

propagation of the waterline along the channel in front of the dam. The

asterisks indicate the analytical solution before the back-propagating

flood wave reaches the back of the reservoir at x = −10m, when the nu-

merical solution is influenced by the boundary condition. The computed

propagation velocity of the waterline is always equal to the constant 2c0,

which matches the analytical solution. The computed water depth at the

location of the dam is compared with the analytical solution in Figure

3.8. The computed water depth remains constant until the reflection of

the back-propagating flood wave from the back of the reservoir arrives.

In the numerical comparisons, the maximum relative error is less than

1.5 × 10−3.

Although the numerical results obtained by the FDM as illustrated in

Figure 3.5 to Figure 3.7 are also in good agreement with the analytical

solutions, they require more time steps and a higher grid density than

the proposed meshless method for the same accuracy. The extension of

the FDM to solve similar problems on irregular domains, of course, will

be much more difficult than using the meshless method.

The following example further illustrates the application of the mesh-

less collocation method to simulate wave run-up on a plane beach. The
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Fig. 3.5. Water-surface profiles in a dam–breaking problem
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Fig. 3.6. Flow-velocity profiles in a dam–breaking problem

beach profile is defined by

h =

{
αζ : −h0

α ≤ ζ ≤ 0,

h0 : ζ < −h0

α ,

where h0 is the constant water depth in front of the beach, α denotes

the slope of the plane beach, and the still waterline is located at ζ = 0.

With the still-water initial conditions, the incident waves at the offshore
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Fig. 3.7. Waterline position in a dam–breaking problem
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Fig. 3.8. Water depth at dam site, * : analytical solution

end of the profile are generated by

ũ(t) = γ sin(ωt),

where ω denotes the wave frequency and γ is the amplitude of the

velocity. The boundary conditions of the transformed domain y(0, t) =

αW (t) and u(−L, t) = ũ(t) can be directly incorporated into equation

(3.4.7). The parameters used in the computation are:
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• h0 = 1m, α = 0.5, γ = 0.06, ω =
√
g, L = 12m

• Spatial domain for ζ: [-12m, 0]

• Time domain: [0, 10s]

• Total number of time steps: 500

• Total number of the points used: 101

• Radial basis function used: (r2 + 16)
1
2 .

The multiquadric radial basis function is used with a scale factor of

c = 4, which was found to give an accurate solution for this problem.

Figure 3.9 shows the time history of the vertical position of the wa-

terline at the beach. The results show that the initial wave arrives at

the beach at t = 3.8s and a steady state solution develops within one

wave cycle. The unsteadiness associated with the transition from the

still water initial condition decays rapidly with time. Figure 3.10 shows

the surface profiles over a wave cycle after the initial wave reaches the

beach at t = 3.8s. It can be observed from the figures that the meshless

collocation method has reasonably simulated the complicated wave mo-

tion on the beach. Unlike traditional numerical methods, the meshless

collocation method produces a continuous solution over the domain and

thus is a good candidate for solving physical problems with high order

derivatives.
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Fig. 3.9. Waterline in a wave run-up problem
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The Method of Fundamental Solutions

4.1 Introduction

During the past three decades, the Finite Difference Method (FDM)

and the Finite Element Method (FEM) have become the dominating

numerical methods for solving mathematical problems in science and

engineering. These methods are domain–type methods in contrast to

boundary–type methods which transfer the problem to the boundary.

Each has its advantages and disadvantages. In general, the FEM and

the FDM require tedious domain meshing and are relatively expensive

to set up due to the complex bookkeeping process needed for tracking

the connectivity of the mesh in the solution domain. In particular, the

difficulty of meshing becomes a major hurdle for solving problems in 3D,

on irregular domains, and for moving boundaries and singularities.

From a numerical point of view, it is highly desirable to solve a bound-

ary value problem by only discretizing the boundary or by distribution of

unstructured discretization points on boundary-like, lower-dimensional

geometries. As a result, boundary element methods (BEM) have

gradually developed as alternative techniques for solving partial differ-

ential equations (PDEs) due to their computational efficiency. During

the past two decades, they have rapidly improved, and are nowadays

considered as mainstream. Despite the fact that the BEM requires only

meshing on the boundary, it involves quite sophisticated mathematics

and some difficult numerical integrations of singular functions. More-

over, surface meshing in 3D is still a nontrivial task.

Thus, over the past decade, some considerable effort was expanded

on eliminating the need for meshing. This led to the development of

meshless methods which require neither domain nor boundary mesh-

ing. They still require discretizations via sets of “nodes”, but these nodes

73
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need not have any connectivity, and the trial functions are built “entirely

in terms of nodes” [BKO+96]. Among these methods, the Method of

Fundamental Solutions (MFS) has emerged as an effective boundary-

only meshless method for solving homogeneous linear partial differential

equations. It can be viewed as an indirect BEM and works exclusively

with homogeneous solutions as trial functions. Thus only the satisfac-

tion of the boundary conditions is required. Like other boundary meth-

ods, the MFS is applicable to any homogeneous elliptic boundary value

problem, provided the fundamental solution of the governing equation is

known. In fact, the MFS is not new at all. It was originally proposed by

Kupradze and Aleksidze [Kup67, KA64a, KA64b, KA65] and has been

successfully applied to many problems in science and engineering. The

method is also known under different titles such as

• General Integral Method,

• Desingularized Method,

• Superposition Method,

• Charge Simulation Method, and

• Indirect Boundary Element Method,

and it is a special case of Trefftz’s [Tre26] idea to use superpositions of

special solutions of a differential equation in order to satisfy boundary

conditions. Detailed reviews of the MFS have been given independently

by Fairweather and Karageorghis [FK98], Golberg and Chen [GC98],

Fairweather et. al. [FKM03], and Cho et. al. [CGML04].

The MFS has the following key features:

(i) It requires neither domain nor surface discretization.

(ii) It requires no numerical integration, and in particular the diffi-

culties of singular integrands can be avoided.

(iii) For smooth data and domains it was found to be spectrally con-

vergent.

(iv) It is insensitive to the dimensionality of the problem and thus is

very attractive for high dimensional problems.

(v) The computational cost is relatively low.

(vi) It can adapt to sharp changes in the geometry of the domain.

(vii) It is easy to implement.

(viii) If a maximum principle holds, its global error is controlled by the

error committed on the boundary, and the latter can be easily

evaluated. Thus it is safe to apply in practice.
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4.2 Theoretical Background

The basic idea of the method of fundamental solutions is to approximate

the solution of a homogeneous linear boundary value problem in terms

of a superposition of fundamental solutions of the governing differential

operator. To be more specific, a fundamental solution G for a linear

differential operator L is a formulation in the context of distribution

theory. In terms of the Dirac delta functional δ, a fundamental solu-

tion G is the Green’s function for the unbounded space and solves the

inhomogeneous equation

L G(·,y) = −δ(·,y) for all y ∈ IRd.

It is defined on the whole of IRd × IRd except the diagonal {(y,y) :

y ∈ IRd}. The minus sign of the Dirac distribution is introduced for

convenience so that the obtained function of two variables is a positive

definite kernel if the differential operator L is elliptic. In other words,

the function G(·,y) is a solution of the homogeneous partial differential

equation

Lu = 0 in Ω (4.2.1)

for all domains Ω which do not contain the source point y of G(·,y).

If Ω ⊂ IRd, d = 2, 3, is a bounded open nonempty connected domain

with sufficiently regular boundary ∂Ω =: Γ and fΓ is a known function,

then the additional boundary condition

u = fΓ on Γ (4.2.2)

defines together with (4.2.1) a homogeneous Dirichlet boundary

value problem. To solve such a problem, the traditional Boundary

Integral Method is to represent u in terms of the double layer po-

tential

u(x) =

∫

Γ

∂G(x, ·)
∂n

(y)σ(y)dγ(y), x ∈ Γ, (4.2.3)

where n is the outward pointing normal at y ∈ Γ, σ is the unknown

density andG(x, ·) is the fundamental solution of L with a source point x

placed on the boundary. This reduces the given homogeneous boundary

value problem to a singular boundary integral equation

fΓ(x) =

∫

Γ

∂G(x, ·)
∂n

(y)σ(y)dγ(y), x ∈ Γ

to be solved for σ on the boundary.

Although the double layer approach to solve the Dirichlet problem has
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been the most common boundary integral equation method, there has

been a substantial amount of work in recent years using the single layer

potential representation of u for solving (4.2.1) and (4.2.2) via

u(x) =

∫

Γ

G(x,y)σ(y)dγ(y), x ∈ Γ,

for the determination of the source density distribution σ(y) on the

boundary. This yields an integral equation
∫

Γ

G(x,y)σ(y)dγ(y) = fΓ(x) (4.2.4)

of first kind on the boundary. One of the advantages of using (4.2.4)

over (4.2.3) is that there are fewer integration difficulties since the sin-

gularity of the single layer potential is weaker than that of the double

layer potential. The disadvantage is that the linear systems arising from

discretizations of (4.2.4) tend to be more ill–conditioned than those from

(4.2.3).

To alleviate the difficulties of singular integrals, the integration do-

main can be moved outside Ω to avoid singularities, while still con-

structing a homogeneous solution. This generates trial functions

u(x) =

∫

Γ̂

G(x,y)σ(y)dγ(y), x ∈ Γ, (4.2.5)

where the fictitious boundary Γ̂ is the boundary of a domain Ω̂ con-

taining Ω. Since u in (4.2.5) satisfies (4.2.1) automatically, we need only

to satisfy the boundary condition (4.2.2) by a trial function from (4.2.5).

This leads to the equation
∫

Γ̂

G(x,y)σ(y)dγ(y) = fΓ(x), x ∈ Γ, (4.2.6)

where the source density distribution σ is now to be determined on Γ̂

instead of Γ. Once σ is determined, the solution u of (4.2.1) and (4.2.2)

is constructed.

The integral representation (4.2.6) means that there are infinitely

many source points on Γ̂. In order to apply numerical solution tech-

niques, it is necessary to discretize σ(y) and the integral in (4.2.6).

First, we reduce the infinite number of points x ∈ Γ to a finite set of m

test points or collocation points {xj}m
j=1 ∈ Γ. Second, we combine

integration weights and values of σ attained in a set {yk}n
k=1 of source

points or trial centers into a set {αk}n
k=1 of real numbers to get the
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discretization
n∑

k=1

αkG(xj ,yk) = fΓ(xj), 1 ≤ j ≤ m (4.2.7)

of (4.2.6). Even if this linear system is solved inexactly, the trial function

un(x) :=
n∑

k=1

αkG(x,yk) (4.2.8)

will exactly satisfy the homogeneous differential equation (4.2.1) and

approximately satisfy the boundary condition (4.2.2). If a maximum

principle holds, the global error of the trial function un with respect to

the exact solution u∗ will have the explicitly accessible bound

‖u− un‖∞,Ω ≤ ‖fΓ − un‖∞,Γ, (4.2.9)

thus reducing the solution of a homogeneous boundary value problem

to an L∞ approximation problem on the boundary. The approximate

solution of (4.2.7) by trial functions of the form (4.2.8) is called the

Method of Fundamental Solutions.

Although the above introduction of the MFS proceeded via the bound-

ary integral equation (4.2.6), there is no numerical integration needed at

all. It suffices to superimpose a number of fundamental solutions to ap-

proximate the boundary values well, but the system (4.2.7) need not be

interpreted as a numerical integration formula for a boundary integral.

In particular, the MFS usually needs much less source or collocation

points than is necessary for any numerical integration of reasonable ac-

curacy.

In order to evaluate numerically the maximum absolute error ‖fΓ −
un‖∞,Γ on the boundary, we often need additional evaluation points

on the boundary which did not enter in the actual calculation of the

approximate solution.

It is important to note that the MFS can also handle other types of

boundary conditions, including nonlinear ones. For example, Neumann

boundary conditions on the boundary Γ of the solution domain Ω can

be matched by setting

∂un(x)

∂n
=

n∑

k=1

αk
∂G(x,yk)

∂n

equal to certain prescribed values.

We illustrate this in two dimensions using the fundamental solution
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G(x,y) = ln(‖x − y‖2) of the Laplace operator L = ∆ which, remark-

ably, is another radial basis function. Let

p = (p1, p2),q = (q1, q2), r = ‖p− q‖2 =
√

(p1 − q1)2 + (p2 − q2)2

and let p be on the boundary Γ with a unit normal n = (n1, n2) at p.

Then

∂G(p, ·)
∂n

(q) =
∂

∂n
ln r =

1

r

(
∂r

∂q1
n1 +

∂r

∂q2
n2

)

=
1

r2
((p1 − q1)n1 + (p2 − q2)n2)

(4.2.10)

See Figure 4.1 for illustration.

p

q

n(p)

r(p,q)

p1 - q1

p2 - q2

Fig. 4.1. Source point and its boundary nodal point.

In the following, we shall give a more detailed mathematical anal-

ysis and a density-based convergence argument. Application-oriented

readers may skip to Section 4.4 from here.

Assume that {ϕℓ(y)}∞ℓ=1 is a complete set of functions on Γ̂. Then

the source distribution σ of (4.2.3) can be well approximated by trial

functions

σL(y) =

L∑

ℓ=1

cℓϕℓ(y), y ∈ Γ̂. (4.2.11)

This means that we can find a sufficiently large L and coefficients ĉℓ
such that

‖σ − σL‖∞,Γ̂ =

∥∥∥∥∥σ(y) −
L∑

ℓ=1

ĉℓϕℓ(y)

∥∥∥∥∥
∞,Γ̂

≤ ǫ (4.2.12)
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holds for an arbitrarily small ǫ. Substituting (4.2.11) into (4.2.6) and col-

locating at m test points {xj}m
j=1 ∈ Γ, we should pose a linear equation

system

L∑

ℓ=1

cℓ

∫

Γ̂

G(xj ,y)ϕℓ(y)dγ(y) = fΓ(xj), 1 ≤ j ≤ m. (4.2.13)

We further assume that standard quadrature rules can be used which

guarantee a bound

∣∣∣∣∣

∫

Γ̂

G(xj ,y)ϕℓ(y)dy −
n∑

k=1

wkG(xj ,yk)ϕℓ(yk)

∣∣∣∣∣ ≤ δ (4.2.14)

with suitable weights wk and integration nodes yk, 1 ≤ k ≤ n for

arbitrarily small δ, all collocation points xj for 1 ≤ j ≤ m, and all

functions ϕℓ, 1 ≤ ℓ ≤ L. Then from (4.2.13) and (4.2.14), we derive the

linear system

L∑

ℓ=1

cℓ

(
n∑

k=1

wkG(xj ,yk)ϕℓ(yk)

)

=

n∑

k=1

wk

(
L∑

ℓ=1

cℓϕℓ(yk)

)

︸ ︷︷ ︸
=:αk

G(xj ,yk)

= fΓ(xj), 1 ≤ j ≤ m.

This is exactly the standard MFS system (4.2.7) where now the coeffi-

cients have the interpretation

αk = wk

L∑

ℓ=1

cℓϕℓ(yk), 1 ≤ k ≤ n.

If we define

α̂k := wk

L∑

ℓ=1

ĉℓϕℓ(yk), 1 ≤ k ≤ n
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with the coefficients of (4.2.12), we find
∣∣∣∣∣

n∑

k=1

α̂kG(xj ,yk) − fΓ(xj)

∣∣∣∣∣

=

∣∣∣∣∣

L∑

ℓ=1

ĉℓ

n∑

k=1

wkG(xj ,yk)ϕℓ(yk) − fΓ(xj)

∣∣∣∣∣

≤
∣∣∣∣∣

L∑

ℓ=1

ĉℓ

∫

Γ̂

G(xj ,y)ϕℓ(y)dy − fΓ(xj)

∣∣∣∣∣+ δ‖ĉ‖∞

≤
∣∣∣∣
∫

Γ̂

G(xj ,y)σL(y)dy −
∫

Γ̂

G(xj ,y)σ(y)dy

∣∣∣∣ + δ‖ĉ‖∞

≤ ǫ

∫

Γ̂

|G(xj ,y)|dy + δ‖ĉ‖∞

and see that the MFS system (4.2.7) has a good approximate solution

under the above hypotheses. This means that for sufficiently dense test

points and source points, and for sufficiently smooth boundary functions,

the MFS system can be expected to be solvable by a regularized least-

squares solver, and the error in the system can be made arbitrarily small.

If, finally, the actual error
∣∣∣∣∣

n∑

k=1

αkG(x,yk) − fΓ(x)

∣∣∣∣∣

for the calculated coefficients αk is evaluated on the boundary, and if a

maximum principle holds, users have sharp and arbitrarily small bounds

on the total error. This argument applies to most of the examples in

this chapter.

But users should note that the above analysis uses an unrealistically

large number of source points yk, because they are chosen to supply a

good integration formula on the fictitious boundary. A much smaller

number may be sufficient to achieve a small error in the approximation

on the boundary, as described by (4.2.9). This is supported by the

many examples of this chapter. Unfortunately, the approximation power

of traces of fundamental solutions on boundary curves or surfaces is a

difficult theoretical problem still under investigation.

4.3 Fundamental Solutions

Table 4.1 lists fundamental solutions of some commonly used linear dif-

ferential operators which will frequently occur in later sections or chap-
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ters. Since all of these operators are radially invariant, their fundamental

solutions are radial kernels G(x,y) = γ(‖x− y‖2), and we only have to

list scalar radial basis functions γ of the argument r := ‖x − y‖2.

L γ(r) in IR2 γ(r) in IR3

∆
−1

2π
ln r

1

4πr

∆2 −1

8π
r2 ln r

r

8π

∆ − λ2 1

2π
K0(λr)

e−λr

4πr

∆ + λ2 i

4
H

(2)
0 (λr)

e−iλr

4πr

(
∆ − λ2

)2 −r

4πλ
K1 (λr) −

e−λr

8πλ

∆
(
∆ − λ2

) −1

2πλ2
(K0 (λr) + ln r) −

e−λr − 1

4πλ2r

∆2 − λ4 1

8λ2

(
−iH

(1)
0 (λr) +

2

π
K0(λr)

)
e−λr + e−iλr

4πλ2

Table 4.1. Fundamental solutions for various differential operators.

In Table 4.1, K0 and K1 denote modified Bessel functions of second

kind, while H
(2)
0 is the Hankel function of order zero, and i =

√
−1 as

usual.

For the fundamental solutions of the product of Helmholtz operators,

we refer readers to the Reference [CAO94].

4.4 Static Implementation

It is an important issue to determine the optimal location of the ficti-

tious boundary. In general, there are two different approaches in the

literature: static and dynamic. A third technique is also proposed in

this book, combining these two approaches. We shall treat these three

approaches in separate sections, starting with the static approach.

In the static approach, the source locations {yk}n
k=1 are chosen a-

priori in some fashion. Bogomolny [Bog85] and Cheng [Che87] have

laid the theoretical foundations in this direction. In both papers, the
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fictitious boundary was chosen to be a circle in 2D and a sphere in 3D

with center located at the centroid of the solution domain. In fact, the

numerical results for problems with smooth domains and smooth solu-

tions reveal that the shape of the fictitious boundary has only a small

effect on the results, as long as it stays well away from the boundary

of the solution domain. As a result, it is convenient to generate the

source points uniformly distributed on a circle or sphere. Thus, in our

two-dimensional numerical examples that we show later, we will mostly

choose circles as fictitious boundaries. Theoretically, the optimal choice

of the fictitious boundary is a circle or sphere with infinite radius under

certain assumptions eliminating cases with singularities. But since the

resulting problems become more and more ill–conditioned when the fic-

titious boundary moves out to infinity, the radius should be chosen as

large as to make the systems still solvable on a given computer precision,

as suggested by Bogomolny [Bog85]. However, users must be aware that

the numerical solution will always extend out to the fictitious boundary,

and this rules out problems where singularities of the solution on the

boundary can be expected, e.g. for elliptic problems on domains with

incoming corners and general boundary data. See Section 4.8.2 for an

example.

Cheng’s result [Che87] was generalized by Katsurada and Okamoto

[Kat90, Kat94, KO88, KO96], who showed that if Γ is a closed Jordan

curve in the plane and the data are analytic, then

‖u− un‖∞,Γ ≤ c
( r
R

)n

where c is a constant, r and R are the diameters of Γ and Γ̂, respectively.

Once the source points are chosen on Γ̂, the coefficients {αk}n
k=1 in

(4.2.8) can be obtained by either least-squares or collocation methods.

For least-squares,m ≥ n test or collocation points {xj}m
j=1 are chosen

on Γ and then {αk}n
k=1 are chosen to minimize [Bog85]

m∑

j=1

(
n∑

k=1

αkG(xj ,yk) − fΓ(xj)

)2

in a least squares sense. Note that this was the suggestion for solving the

non-quadratic asymmetric system (4.2.7) of Section 4.2 approximately.

For collocation, the number n of source points on the fictitious bound-

ary and the numberm of test points on the physical boundary are chosen

to be equal, so that (4.2.7) becomes a quadratic symmetric linear system
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of equations

n∑

k=1

αkG(xj ,yk) = fΓ(xj), 1 ≤ j ≤ n. (4.4.1)

In view of the maximum principle and for getting an optimal error

bound in the sense of (4.2.9), the optimal way to handle (4.2.7) is to take

m very large and to calculate the coefficients that solve this overdeter-

mined system by minimizing not the sum of squares, but the maximum

of the absolute values of the residuals. This can be rewritten as a linear

optimization algorithm and solved efficiently by the dual revised simplex

method.

Due to the density results shown in [Bog85], we generally need to add

a constant to (4.4.1) for the Laplace equation. This means that

un(x) =

n∑

k=1

αkG(x,yk) + α0, x ∈ Ω.

In this case, we have to collocate n + 1 points {xj}n
j=0 on the physical

boundary and n source points {yk}n
k=1 on Γ̂. This gives the system

n∑

k=1

αkG(xj ,yk) + α0 = g(xj), 0 ≤ j ≤ n. (4.4.2)

Of course, a similar addition can be made when solving (4.2.7) approx-

imately by minimizing minimizing the sum of squares or the maximum

of the residuals.

In [Bog85], the author also investigated the influence of the inclusion

of a constant function into the set of trial functions. It was found that

the difference between (4.4.1) and (4.4.2) is perceptible only when the

fictitious boundary is close to the physical boundary. Hence, for con-

venience, we use (4.4.1) throughout in the next few sections for solving

the Laplace equation. For other differential equations, α0 in (4.4.2) is

not required.

For domains with interior holes, additional source points should be

placed inside the holes as shown in Figure 4.2.

The following examples are given to illustrate the effectiveness of the

method of fundamental solutions described above. We proceed from

rather simple examples to more complicated application-oriented ones.

Example 4.4.3 Here, we present a benchmark case considered by Fen-
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Fig. 4.2. The location of sources points.

2
y

π=

x=1
u’=0

u=0

u 
=

e
co

s(
y)

u 
=

co
s(

y)

•( )1/ 2, / 4π

Fig. 4.3. The rectangular domain and boundary conditions.

ner [Fen91]. The governing equation is the homogeneous Laplace op-

erator, and the appropriate fundamental solution is the singular radial

basis function φ(r) = ln r. As shown in Figure 4.3, the boundary condi-

tions prescribe a potential on three sides of the domain, and a potential

gradient on the fourth. The exact solution is u∗(x, y) = ex cos y, causing

no problems when source points are far away from the domain. The

contour plot of the exact solution is shown in Figure 4.4. As indicated

in [Fen91], the problem is considered as one of moderate complexity

and has been used before as an example for testing an Hermitian cubic

boundary element formulation.

Let n = 20 be the number of collocation points which are uniformly

distributed on the physical boundary and let the same number of sources

be uniformly distributed on a circle with center at (0.5, π/4) and radius
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Fig. 4.4. The contour of exact solution of u (left) and its absolute error (right).

2. The contour plots of the absolute errors of u − un, ∂u/∂x− ∂un/∂x

and ∂u/∂y− ∂un/∂y are shown in Figures 4.4 to 4.5.
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Fig. 4.5. The contour of absolute error ∂u
∂x

(left) and ∂u
∂y

(right).

We observe that the maximum errors of u, ∂u/∂x, and ∂u/∂y occur

near the corners where the boundary condition changes from a Dirichlet

condition to a Neumann condition. The absolute maximum errors of u,

∂u/∂x, and ∂u/∂y evaluated at 400 boundary points are shown in Table

4.2 as functions of the radius R of the fictitious boundary circle. The

accuracy is relatively independent of R in this example. 2

Example 4.4.4 We consider a bounded domain Ω with an irregular
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R ‖u− un‖∞ ‖∂u/∂x− ∂un/∂x‖∞ ‖∂u/∂y − ∂un/∂y‖∞

2.5 1.18E−7 1.21E−6 7.40E−6

4.0 3.03E−7 2.46E−6 1.70E−6

8.0 2.04E−7 2.13E−6 1.48E−6

12 2.41E−7 1.93E−6 1.34E−6

15 2.34E−7 1.88E−6 1.31E−6

18 2.28E−7 1.84E−6 1.28E−6

Table 4.2. Maximum absolute errors of u, ∂u
∂x , and ∂u

∂y .

boundary ∂Ω = ΓD ∪ ΓN and the mixed boundary conditions

∆u = 0, (x1, x2) ∈ Ω,

u = ex1 cosx2, (x1, x2) ∈ ΓD,
∂u

∂n
= ex1(cos x2nx1 − sinx2nx2), (x1, x2) ∈ ΓN ,

where (nx1 , nx2) is a unit normal vector and

∂Ω =
{
(r cos θ, r sin θ) : r = esin θ sin2 2θ + ecos θ cos2 2θ, 0 ≤ θ ≤ 2π

}
.

Then ΓD is the upper half curve of ∂Ω with 0 ≤ θ < π and ΓN is the
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Fig. 4.6. The profile of an amoeba-like boundary.

lower half curve with π ≤ θ < 2π. The exact solution is given by the

global function u∗(x1, x2) = ex1 cosx2 such that the incoming corners

and the change of boundary conditions induce no boundary singularities.
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n ‖u− un‖∞ ‖∂u/∂x1 − ∂un/∂x1‖∞ ‖∂u/∂x2 − ∂un/∂x2‖∞

120 5.755E−12 6.124E−11 3.072E−10

140 5.960E−13 1.078E−11 1.147E−11

160 9.470E−14 1.794E−12 9.325E−13

180 1.303E−13 1.239E−12 1.498E−12

200 1.569E−13 1.545E−12 1.840E−12

220 7.761E−13 5.818E−12 5.356E−12

Table 4.3. Absolute maximum solutions of u, ∂u/∂x1, and ∂u/∂x2.

For the numerical implementation, n evenly distributed collocation

points (in term of the angle parametrization) were chosen on the bound-

ary ∂Ω. Figure 4.6 shows the profile of the amoeba-like boundary. The

fictitious boundary is chosen to be a circle with radius 5 and center at

the origin.

To show the numerical results, we chose 61 evenly distributed points

on the physical boundary for testing. The approximate solution and

derivatives are denoted by un, ∂un/∂x1, and ∂un/∂x2 respectively. Ta-

ble 4.3 shows the absolute maximum errors of u, ∂u/∂x1, and ∂u/∂x2

for various n.

2

Example 4.4.5 We consider

∆u = 0, (x1, x2) ∈ Ω,

u = sinx1 coshx2, (x1, x2) ∈ Γ,
(4.4.6)

on a multi-connected domain defined by

Ω∪Γ = {(x1, x2) :
x2

1

4
+x2

2 ≤ 1, (x1 − 1)2 +x2
2 ≥ 1

4
, (x1 +1)2 +x2

2 ≥ 1

4
},

where Γ consists of an ellipse and two circles as shown in Figure 4.7.

The analytic solution is

u∗ = sinx1 coshx2,

We perform two numerical tests in this example. In both tests, we

chose 40 collocation points on Γ as shown in Figure 4.7. In Test 1, we

chose all the 40 source points outside the solution domain. In Test 2
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Fig. 4.7. Distribution of collocation points.

we used 20 source points located on a circle with radius R and center

at (0, 0) outside the solution domain and 10 source points with radius

r = 0.4 and center at (0, 1) and (0,−1) inside each circle. The maximum

absolute error of u for various R are shown in Table 4.4. The numerical

results reveal that Test 1 is more accurate and Test 2 is less insensitive

to the the location of source points outside the ellipse. It seems that

our test contradicts the results shown in [Fen91] which indicated that

the strategy of using a single source circle enclosing the domain may not

give satisfactory results. 2

Test 1 Test 2 (r = 0.4)

R = 5 1.94E−7 5.68E−6

R = 7 4.62E−9 5.87E−6

R = 9 8.14E−11 4.96E−6

R = 11 5.61E−10 4.29E−6

R = 13 2.71E−8 5.64E−6

R = 15 1.57E−8 3.56E−6

Table 4.4. Absolute maximum error on a multi-connected domain.

In this and several following examples, we consider the Helmholtz

equation
(
∆ + k2

)
u(x) = 0, x ∈ Ω,

which often arises in the study of physical problems involving partial

differential equations. This equation generalizes the standard ordinary
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differential equation

u′′(x) + k2u(x) = 0, x ∈ IR

for stationary waves with solutions cos kx, sinkx, where k is called the

wave number related to the frequency λ by k = 2π/λ. It arises from

the standard technique of separation of variables applied to the wave

equation

∆u(x, t) − 1

c2
∂2u

∂t2
(x, t) = 0,

because general waves can usually be superimposed from stationary

waves. This reduces solving the time-dependent wave equation to solv-

ing a sequence of spatial Helmholtz equations. Similarly, we shall apply

various techniques to reduce time–dependent problems to a series of

Helmholtz equations in Chapter 6. Hence, it is important to show the

effectiveness of the method of fundamental solutions for solving this type

of equation. Note that the equation is not elliptic unless it is rewritten

for purely imaginary k as

−∆u(x) + γu(x) = 0, x ∈ Ω

for nonnegative γ ∈ IR.

Example 4.4.7 Consider the special Helmholtz equation
(
−∆ +

π2

2

)
u = 0, (x1, x2) ∈ Ω,

u = sinh
(πx1

2

)
cosh

(πx2

2

)
, (x1, x2) ∈ Γ,

where Ω ∪ Γ =
{
(x1, x2) : x2

1 + x2
2 ≤ 4

}
. The exact solution is given by

u∗ = sinh
(πx1

2

)
cosh

(πx2

2

)
,

and the fundamental solution is φ(r) = K0(πr/
√

2) (see Table 4.1).

The circle around (0, 0) with radius 5 is the fictitious boundary Γ̂ on

which various numbers of uniformly distributed source points were cho-

sen. The same number of collocation points was chosen on the boundary.

The numerical error was calculated at 400 uniformly distributed eval-

uation points on the domain boundary. Absolute maximum errors for

various numbers of source points are shown in Table 4.5. Note that the

errors decrease rapidly when n becomes larger. When n is sufficiently

large, the error started to decrease due to ill–conditioning. 2
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n ‖u∗ − un‖∞

20 3.3E−3
40 3.6E−11
60 1.4E−14
80 2.1E−14

100 2.5E−13

Table 4.5. Errors for n source points.

Many traditional numerical methods such as finite element, finite dif-

ference, and boundary element methods are tedious for irregular three-

dimensional domains due to the difficulties of mesh generation on the

boundary or inside the domain. The method of fundamental solutions

does not have such difficulties and can be easily applied for solving three-

dimensional problems on nontrivial domains, as the following case shows.

Example 4.4.8 Consider the 3D Laplace equation with Dirichlet bound-

ary condition

∆u = 0, (x1, x2, x3) ∈ Ω,

u = x2
1 + x2

2 − 2x2
3, (x1, x2, x3) ∈ Γ

(4.4.9)

on a three–dimensional peanut-shaped domain represented by the para-

metric surface

r(θ, φ) = (f(θ) cos θ, f(θ) sin θ cosφ, f(θ) sin θ cosφ) (4.4.10)

where θ ∈ [0, π), φ ∈ [0, 2π) and f(θ) :=

√
cos 2θ +

√
1.1 − sin2 2θ.

Figure 4.8 shows the 3D graph of the parametric surface (4.4.10). The

analytical solution of (4.4.9) is given by

u∗ = x2
1 + x2

2 − 2x2
3, (x1, x2, x3) ∈ Ω ∪ Γ,

and the fundamental solution of the Laplace operator in 3D is φ(r) = 1/r

from Table 4.1.

A set of n quasi-random collocation points were chosen on the surface

of Figure 4.9, and the same number of quasi-random source points were

chosen on the surface of a sphere with center at (0, 0, 0) and radius

R. We used a quasi-random number generator to ensure quasi-uniform

distributions (in terms of the angle parameters of (4.4.10) and the outer

sphere). Since no connectivity is required, the generation of these points

is straightforward. The distribution of these two sets of points is shown
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Fig. 4.8. Peanut-shaped domain.
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Fig. 4.9. Collocation points on the boundary.

in Figure 4.10. The absolute maximum errors for various n and R are

shown in Table 4.6. The accuracy is rapidly improving with increasing

n and R.

2

This example shows that flat analytic radial basis functions, if superim-

posed properly, and even if they are singular outside the domain, can

recover multivariate polynomials well. This is another example of the

fact mentioned in Section 2.6, namely that analytic radial basis function

interpolants often converge towards polynomials in their “flat limit”.
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n = 50 n = 100 n = 150 n = 200

R = 4 1.25E−3 2.79E−9 4.07E−12 1.64E−13

R = 6 5.74E−4 1.28E−11 5.83E−13 3.66E−13

R = 8 7.87E−6 1.48E−12 8.91E−13 3.34E−13

R = 10 1.76E−6 1.64E−12 2.74E−13 6.66E−13

Table 4.6. Absolute maximum errors for various of n and R

Fig. 4.10. The distribution of collocation points and source points.

4.5 Interlude: Stability Issues

It must be expected that the condition numbers of (4.4.1) and (4.4.2)

rapidly deteriorates as the radius R of the fictitious boundary circle or

sphere increases. Despite this ill–conditioning, a greater distance of the

source points {yj}M
j=1 from the boundary Γ will improve the quality of

the approximation of the solution [Bog85] if the boundary is sufficiently

smooth and the given boundary data are exact. This is a curious fea-

ture of the method which has puzzled many researchers, but it is in line

with the observations described in Section 2.4, because the usual linear

systems arising in RBF-based methods have the property that the right-

hand sides usually are close to the span of the columns of the matrix.
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Consequently, optimization methods or singular value decompositions

like those described in Section 2.5 and 2.9 will help to overcome stabil-

ity problems, independent of the actual value of the condition number.

The latter measures the blow-up of relative errors in the coefficients, but

the coefficients are much less relevant than the error committed in repro-

ducing the right-hand side of the system by the constructed approximate

solution.

Also in case of the method of fundamental solutions, the coefficients

{αj}n
j=1 in (4.2.8) are usually not of independent interest, but rather

the approximation quality of the numerical solution

un(x) =

n∑

j=1

αjG(x,yj).

The crucial point is how data errors are amplified in un(x), not neces-

sarily in {αj}n
j=1.

Despite the notorious ill–conditioning problem, the method of funda-

mental solutions can still produce extremely accurate results, because

the Uncertainty Principle for radial basis function approximations

described in Section 2.4 can also be observed in the method of funda-

mental solutions. Subject to machine precision, the worse the condition

numbers, the better the approximate solution. As we shall see in the

following example, the Method of Fundamental Solutions can cope with

large condition numbers, if suitable projections or approximations are

used.

Example 4.5.1 To show how the number of collocation points and the

location of source points on the fictitious boundary affect the solution

of the MFS, we consider the Laplace equation with Dirichlet boundary

conditions as in (4.4.6) and boundary conditions

u = sinx1 coshx2, (x1, x2) ∈ Γ,

where the domain is

Ω ∪ Γ = {(x1, x2) :
x2

1

4
+ x2

2 ≤ 1}.

The numerical evaluation of the error was performed using 276 uniformly

distributed evaluation points on the boundary. For various numbers n of

source and collocation points, Figure 4.11 shows the absolute maximum

errors as functions of the radii of the fictitious boundary circles, while

the condition numbers for various radii and source points are shown
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in Figure 4.12. With an increasing number of sources, the accuracy

improves at the expense of the condition number. For n = 20, the

accuracy seems independent of R, the radius of the fictitious circle. For

n = 40, the accuracy improves sharply with the increase of R, but

deteriorates after R > 5 due to the extreme ill–conditioning.
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Fig. 4.11. The maximum absolute errors versus radius of fictitious circle.

2

As will be shown in examples below, despite the ill–conditioning, many

problems can be solved directly using Gaussian elimination with partial

pivoting without problems. However, this requires care since the ill–

conditioning may still cause stability problems for some cases [CGML04,

Kit88, Kit91, Ram02].

In many practical situations, the ill–conditioning is inherent in the

problem and cannot be avoided in scientific computing. Ill–conditioning

is one of the problems that need to be further investigated, not only in

the solution of the MFS, but for RBF-based methods in general. As we

have already observed before, the MFS has the surprising nature that the

ill–conditioning has little effect, to a certain extent, on the solution of the

MFS. In the following, we present examples showing how to counteract

ill–conditioning using the singular value decomposition (SVD) and its

regularization by truncation [CCG06]. Readers are referred to Section

2.5 for the background theory.

Due to the maximum principle [PW67], the absolute maximum error
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Fig. 4.12. Condition numbers versus the radius of the fictitious boundary cir-
cle.

for solutions of the Dirichlet problem for the Laplace equation occurs on

the boundary. Hence, through the next three examples, we calculated

the boundary error using 121 evaluation points that were uniformly dis-

tributed on Γ. Then we chose n < 121 collocation points and source

points which were uniformly distributed (in terms of angles) on the phys-

ical boundary and the fictitious boundary, respectively. Furthermore, we

chose a circle with center at (0, 0) and radius R as the fictitious bound-

ary. We denote by e, ex1 , ex2 the absolute maximum errors of u and

∂u/∂x1 and ∂u/∂x2, respectively; i.e. ,

e = ‖u− un‖∞ , ex1 =

∥∥∥∥
∂u

∂x1
− ∂un

∂x1

∥∥∥∥
∞
, ex2 =

∥∥∥∥
∂u

∂x2
− ∂un

∂x2

∥∥∥∥
∞
.

Example 4.5.2 Consider the Laplace equation with the following Dirich-

let boundary conditions

∆u = 0, (x1, x2) ∈ Ω

u = sinx1 coshx2, (x1, x2) ∈ Γ,

where

Γ =

{
(r cos θ, r sin θ) : r =

√
cos 2θ +

√
1.1 − sin2 2θ, 0 ≤ θ ≤ 2π

}
.

The exact solution is given by u∗ = sinx1 coshx2.
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First, we chose 50 collocation and source points on Γ and the fictitious

boundary, respectively. Let R denote the radius of the fictitious circle.

In Table 4.7, we show the absolute maximum errors using SVD and

Gaussian elimination. In the SVD, we used all 50 singular values. We

found that the numerical results using these two approaches showed

practically no difference. There is no evidence that the SVD is superior

to Gaussian elimination here, as can be expected in all numerically stable

cases. 2

SVD Gaussian

R e ex1 e ex1

4 9.00E − 9 1.35E − 7 2.78E − 8 4.84E − 7

6 7.83E − 10 1.13E − 8 4.33E − 10 6.44E − 9

8 1.70E − 10 2.88E − 9 24.25E − 10 7.18E − 9

Table 4.7. Comparison of Gaussian elimination and SVD using 50

collocation and source points.

Example 4.5.3 We consider Laplace equation with mixed boundary

conditions. Let Γ = ΓD ∪ ΓN . As shown in Figure 4.13, we imposed

a Dirichlet condition on ΓD, which contains the upper half of Γ, and

a Neumann condition on ΓN , which contains the lower half of Γ. The

boundary conditions are imposed in such a way that the exact solution

still is u∗ = sinx1 coshx2.

We chose 200 collocation and source points and performed the same

tests as shown in Example 4.5.2. Again, as displayed in Table 4.8, the

results do not indicate that the SVD is superior to Gaussian elimination.

For testing the truncated singular value decomposition (TSVD)

described in Section 2.5, we chose the first 50 singular values and con-

ducted the same numerical tests as above. The numerical results in

Table 4.9 show that there are no differences for R = 4. However, the

numerical results are more stable when R increases. This indicates that

the TSVD is superior to the SVD in terms of accuracy and efficiency for

using large numbers of collocation and source points. We will further

elaborate on this observation in the next two examples.

2
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Fig. 4.13. Profile of the Neumann and Dirichlet boundary conditions.

SVD Gaussian

R e ex1 e ex1

4 6.47E − 14 2.07E − 13 5.05E − 14 3.91E − 13

6 1.34E − 12 1.80E − 12 5.00E − 13 1.95E − 12

8 5.42E − 10 4.29E − 9 5.42E − 10 4.29E − 9

Table 4.8. Absolute maximum errors e and ex1 for mixed boundary

conditions.

Example 4.5.4 To study the effect of the TSVD on the accuracy, we

consider again the Laplace equation with mixed boundary conditions.

Let

Γ = {(r cos θ, r sin θ) : r = esin θ(sin2(2θ)) + ecos θ(cos2(2θ))}.

The boundary Γ is an amoeba-like irregular shape, see Figure 4.14. The

boundary conditions are given by

∂u

∂n
= (cosx1 coshx2)nx1 + (sinx1 sinhx2)nx2 , (x1, x2) ∈ ΓN ,

u = sinx1 coshx2, (x1, x2) ∈ ΓD,
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TSVD

R e ex1

4 3.96E − 14 1.72E − 13

6 8.45E − 14 1.67E − 13

8 1.35E − 12 1.67E − 12

Table 4.9. Absolute maximum errors e and ex1 for mixed boundary

conditions.

where (nx1 , nx2) is a unit normal vector, ΓN = Γ with 0 ≤ θ < π/2,

and ΓD = Γ with π/2 ≤ θ < 2π. The exact solution is given by

u∗ = sinx1 coshx2. As shown in Figure 4.14, the Neumann condition is

imposed on the first segment of the amoeba-like curve, and the Dirichlet

boundary condition on the rest of Γ.
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Fig. 4.14. Neumann and Dirichlet boundary conditions.

We first chose 200 collocation and source points on Γ and the fictitious

circle with R = 4, respectively. In Figure 4.15, we show the absolute

maximum errors of e, ex1, and ex2 versus the number of singular values

being used. In Figure 4.15, we also present the distribution of the singu-

lar values. There seems to be no significant difference in accuracy when
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using more than 50 singular values. This indicates that the truncation

error and round off error have little effect on the accuracy, but users are

advised not to use more singular values than necessary.

Table 4.10 shows again that there is no significant difference between

Gaussian elimination and SVD using 200 collocation and source points.

We have conducted several tests using various boundary shapes and

conditions, and found no significant difference, even for mixed boundary

conditions, when using a circle as the fictitious boundary.
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Fig. 4.15. Numerical results of e, ex1 , ex2 (upper graph) and distribution of
singular values (lower graph) using 200 collocation and source points.

2

Example 4.5.5 We consider Example 4.5.4 adding random noise to the
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Source radius R e (Gaussian) e (SVD) e (TSVD)

4 1.27E − 12 2.99E − 13 2.88E − 14

5 8.21E − 14 1.34E − 13 4.90E − 14

6 3.12E − 13 3.01E − 13 2.75E − 13

7 1.46E − 12 1.00E − 11 5.70E − 13

Table 4.10. Comparison of Gaussian elimination, SVD and TSVD.

boundary conditions as

∂u

∂n
= (sinx1 coshx2)nx1 + (sinx1 coshx2)nx2 + δ, (x1, x2) ∈ ΓN ,

u = sinx1 coshx2 + δ, (x1, x2) ∈ ΓD,

where δ stands for uniformly distributed random numbers drawn from

[−ε, ε], such that ε denotes the noise level. As in the last example, we

chose 200 collocation and source points. We chose 60 singular values

for the truncated singular-value decomposition (TSVD). The noise level

ε was set to be at 1%. The absolute maximum errors for e, ex1 and

ex2 versus the source radius are shown in Figures 4.16 and 4.17. It is

clear that the TSVD is superior to the SVD and Gaussian elimination.

Again, there is little difference between Gaussian elimination and the

SVD. Note how a careful analysis of the singular values can help to

determine the noise level and the correct number of signgular values to

use. This is in line with the results of Section 2.5 on regularization.

2

In [HW05, Jin04] the authors discussed in detail how to choose cer-

tain regularization parameters using various techniques. However, we

found that the simple truncated singular-value decomposition (TSVD)

is sufficient to produce satisfactory results in our cases, in particular

if condition numbers are extremely large and if there is noise. We sug-

gest choosing a sufficiently large number of collocation and source points

in the formulation and then to comfortably cut-off at least half of the

singular values without loss of accuracy. Using SVD, we know how to

eliminate the smaller singular values, and using TSVD, the radius of the

fictitious circus is no longer a critical issue. This follows since the larger

the radius of the source circle, the worse the ill–conditioning becomes.

However, since the ill–conditioning is caused by the small singular values,
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Fig. 4.16. Absolute maximum errors of e (above) and ex1 (below).

it is rather easy to remove them in order to have a stable computation.

The price we have to pay for a simple and maybe too large choice of the

source radius is to choose many more source points than needed. In the

last and current example, we found that only 60 out of 200 singular val-

ues are enough to produce accurate results. This is in perfect agreement

with the results of Section 2.5 and the simple example yielding Figure

2.7.

Examples 4.5.2 – 4.5.5 show that the SVD without truncation or regu-

larization does not appear to be more reliable than Gaussian elimination

for solving these equations for non–noisy boundary conditions. Since

Gaussian elimination is cheaper than SVD, it appears that it can be used

to efficiently and accurately implement the MFS. But this requires that
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Fig. 4.17. Absolute maximum errors of ex2 .

the numerical routine used for Gaussian elimination be well-programmed

and its pivoting process be cut off properly. Users are discouraged from

using self-made solvers. For noisy data and highly ill–conditioned sit-

uations, the truncated singular-value decomposition (TSVD) is clearly

superior to Gaussian elimination. However, we shall see in Section 4.9

that inverse problems call for even more careful regularization, and then

we shall use the Tikhonov strategy, as described in Section 2.5. Note

that TSVD is considered as a regularization method, not as a plain

solution technique.

4.6 Dynamic Implementation

This approach was first proposed by Mathon and Johnson [MJ77] and

further developed by Fairweather and Karageorghis [FK98] and extended

to a wide variety of problems, see [Kar92, KF87, KF89a, KO88, PKG98],

and references cited therein. In this approach, the locations of n source

points {yk}n
k=1 and the corresponding source strength factors {αk}n

k=1

in (4.2.8) are both treated as unknown and are to be found as part of

the solution. A set of m collocation points {xj}m
j=1 is selected on the

boundary where e.g. a Dirichlet boundary condition is provided by a

known function g. Then the objective function

εm(a,Y) =

m∑

j=1

(un(xj ;a,Y) − g(xj))
2

(4.6.1)
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is minimized in a non–linear least-squares sense with respect to a :=

{αj}n
j=1 and Y := {yj}n

j=1. This is a nonlinear optimization problem

which has high computational cost. There are 3n unknown to be deter-

mined in 2D problems and 4n for 3D problems. Since significantly more

source points are required for the 3D problems, it becomes inefficient in

implementation unless one can get away with very small n, i.e. with a

very well-chosen trial space.

Consider the following biharmonic problem

∆2u = 0, x ∈ Ω, (4.6.2)

subject to either

u = g1(x),
∂u

∂n
= h1(x), x ∈ Γ,

or

u = g2(x), ∆u = h2(x), x ∈ Γ. (4.6.3)

Karageorghis and Fairweather [KF87] proposed the solution to be ap-

proximated by a linear combination of fundamental solutions of both

the Laplace and biharmonic equations; i.e. ,

un(x) =

n∑

k=1

αkG1(x,yk) +

n∑

k=1

βkG2(x,yk)

where G1 and G2 are the fundamental solutions of ∆ and ∆2, respec-

tively, and where we dropped the dependence of un on the yk and the

coefficients αk, βk. Similar to the formulation of (4.6.1), the approx-

imate solution un must satisfy the biharmonic equation (4.6.2), and

{αj}n
j=1,{βj}n

j=1 and the positions of the source points {yj}n
j=1 must be

chosen in such a way that the boundary conditions (4.6.3) are satisfied.

To achieve this goal, the following nonlinear functions are minimized

εm =

m∑

j=1

(
(un − g1(xj))

2 +

(
∂un

∂n
− h1(xj)

)2
)

(4.6.4)

or

εm =

m∑

j=1

(
(un − g2(xj))

2 + (∆un − h2(xj))
2
)
, (4.6.5)

depending on the type of the boundary conditions, and where the source

points and coefficients hidden in un are varying.

The minimization of the functionals in (4.6.1), (4.6.4) or (4.6.5) can

be performed by using various least squares minimization algorithms.
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Among them, MINPACK, IMSL [IMS01] and NAG [NAG01] are com-

monly used. The routines LMDIF and LMDER from MINPACK mini-

mize the sum of squares of n nonlinear functionals in m variables using

a modified version of the Levenberg–Marquardt algorithm. Users

should be aware that it implicitly uses a regularization strategy which

is similar to Tikhonov regularization. LMDIF evaluates the Jacobian

internally by a forward-difference approximation, whereas LMDER re-

quires the user provide a subroutine that evaluates the Jacobian analyt-

ically. It terminates when either a user-specified tolerance is achieved

or a user-specified maximum number of function evaluations is reached.

The subroutine E04UPF from NAG can also be used. This subroutine

employs a sequential quadratic programming algorithm and minimizes

a functional consisting of a sum of squares. This subroutine can be

used either for unconstrained or constrained optimization. The subrou-

tine E04UPF terminates when a user-specified tolerance is found. The

tolerance can be supplied through an optional input parameter which

specifies the accuracy to which the user wishes the final iterate to ap-

proximate the solution of the problem. The subroutines UNLSF and

UNSLSJ from IMSL can also be used. UNLSF is based on a modified

Levenberg–Marquardt and a finite-difference Jacobian while UNSLSJ

uses the same algorithm with a user-supplied Jacobian. Note that if

the exact Jacobian is supplied in above mentioned subroutines, the ef-

ficiency, as we shall see in the numerical implementation later, will be

significantly improved. However, the complexity of the code will in-

crease, too.

The initial placement of the moving sources and the positioning of

the fixed boundary points are extremely important as they greatly affect

the convergence of the least squares procedure. In general, the sources

are initially distributed uniformly at a fixed distance from the boundary

[KF87], and the boundary points are selected uniformly on the boundary.

Following the recommendation of Oliveira [Oli68], the number m of test

or collocation points on the boundary is chosen to be approximately

three times the number of unknowns determined by the number n of

source points and the space dimension. The tendency of the sources to

move to the interior of the solution domain is overcome by an internal

check of the position of singularities during the iterative process. If a

source is moved inside Ω, it is repositioned at the exterior of the domain

[KF87].

Since the minimization problem of (4.6.4) or (4.6.5) is non–linear,

there is no guarantee that it has a unique global solution, i.e. the solution



The Method of Fundamental Solutions 105

obtained may be just an approximation of a local minimum instead of the

global minimum. Hence, one has to observe convergence using various

parameters and use the algorithms with care.

In the implementation of the MFS, it is often difficult to decide a pri-

ori how many sources and boundary collocation points should be used

in order to fit the boundary condition satisfactorily. MacDonell [Mac85]

introduced the idea of starting with a certain number of sources, say n1,

and a corresponding number of boundary points m1, and after a certain

number of function evaluations, adding sources so that the total num-

ber becomes n2 and the corresponding number of boundary collocation

points is increased to m2, a process which can be repeated until the

desired accuracy is reached. The additional sources are distributed uni-

formly around the region at a user-specified distance along the normal

of the surface. This improved version of the MFS was used in the so-

lution of biharmonic problems [KF87] and produced faster convergence

of the method. However, it reports no improvement for some nonlinear

boundary problems [KF89a].

Example 4.6.6 Consider the harmonic test problem [PKG98]

∆u = 0, (x1, x2) ∈ Ω,

u = x1, (x1, x2) ∈ Γ,

where Ω ∪ Γ = {(x1, x2) : −1 ≤ x1, x2 ≤ 1}.
The sources were initially positioned at uniformly distributed points,

at a fixed distance d = 0.1 from the boundary. In this example, the CPU

time used was measured as a function of the user-specified tolerance ǫ

for ‖u− um‖ ≤ ǫ on the boundary. Let n denote the number of source

points and m the number of collocation points on Γ. All computations

were performed in double precision on an IBM RISC 6000 computer.

The CPU times in seconds for various ǫ,m and n, and for various least

squares software packages are shown in Table 4.11. There, E04UPF*

denotes that the Jacobian was evaluated internally, while E04UPE**

denotes that the Jacobian was provided by the user. From the table we

notice that the CPU times required by using LMDER and E04UPF**

are much less than those of LMDIF and E04UPF**.

2

Example 4.6.7 Consider the biharmonic equation (4.6.2) subject to

the boundary conditions u(x1, x2) = x2
1 and ∆u(x1, x2) = 2 where Ω∪Γ
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ǫ m n LMDIF LMDER E04UPF* E04UPF**

10−2 6 56 1.1 0.6 1.4 0.2
7 64 2.3 1.2 1.3 0.2
8 72 3.7 2.0 93.1 0.4
9 84 3.4 1.9 141.2 1.3
10 92 3.5 3.3 151.8 1.1

10−3 6 56 1.1 0.7 2.6 1.6
7 64 20.1 1.8 4.3 0.7
8 72 18.6 10.2 129.6 3.9
9 84 22.4 12.6 243.4 6.1
10 92 22.3 15.6 260.0 8.3

10−4 6 56 3.3 0.8 3.7 1.9
7 64 56.8 56.0 60.3 10.5
8 72 159.7 93.4 339.9 46.7
9 84 398.6 146.3 506.4 95.4
10 92 463.3 178.3 617.7 110.4

Table 4.11. CPU times in seconds required by the least squares

minimization routines.

is the same as in the previous example. This problem is considered by

[PKG98]. The exact solution is u∗(x1, x2) = x2
1.

The performance of the various routines shown in Table 4.12 is similar

to those for the harmonic problem in the previous example, and the

notations are the same. The relative efficiency of the routines is the

same as above, but the CPU times required in this example are much

higher than in the previous example.

2

Example 4.6.8 In this example we consider

∆u = 0, (x1, x2) ∈ Ω,

u = x2
1 − x2

2, (x1, x2) ∈ Γ,

where Ω is an ellipse as shown in Example 4.5.1. We used the subrou-

tine DUNLSF from the IMSL library. A total of 72 collocation points

were uniformly distributed on the boundary and 8 source points were

initially placed on a uniformly distributed fictitious boundary ellipse

{(3 cos θ, 2 sin θ) : 0 ≤ θ < 2π}. The initial values of {αj}n
j=1 were all

set equal to 1. Both the absolute and relative function tolerance are

set equal to 10−5. The numerical computation was performed using 276

evenly distributed points on the boundary. We obtained an absolute
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ǫ m n LMDIF LMDER E04UPF* E04UPF**

10−2 6 72 3.2 1.7 51.4 1.5
7 84 7.5 4.0 69.2 1.5
8 96 8.2 4.1 146.7 3.3
9 108 9.8 5.1 343.2 4.6
10 120 12.1 6.2 467.9 4.5

10−3 6 72 27.9 15.4 89.4 9.6
7 84 53.3 30.2 159.7 21.7
8 96 78.7 39.2 462.7 26.4
9 108 125.7 64.4 767.3 53.9
10 120 120.9 60.0 957.4 62.7

10−4 6 72 411.8 352.8 461.4 255.4
7 84 860.4 274.4 735.6 310.8
8 96 829.2 427.2 920.7 422.3
9 108 1153.1 637.2 1541.2 546.4
10 120 2235.3 544.5 2462.4 601.9

Table 4.12. CPU times in seconds required by the least squares

minimization routines.

maximum error of ‖u− um‖∞ = 2.75E−4. The final locations of the

source points are shown in Figure 4.18. We have tested different initial

values, and found the final locations of the sources to vary greatly. This

is because there are many ways to approximate a quadratic function well

by a few distant fundamental solutions. 2

4.7 Modified Implementation

Each method of the previous two approaches has their advantages and

disadvantages. A modified MFS combining both approaches is pre-

sented. In the dynamic approach, each source contains two unknowns

in 2D (three in 3D) to be determined. As a result, using the nonlin-

ear routines becomes costly. To reduce the number of unknowns, it is

suggested now that the sources are initially fixed on a fictitious circle

in 2D (sphere in 3D) with radius R. Then the dynamic approach is

applied to determine the radius of the circle. In this way, there are only

m+ 1 unknowns for either the 2D or 3D cases. This modified approach

is particularly attractive for the 3D case.

Example 4.7.1 We use the modified approach to compare with the

static approach in Example 4.5.1. The sources initially are located on
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Fig. 4.18. Final locations of source points.

a circle of radius 10, and the initial values of {αj}n
j=1 are all set equal

to 1. We used the IMSL routine DUNLSF (double precision) for the

nonlinear least squares computation. In the implementation, we supplied

the absolute function tolerance and the relative function tolerance as

10−8. Let R denote the computed radius for the fictitious circle. Table

4.13 shows the absolute maximum errors using various sources on the

fictitious boundary and collocation points on the physical boundary. It

is obvious that the accuracy of the modified approach is not as high as

the static approach, but it is better than dynamic approach.

Next we compare the modified approach with the dynamic approach in

Example 4.6.8, where the boundary condition is u = x2
1 − x2

2. We used

the same parameters as mentioned above and obtained the numerical

results as shown in Table 4.14. We observe that the modified approach

is more accurate than the dynamic approach. Since fewer parameters

are involved in the modified approach, the method is definitely more

efficient. Overall, the modified approach appears to be good compromise

between the static and dynamic approaches. 2
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m n R ‖u− um‖∞

10 22 4.378 3.258E−4
15 32 6.672 3.172E−5
20 21 4.407 3.702E−5

40 4.412 2.651E−5
60 4.512 2.097E−5

30 31 4.699 4.699E−7
40 4.562 3.146E−6
62 4.631 1.049E−5

Table 4.13. Absolute maximum errors using the modified approach for

Example 4.5.1

m n R ‖u− um‖∞

10 22 16.58 3.841E−6
15 32 5.378 7.671E−6
20 21 5.289 7.301E−7

40 5.536 7.603E−8
60 5.549 4.405E−6

30 31 6.007 1.672E−5
40 5.934 1.023E−5
62 5.960 9.371E−6

Table 4.14. Absolute maximum errors using the modified approach for

Example 4.6.8

.

4.8 Special Problems

4.8.1 Calculation of Eigenvalues of the Helmholtz Equation

In this section, we apply the static approach of the Method of Fundamen-

tal Solutions for the solution of a Helmholtz eigenvalue problem . This is

of central importance in areas like acoustic and electromagnetic waves,

e.g. in order to study the forced motion of a membrane. In this section,

we only discuss the direct approach using the method of fundamental

solutions for simple connected domain as shown in [DM76, Kar01]. We

refer readers to the more sophisticated approaches using the method of

fundamental solutions for simple and multi-connected domains in Ref-

erences [AA05, Reu05, Reu06b, Reu06a].

The Helmholtz eigenvalue problem requires the determination of

a scalar λ called the eigenvalue and a nonzero function u called the
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eigenfunction solving
(
∆u+ λ2

)
u = 0 in Ω,

u = 0 in Γ,
(4.8.1)

where Ω is a bounded domain in IR2 with boundary Γ.

The fundamental solution of the Helmholtz equation for fixed λ is

given by

Gλ(x,y) = − i

4
H

(2)
0 (λr)

where i =
√
−1 and H

(2)
0 is the Hankel function of the second kind of

order zero (see Table 4.1). Thus we can use the MFS to superimpose

translates of the fundamental solution to make the superimposed bound-

ary values as small as possible. For actual eigenvalues λ this will work

better than for other values, and this describes our basic approach to

the eigenvalue problem.

The fictitious boundary Γ̂ where the n source points yk will be lo-

cated is taken to be of a similar shape as Γ at a fixed distance R from

it. The same number n of collocation and source points are chosen in

the implementation. The MFS for (4.8.1) yields a homogeneous linear

system of the form

n∑

k=1

αkGλ(xj ,yk) = 0, j = 1, ..., n. (4.8.2)

The above equation can be written in matrix form

Gλa = 0, (4.8.3)

where the entries of Gλ ∈ Cn×n are given by

Gλ(xk,yj) = − i

4
H

(2)
0 (λr(xk ,yj)), j, k = 1, 2, ..., n,

and a = {α1, α2, · · · , αn}. Note that (4.8.3) is a set of complex algebraic

equations for the unknowns αj . In order to obtain a nontrivial solution

of the system (4.8.3), the determinant det (Gλ) of the coefficient matrix

Gλ must be zero. Thus, the eigenvalues of (4.8.1) can hopefully be

approximately obtained if we can find λ such that

det (Gλ) = 0.

Taking the real and imaginary parts of det (G(λ)), we have

R [det (G(λ))] = 0 (4.8.4)
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and

I [det (G(λ))] = 0 (4.8.5)

where R denotes the real part and I the imaginary part. The two

nonlinear equations (4.8.4) and (4.8.5) can be solved independently using

standard numerical library software such as IMSL, NAG, or Netlib.

In [Kar01], the MFS was used to calculate the smallest eigenvalue λ0

of (4.8.1) in the case when Ω is the unit disk. The exact value of λ0

is the smallest positive zero λ0 ≃ 2.4048255577 of the Bessel function

J0 of first kind [AS65]. Using the MFS, the numerical results for λ0

and the corresponding absolute errors for various numbers of degrees of

freedom for (4.8.2) are presented in Table 4.15 [Kar01], where R was

taken to be 0.6. The results were not particularly sensitive to the value

of R, provided it was not too small or too large. In this case, the MFS

approach is much superior to the boundary integral method [DM76] in

terms of accuracy and efficiency.

R [det (G)] I [det (G)]

n λ0 Error λ0 Error

12 2.409537 0.471E − 2 2.400311 0.451E − 2

16 2.404908 0.821E − 4 2.404662 0.163E − 3

20 2.404835 0.943E − 5 2.404806 0.197E − 4

24 2.404827 0.117E − 5 2.404823 0.245E − 5

28 2.404826 0.150E − 6 2.404825 0.316E − 6

32 2.404826 0.198E − 7 2.404806 0.417E − 7

50 [DM76] 2.4121 2.4119

Table 4.15. The smallest eigenvalue for various n.

4.8.2 Nonsmooth Boundary Conditions

The treatment of boundary singularities by various techniques using

boundary element methods has been the subject of several studies. Kara-

georghis and his co-workers [Kar92, KF87, KF88, KF89b, PKG98] mod-

ified and extended these techniques in conjunction with the MFS. There

are two main reasons for using the MFS. First, due to its adaptivity,
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the MFS to some extent absorbs the effects caused by the presence of

boundary singularities [JFK87, KF87]. Second, since in the MFS the

solution is expressed in terms of a linear combination of fundamental

solutions, it is only natural to include terms prescribing the analytical

behavior of the boundary singularity in this expansion.

Let us consider the problem (4.2.1)–(4.2.2) with L = ∆. Assume

that the problem is posed in such a way (e.g. by incoming domain

corners) that the solution has a singularity at some boundary point O

on Γ. A special singular solution u of the problem can be expressed in

a neighborhood of O by

u(x) =

∞∑

k=1

αkr
λkfk(θ),

where r and θ are local polar coordinates for x = (r cos θ, r sin θ) centered

at O, and where rλk and fk(θ) are known. Based on this observation,

Karageorghis [Kar92] proposed to assemble the approximate solution as

the sum of a singular solution us
n and a regular solution ur

n as

un(x) = us
n(x) + ur

n(x)

=

k∑

i=1

αir
λifi(θ) +

n∑

k=1

akG(x,yk), yk ∈ Γ̂,
(4.8.6)

where Γ̂ denotes the fictitious boundary. Note that un satisfies (4.2.1)

since both the fundamental solutionG(x,y) and singular solutions rλif(θ)

are harmonic, provided that the λi are chosen appropriately, e.g. depen-

dent on the angle of incoming domain corners.

A similar approach can be applied to the biharmonic problem. Then

the solution of the boundary value problem (4.6.2)–(4.6.3) can be ap-

proximated by (see [Kar92])

un(x) =

k∑

i=1

αir
λifi(θ) +

n∑

j=1

ajG1(x,yj) +

n∑

j=1

bjG2(x,yj), yj ∈ Γ̂,

where G1 and G2 are the fundamental solutions of ∆ and ∆2.

In contrast to the modified MFS described above, a new version of the

MFS was proposed by Poullikkas et. al. [PKG98] in which the singular

term us
n in (4.8.6) only contains one term

us
n = αrβ cos(βθ), (4.8.7)

where α is the unknown coefficient of the special singular solution.
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To show the effectiveness of the above modified versions of the MFS,

the following problem, known as the Motz problem, was considered

by Karageorghis [Kar92].

Example 4.8.8 Consider

∆u = 0, x ∈ Ω,

∂u

∂n
= 0, x ∈ OA,BC,CD

u = 1000, x ∈ AB

u = 500, x ∈ DO,

where Ω is shown in Figure 4.19. The Motz problem is considered as a

benchmark problem for testing various numerical methods for problems

with boundary singularities. The singularity occurs at the point O where

the boundary condition suddenly changes from u = 500 to ∂u/∂x2 = 0.

A(7,-3.5)

B(7,3.5)C(-7,3.5)

D(-7,-3.5)

(0,0) x

y

r
O

r

Fig. 4.19. Motz Problem.

The point O represents the tip of the slit, and the problem possesses

a singular solution of the form

u(x) = 500 + α1r
1/2 cos

θ

2
+ α2r

3/2 cos
3θ

2
+ · · ·

in the neighborhood of O [Sym73]. From (4.8.6), two terms of us
n were
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chosen. The solution is approximated by

un(x) = α1r
1/2 cos

θ

2
+ α2r

3/2 cos
3θ

2
+

n∑

j=1

ajG(x,yj), yj ∈ Γ̂.

By taking derivatives with respect to x and y, we obtain

∂

∂x
r

1
2 cos

θ

2
=

1

2
r

−1
2 cos

θ

2
,

∂

∂y
r

1
2 cos

θ

2
=

1

2
r

−1
2 sin

θ

2

∂

∂x
r

3
2 cos

θ

2
=

3

2
r

1
2 cos

θ

2
,

∂

∂y
r

3
2 cos

θ

2
= −3

2
r

1
2 sin

θ

2
.

The boundary conditions become





∂un

∂n
= 0, x ∈ OA,

un + α1r
1
2 cos

θ

2
+ α2r

3
2 cos

3θ

2
− 1000 = 0, x ∈ AB,

∂un

∂n
+
α1

2
r

−1
2 sin

θ

2
− 3α2

2
r

1
2 sin

θ

2
= 0, x ∈ BC,

∂un

∂n
− α1

2
r

−1
2 cos

θ

2
− 3α2

2
r

1
2 cos

θ

2
= 0, x ∈ CD,

un − 500 = 0, x ∈ DO.

The problem was tackled by the following four different methods [PKG98]:

MFS1 Naive MFS.

MFS2 Modified MFS with α1 as only additional unknown.

MFS3 Modified MFS with α and β in (4.8.7) as additional unknowns.

MFS4 Modified MFS with α1 and α2 as unknowns [Kar92].

The sources were initially placed outside the domain at different dis-

tances d from the boundary, as before. Due to the strong nonlinearity

of the resulting problem in the new modified method, convergence was

achieved only for a restricted range of d less than 0.4. The exact so-

lution [RP75] and approximate solutions using the MFS1 – MFS4 with

n = 66,m = 7, and a maximum of 4000 function evaluations are shown

in Table 4.16. The numerical results reveal that MFS4 is the most ac-

curate.

The calculated values of α1 and β1 are given in Table 4.17 for various

values of the initial distance of the moving sources from the boundary.

These are in excellent agreement with the exact values α1 = 151.63, β1 =

0.5.

2
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(x, y) MFS1 MFS2 MFS3 MFS4 Exact

(−0.5,−3.0) 578.95 547.59 546.04 546.31 546.24

(−0.25,−3.0) 605.05 559.30 557.32 557.72 557.64

(0.0,−3.0) 631.08 576.48 574.20 574.70 574.61

(0.25,−3.0) 655.27 598.17 595.82 596.31 596.23

(0.5,−3.0) 677.50 620.75 618.49 618.92 618.85

(−0.5,−3.25) 553.03 526.03 524.63 524.89 524.81

(−0.25,−3.25) 590.52 535.61 533.17 533.71 533.59

(0.0,−3.25) 622.50 555.54 552.54 553.30 553.19

(0.25,−3.25) 649.86 586.07 583.12 583.76 583.67

(0.5,−3.5) 673.90 614.14 611.44 611.93 611.86

(−0.5,−3.5) 530.90 501.69 499.97 500.11 500.00

(−0.25,−3.5) 582.26 502.50 499.63 500.18 500.00

(0.0,−3.5) 618.48 503.46 496.80 500.26 500.00

(0.25,−3.5) 647.70 579.39 575.80 576.48 576.41

(0.5,−3.5) 672.73 611.66 608.48 608.96 608.91

Table 4.16. Approximate solution near the singularity O.

4.8.3 Axisymmetric Potential Problems

When working on an axisymmetric three-dimensional domain Ω, the

potential equation using the Laplace operator can be rewritten as

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2
= 0, x ∈ Ω, (4.8.9)

where z is the coordinate along the axis and r is the distance to the axis.

If the boundary conditions are also axisymmetric, a 3D problem can be

reduced to a 2D problem in the variables r and z.

Karageorghis and Fairweather [KF99] considered the following axi-

symmetric mixed potential problem

∆u = 0, x ∈ Ω,

Bu = 0, x ∈ Γ,
(4.8.10)
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m n d NFEV α1 β1

7 66 0.4 2500 149.72 0.45
3000 150.85 0.44
3500 150.88 0.44
4000 150.88 0.44

7 66 0.6 2500 150.14 0.47
3000 150.14 0.47
3500 150.14 0.47
4000 150.14 0.47

10 96 0.5 2500 150.92 0.47
3000 150.51 0.47
3500 150.43 0.47
4000 150.39 0.47

10 96 0.6 2500 149.77 0.48
3000 149.17 0.48
3500 149.13 0.48
4000 149.13 0.48

Table 4.17. Approximate value of α1 and β1.

on an axisymmetric domain Ω ⊂ IR3 with boundary Γ. The boundary

operator B has the form

Bu =





α(x) + u(x), x ∈ ΓD
1 , (Dirichlet part)

α(x) +
∂u

∂n
(x), x ∈ ΓN

2 , (Neumann part)

α(x) + β(x)u(x) + γ(x)
∂u

∂n
(x), x ∈ ΓR

3 , (Robin part)

where α, β, and γ are prescribed axisymmetric functions.

4.8.4 Axisymmetric boundary conditions

Since the boundary conditions are assumed to be axisymmetric, the 3D

problem in (4.8.10) reduces to a 2D problem via (4.8.9). Let p = (rp, zp)

and q = (rq, zq) be two points in Ω in axisymmetric coordinates (r, z)

and define

ρ(p,q) =
√

(rp − rq)2 + (zp − zq)2 (4.8.11)
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to be their standard Euclidean distance in these coordinates. Then the

fundamental solution of equation (4.8.9) is given by

G(p,q) =
4K(κ(p,q))

ρ(p,q)
(4.8.12)

where

K(κ) =

∫ 2π

0

1√
1 − κ2 sin2(θ)

dθ and κ2(p,q) =
4rprq
ρ2(p,q)

.

(4.8.13)

is the complete elliptic integral of the first kind. Furthermore, since

∂G(p,q)

∂n
=
∂G(p,q)

∂r
nr +

∂G(p,q)

∂z
nz

where ∂/∂n denotes the outward normal derivative at the boundary

point q, and nr and nz are the components of the outward unit vector

to Γ in the r and z direction, respectively, one obtains

∂G(p,q)

∂n

=
2
{
ρ3/2

[
E(κ) −K(κ)(1 − κ2)] − 2rq(rq + rp)E(κ)

]}

rqρ3/2(1 − κ)2
nr

−4(zq − zp)E(κ)

ρ3/2(1 − κ2)
nz

where E(κ) is the complete elliptic integral of the second kind defined

by

E(κ) =

∫ 2π

0

√
1 − κ2 sin2(θ)dθ,

and where the dependence of ρ and κ on p and q is dropped to simplify

the notation. OnceG(p,q) and ∂G(p,q)/∂n are available, the numerical

approximation un of the true solution can be represented by (4.2.8).

Note that in the case of simple connected domains, no boundary points

are placed on the axis of rotation.

The complete elliptic integrals K(κ) and E(κ) are evaluated using

the NAG routines S21BBF and S21BCF, or the IMSL routines ELK

and ELE, respectively.

Example 4.8.14 The problem of steady-state heat conduction through

a hollow cylinder with insulated ends is investigated [KF99] using the
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‖u− un‖∞
NFEV m = 32, n = 4 m = 64, n = 8 m = 128, n = 16

500 7.0E−3 1.5E−3 3.8E−4
1000 6.9E−3 5.9E−4 1.9E−5
2000 4.2E−3 3.6E−4 9.9E−6
3000 3.1E−3 2.3E−5 8.1E−6
4000 3.0E−3 2.0E−5 5.6E−6
5000 3.0E−3 1.7E−5 3.7E−6

Table 4.18. Results for the temperature distribution.

MFS. The inner and outer radii of the cylinder are denoted by ri and

ro, respectively. The boundary conditions are prescribed as

u = f, for r = ri,

u = g, for r = ro,
∂u

∂z
= 0, for z = ±z0.

The analytical solution [Cha67] is

u = f + (g − f)
ln(r/ri)

ln(ro/ri)
.

The following parameter values were chosen:

ri = 1, ro = 2, z0 = 0.5, f = 1, g = 2.

The numerical computations were performed on a 0.1 × 0.1 grid for

various values of

NFEV = number of function evaluations

m = number of collocation points

n = number of source points

The errors ‖u− un‖∞ and ‖∂u/∂r− ∂un/∂r‖∞ are shown in Table 4.18

and 4.19.

2
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‖∂u/∂r − ∂un/∂r‖∞
NFEV m = 32, n = 4 m = 64, n = 8 m = 128, n = 16

500 4.0E−2 1.5E−2 3.8E−3
1000 6.9E−2 5.9E−3 1.9E−4
2000 4.2E−2 3.6E−3 9.9E−4
3000 3.1E−2 2.3E−4 8.1E−5
4000 3.0E−2 2.0E−4 5.6E−5
5000 3.0E−2 1.7E−4 3.7E−5

Table 4.19. Results for the flux.

4.8.5 Non–axisymmetric boundary conditions

For non–axisymmetric boundary conditions, the solution u is expanded

in Fourier series as

u(p) =
u0(rp, zp)

2
+

∞∑

i=1

[uc
i(rp, zp) cos(iθp) + us

i (rp, zp) sin(iθp)]

(4.8.15)

where p = (rp, zp), and where the functions uc
i and us

i satisfy a differ-

ential equation of the form

∂2u(p)

∂r2
+

1

r

∂u(p)

∂r
+
∂2u(p)

∂z2
−
(
i

r

)2

u = 0, p ∈ Ω, for i = 0, 1, 2, · · · .
(4.8.16)

The fundamental solutions of (4.8.16) can be written in terms of com-

plete elliptic integrals [Gup79] as

Gi =
4Ki(κ)

ρ
, i ≥ 0

as in (4.8.12) and (4.8.13), with

K0(κ) = K(κ),

Ki(κ) = (−1)ii

m∑

j=0

Li
j2

2(i−j)Ci−j , i ≥ 1,

Li
j = (−1)j (2i− j − 1)!

j!(2i− 2j)!
, j = 0, 1, · · · , i,
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C0 := K(κ),

C1 :=
1

κ2

(
E(κ) − (1 − κ2)K(κ)

)

Cn :=
(2n− 2)

(
2κ2 − 1

)
Cn−1 + (2n− 3)

(
1 − κ2

)
Cn−2

(2n− 1)κ2
, n ≥ 2.

The normal derivatives of the fundamental solutions are [Gup79]

∂Gi(p,q)

∂n

=
4

ρ2

[(
ρ
∂Ki

∂κ

∂κ

∂rq
−Ki

∂ρ

∂r′

)
nr +

(
ρ
∂Km

∂κ

∂κ

∂zq
−Ki

∂ρ

∂zq

)
nz

]
,

where

∂ρ

∂rq
=

rq + rp
ρ

,

∂ρ

∂zq
=

zq − zp
ρ

,

∂κ

∂rq
=

2rp − κ2(rq + rp)

κρ2
,

∂κ

∂zq
=

κ (zq − zp)

ρ2
.

Furthermore,

∂K0(k)

∂k
=

∂K(k)

∂k

∂Ki(k)

∂k
= (−1)ii

i∑

j=0

Lm
j 22(m−j) ∂Ci−j

∂k
, i ≥ 1,

∂Cℓ

∂κ
=






E(κ) − (1 − κ2)K(κ)

κ(1 − κ2)
, ℓ = 0,

(2 − κ2)K(κ) − 2E(κ)

κ3
, ℓ = 1,

2ℓ− 2

(2ℓ− 1)κ2

[(
2κ2 − 1

) ∂Cℓ−1

∂κ
+

2

κ
Cℓ−1

]

+
2ℓ− 3

(2ℓ− 1)κ2

[(
1 − κ2

) ∂Cℓ−2

∂κ
− 2

κ
Cℓ−2

]
,

ℓ ≥ 2.
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Example 4.8.17 Here, the problem of uniaxial flow in a finite cylindri-

cal region of an infinite medium is considered. The direction of heat flow

in this case is not along the axis of the cylindrical region, thus resulting

in non–axisymmetric boundary conditions. Let the boundary conditions

be as follows [Gup79]:

u = 2r cos θ on z = 0,

u = 2r cos θ on z = 2,

u = 2 cos θ on r = 2.

The exact solution of the problem is given by u = 2r cos θ. Note that

the only non–zero Fourier coefficient is uc
1 in (4.8.15); i.e. i = 1. The

errors e = ‖u− um‖∞ and er = ‖∂u/∂r − ∂um/∂r‖∞ are computed on

a grid of cell width 0.2 and the results [KF99] are shown in Table 4.20.

2

n = 3,m = 24 n = 6, m = 48 n = 12, m = 96
NFEV e er e er e er

500 2.1E−5 5.1E−5 9.6E−5 5.4E−4 2.9E−3 3.9E−3
1000 1.5E−5 3.8E−5 2.2E−5 1.9E−4 2.2E−4 7.4E−4
2000 1.0E−5 2.5E−5 8.7E−6 4.7E−5 1.3E−5 3.8E−5
3000 7.6E−6 1.8E−5 4.2E−6 2.2E−5 4.2E−6 2.9E−5
4000 5.6E−6 1.3E−5 2.1E−6 1.4E−5 3.2E−6 1.9E−5
5000 4.3E−4 1.0E−5 1.5E−6 9.4E−6 1.5E−6 8.4E−6

Table 4.20. Errors of e = ‖u− um‖∞ and er = ‖∂u/∂r − ∂um/∂r‖∞

4.8.6 Acoustic Scattering and Radiation Problems

Such problems are governed by the Helmholtz equation

(∆ + λ2)u(p) = 0, p ∈ Ω,

Bu(p) = f(p), p ∈ Γ,

where B is a boundary operator and λ the wave number. Let p =

(rp, zp, θp),q = (rq, zq, θq). Define

ρ (p,q) =
√
r2p + r2q − 2rprq cos(θq − θp) + (zq − zp)2.
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The fundamental solution of the axisymmetric version of the Helmholtz

equation is given by

G(p,q) =

∫ 2π

0

e−iλρ(p,q)

ρ (p,q)
dθ(q).

G(p,q) can be written into two parts, consisting of a nonsingular and a

singular integral

G(p,q) =

∫ 2π

0

e−iλρ(p,q) − 1

ρ̃ (p,q)
dθ(q) +

∫ 2π

0

1

ρ (p,q)
dθ(q)

= G1(p,q) +G2(p,q).

Notice that G1 can be evaluated using a standard quadrature rule. As

shown in the previous example, we have

G2(p,q) =
4K(κ)

ρ

where K(κ) and ρ are given in (4.8.11) and (4.8.13), and the normal

derivative of G(p,q) can be written in terms of K(κ) and E(κ). The

formulation of the MFS is similar to the bi-harmonic equation described

in Section 4.6. As a result, there are 4M unknowns to be determined

using dynamic approach. For the acoustic radiation and scattering prob-

lems for axisymmetric bodies in the half space {z > 0}, the problem of

discretizing the plane z = 0 is avoided by using an appropriate fun-

damental solution. When the plane is rigid, the following fundamental

solution is available:

GH(p,q) =

∫ 2π

0

e−iλρ(p,q) − 1

ρ̃ (p,q)
dθ(q) +

∫ 2π

0

e−iλρ(p′,q) − 1

ρ (p′,q)
dθ(q)

where the point p′ is the image point of p in the plane. This fundamental

solution satisfies the axisymmetric version of the Helmholtz equation and

the boundary condition for a rigid plane, ∂u/∂z = 0 on z = 0.

For numerical examples, we refer the reader to [KF98].

4.8.7 Nonlinear Boundary Conditions

One of the criticisms of the MFS, when the dynamic approach is used,

is that linear problems are solved by means of a nonlinear technique. In

this subsection, we present problems which are governed by Laplace’s

equation and are subject to nonlinear boundary conditions [KF89a].
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The mathematical formulation of the MFS does not depend on the lin-

earity of the boundary conditions, as we shall see, and it can be easily

adapted to such problems.

Consider the following Laplace equation subject to the nonlinear bound-

ary condition

∆u = 0, x ∈ Ω,

Bu = 0, x ∈ Γ,

where B is a nonlinear operator. Similar to the problems with linear

boundary conditions, the approximate solution un can be represented

by a linear combination of fundamental solutions as shown in (4.2.8). In

particular, Karageorghis and Fairweather [KF89a] considered operators

of the form

Bu(x) = α(x)u(x) + β(x)
∂u

∂n
(x) + γ(x)u(x)4 + δ(x), x ∈ Γ.

The least squares subroutines outlined in Section 4.6 can be used to

minimize the sum of squares

εm =

m∑

i=1

|fi|2

where

fi = α(xi)

n∑

k=1

akG(xi,yk) + β(xi)

n∑

k=1

ak
∂

∂n
G(xi,yk)

+γ(xi)

(
n∑

k=1

akG(xi,yk)

)4

+ δ(xi), 1 ≤ i ≤ m.

The initial location of source points and the initial values of ak are taken

to be the same as in the linear cases mentioned in the previous sections.

Example 4.8.18 Consider the following nonlinear boundary problem

∆u = 0, x ∈ Ω,

∂u

∂n
= u(x) + u4(x), x ∈ AB,

∂u

∂n
= −u(x) − u4(x), x ∈ BC,

∂u

∂n
= 0, x ∈ CD,

u = 1, x ∈ DA,
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where Ω = {x = (x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 0.1}. The problem do-

main Ω is shown in Figure 4.20. This problem arises in the study of

heat transfer from finned surfaces (Kern and Kraus [KK72]), which was

solved using a boundary element approach by Ingham et. al. [IHM81].

The problem was also solved by Karageorghis and Fairweather [KF89a]

using the MFS, and their results were in good agreement with those

obtained by Ingham et. al. [IHM81]. In addition to the difficulties

of nonlinear boundary conditions, the large aspect ratio of the region

(AB = 1, BC = 0.1) causes further complications.

The numerical results at some selected points obtained by Karageorghis

and Fairweather [KF89a] using the dynamic approach are shown in Table

4.21. Variousm,n and maximal numbersNFEV of function evaluations

were used in their tests. Table 4.21. uses the following notations:

MFS1: m = 13, n = 120, NFEV = 1500

MFS2: m = 13, n = 120, NFEV = 2000

BEM: Ingham et. al. [IHM81]

(x1, x2) MFS1 MFS2 BEM

(0.2, 0.02) 0.5091 0.5110 0.5073

(0.4, 0.02) 0.2714 0.2745 0.2734

(0.6, 0.02) 0.1494 0.1510 0.1510

(0.2, 0.04) 0.5171 0.5192 0.5152

(0.4, 0.04) 0.2751 0.2783 0.2772

(0.6, 0.04) 0.1515 0.1531 0.1531

(0.2, 0.06) 0.5229 0.5250 0.5210

(0.4, 0.06) 0.2778 0.2810 0.2800

(0.6, 0.06) 0.1530 0.1546 0.1546

Table 4.21. Approximate solution of u at 9 selected points.

2

4.9 Inverse Problems

Let Ω be a simply connected domain in IRd, d = 2, 3, and Γ1, Γ2, Γ3

be three parts of the boundary Γ. Suppose that Γ1 ∪ Γ2 ∪ Γ3 = Γ,
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Fig. 4.20. The problem domain Ω.

Γi ∩Γj = φ for i 6= j, and either Γ1 or Γ2 can be empty set. We want to

predict the temperature and heat flux on the boundary Γ3 from given

Dirichlet data on Γ1, Neumann data on Γ2, and scattered measurement

data at some interior points. This is a typical inverse problem.

Consider the standard heat equation:

∂u

∂t
(x, t) = a2∆u(x, t), x ∈ Ω ⊂ IRd, t ∈ (0, tmax), (4.9.1)

with the initial condition

u(x, 0) = ϕ(x), x ∈ Ω, (4.9.2)

the Dirichlet boundary condition

u(x, t) = f(x, t), x ∈ Γ1, t ∈ (0, tmax], (4.9.3)

and the Neumann boundary condition

∂u

∂n
(x, t) = g(x, t), x ∈ Γ2, t ∈ (0, tmax], (4.9.4)

where n is the outer unit normal with respect to Γ2.

Let {xi}ℓ
i=1 be a set of points contained in Ω. At each point xi, there

are Ii noisy measurements ĥ
(k)
i , k = 1, 2, · · · , Ii of temperature at times

t
(k)
i each, such that we have the additional conditions

u(xi, t
(k)
i ) = ĥ

(k)
i , i = 1, 2, · · · , ℓ, k = 1, 2, · · · , Ii. (4.9.5)

The absolute error between the noisy measurements and exact data is

assumed to be bounded as |ĥ(k)
i − h

(k)
i | ≤ η for all measurement points
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at all measured times. Here, the constant η is called the noise level of

the input data.

Our goal is to reconstruct the temperature u and the heat flux ∂u/∂n

on the boundary Γ3 from the given conditions in (4.9.1)–(4.9.4) and the

scattered noisy measurements (4.9.5).

It is well known that the fundamental solution of the heat equation

(4.9.1) is given by

G(x,y, t) =
1

(4πa2t)d/2
exp

(
− r2

4a2t

)
H(t),

where r = ‖x− y‖ and H(t) is the Heaviside function. Assuming that

T > tmax is a constant, the function

φ(x, t) := G(x, t+ T ) (4.9.6)

is a solution of (4.9.1) in the solution domain Ω × [0, tmax].

We rearrange the measurement points to be {(xj , tj)}, j = 1, · · · ,m =∑ℓ
i=1 Ii. Note that two measurements taken at the same location xi

but at different times are now treated as two distinct collocation points.

The collocation points are renumbered as

{(xj , tj)}, j = m+ 1, · · · ,m+ n on Ω × {0},

{(xj , tj)}, j = m+ n+ 1, · · · ,m+ n+ p on Γ1 × (0, tmax],

{(xj , tj)}, j = m+ n+ p+ 1, · · · ,m+ n+ p+ q on Γ2 × (0, tmax].

Here, n, p, q denote the total number of collocation points for the initial

condition (4.9.2), Dirichlet boundary condition (4.9.3), and Neumann

boundary condition (4.9.4), respectively. In this way, we treat time as

an additional spatial dimension. As a result, the collocation points are

now distributed in a (d+ 1)-dimensional space-time.

Using the MFS, an approximation ũ to the solution of (4.9.1) under

the conditions (4.9.2)-(4.9.4) with the noisy measurements ĥj can be

expressed as follows:

ũ(x, t) =

n+m+p+q∑

j=1

α̂jφ(x − xj , t− tj),

where φ(x, t) is given by (4.9.6) and α̂j are unknown coefficients to be

determined.

In this way, the procedure for solving homogeneous time–dependent

problems is the same as for solving elliptic problems. Since φ is the
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fundamental solution of the heat equation, the approximate solution

ũ automatically satisfies the original heat equation (4.9.1) inside the

domain. We need only to fit the boundary conditions. Using the initial

condition (4.9.2) and collocating the boundary conditions (4.9.3) and

(4.9.4), we then obtain the following system of linear equations:

Gα̂ = b̂, (4.9.7)

where

G =




φ(xi − xj , ti − tj) 1 ≤ i ≤ m

φ(xi − xj , ti − tj) m+ 1 ≤ i ≤ m+ n

φ(xi − xj , ti − tj) m+ n+ 1 ≤ i ≤ m+ n+ p

∂u
∂n (xk − xj , tk − tj) m+ n+ p+ 1 ≤ i ≤ m+ n+ p+ q




where the column index j always runs from 1 to m+n+ p+ q to match

the vector

α̂ =(α̂1, α̂2, . . . , α̂n+m+p+q)
T

and where

b̂ =




ĥi 1 ≤ i ≤ m

ϕ(xi, ti) m+ 1 ≤ i ≤ m+ n

f(xi, ti) m+ n+ 1 ≤ i ≤ m+ n+ p

g(xi, ti) m+ n+ p+ 1 ≤ i ≤ m+ n+ p+ q


 .

Note that this method, in contrast to many standard methods for inverse

problems, does not need a separate solver for the direct problem. It

solves both the direct and the inverse problem simultaneously, but it is

not recommended for solving the direct problem alone.

The solvability of the system (4.9.7) depends on the non–singularity of

the matrix G, which is still an open research problem. Due to the large

number of collocation points, the resultant matrix G is very large, and

in addition it is extremely ill–conditioned and thus ill-posed, if the trial

centers get dense. To alleviate the extreme ill–conditioning for the in-

verse problem indicated above, a regularization technique is needed. As

we note in Section 2.5, regularization can produce a stable and accurate

solution for the unknown parameters α̂ of the matrix equation (4.9.7).

The singular value decomposition (SVD) usually works well for the di-

rect problem [Ram02] but fails to provide a stable and accurate solution

to the system (4.9.7) for the inverse problem. A number of regulariza-

tion methods have been applied to solving this kind of ill–conditioning
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problem, and in Section 2.5 we described Tikhonov regularization,

the truncated singular value decomposition, and the L–curve

method.

After solving (4.9.7) by regularization with a parameter δ along the

lines mentioned in Section 2.5, the corresponding approximate solution

for the problem (4.9.1)–(4.9.4) with noisy measurement data is then

given by

ûδ(x, t) :=

N∑

j=1

α̂δ
jφ(x − xj , t− tj)

for N = m + n + p + q. The temperature and heat flux at the surface

Γ3 can also be calculated accordingly.

Example 4.9.8 Let the heat conduction coefficient a = 1 and tmax = 1

in (4.9.1). The noisy data are generated by h̃i = hi + η r(i), where hi

is the exact data and r(i) is a random number in [−1, 1]. The scalar η

indicates the noise level of the measurement data.

To validate the accuracy of the approximate solution, we compute the

Root Mean Square Error (RMSE) which is defined by

E(u) =

√√√√ 1

Nt

Nt∑

i=1

(ûδ(zi, τi) − u(zi, τi)) 2,

with a total of Nt evaluation points (zi, τi) in the domain Γ3 × [0, 1]

where ûδ(zi, τi) and u(zi, τi) are the approximate and exact temperature

respectively at a test point. The error E(∂u/∂n) for the heat flux is

defined in a similar way.

The boundary conditions f(x, t), g(x, t) and the initial temperature

ϕ(x, t) are chosen in such a way that they satisfy the exact solution

u∗(x1, x2, t) = 2t+
1

2
(x2

1 + x2
2) + e−t(cos(x1) + cos(x2))

of (4.9.1).

Three different domain and boundary configurations are considered:

Case 1:

Ω = { (x1, x2) | 0 < x1 < 1, 0 < x2 < 1},
Γ1 = { (x1, x2) | x1 = 1, 0 < x2 < 1},
Γ2 = { (x1, x2) | 0 < x1 < 1, x2 = 1},
Γ3 = ∂Ω \ {Γ1 ∪ Γ2}.
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Fig. 4.21. The distribution of measurement and collocation points for the Case
1.

Case 2:

Ω = { (x1, x2) | x2
1 + x2

2 < 1},
Γ1 = ∅,
Γ2 = { (x1, x2) | x2

1 + x2
2 = 1, x1 > 0},

Γ3 = ∂Ω \ {Γ1 ∪ Γ2}.

Case 3: Ω as in Case 1, Γ1 = Γ2 = ∅, Γ3 = ∂Ω \ {Γ1 ∪ Γ2}.

The distributions of the internal measurements and collocation points

over Ω for the three cases are shown in Figures 4.21-4.23. In these

figures,

* represents a collocation point for Dirichlet data,

2 represents a collocation point for Neumann data,

· represents a collocation point for initial data, and

◦ represents points with a sensor for internal measurement.

Numerical results are obtained by taking the constant T = 1.8 in all

three cases. In Case 1,

n = 36, m = 100, p = 55, q = 50.
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Fig. 4.22. The distribution of measurement and collocation points for the Case
2.

Hence, the total number of collocation points and testing points are

N = 241 and Nt = 882, respectively. In Case 2,

n = 96, m = 85, p = 0, q = 85.

which implies N = 266, Nt = 693. In Case 3,

n = 36, m = 30, p = 0, q = 0,

which implies N = 66, Nt = 1764.

Numerical results by using only the SVD are presented in Table 4.22.

The computed root mean-square errors show that even for exact input

data the direct method cannot produce an acceptable solution to such

extremely ill–conditioned linear systems. In fact, the condition numbers

in Case 1 and Case 2 are 8.355 × 1033 and 4.878 × 1034 which are too

large to obtain an accurate solution without the use of a regularization

technique. This is because inverse problems like this will often be ill-

posed even for exact data. For Case 3, the condition number is 4.5×1019

which is much smaller than the other two cases and hence the results in

Case 3 are better.
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Fig. 4.23. The distribution of measurement and collocation points for the Case
3.

The use of regularization techniques, as we shall see, gives a stable and

much more accurate solution. Table 4.23 shows the root mean-square

errors of the temperature and heat flux in domain Γ3 × [0, 1] with exact

data, using Tikhonov regularization with an L-curve-based choice of the

regularization parameter δ. In contrast to Table 4.22, the RMSE errors

in Table 4.23 are greatly reduced. We remark that the L-curve method

works well for determining the crucial regularization parameter, but it

can be further improved if a scaling factor is used.

Numerical results for the example with noisy data (noise level η = 0.01

in all cases) are shown in Table 4.24. The regularization method with the

L-curve technique provides an acceptable approximation to the solution

whilst the direct method fails completely. The problem of how to choose

an optimal regularization parameter is still an open question.

Note that the setting for Case 3 comes from a real-life problem in a

steel company. In fact, the solution for this case may not be unique,

but our computational results demonstrate that the proposed method is

flexible enough to give a reasonable approximation to the solution under

insufficient information.
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Case 1
E(u)= 11.2115

E(∂u/∂n) = 4.6189

Case 2
E(u) = 12.2759

E(∂u/∂n) = 2.1023

Case 3
E(u) = 0.0104

E(∂u/∂n) = 0.0556

Table 4.22. RMSE in domain Γ3 × [0, 1] with exact data and no

regularization technique.

Case 1
δ = 2.7404E − 12 E(u)= 2.7289E − 04

E(∂u/∂n) = 6.7662E − 04

Case 2
δ = 4.1551E − 13 E(u) = 0.0011

E(∂u/∂n)= 0.0029

Case 3
δ = 1.0370E − 8 E(u) = 0.0013

E(∂u/∂n) = 0.0062

Table 4.23. RMSE in domain Γ3 × [0, 1] with exact data by using

Tikhonov regularization with L-curve parameter δ.

The relationship between the RMSE and the value of the constant

T in Case 1 with noisy data (η = 0.01) is displayed in Figure 4.24.

The regularization parameter δ is obtained again by using the L-curve

method. The numerical results indicate that the choice of the parameter

T plays an important role for obtaining an accurate approximation.

2

Example 4.9.9 Let

Ω = {(x1, x2, x3) : 0 < xi < 1, i = 1, 2, 3}
Γ1 = {(x1, x2, x3) : 0 < x1 < 1, 0 < x2 < 1, x3 = 1}
Γ2 = {(x1, x2, x3) : 0 < x1 < 1, 0 < x2 < 1, x3 = 0}
Γ3 = ∂Ω \ (Γ1 ∪ Γ2).

The locations of the measurement points and the collocation points in

the domain Ω are shown in Figure 4.25 where

∗ represents a measurement point with Dirichlet data,
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Case 1
δ = 6.9833E − 5 E(u)= 0.0266

E(∂u/∂n) = 0.0538

Case 2
δ = 0.003 E(u)= 0.2456

E(∂u/∂n) = 0.4211

Case 3
δ = 6.7772E − 7 E(u)= 0.0290

E(∂u/∂n) = 0.0608

Table 4.24. RMSE in domain Γ3 × [0, 1] with noisy data (η = 0.01) by

Tikhonov regularization with L-curve parameter δ
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Fig. 4.24. RMSE of temperature and heat flux on Γ3 × [0, 1] with respect to
the parameter T.

2 represents a measurement point with Neumann data, and

◦ represents a point with sensor data.

In this computation, we set

n = 245, m = 250, p = 180, q = 180, N = 855, Nt = 5324.
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Fig. 4.25. Locations of measurement and collocation points.
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Fig. 4.26. Surface plots of temperature errors on boundary Γ3

The exact solution is given by

u∗(x1, x2, x3, t) = e(−4t)(cos(2x1) + cos(2x2) + cos(2x3)).

In the computation, the value of the parameter T is 2.3 and the noise

level is set to be η = 0.01. The errors between the exact solution and
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Fig. 4.27. Surface plots of heat flux errors on boundary Γ3

the approximate solution for the temperature and heat flux on boundary

Γ3 at time t = 1 are shown in Figure 4.26 and Figure 4.27, respectively.

Note that the L2 norm of u and ∂u/∂n over Γ3 × [0, 1] are about 0.62

and 0.52 respectively. Their relative errors are approximately twice the

values given in Figures 4.26 and 4.27. These small relative errors show

that the proposed scheme is effective for solving the three-dimensional

inverse heat conduction problem. 2
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The Method of Particular Solutions

5.1 Introduction

In the last chapter, we considered only linear homogeneous equations

having fundamental solutions. In this chapter we extend our discussion

to linear inhomogeneous problems

Lu = fΩ in Ω ⊂ IRd

u = fD in ΓD ⊆ Γ := ∂Ω
∂u

∂n
= fN in ΓN ⊂ Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅

(5.1.1)

with Dirichlet boundary conditions on ΓD and Neumann boundary con-

ditions on ΓN . Here, fΩ, fD, fN are given functions on Ω, ΓD, ΓN ,

respectively. We shall later replace the right-hand side fΩ : Ω → IR by

fΩ(x, u,∇u, ...) to treat more general quasi-linear or nonlinear problems.

In the Boundary Element Method, it is well-known that (5.1.1)

can be reformulated as an integral equation [PBW92]

c(x)u(x) =

∫

Γ

(
u(y)

∂G(x, ·)
∂n

(y) − ∂u

∂n
(y)G(x,y)

)
dy

+

∫

Ω

G(x,y)fΩ(y)dy
(5.1.2)

where x ∈ Ω∪Γ and c(x) is a geometric factor depending on the location

of x, i.e.

c(x) =





1, x in the interior,

1

2
, x on a smooth boundary,

θ

2π
, x at a corner with angle θ,

136
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and G(x,y) is the fundamental solution of the differential operator L.

In (5.1.2), a domain integration is required. Due to this, the Bound-

ary Element Method (BEM) loses its attractiveness of having a bound-

ary integration only. During the past two decades, considerable effort

has been devoted to the problem of either efficiently computing the do-

main integrals or transferring them to the boundary. Even though the

domain integrals usually do not introduce any new unknowns in the nu-

merical implementation, the singularity in the integrand and the possibly

irregular shape of the domain make it difficult to evaluate the integral

with efficient numerical schemes, especially in the 3D case. In fact, the

accurate evaluation of these integrals becomes the dominating computa-

tional task in the whole numerical process for solving partial differential

equations.

In this chapter we will briefly introduce a number of approaches to al-

leviate the difficulties of domain integration in irregular domains. Later,

we shall focus on how to eliminate these domain integrations by using

radial basis functions.

5.2 The Dual Reciprocity Method (DRM)

A particular solution of a boundary-value problem (5.1.1) is defined

as a function up on Ω ∪ Γ which satisfies the inhomogeneous equation

Lup = fΩ in Ω (5.2.1)

but does not necessarily satisfy the boundary conditions of (5.1.1). No-

tice that the particular solution is not unique.

Suppose a particular solution up of (5.2.1) is known. Then the integral

equation (5.1.2) can be rewritten without any domain integral. To see

this, let I(x) be the domain integral term in (5.1.2). Then

I(x) =

∫

Ω

G(x,y)fΩ(y)dy =

∫

Ω

G(x,y)Lup(y)dy. (5.2.2)

Using Green’s Theorem, we have

∫

Ω

(G(x,y)Lup(y) − up(y)LG(x,y)) dy

=

∫

Γ

(
G(x,y)

∂up

∂n
(y) − up(y)

∂G(x, ·)
∂n

(y)

)
dy,
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and thus get

I(x) =

∫

Ω

G(x,y)Lup(y)dy

=

∫

Ω

up(y)(LG(x, ·))(y)dy

+

∫

Γ

(
G(x,y)

∂up

∂n
(y) − up(y)

∂G(x, ·)
∂n

(y)

)
dy.

(5.2.3)

We note that fundamental solutions satisfy LG(x, ·) = δx. Furthermore,

the domain integral term in the right hand side of (5.2.3) is equal to

c(x)up(x). From (5.2.2) and (5.2.3), we finally get

I(x) = c(x)up(x) +

∫

Γ

(
G(x,y)

∂up

∂n
(y) − up(y)

∂G(x, ·)
∂n

(y)

)
dy,

which contains no domain integral any more. In this way the boundary

element method can keep its advantage of having boundary integrations

only.

The above procedure to transfer the domain integral to the boundary

can be successful only if an explicit particular solution up is available.

However, the task of deriving an explicit particular solution is nontrivial

and often impossible when fΩ becomes complicated. In Section 5.5, we

will introduce a numerical scheme to approximate the particular solu-

tion. Coupling Boundary Element Methods with such a scheme is known

as the Dual Reciprocity Method (DRM). We refer the readers to the

book [PBW92] for further details on the DRM.

5.3 The Method of Particular Solutions (MPS)

Another approach for solving the inhomogeneous problem (5.1.1) is to

split the solution u into a particular solution up and its associated ho-

mogeneous solution uh as

u = uh + up. (5.3.1)

From (5.1.1) and (5.2.1) we get

Luh = Lu− Lup = fΩ − fΩ = 0.

Thus we have the homogeneous problem

Luh = 0 in Ω

uh = fD − up in ΓD

∂uh

∂n
= fN − ∂up

∂n
in ΓN .

(5.3.2)
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Once up is known, the influence of the solution by the inhomogeneous

term has in fact been transferred to the boundary and the homoge-

neous solution uh in (5.3.2) can be calculated by standard boundary

methods such as the Boundary Element Method, the Method of

Fundamental Solutions, the Boundary Integral Method, etc. For

simplicity and the advantages we have discussed in the previous chapter,

the Method of Fundamental Solutions will be employed throughout

this chapter to find the homogeneous solution uh. The final solution u

can be recovered by adding uh and up as in (5.3.1). The key step of

the Method of Particular Solutions is to obtain an explicit partic-

ular solution or, at least, a good explicit approximation to it. In the

next section we will focus on the general idea of the approximation of

particular solutions via radial basis functions.

5.4 Approximate Particular Solutions

To construct a particular solution for the boundary-value problem (5.1.1)

approximately, one can take particular solutions of other boundary-value

problems

Luk = fk, 1 ≤ k ≤ n (5.4.1)

with the same linear differential operator, and approximate fΩ by a

superposition

fΩ ≃
n∑

k=1

αkfk (5.4.2)

of the functions fk to some accuracy. Then the function

ũp :=

n∑

k=1

αkuk

satisfies

Lũp =

n∑

k=1

αkLuk =

n∑

k=1

αkfk ≃ fΩ

and thus is an approximate particular solution for the boundary-

value problem (5.1.1). This reduces the construction of approximate

particular solutions of boundary-value problems to a standard approxi-

mation problem like those considered in Chapter 2.

Furthermore, the Method of Particular Solutions combined with the

Method of Fundamental Solutions leads to reliable results, because there
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will be explicitly available functions ũp and ũh such that in the situation

of (5.2.1) we have small residuals

Lũp − fΩ =: rΩ small in Ω

ũh − (fD − ũp) =: rD small in ΓD

∂ũh

∂n
− (fN − ∂ũp

∂n
) =: rN small in ΓN .

If there is continuous dependence of the exact solution u on the data in

the sense that for each other approximate solution ũ the inequality

‖u− ũ‖ ≤ cΩ‖Lu− Lũ‖Ω + cΓD‖u− ũ‖ΓD + cΓN ‖∂u
∂n

− ∂ũ

∂n
‖ΓN

holds in suitable norms, we have a final small error

‖u− ũp − ũh‖ ≤ cΩ‖Lu− Lũp − Lũh‖Ω

+cΓD‖u− ũp − ũh‖ΓD

+cΓN‖∂u
∂n

− ∂ũp

∂n
− ∂ũh

∂n
‖ΓN

= cΩ‖fΩ − Lũp‖Ω

+cΓD‖fD − ũp − ũh‖ΓD

+cΓN‖fN − ∂ũp

∂n
− ∂ũh

∂n
‖ΓN

= cΩ‖rΩ‖Ω + cΓD‖rD‖ΓD + cΓN ‖rN‖ΓN .

This is a good theoretical a-posteriori justification for the method, but

in practice the constants cΩ, cΓD , cΓN are only rarely known explicitly.

For the particular solutions arising in (5.4.1) one can use any pair of

functions u, f with Lu = f , and each such pair can be called a par-

ticular solution for the differential operator L. A simple and easy

technique to get approximate particular solutions is to take some ar-

bitrary smooth and explicit u and to evaluate f := Lu explicitly in a

straightforward way. We shall use this direct technique below in some

cases, but it has the disadvantage that it is not always guaranteed that

the functions fk obtained this way are able to recover fΩ up to high

accuracy within a well-developed theory of multivariate approximation.

This limits the applicability of the direct technique somewhat, since we

require (5.4.2) to work properly. But in many cases one can start with

functions fk which provide useful approximations, and then one has to

solve for uk with Luk = fk. We call this the indirect technique.
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Since Chapter 2 provides a well-established theory for approximation

by radial basis trial functions, this chapter focuses on the indirect tech-

nique to derive particular solutions u such that f = Lu is a translate

φ(‖ · −y‖2) of a radial basis function φ with respect to a trial point

y ∈ IRd. If n such trial centers {yk}n
k=1 are chosen, the inhomoge-

neous term fΩ is approximated as in (5.4.2) via a finite combination of

translates of radial basis functions as

fΩ(x) ≃ f̃(x) :=

n∑

k=1

αkφ(‖x − yk‖2) (5.4.3)

where {αk}n
k=1 is a vector of coefficients to be determined. If we do

the approximation in (5.4.3) by interpolation, and take the trial centers

{yk}n
k=1 also as test points, we have to satisfy the conditions

fΩ(yj) = f̃(yj), 1 ≤ j ≤ n,

which lead to the linear system

fΩ (yj) =

n∑

k=1

αkφ(‖yj − yk‖2), 1 ≤ j ≤ n, (5.4.4)

which is uniquely solvable if the symmetric n× n matrix

A =



φ(‖y1 − y1‖2) · · · φ(‖y1 − yn‖2)

...
. . .

...

φ(‖yn − y1‖2) · · · φ(‖yn − yn‖2)




is nonsingular. If φ is a positive definite radial basis function, Definition

1.2.4 in Chapter 1 even guarantees that the matrix is positive definite

which implies that the matrix is nonsingular.

Therefore we need to find particular solutions uk such that

Luk(x) = φ(‖x − yk‖2).

If L is a radially invariant operator like the Laplace or Helmholtz oper-

ator, we get particular solutions that itself are radial basis functions

uk(x) = ψ(‖x− yk‖2).

In this case, the indirect method also works, provided that the differ-

ential operator is elliptic, e.g. for the negative Laplace operator or the

modified Helmholtz equation. Radiality will not be conserved for gen-

eral operators, but the overall logic of the Dual Reciprocity Method

stays the same. Since this book focuses on radial basis functions, we
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shall also focus on radially invariant linear differential operators and

radial particular solutions.

Once f̃ in (5.4.3) is established, an approximate particular solution

ũp to a particular solution up of (5.2.1) can be written as

ũp(x) =

n∑

k=1

αkψ (‖x− yk‖2) , x ∈ Ω, (5.4.5)

where ψ satisfies

Lψ(‖x − yk‖2) = φ(‖x − yk‖2), x ∈ Ω, 1 ≤ k ≤ n. (5.4.6)

The normal derivative of a particular solution (5.4.5) is

∂ũp

∂n
(x) =

n∑

k=1

αk
∂

∂n
ψ(‖x − yk‖2), x ∈ Ω. (5.4.7)

The above approximation of the particular solution requires knowing ψ

in (5.4.6) in closed form. Since φ is radially symmetric, the analytical

solvability of (5.4.6) for differential operators L that are radially and

translationally invariant can be expected. For these operators such as

the Laplace operator ∆ and the bi-harmonic operator ∆2, a variety of

closed-form radial particular solutions ψ are available.

Consequently, an appropriate choice of a radial basis function is of con-

siderable interest. In the past, the function φ(r) = 1+r was used almost

exclusively in the literature on Boundary Element Methods [PBW92].

Unfortunately, there is no theoretical basis to justify the ad-hoc choice

of 1 + r. However the introduction of a positive definite radial basis

functions gives a firm theoretical justification of the Dual Reciprocity

Method.

Moreover, the traditional approach of the Dual Reciprocity Method

coupled the boundary values and the domain term [PBW92] and thus

placed a substantial restriction on the choice of the interpolation points

and basis functions in (5.4.3). One of the advantages of using the Method

of Particular Solutions is that it decouples the original differential equa-

tion into two parts as shown in the previous section. Since the particular

solution is independent of the geometric shape of the solution domain,

this allows us to use a domain-embedding approach to calculate an ap-

proximate particular solution. As shown in Figure 5.1, the interpolation

points can reside inside and outside the solution domain and can be

scattered points or regular grid points in a box containing any irregular

domain Ω. The simplicity and flexibility of choosing interpolation points

in such a way are desirable when preparing the data input.
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Fig. 5.1. Domain embedding method using scattering points (left) or irregular
grid points inside the domain (right).

In the past, due to the difficulty of obtaining closed-form particu-

lar solutions, the Dual Reciprocity Method was restricted mostly to

Poisson-type equations [PBW92]. Other types of differential equations

were treated as a generalized Poisson equation by keeping the Laplace

operator operator on the left-hand-side and moving the rest to the right

hand side, i.e.

∆u = f(x, u,∇u, ∂u
∂t
, ...).

The right-hand-side of the equation is treated as a known quantity by

means of iterative updating in nonlinear problems, or by time-stepping

in time–dependent problems. This is possible because RBF methods

provide smooth approximate solutions which can be evaluated or differ-

entiated everywhere.

In recent years, significant progress in deriving closed–form particu-

lar solutions for other differential operators has been reported [CR98,

MGC99]. As we shall see in the later sections, significant improvement

in efficiency and accuracy of numerical computations has been achieved

this way.
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5.5 Particular Solutions for the Laplace operator

To obtain ψ in (5.4.6) for L = ∆, we notice that ∆ is both translationally

and rotationally invariant. In polar coordinates, we have

∆ψ =





1

r

d

dr

(
r
dψ

dr

)
, in 2D,

1

r2
d

dr

(
r2
dψ

dr

)
, in 3D.

Thus one can easily determine particular solutions by the direct method,

while the indirect method requires solving a second-order ordinary dif-

ferential equation.

All cases allow a simple scaling technique. If we scale the radial basis

function φ by a positive scale factor c as φc(r) := φ(r/c) as we did in

Section 2.6 for various numerical reasons, the function

∆(c2ψ(r/c)) = φ(r/c) or ∆(c2ψc(r)) = φc(r) (5.5.1)

will solve the scaled problem. Thus we only need to focus on unscaled

particular solutions here, but note that this argument works only for

homogeneous differential operators in this straightforward way.

We first treat the direct case, which goes back to Schclar [Sch94]. It

can be proven by Fourier transform arguments that any linear elliptic

and radially symmetric operator transforms smooth positive definite ra-

dial basis functions into positive definite radial basis functions. Thus

if we start with a smooth positive definite radial basis function ψ and

take −φ := −∆ψ, the function −φ will be positive definite and radial

again, because −∆ is elliptic and radially symmetric. A more careful

analysis reveals that if ψ is a conditionally positive definite radial basis

function of positive order Q from Table 1.3, then −∆ψ will be condi-

tionally positive definite of order Q−1. This technique generates plenty

of new radial basis functions, if (−∆)m is applied to the ones we gave in

Table 1.3. Note, however, that polyharmonic splines will go into poly-

harmonic splines again. Furthermore, the procedure comes to an end

when generating singular radial basis functions after application of −∆.

In this way, it is mathematically justified to choose ψ as the particular

solution corresponding to φ := ∆ψ which is used to interpolate the

right–hand side of the given differential equation. In this way, not only

the invertibility of the interpolation matrix is guaranteed, but also the

particular solution can be obtained cheaply.
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For the inverse multiquadric

ψ =
1√

r2 + c2

the direct technique yields

φ = ∆ψ =





r2 − 2c2

(r2 + c2)5/2
, in 2D,

−3c2

(r2 + c2)5/2
, in 3D.

For the unscaled compactly supported Wendland–type RBF

ψ = (1 − r)
6
+

(
35r2 + 18r + 3

)
, (5.5.2)

the new interpolation function is given by

φ = ∆ψ =

{
112 (1 − r)

4
+

(
20r2 − 4r − 1

)
, in 2D,

168 (1 − r)
4
+

(
15r2 − 4r − 1

)
, in 3D.

(5.5.3)

In this approach, the smoothness of the new radial basis function φ is

two orders lower than ψ. Hence we have to choose sufficiently smooth

functions for ψ if we want to end up with a certain smoothness for φ.

Note that since the inverse multiquadric is C∞, the smoothness of φ will

not be affected. In this way, a wide class of new radial basis functions

can be generated.

Example 5.5.4 As an application of the direct method, we consider the

Poisson problem

∆u = 2ex−y, (x, y) ∈ Ω,

u = ex−y + ex cos y, (x, y) ∈ Γ,

where Ω ∪ Γ is the unit square. The exact solution is given by u∗ =

ex−y + ex cos y.

In this example, we chose ψ in (5.5.2) as the basis function for the

particular solution and φ in (5.5.3) as the basis for the interpolation

function. A special feature of this approach is that the particular solu-

tion is compactly supported, unlike the results of the indirect technique

to be described below. The L∞ norms for various scaling factors can be

found in Table 5.1 which shows little difference in L∞ when c becomes

large. To perform the numerical computations, we used 81 evenly dis-

tributed points on a regular grid as the interpolation points in [0, 1]2.

The L∞ errors of u were computed on a 20 × 20 uniform grid in the
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domain. The numerical tests were performed using MATLAB which

has a built–in sparse matrix solver. The method of fundamental solu-

tions was employed to find the homogeneous solution with 20 uniformly

distributed collocation points on the boundary Γ and 20 uniformly dis-

tributed source points on a circle with radius 10 and center (0, 0). Figure

5.2 shows the absolute error using c = 0.7.

c L∞ c L∞

0.3 5.77E-2 0.9 2.47E-4

0.4 2.68E-2 1.0 1.75E-4

0.5 9.10E-3 1.1 2.32E-4

0.6 3.52E-3 1.2 1.28E-4

0.7 1.51E-3 1.3 1.40E-4

0.8 5.68E-4 1.4 1.57E-4

Table 5.1. L∞ norm error using the direct approach
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Fig. 5.2. The profile of absolute error using c = 0.7.

2

We now turn to the indirect technique. For a given radial basis

function φ, a radial basis function ψ with ∆ψ = φ can be obtained by

repeated integration. With modern symbolic software such as Maple c©
or Mathematica c©, it is convenient to obtain ψ explicitly. However, since
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the integration constants are normally omitted by the symbolic software,

one needs to treat them with care.

It should be noted that −ψ is a positive definite radial basis func-

tion whenever φ is positive definite. Thus the methods of this section

generate new classes of useful radial basis functions.

For simple fΩ such as polynomials or finite trigonometric sums, partic-

ular solutions may be obtained explicitly by the method of undetermined

coefficients.

Example 5.5.5 Assume that fn(x1, x2) is a homogeneous polynomial

of degree n, i.e.

fn =

n∑

k=0

αkx
n−k
1 xk

2 .

Then a particular solution of

∆u = fn

may be of the form

up =
n+2∑

k=0

βkx
n−k+2
1 xk

2

that is a polynomial of degree n+2. With given {αk}n
k=0, the unknowns

{βk}n+2
k=0 can be determined by direct substitution. A detailed derivation

can be found in [CMG99]. A particular choice of {βk}n+2
k=0 is given by

βn+1 = 0, βn+2 = 0 and

βk =

⌊n−k
2 ⌋∑

m=0

(−1)m(k + 2m)!(n− k − 2m)!

k!(n− k + 2)!
αk+2m, 1 ≤ k ≤ n

where ⌊(n − k)/2⌋ denotes the integer M satisfying M ≤ (n − k)/2 <

M + 1. For instance, for

fn =
1

12

(
x4

1 − 4x3
1x2 + 6x2

1x
2
2 − 4x1x

3
2 + x4

2

)
,

a particular solution is given by

up =
x6

1

360
− x3

1x
3
2

18
+
x2

1x
4
2

24
.

2

For general f(x), the derivation of closed–form particular solutions is

not trivial. The classical method for obtaining a particular solution of
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(5.2.1) is to construct the associated Newton potential which is given by

up(x) =
1

2π

∫

Ω

G(x,y)f(y)dΩ, x ∈ Ω (5.5.6)

where G is the fundamental solution as used in Chapter 4. In fact, up in

(5.5.6) is equivalent to the domain integral term in (5.1.2). As observed

by Atkinson [Atk85], if f can be extended smoothly to Ω̃ ⊃ Ω with the

same order of differentiability as it had on Ω, then

up(x) =
1

2π

∫

Ω̃

G(x,y)f(y)dΩ, x ∈ Ω, (5.5.7)

is also a particular solution of (5.2.1). As a result, up in (5.5.7) can

be numerically approximated on a larger regular domain Ω̃ instead of

an irregular domain Ω. In general, Ω̃ can be chosen as an ellipse in IR2

and an ellipsoid in IR3. This offers a general approach as long as the

fundamental solution G of L is available. In his paper, Atkinson [Atk85]

provided three different numerical methods to approximate particular

solutions.

5.5.1 Globally Supported Radial Basis Functions

For thin plate splines φ(r) = r2 ln r, by direct integration of

1

r

d

dr

(
r
dψ

dr

)
= r2 ln r

we can easily obtain

ψ(r) =
r4 ln r

16
− r4

32
+ C1 ln r + C2. (5.5.8)

Through this subsection, C1 and C2 denote the integration constants.

Since the first two terms of ψ in (5.5.8) are non–singular at r = 0, we

can choose C1 = C2 = 0. Beware that if we use symbolic software to do

the integration, the term C1 ln r + C2 in (5.5.8) is not displayed. As we

shall see, these terms play an important role canceling the singularity of

ψ(r) if there is any.

For polyharmonic splines φ(r) = r2n ln r, an analytic expression of

ψ(r) is given by

ψ(r) =
r2n+2

4(n+ 1)2
ln r − r2n+2

4(n+ 1)3
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For multiquadrics φ(r) =
√
r2 + c2 in 2D, by direct integration using

Mathematica c© we obtain

ψ(r) =

(
4c2 + r2

)

9

√
r2 + c2 − c3

3
ln

(
2

c3r
+

2
√
r2 + c2

c4r

)
+ C1 ln r + C2.

(5.5.9)

We observe that ψ(r) is singular at r = 0. In this case, the integration

constants in C1 ln r+C2 are crucial. One can choose C1 and C2 so that

the singularity at r = 0 is canceled. This can be achieved by rewriting

the second term of ψ in (5.5.9) as

−c
3

3
ln 2 − c3

3
ln(c+

√
r2 + c2) +

c3

3
ln c4 +

c3

3
ln r.

To cancel the singularity at r = 0, it is clear that we can choose

C1 = −c
3

3
, C2 =

c3

3
ln 2 − c3

3
ln c4.

Consequently, in the 2D case, we have

ψ(r) =
1

9

(
4c2 + r2

)√
r2 + c2 − c3

3
ln
(
c+

√
r2 + c2

)
. (5.5.10)

The analytic form of ψ(r) of the inverse multiquadric φ(r) = 1/
√
r2 + c2

in 2D should also be treated with care to avoid the singularity at r = 0.

It can be obtained in a similar fashion as

ψ(r) =
√
r2 + c2 − c ln

(
c+

√
r2 + c2

)
.

Even for a simple differential operator such as the Laplace operator, a

closed form of ψ with ∆ψ = φ for a given φ can be difficult to obtain

and evaluate. For instance, for the Gaussian φ(r) = e−r2

one has

ψ(r) =
1

4

(
ln r2 +

∫ ∞

r2

e−t

t
dt

)
.

For the 3D case, repeated integration can also be employed as in the

2D case. But an alternative approach is also possible. We observe that

by defining

ψ(r) =
z(r)

r
(5.5.11)

the problem ∆ψ = φ can be reformulated as

1

r2
d

dr

(
r2
dψ

dr

)
=

1

r

d2z

dr2
= φ.
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This implies that we only have to solve

d2z

dr2
= rφ.

An ordinary differential equation solver or direct integration can be ap-

plied to obtain z and hence ψ.

For multiquadrics φ =
√
r2 + c2 we have

z (r) =
r
(
2r2 + 5c2

)

24

√
r2 + c2 +

c4

8
ln
(
r +

√
r2 + c2

)
+ C1r + C2

Using (5.5.11), we get

ψ (r) =

(
2r2 + 5c2

)

24

√
r2 + c2 +

c4

8r
ln
(
r +

√
r2 + c2

)
+ C1 +

C2

r
.

We observe the second term (c4/8r) ln(r +
√
r2 + c2) has a singularity

at r = 0. To cancel the singularity, we choose

C1 = 0, C2 = −c
4 ln c

8
.

This implies

lim
r→0

(
c4

8r
ln
(
r +

√
r2 + c2

)
+
C2

r

)

= lim
r→0

c4

8r

(
ln
(
r +

√
r2 + c2

)
− ln c

)

=
c3

8
.

Thus,

ψ (r) =





(
2r2 + 5c2

)

24

√
r2 + c2 +

c4

8r
ln

(
r +

√
r2 + c2

c

)
, r > 0,

c3

3
, r = 0.

(5.5.12)

Similarly, for inverse multiquadrics we obtain

ψ (r) =






√
r2 + c2

2
+
c2

2r
ln

(
r +

√
r2 + c2

c

)
, r > 0,

c

2
, r = 0.
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5.5.2 Monomial Basis Functions

For conditionally positive definite radial basis functions, the additional

polynomial terms are required as indicated in Section 1.2 and equation

(1.2.5). Hence the corresponding particular solutions are also necessary.

We note that the particular solutions for monomial right-hand sides for

the 2D and 3D cases are available in the literature [CLG94, GMCC03].

The results are as follows.

A particular solution of

∆ψ = xnym, m ≥ 0, n ≥ 0,

is given by [CLG94]

ψ(x, y) =






⌊n+2
2 ⌋∑

k=1

(−1)k+1 m!n!xm+2kyn−2k+2

(m+ 2k)!(n− 2k + 2)!
, m ≥ n,

⌊m+2
2 ⌋∑

k=1

(−1)k+1 m!n!xm−2k+2yn+2k

(m− 2k + 2)!(n+ 2k)!
m < n.

A particular solution of

∆ψ = xℓymzn

in 3D can be obtained similar to the 2D case [GMCC03]:

ψ =

⌊m
2 ⌋+⌊n

2 ⌋+1∑

i=1

xℓ+2i

min{i,⌊m
2 ⌋+1}∑

j=max{1,i−⌊n
2 ⌋}

aijy
m−2j+2zn−2i+2j

where

aij =
−1

(ℓ+ 2i)(ℓ+ 2i− 1)
[(m− 2j + 4)(m− 2j + 3)ai−1,j−1

+ (n− 2i+ 2j + 2)(n− 2i+ 2j + 1)ai−1,j ] ,

a11 = ai0 = a0j = 0.

5.5.3 Compactly Supported Radial Basis Functions

As was already pointed out in Section 2.8, there are good reasons to use

compactly supported radial basis functions (CS-RBFs) for dealing with

large problems involving data with limited smoothness. Therefore we

now focus on the derivation of particular solutions based on compactly

supported radial basis functions [CGS03]. Note that we already have



152

some direct cases in (5.5.2) and (5.5.3). For practical implementation,

all radial basis functions in Table 1.4 should be scaled, but due to (5.5.1)

the general scaling can be deduced from the unscaled case easily.

For the 2D case, and for the original radial basis function φ supported

in [0, 1], an explicit representation of ψ(r) can be derived by straightfor-

ward integration as follows [CBP99]:

ψ (r) =





∫ r

0

1

s

[∫ s

0

tφ (t) dt

]
ds, r ≤ 1,

∫ 1

0

1

s

[∫ s

0

tφ (t) dt

]
ds+

∫ r

1

1

s

[∫ 1

0

tφ (t) dt

]
ds, r > 1.

Note that the part for r > 1 can be rewritten as

ψ(r) = ψ(1) + ψ′(1) ln r, r > 1, (5.5.13)

and this also explains why the resulting function ψ is not compactly

supported. At r = 1 there must be a smooth extension with a harmonic

function of r, which is exactly what the above formula says. The dou-

ble integration shown above can be performed easily by using symbolic

software. A list of particular solutions ψ(r) corresponding to various

compactly supported functions of Wendland type is given in Table 5.2

[CBP99]. Note that {φi}4
i=1 are the first four Wendland CS-RBFs in

Table 1.4.

The explicit representation of ψ(r) for the 3D case is similar to the

2D case. In particular,

ψ (r) =





∫ r

0

1

s2

[∫ s

0

t2φ (t) dt

]
ds, r ≤ 1,

∫ 1

0

1

s2

[∫ s

0

t2φ (t) dt

]
ds+

∫ r

1

1

s2

[∫ 1

0

t2φ (t) dt

]
ds, r > 1,

where now instead of (5.5.13) we have

ψ(r) = ψ(1) + ψ′(1)(1 − 1/r), r > 1

as a harmonic extension. Explicit ψ(r) corresponding to various Wend-

land CS-RBFs φ(r) are given in Table 5.3. Note that {φi}4
i=1 in this

table is the same as those in Table 5.2.

We now implement the particular solutions we derived above to solve

the following Poisson problems in 2D and 3D.
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φ ψ

φ1 (r)






r4

16
−

2r3

9
+
r2

4
, r ≤ 1,

13

144
+

1

12
ln r, r > 1.

φ2 (r)






4r7

49
−

5r6

12
+

4r5

5
−

5r4

8
+
r2

4
, r ≤ 1,

529

5880
+

1

14
ln r, r > 1.

φ3 (r)






7r10

20
−

64r9

27
+

105r8

16
−

64r7

7
+

35r6

6
−

7r4

4
+

3r2

4
, r ≤ 1

3517

15120
+

1

6
ln r, r > 1.

φ4 (r)





32r13

169
−

77r12

48
+

64r11

11
−

231r10

20
+

352r9

27

−
231r8

32
+

11r6

6
−

11r4

16
+
r2

4
,

r ≤ 1,

541961

8030880
+

7

156
ln r, r > 1.

Table 5.2. A list of ψ corresponding to various CS-RBFs φ in 2D.

Example 5.5.14 Consider the Poisson problem

∆u = −5π2

4
sinπx cos

πy

2
, in Ω,

u = sinπx cos
πy

2
, on Γ.

where Ω∪Γ = [0, 1]2\[0.5, 1]2 which is three-quarters of the unit square.

The exact solution is given by u∗ = sinπx cos πy/2. Note that the solu-

tion has no singularity at the incoming corner.

We chose 81 evenly distributed collocation points in Ω̄, and we used

multiquadrics with scale factor c = 0.8 for the MPS. In the method

of fundamental solutions, we used 16 evenly distributed points on the

boundary ∂Ω and the same number of source points on a circle with

center at (0.5, 0.5) and radius 5. In Figure 5.3, the contour plots of the

solution u and velocity field ∇u are plotted on the left and the contour
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φ ψ

φ1 (r)






r4

20
−
r3

6α
+
r2

6
, r ≤ 1,

1

12
−

1

30r
, r > 1.

φ2 (r)






r7

14
−

5r6

14
+

2r5

3
−
r4

2
−
r2

6
, r ≤ 1,

1

14
−

1

42r
, r > 1.

φ3 (r)






7r10

22
−

32r9

15
+

35r8

6
− 8r7 + 5r6 −

7r4

5
+
r2

2
, r ≤ 1,

1

6
−

8

165r
, r > 1.

φ4 (r)






16r13

91
−

77r12

52
+

16r11

3
−

21r10

2
+

176r9

15
−

77r8

12

+
11r6

7
−

11r4

20
+
r2

6
,

r ≤ 1,

4903

60 060
−

8

165r
, r > 1.

Table 5.3. A list of ψ corresponding to various CS-RBFs φ in 3D.

plot of the solution and the distribution of absolute errors are plotted

on the right.

2

Example 5.5.15 Let us consider the following 3D problem using com-

pactly supported radial basis functions:

∆u = −3 cosx cos y cos z, in Ω

u = cosx cos y cos z, on Γ.

Define R(θ) =

√
cos(2θ) +

√
1.1 − sin2(2θ). Then the surface of the do-

main Ω is represented by the parametric surface

x(θ, φ) =




R(θ) cos (θ)

R(θ) sin (θ) cos (φ)

R(θ) sin (θ) cos (φ)



 (5.5.16)
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Fig. 5.3. MQ with c = 0.8: contour plot of the solution and velocity field (left)
and contour plot of the solution and error distribution (right).

where θ ∈ [0, π), φ ∈ [0, 2π). The 3D graph of the parametric surface in

(5.5.16) can be found in Example 4.4.10. The exact solution is given by

u∗ = cosx cos y cos z, (x, y, z) ∈ Ω ∪ Γ.

In this example, we chose Wendland’s basis function ϕ = (1 − r)
4
+ (4r + 1)

to approximate the forcing term. We chose 300 quasi-random points in

a box [−1.5, 1, 5]× [−0.5, 0.5]× [0.5, 0.5]. In the method of fundamental

solutions, we chose 100 quasi-random test points on the peanut-shape

surface and 100 quasi-random source points on a sphere with center at

the origin with radius 9. The numerical results were computed along

the x-axis with y = z = 0. The results in terms of relative errors in

percent with three different scaling factors are shown in Figure 5.4. We

used scaling factors α = 0.7, 1.0, and 1.4 in the sense of the parameter

c in (5.5.1). Notice that these results are consistent with our intuition.

With larger support, more interpolation points are included in the ap-

proximation. Therefore as more information is provided, more accurate

solutions are expected.

2
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Fig. 5.4. The effect of various scaling factors.

5.6 Particular Solutions for Biharmonic Equations

The derivation of particular solutions for the biharmonic operator is sim-

ilar to the one for the Laplace operator which was described in the pre-

vious sections. However, the algebraic manipulations are getting more

complicated, and the correct scaling now is

∆2(c4ψ(r/c)) = φ(r/c).

In some cases such as multiquadrics, the continuing integration on (5.5.9)

two more times can become very difficult.

But in case of factorizable differential operators, the Method of Par-

ticular Solutions can always be iterated. If L = L1L2 is a factorizable

differential operator, the problem to find a particular solution pair (u, f)

with Lu = f can be split into finding particular solution pairs (v, f) with

L1v = f and (u, v) with L2u = v due to

Lu = L1L2u = L1v = f.

For approximate particular solutions using radial basis functions, users

can first find an approximate particular solution v for L1v = f using

pairs (ψ1, φ1) of particular RBF solutions for the operator L1. This

requires an approximation of f in terms of translates of φ1 and yields

an approximation of v in terms of translates of ψ1. Then fundamental
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RBF solutions (ψ2, φ2) for L2 are used, and v must be re-represented in

terms of translates of φ2 to get an approximate particular solution u to

Lu = f or L2u = v in terms of translates of ψ2.

5.7 Particular Solutions for Helmholtz Operators

Before we go into details, let us settle the scaling problem for particular

solutions of Helmholtz-type operators ∆ ± λ2.

Assume that we have a pair (ψ±λ, φ±λ) satisfying

(∆ ± λ2)ψ±λ = φ±λ.

Then, by some easy calculation, we get pairs (c2ψ±cλ(r/c), φ±cλ(r/c))

of scaled particular solutions for ∆ ± λ2 via

(∆ ± λ2)(c2ψ±cλ(r/c)) = φ±cλ(r/c) (5.7.1)

for all positive scaling factors c. Note how the scaling factor c interacts

with λ.

Furthermore, if the following discussion allows complex λ, we can fix

the sign in the differential equation ad libitum. But note that only the

case −∆ − λ2 for nonnegative λ will be elliptic in general.

5.7.1 Historical Remarks

In most applications so far, the Dual Reciprocity Method was applied

in the case of the Laplace or biharmonic operator on the left hand

side, while the remaining terms in the original differential equation were

moved to the right hand side and treated as source terms. This was

primarily due to the difficulty in obtaining particular solutions in closed

form as we have indicated in the earlier sections. As a result, the Dual

Reciprocity Method gets additional source terms and needs an additional

iteration. For instance, to find an approximate particular solution to the

Helmholtz-type equation

∆u± λ2u = f(x, y), (5.7.2)

one has to rearrange (5.7.2) to the following form

∆u = f(x, y) ∓ λ2u. (5.7.3)

Then one has to iterate as follows:

• Given an approximation ũ of u in (5.7.2), use it in the right–hand side

of (5.7.3).
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• Then apply the Method of Particular Solutions for ∆ in (5.7.3) to

get a new approximate solution û for the Helmholtz–type differential

equation (5.7.2).

• Repeat this for ũ := û until changes are small.

The disadvantages of (5.7.3) instead of (5.7.2) are obvious. Not only is

the source term in (5.7.3) more difficult to approximate, but also the

above iteration scheme is required and the convergence of the iteration

is uncertain.

Zhu [Zhu93] worked along these lines using Helmholtz-type operators

as the main differential operators in the Dual Reciprocity Method. How-

ever, no closed form particular solutions are possible by using polynomial

radial basis functions, as is shown in his paper. Instead, a non–trivial

recursive scheme was developed to evaluate the particular solutions.

Example 5.7.4 We give an example to demonstrate the problems in-

curred by iterations when shifting terms to the right–hand side. For

simplicity, we only use the Thin Plate Splines as basis functions in this

example. Let us consider the following modified Helmholtz equation

∆u− λ2u = (ex + ey)(1 − λ2), (x, y) ∈ Ω,

u = ex + ey, (x, y) ∈ Γ,
(5.7.5)

where Ω ∪ Γ = {(x, y) : x2 + y2 ≤ 1}. The exact solution is given by

u∗ = ex + ey. In the past, due to the lack of closed form particular

solutions for the Helmholtz equation, the governing equation of (5.7.5)

was often reformulated as

∆un+1 = (ex + ey)(1 − λ2) + λ2un, (x, y) ∈ Ω. (5.7.6)

in which numerical iterations are required.

To obtain an approximate particular solution by this technique, we

chose 60 quasi-random points in the interior to interpolate the right

hand side. To approximate the homogeneous solution, the method of

fundamental solutions was used and 40 evenly distributed points on the

boundary were chosen. The source points of the method of fundamental

solutions were chosen on a fictitious boundary of a circle with radius 8

and center at the origin. In the iteration of (5.7.6), we set the tolerance to

ε = 10−4, i.e. when max(x,y)∈Ω |un+1(x, y) − un(x, y)| < ε, the iteration

will be terminated. In Table 5.7.6, it turns out that the iteration diverges

when λ2 > 6.

As an alternative approach, we avoided the iteration by using our
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λ2 # of Iteration CPU

1 8 3.30

2 12 4.56

3 18 5.38

4 31 7.14

5 78 17.41

6 Divergence

Table 5.4. Iterations and relative CPU times for various λ2.
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Fig. 5.5. The profile of the absolute error of solution of (5.7.5)for λ2 = 1000.

special particular solution (5.7.15) for the modified Helmholtz equation

to that is derived below. Then the absolute error of the solution is shown

in Figure 5.5. It took only 0.22 relative CPU time. Here we chose

λ2 = 1000. Solution with higher wave numbers can also be achieved

easily.

2

Ingber et. al. [IPT92] also developed a numerical scheme to find an

approximate particular solution for (5.7.2) using radial basis functions.

We briefly state their approach because it has connections to our con-

struction below. To find an approximate particular solution for (5.7.2),
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it suffices to determine a particular solution ψ(r) for the equation

1

r

d

dr

(
r
dψ

dr

)
− λ2ψ = φ(r) (5.7.7)

where φ(r) is a radial basis function and λ is a complex number. By

letting z = λr and rewriting both functions in terms of z, we get

z2d
2ψ

dz2
+ z

dψ

dz
− z2ψ =

z2φ

λ2
.

This equation is an inhomogeneous modified Bessel equation of order

zero. The solutions of the homogeneous problem are linear combinations

of the modified Bessel functions I0 and K0 of first and second kind.

One can get a particular solution by using the classical variation of

parameters method, i.e.

ψ(z) = A(z)I0(z) +B(z)K0(z). (5.7.8)

The coefficient functions A(z) and B(z) are determined by

A′I0 + B′K0 = 0,

A′I ′0 + B′K ′
0 =

φ

λ2
.

Solving for A and B yields

A(z) =
1

λ2

∫
K0φ

I ′0K0 −K ′
0I0

,

B(z) =
1

λ2

∫
I0φ

I ′0K0 −K ′
0I0

.

Thus the determination of particular solutions of Helmholtz-type equa-

tions is much more sophisticated than for the Laplace operator case.

The particular solution of (5.7.8) involves integration of Bessel func-

tions. But for efficiency in applications, it is important to be able to

solve (5.7.7) explicitly. Consequently, this motivates further search for

closed forms of particular solutions using various differential operators.

Along this line, Chen and Rashed [CR98] discovered that a closed form

particular solution can be obtained by choosing Helmholtz-type differen-

tial operators as main differential operators and thin plate splines (TPS)

as the basis functions in the context of the Dual Reciprocity Method.

The discovery of these particular solutions was purely by observation

and no systematic derivation was given.

Golberg et. al. [GCR99] re-derived the results of [CR98] by an ap-

proach which generalizes the annihilator method used to obtain par-

ticular solutions for ordinary differential equations. To be more specific,
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suppose there is a differential operator M such that Mφ = 0. Then

operating on Lψ = φ gives

MLψ = Mφ = 0

so ψ now satisfies a homogeneous equation. In addition, if we can choose

M to commute with L, then one can write ψ as

ψ = Θ + Ψ

where MΘ = 0 and LΨ = 0 so that ψ can be found by solving a pair of

homogeneous equations, i.e. when ML = LM then

MLψ = ML(Θ + Ψ) = M(LΘ) +M(LΨ) = L(MΘ) +M(LΨ) = 0.

We shall implement this concept in the next section.

5.7.2 Thin–Plate Splines in 2D

To obtain a specific closed form particular solution ψ for L = ∆− λ2 in

2D, we choose thin–plate splines φ = r2 ln r and have to solve

(
∆ − λ2

)
ψ = r2 ln r. (5.7.9)

If we choose M = ∆2 for the annihilator method, we can use ∆2r2 ln r =

0 outside the origin. Operating on (5.7.9) by M := ∆2 then gives

∆2
(
∆ − λ2

)
ψ = 0.

Since ∆2 and ∆ − λ2 are radially and translationally invariant, we can

focus on

∆2
r

(
∆r − λ2

)
ψ = 0 (5.7.10)

where

∆r =
1

r

d

dr
(r
d

dr
) =

d2

dr2
+

1

r

d

dr
.

Thus (5.7.10) is a sixth order ODE which has a six dimensional solution

space [DG76]. Since ∆2
r and ∆r −λ2 commute and their solution spaces

have empty intersection (as we shall see), then we have

ψ = Θ + Ψ

where
(
∆r − λ2

)
Ψ = 0 (5.7.11)
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and

∆2
rΘ = 0. (5.7.12)

As is well known, (5.7.11) is a Bessel equation, and we get

Ψ = AI0(λr) +BK0(λr)

where I0 and K0 are modified Bessel functions of first and second kind

with order 0, respectively.

By straightforward algebra, we find that (5.7.12) is equivalent to the

fourth order Euler equation

r4
d4Θ

dr4
+ 2r3

d3Θ

dr3
− r2

d2Θ

dr2
+ r

dΘ

dr
= 0

whose characteristic polynomial is P (r) = r2(r − 2)2. Thus it follows

from standard theory of ordinary differential equations [DG76] that

v = a+ b ln r + cr2 + dr2 ln r,

where a, b, c, and d are constants to be determined. Hence,

ψ = AI0(λr) +BK0(λr) + a+ b ln r + cr2 + dr2 ln r. (5.7.13)

To determine the constants in (5.7.13) we must use the additional con-

dition that
(
∆r − λ2

)
ψ = r2 ln r to guarantee that ψ is a particular

solution of ∆r −λ2. Since
(
∆r − λ2

)
I0 =

(
∆r − λ2

)
K0 = 0, we have to

solve
(
∆r − λ2

)
a+

(
∆r − λ2

)
b ln r +

(
∆r − λ2

)
cr2 +

(
∆r − λ2

)
dr2 ln r

= r2 ln r.

By the method of undeterminate coefficients and some tedious algebra,

we obtain

a =
−4

λ4
, b =

−4

λ4
, c = 0, d =

−1

λ2
.

Thus we end up with

ψ = AI0(λr) +BK0(λr) −
4

λ4
− 4 ln r

λ4
− r2 ln r

λ2
. (5.7.14)

To get a particular solution which is continuous at r = 0, we need to

choose B to cancel the ln r term at r = 0. As in [CR98], this can be

done by using

K0(λr) → −γ − ln

(
λr

2

)
, r → 0,

where γ ≃ 0.5772156649015328 is Euler’s constant [AS65]. Choosing
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B = −4/λ4 gives the required result. Furthermore, since
(
∆r − λ2

)
I0 =

0 and particular solutions are not unique, we can take A = 0. Hence our

final result is

ψ =





− 4

λ4
− 4 ln r

λ4
− r2 ln r

λ2
− 4K0(λr)

λ4
, r > 0,

− 4

λ4
+

4γ

λ4
+

4

λ4
ln

(
λ

2

)
, r = 0.

(5.7.15)

The derivation of the derivative of ψ in (5.7.15) can proceed as follows.

The singularities have to be cancelled in a similar way shown above.

∂ψ

∂n
=
∂ψ

∂r

(
∂r

∂x
nx +

∂r

∂y
ny

)

=
∂ψ

∂r

(
x− ξ

r
nx +

y − η

r
ny

)

=
1

r

∂ψ

∂r
((x− ξ)nx + (y − η)ny)

where r2 = (x − ξ)2 + (y − η)2, and (nx, ny) is a unit normal vector.

Hence it is sufficient to find (1/r)∂ψ/∂r. Note that

d

dr
K0(λr) = −λK1(λr).

Form (5.7.15), we have

1

r

∂ψ

∂r
=

−4

r2λ4
− 2 ln r

λ2
− 1

λ2
+

4K1(λr)

λ3
, r 6= 0. (5.7.16)

We observe that

K1(λr) =

(
ln

(
λr

2

)
+ γ

)
I1(λr) +

1

λr

where

I1(λr) =
λr

2
+

(λr)3

22 · 4 + · · ·

Considering the expansion of the first term of I1(λr), we obtain

K1(λr) =

(
ln

(
λr

2

)
+ γ

)
λr

2
+

1

λr
+O(r3).

The last term of (5.7.16) can be expanded as follows:

4K1(λr)

λ3r
=

2

λ2
ln

(
λ

2

)
+

2

λ2
ln r +

2γ

λ2
+

4

r2λ4
+O(r2).
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As r → 0, (5.7.16) can be further simplified as follows:

1

r

∂ψ

∂r
=

2

λ2
ln

(
λ

2

)
+

2γ

λ2
− 1

λ2
.

Thus, we obtain

1

r

∂ψ

∂r
=






−4

r2λ4
− 2 ln r

λ2
− 1

λ2
+

4K1(λr)

λ3
, r 6= 0,

2

λ2
ln

(
λ

2

)
+

2γ

λ2
− 1

λ2
, r = 0.

5.7.3 Polyharmonic Splines in 2D

This argument can be extended to find particular solutions for ∆ − λ2

[MGC99] when φ(n) is a polyharmonic spline

φ(n)(r) =





r2n ln r, in 2D,

r2n−1, in 3D.

Since ∆n+1
r φ(n) = 0, r 6= 0, we find that particular solutions can be

found by solving

∆n+1
r

(
∆r − λ2

)
ψ = 0.

As before, we have

ψ = Θ + Ψ

where
(
∆r − λ2

)
Θ = 0, and ∆n+1

r Ψ = 0.

Since ∆n+1
r is a multiple of an Euler operator, we look for solutions of

∆n+1
r Ψ in the form Ψ = rq where q is the characteristic exponent. Using

∆n+1
r rq = q2rq−2 repeatedly, we get

∆n+1
r rq = q2 (q − 2)

2 · · · (q − 2n)
2
rq−2n.

Hence the characteristic polynomial of the differential equation is

P (r) = r2 (r − 2)
2 · · · (r − 2n)

2
= 0,

and the characteristic exponents are q = 0, 2, 4, . . . , 2n. Since the roots

are double, the theory of the Euler equation shows that the solution
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space W is spanned by
{
r2k, r2k ln r

}
, 0 ≤ k ≤ n (dimW = 2n + 2)

[MGC99] so that

ψ(r) = AI0(λr) +BK0(λr) +

n+1∑

k=1

ckr
2k−2 ln r +

n+1∑

k=1

dkr
2k−2. (5.7.17)

We now need to choose A,B, {ck} , {dk} so that
(
∆ − λ2

)
ψ = r2n ln r

with ψ having the maximum differentiability. Here we can choose A = 0.

By some tedious algebraic derivations, one obtains

B = − (2n)!!2

λ2n+2

ck = − (2n)!!2

(2k − 2)!!2
λ2k−2n−4, 1 ≤ k ≤ n+ 1,

dk = ck

n∑

j=k

1

j
, 1 ≤ k ≤ n.

Here m!! denotes the product of all positive integers that are less than

or equal to m and have the same remainder as m when divided by 2, e.g.

5!! = 1×3×5, 8!! = 2×4×6×8. Furthermore, by conventional notation,

2!! = 2, 0!! = 1, 1!! = 1, and (−1)!! = 1. Since A is arbitrary, it can be

chosen as zero. We refer readers to [MGC99] for detailed derivation.

From a theoretical point of view, we should prefer to use splines of

highest possible order due to their higher convergence rate. However,

from a computational point of view, ill–conditioning will pose limitations

for using high–order splines. As a result, within machine precision, we

try to push the order of the splines as high as possible within reasonable

stability limits.

By our construction, the singularities in equations (5.7.17) have been

nicely canceled out. To be more specific, (5.7.17) can be expanded and

rewritten as

ψ(r) = B

∞∑

k=0

akr
2k −B

∞∑

k=n+1

λ2k

(2k)!!2
r2k ln r +

n∑

k=1

dkr
2k−2. (5.7.18)

From (5.7.18) we notice that ψ ∈ C2n+1. Furthermore, for computational

purposes, we prefer to use (5.7.18) for small r, since only a few terms in

the summation are required. For larger r, we switch to equation (5.7.17)

by using a library subroutine to compute K0.
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5.7.4 Thin–Plate Splines in 3D

The derivation of a particular solution for ∆−λ2 in the 3D case is similar

to the 2D case [MGC99]. We start with the thin–plate spline φ = r as

the basis function, which is the fundamental solution of the biharmonic

equation in IR3. We need to solve
(
∆ − λ2

)
ψ = r.

As in the 2D case, we have ∆2r = 0 so that

∆2
(
∆ − λ2

)
ψ = 0.

As before, radially symmetric solutions ψ can be obtained by solving

the following ordinary differential equation

∆2
r

(
∆r − λ2

)
ψ = 0

where

∆r =
1

r2
d

dr

(
r2
d

dr

)
=

(
d2

dr2
+

2

r

d

dr

)
.

Once again, we split ψ into the solutions of two homogeneous equations

ψ = Θ + Ψ

where
(
∆r − λ2

)
Θ = 0 and ∆2

rΨ = 0. (5.7.19)

To solve the first part of (5.7.19), we make the change of variable

Ψ =
z

r
.

Then z satisfies
d2z

dr2
− λ2z = 0,

whose general solution is

z = Ae−λr +Beλr

so that

Ψ =
Ae−λr

r
+
Beλr

r
.

To solve the second part of (5.7.19), we note that it is equivalent to the

fourth order Euler equation

r4
d4Θ

dr4
+ 4r3

d3Θ

dr3
= 0 (5.7.20)
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whose characteristic polynomial is P (r) = r(r− 1)(r+1)(r− 2). Hence,

the general solution of (5.7.20) is

Θ = a+ br +
c

r
+ dr2.

Thus we superimpose everything into

ψ =
Ae−λr

r
+
Beλr

r
+ a+ br +

c

r
+ dr2

where the coefficients are determined by the condition
(
∆r − λ2

)
ψ = r.

Doing this gives

a = d = 0, b =
−1

λ2
, c =

−2

λ4

so that

ψ =
Ae−λr

r
+
Beλr

r
− r

λ2
− 2

λ4r
.

Since A and B are arbitrary, we choose A = 2/λ4, B = 0 to get a

continuous particular solution at r = 0. Doing this yields

ψ =





− r

λ2
− 2

λ4r
+

2e−λr

λ4r
, r 6= 0,

−2

λ3
, r = 0.

5.7.5 Polyharmonic Splines in 3D

Similar to the 2D case, if we consider polyharmonic splines φ = r2n−1,

we have to solve
(
∆r − λ2

)
Θ = 0 and ∆n+1

r Θ = 0, since ∆n+1
r r2n−1 = 0.

It is easily shown that the solution to
(
∆r − λ2

)
Θ = 0 is

Θ(r) = A
cosh (λr)

r
+B

sinh (λr)

r
.

As in IR2, the remaining problem is to solve ∆n+1
r Θ = 0. Again one

can show that this is a multiple of an Euler equation. Thus we look for

solutions of the form Θ = rp. Since ∆rr
p = (p + 1)prp−2, we find by

repeated differentiation that the characteristic polynomial is

P (r) = (r + 1)r(r − 1) · · · (r − 2n) = 0.

Thus the characteristic exponents are p = −1, 1, 2, ..., 2n so the solution

is spanned by
{
rk
}
,−1 ≤ k ≤ 2n. Hence the particular solution ψ of
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(∆r − λ2)ψ = r2n−1 is of the form

ψ(r) = A
cosh (λr)

r
+B

sinh (λr)

r
+

2n∑

k=−1

akr
k.

To obtain solutions which are regular at r = 0 we use the Taylor series

expansions of cosh(λr) and sinh(λr) at r = 0. Comparing coefficients

gives

B = 0, A =
(2n)!

λ2n+2
,

a2k = 0, a2k−1 =
−(2n)!

(2k)!λ2n+2k+2
, 0 ≤ k ≤ n.

Thus

ψ(r) =
(2n)! cosh(λr)

rλ2n+3
−

n∑

k=0

(2n)!

(2k)!

r2k−1

λ2n−2k+2
(5.7.21)

is the particular solution of ∆ − λ2 corresponding to φ = r2n−1.

Similar to (5.7.18) for small r, (5.7.21) can be expanded and rewritten

as

ψ(r) =

∞∑

k=n+1

(2n+ 1)!

(2k + 1)!

r2k

λ2n−2k+2

showing the smoothness properties.

5.7.6 Particular Solutions for ∆ + λ2 in 2D and 3D

The remaining cases for Helmholtz–type operators ∆+λ2 in IR2 and IR3

can be obtained using an analysis similar to that above. The detailed

derivation can be found in [MGC99]. We quote the results which the

reader can verify by differentiation.

For ∆ + λ2 in IR2 and φ = r2 ln r, we find

ψ(r) =





2

λ4
(πY0(λr) − 2 ln r) +

r2 ln r

λ2
− 4

λ4
, r > 0,

4

λ4

(
γ + ln

(
λ

2

))
− 4

λ4
, r = 0.

If we choose polyharmonic splines φ = r2n ln r, we have

ψ(r) = BY0 (λr) +

n+1∑

k=1

ckr
2k−2 ln r +

n∑

k=1

dkr
2k−2 (5.7.22)
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where

B =
π

2

(−1)
n+1

(2n)!!2

λ2n+2
,

ck =
(−1)

n+k+1
(2n)!!2λ2k−2n−4

(2k − 2)!!2
, 1 ≤ k ≤ n+ 1,

dk = ck

n∑

j=k

1

j
, 1 ≤ k ≤ n,

where Y0 is the Bessel function of second kind of order 0. For small r,

(5.7.22) can be expanded and rewritten as

ψ(r) = B

∞∑

k=0

akr
2k +

2B

π

∞∑

k=n+1

(−1)kλ2k

(2k)!!2
r2k ln r +

n∑

k=1

dkr
2k−2.

For ∆ + λ2 in IR3 and φ = r, we have

ψ =





r

λ2
+

2(cos(λr) − 1)

λ4r
, r 6= 0,

r

λ2
, r = 0.

Similarly, for polyharmonic splines φ = r2n−1 we have

ψ(r) =
(−1)

n+1
(2n)!

rλ2n+2
cos(λr) +

n∑

k=0

(2n)!

(2k)!

(−1)
n+k

r2k−1

λ2n−2k+2
.

For small r, ψ(r) can be expanded and rewritten as

ψ(r) =
∞∑

k=n+1

(2n+ 1)!

(2k + 1)!

(−1)n+k+1r2k

λ2n−2k+2
.

5.7.7 Polynomial Basis Functions

Since polyharmonic splines are conditionally positive definite as ex-

plained in Section 1.2, additional polynomial terms of the form (1.2.5)

are required to assure the solvability of the resulting matrix system.

Theorem 5.7.23 Assume ε = ±1 and consider the Helmholtz operator

∆ + ελ2 in IR2. A particular solution for

∆ψ + ελ2ψ = xnym (5.7.24)
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for nonnegative integers m, n is given by

ψ(x, y) =

⌊m
2 ⌋∑

k=0

⌊n
2 ⌋∑

ℓ=0

ε (−ε)k+ℓ
(k + ℓ)!m!n!xm−2kyn−2ℓ

λ2k+2ℓ+2k!ℓ!(m− 2k)!(n− 2ℓ)!
.

where ⌊t⌋ is the largest integer that is less than or equal to t.

Proof See [MCGC00].

Example 5.7.25 Consider the following 2D modified Helmholtz differ-

ential equation

∆ψ − 16ψ = x2y5. (5.7.26)

In (5.7.24), ǫ = −1, λ = 4,m = 2, n = 5, ⌊m
2 ⌋ = 1 and ⌊n

2 ⌋ = 2. Thus a

particular solution u is given by

ψ = −
1∑

k=0

2∑

ℓ=0

2!5!(k + ℓ)!x2−2ky5−2ℓ

42k+2ℓ+2k!ℓ!(2 − 2k)!(5 − 2ℓ)!

= − 1

16
x2y5 − 5

64
x2y3 − 15

512
x2y − 1

128
y5 − 5

256
y3 − 45

4096
y.

It can be easily checked that ψ obtained above satisfies the modified

Helmholtz differential equation in (5.7.26). Note that the above calcu-

lation can be obtained effortlessly by symbolic computation. 2

We now provide a somewhat more general and direct approach to

obtain particular solutions of Helmholtz equations for polynomial forcing

terms [CLH07]. Suppose that f is a polynomial of degree m and we

consider solving the following modified Helmholtz equation

∆up − λ2up = f(x, y) (5.7.27)

for a particular solution up and λ ∈ C \ {0}. The above expression can

be written in the following form

(
∆ − λ2I

)
up = f(x, y), (5.7.28)

where I is the identity operator. We observe that ∆L+1f(x, y) = 0 for

some positive integer L, and then
(
I −

(
∆

λ2

)L+1
)
f(x, y) = f(x, y). (5.7.29)
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By geometric series expansion, we have

I −
(

∆

λ2

)L+1

=

(
I − ∆

λ2

) L∑

k=0

(
∆

λ2

)k

. (5.7.30)

From (5.7.29) and (5.7.30), we obtain

(
I − ∆

λ2

) L∑

k=0

(
∆

λ2

)k

f(x, y) = f(x, y). (5.7.31)

On the other hand, (5.7.28) can be re-written as

−λ2

(
I − ∆

λ2

)
up(x, y) = f(x, y). (5.7.32)

Comparing (5.7.31) and (5.7.32), it follows that

−λ2up(x, y) =

L∑

k=0

(
∆

λ2

)k

f(x, y).

Consequently, we have

up(x, y) =
−1

λ2

L∑

k=0

(
∆

λ2

)k

f(x, y). (5.7.33)

Similarly, the particular solution for the Helmholtz equation

∆up + λ2up = f(x, y)

can be obtained as

up =
L∑

k=0

(−1)k ∆k

λ2k+2
f(x, y).

Example 5.7.34 Consider the following modified Helmholtz equation

∆up − 9up = x2y3 + x2y5 + 3xy.

Notice that

∆
(
x2y3 + x2y5 + 3xy

)
= 2y3 + 2y5 + 6x2y + 20x2y3,

∆
(
2y3 + 2y5 + 6x2y + 20x2y3

)
= 24y + 80y3 + 120x2y,

∆
(
24y + 80y3 + 120x2y

)
= 720y,
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From (5.7.33), we obtain the particular solution

up = − 1

32

(
x2y3 + x2y5 + 3xy

)
− 1

34

(
2y3 + 2y5 + 6x2y + 20x2y3

)

− 1

36

(
24y + 80y3 + 120x2y

)
− 1

38
(720y)

= −29

81
x2y3 − 1

9
x2y5 − 1

3
xy − 98

729
y3 − 2

81
y5 − 58

243
x2y − 104

729
y.

2

Theorem 5.7.35 Let ε = ±1 and assume that p, q and r are positive

integers. A particular solution for the Helmholtz problem

∆ψ + ελ2ψ = xpyqzr,

in IR3 is given by

ψ(x, y, z) =

⌊ p

2 ⌋∑

j=0

⌊ q

2 ⌋∑

k=0

⌊ r
2 ⌋∑

ℓ=0

ε (−ε)k+ℓ
(j + k + ℓ)!p!q!r!xp−2jyq−2kzr−2ℓ

λ2j+2k+2ℓ+2j!k!ℓ!(p− 2j)!(q − 2k)!(r − 2ℓ)!

where ⌊t⌋ is the largest integer that is less than or equal to t.

Proof See [GMCC03].

Example 5.7.36 Consider the following interior Dirichlet problem for

the modified Helmholtz equation [MGC99]
(
∆ − λ2

)
u = (ex + ey)(1 − λ2), (x, y) ∈ Ω,

u = ex + ey, (x, y) ∈ Γ,
(5.7.37)

where Ω ∪ Γ = [0, 1]2.

The exact solution is given by

u∗ = ex + ey, (x, y) ∈ Ω ∪ Γ.

To calculate an approximate particular solution ũp, we chose poly-

harmonic splines as the basis function to interpolate the forcing term in

(5.7.37). In order to do so, we took 36 uniform grid points on the unit

square. Furthermore, we used λ2 = 25.

To approximate the homogeneous solution, we used the method of

fundamental solutions. We chose 16 uniformly distributed collocation

points on Γ and the same number of source points on the fictitious

boundary which is a circle with center at (0, 0) and radius 8.

Then we observed the absolute errors of approximate solutions ũ along
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the line {(x, 0.4) : 0 ≤ x ≤ 1}. In Figure 5.6, we show the absolute error

of ũ in a logarithmic scale using polyharmonic splines of order 1 through

5. In the figure the solution with polyharmonic splines of order * is

denoted by S∗.
The numerical results in Figure 5.6 show the accuracy of the higher

order splines which improves from thin plate splines (TPS) up to three

orders of magnitude. In Figure 5.7, we show the profile of the overall

relative errors using polyharmonic splines of order 4. We observe the

high numerical accuracy with a maximum relative error within 7×10−7.

Comparing with thin–plate splines, the results are remarkable with very

little additional computational cost. 2
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Fig. 5.6. Absolute errors of u along the line y = 0.4 using polyharmonic splines
of various orders.

5.7.8 Compactly Supported RBFs in 3D

In this section, we focus on the indirect method for derivation of par-

ticular solutions ψ to compactly supported radial basis functions φ in

3D [GCG00]. Unfortunately, no explicit results are known for the 2D

case, but fortunately there still is the direct method. We shall give an

example at the end of this section. Furthermore, we recall that we can

handle scaling easily via (5.7.1), so that we can ignore scaling from now

on.

Consider the following equation
(
∆ − λ2

)
ψ(r) = φ(r)
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Fig. 5.7. Profile of relative errors for u using splines of order 4.

where φ is a Wendland–type compactly supported function with support

in [0, 1]. This is equivalent to solving

1

r2
d

dr
(r2

dψ

dr
) − λ2ψ =





(1 − r)

n
p (r), 0 ≤ r ≤ 1,

0, r > 1,
(5.7.38)

where p is an appropriately chosen polynomial of fixed degree k ≥ 0 so

that φ is a C2k compactly supported radial basis function [GCG00]. For

r = 0, (5.7.38) is to be considered in the limiting case as r → 0+. If we

let

ψ(r) =
z(r)

r
, r > 0, ψj(0) = lim

r→0+

dj

drj

(z
r

)
, j = 0, 1, 2, (5.7.39)

then

1

r2

(
d

dr
r2
dψ

dr

)
=

1

r

d2z

dr2
,

and hence (5.7.38) is equivalent to

d2z

dr2
− λ2z =





r (1 − r)

n
p (r), 0 ≤ r ≤ 1,

0, r > 1.
(5.7.40)

By elementary arguments from ordinary differential equations, the gen-
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eral solution of the above equation is of the form

z(r) =





Ae−λr + Beλr + q(r), 0 ≤ r ≤ 1,

Ce−λr +Deλr, r > 1,
(5.7.41)

where q(r) is a particular smooth solution of the first equation in (5.7.40).

The task of determining q(r) by the method of undetermined coefficients

could be tedious. But using modern computer symbolic ordinary differ-

ential equation solvers such as Maple c© or Mathematica c©, q(r) can be

obtained easily.

The four constants A,B,C and D in (5.7.41) are to be determined

so that ψ given by (5.7.39) is at least twice continuously differentiable

at r = 0 and r = 1, and hence on [0,∞). Since z is a solution of an

inhomogeneous linear second–order equation with a piecewise smooth

right-hand side, it is piecewise smooth everywhere. At r = 0 we only

have to make sure that z(0) = 0 holds, because we want a nonsingular

ψ. The additional degrees of freedom can be used to ensure smoothness

at r = 1.

Clearly, the condition z(0) = 0 is

A+ B + q(0) = 0. (5.7.42)

Let us check the derivatives at r = 1 and write down the equations for

smoothness. The mth derivative is continuous at r = 1 if

(−1)mλmAe−λ + λmBeλ + q(m)(1) = (−1)mλmCe−λ + λmDeλ.

This means

(−1)m(C −A)e−λ + (D −B)eλ =
q(m)(1)

λm

for λ 6= 0. There are essentially only two different equations for odd

and even m, but with infinitely many right-hand sides. There is no

unique solution, and it is easy to come up with a solution for the first

two equations for m = 0 and m = 1. Since

(D −B)eλ =
1

2

(
q(1) +

q′(1)

λ

)

(C −A)e−λ =
1

2

(
q(1) − q′(1)

λ

)
,

only C −A and D−B are uniquely defined, but we have the additional

condition (5.7.42). Hence one of the variables can be chosen arbitrarily.
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For computational efficiency, we set D := 0. Consequently, we get





A = −[B + q(0)],

B = −e
−λ [q′(1) + λq(1)]

2λ
,

C = B
(
e2λ − 1

)
+ q(1)eλ − q(0).

(5.7.43)

As we now know z(r) explicitly, we have a particular solution of (5.7.38)

given by

ψ(r) =





λ(2B + q(0)) + q′(0), r = 0

Ae−λr +Beλr + q(r)

r
, 0 < r ≤ 1,

Ce−λr

r
, r > 1,

(5.7.44)

where A,B and C are as in (5.7.43). Notice that for r > 1 and for

λ > 0 and large, ψ(r) in (5.7.44) decays exponentially. Higher orders of

smoothness can only occur if q has additional properties. For instance,

second-order smoothness needs

q(2)(1)

λ2
=
q(0)

λ0
= q(0).

Example 5.7.45 Let φ(r) = (1 − r)2+. The general solution of

d2z

dr2
− λ2z = r (1 − r)

2
, r ∈ IR

is given by

z (r) = −−4 + rλ2 + 6r − 2r2λ2 + r3λ2

λ4
+Ae−λr +Beλr.

Hence q(r), 0 ≤ r ≤ 1, in (5.7.41) is given by

q(r) =
4

λ4
− 1

λ2
r − 6

λ4
r +

2

λ2
r2 − 1

λ2
r3

and

d

dr
q(r) = −λ

2 + 6 − 4rλ2 + 3r2λ2

λ4
.

Since

q(0) =
4

λ4
, q(1) = − 2

λ4
,
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dq

dr
(0) = −λ

4 + 6

λ4
,

dq

dr
(1) = − 6

λ4
,

using (5.7.43) we get

A = −e
−λ(3 + λ) + 4λ

λ5
,

B =
e−λ(3 + λ)

λ5

C =
3eλ − e−λ(3 + λ) − λ(4 + eλ)

λ5
.

Using the above values in (5.7.44), we get ψ. 2

Example 5.7.46 Let φ(r) = (1 − r)4+ (4r + 1). In this case, as in the

previous example we can show that

q(r) = −480

λ6
− 2880

λ8
+ r

(
60

λ4
+

1800

λ6
− 1

λ2

)
+ r2

(
−240

λ4
− 1440

λ6

)

+ r3
(

10

λ2
+

300

λ4

)
− r4

(
20

λ2
+

120

λ4

)
+

15

λ2
r5 − 4

λ2
r6.

Hence A,B,C and the solution ψ can now be easily computed using

(5.7.43) and (5.7.44). 2

Example 5.7.47 Consider the following Helmholtz problem in three

dimensions [GCG00]

(∆ − 400)u = −397

400
ex+y+z, (x, y, z) ∈ Ω,

u =
ex+y+z

400
, (x, y, z) ∈ Γ,

(5.7.48)

where the physical domain Ω is two connected spheres in IR3 (see Figure

5.8); i.e. ,

Ω =
{
(x, y, z) ∈ IR3 : H(x, y, z) < 1

}

with

H(x, y, z) = min

{(
x− 3

4

)2

,

(
x+

3

4

)2
}

+ y2 + z2.

To construct an approximate particular solution, 400 quasi-random

points were generated to serve as the interpolation points in Ω∪Γ. The
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Fig. 5.8. The solution domain Ω.

CS-RBF φc = (1 − r/c)
2
+ was chosen as the basis function to interpolate

the inhomogeneous term in (5.7.48). The sparseness of the interpolation

matrix depends on the scaling factor c. To approximate the homoge-

neous solution, the method of fundamental solutions with 100 uniformly

distributed collocation points on the surface of the physical domain was

employed. The same number of source points on the fictitious surface

which is a sphere with radius 10 and center (0, 0) was chosen.

The L∞ norm error was computed at 500 random points in Ω for

various choices of the scaling factor c. The number nz of nonzero ele-

ments and the fill–in (i.e. percentage of nonzero matrix elements) of the

interpolation matrix, L∞ norm, and the corresponding computing time

are shown in Table 5.5. The numerical results shown here are especially

encouraging for future work in solving a large class of time–dependent

problems. 2

Example 5.7.49 In this example, we consider the case where the closed

form particular solution is not available for the using compactly sup-

ported radial basis functions. Let us choose the same particular solution

ψ as in Example 5.5.4. Then

φ(r) =
(
∆ − λ2

)
ψ(r)

=
(
1 − r

c

)4

+

(
112

c4
(
20r2 − 4rc− c2

)
−

λ2
(
1 − r

c

)6
(

35r2

c2
+

18r

c
+ 3

))
.
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c nz fill–in (%) L∞ CPU (sec.)

0.2 756 0.40 2.28E-2 01.40

0.4 3392 2.10 1.61E-2 04.43

0.6 10562 6.60 9.77E-3 07.48

0.8 21526 13.5 6.45E-3 10.63

1.0 36476 22.8 4.50E-3 13.71

1.2 54116 22.8 3.82E-3 16.98

1.4 73722 46.0 3.30E-3 20.53

1.6 92722 57.9 2.90E-3 24.08

1.8 110498 69.0 2.63E-3 27.60

Table 5.5. Sparseness, error estimates and CPU time for various

scaling factor c.

We consider the following modified Helmholtz equation: :
(
∆ − λ2

)
u =

(
1 − λ2

)
(ex + ey), (x, y) ∈ Ω,

u = ex + ey, (x, y) ∈ Γ,

where Ω is a unit circle. In the implementation we choose λ2 = 100,

and 150 quasi-random interpolation points were selected in the domain.

To find the homogeneous solution using the method of fundamental so-

lutions, 35 evenly distributed collocation points and the same number

of source points were chosen. The fictitious boundary is a circle with

radius 10 and center at the origin. The L∞ norm errors are shown in

Table 5.6.

2

5.8 Multiscale Techniques

When compactly supported radial basis functions were developed in

mid-1990 [Wu95, Wen95, Buh98], they were regarded as a cure to the

problems of the dense and ill–conditioned matrices arising when using

traditional globally supported radial basis functions. Since then, they

have been widely applied for solving various kinds of problems in sci-

ence and engineering [FI96, CBP99, CMC99, SW99, CYT00a, CYT00b,



180

c L∞ c L∞

0.3 2.618 1.1 2.982E-2

0.4 1.711 1.2 2.415E-2

0.5 0.821 1.3 1.978E-2

0.6 0.289 1.4 1.634E-2

0.7 0.098 2.0 6.425E-3

0.8 0.051 4.0 1.228E-3

0.9 4.469E-2 8.0 3.828E-4

1.0 3.658E-2 10 2.965E-4

Table 5.6. Absolute maximum errors for the modified Helmholtz

equation

GCG00, MYP+01, WHG02b, CGGC02, WHG02a, OBS03] and numer-

ous others to follow.

However, several difficulties of compactly supported radial basis func-

tions have been observed:

(i) the accuracy and efficiency depends on the scale of the support,

(ii) there is no theoretical background for determining the optimal scale

of the support,

(iii) the convergence rate of compactly supported radial basis functions is

low due to their limited smoothness.

These effects have explanations along the lines of earlier sections on

scaling and error estimates (see sections 2.6 and 2.3). In order to obtain

a very sparse matrix system, the support needs to be very small, but

then the interpolation error becomes unacceptable. When the support

is large enough to make the error acceptable, the matrix sparsity may

be too low to be acceptable to the user. As a result, the application of

compactly supported radial basis functions with a fixed support requires

some experience and some additional techniques. Section 2.7 presents

practical rules-of-thumb for this. But one can also use compactly sup-

ported radial basis functions with a variable support, and this is the

topic of this section.

As described in Section 2.3, the accuracy of any RBF approximation

based on a set X of data locations within a domain Ω is controlled by
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the fill distance h = h(X,Ω) of (2.3.1), i.e.

h = h(X,Ω) := sup
x∈Ω

min
y∈X

‖x − y‖ .

On the other hand, stability is dominated by the separation distance

S(X) :=
1

2
min

y 6=z∈X
‖y − z‖

following Section 2.4. Ideally, the distribution of data locations in X

should be quasi–uniform as defined in (2.4.1) in order not to have

spurious near-duplicate points that spoil stability.

But both the fill and the separation distance should be closely tied to

the scale factor c of the underlying radial basis function, in particular

in case of compact support when c is the support radius. As in Section

2.6, we use c here in the sense

φc(‖x − y‖2) := φc(‖x− y‖2/c).

Ideally, one could link c closely to h and S by making it proportional

to these quantities in a quasi-uniform setting. In the case of compactly

supported radial basis functions, the ratio

B :=
c

h

controls the number of data locations in each support, and it is closely

connected to the bandwidth of the system matrix. Increasing B will in-

crease accuracy and computational complexity, while stability decreases.

The basic idea of multiscale techniques is to first recover the main

features of the unknown solution on a coarse discretization level using

only a few data points and applying a radial basis function with a large

support. This means using large S ≈ c ≈ h first. Then errors are evalu-

ated, and in subsequent levels smaller details are resolved using smaller

values of S ≈ c ≈ h. Thus multiscale techniques are often called mul-

tilevel methods or multiresolution methods, because they work at

different levels of S ≈ c ≈ h but with roughly fixed bandwidth B in

order to improve resolution.

Multiscale methods came up in 1996 [FI96, Sch97] in the context of

multivariate interpolation. They were further investigated by various au-

thors [Fas99, NSW99, GFJ00, OBS03], and readers are referred to the

book [Isk04] of Iske for details and applications. Chen et. al. [CGGC02]

applied the concept of multiscale schemes to solving partial differential

equations via particular solutions. Here we will briefly introduce two
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multiscale schemes using compactly supported radial basis functions fol-

lowing [CGGC02].

5.8.1 Notation

Let X = {xi}N
i=1 be a large set of interpolation points. We assume that

X is split into a chain of quasi–uniformly distributed point sets

X1 ⊂ X2 ⊂ . . . ⊂ Xk ⊂ . . . ⊂ XK = X (5.8.1)

where Xk consists of Nk points with NK = N . To simplify notation,

we introduce index sets Ik ⊆ {1, . . . , N} with |Ik| = Nk and write Xk =

{xi : i ∈ Ik}.
At this point, it is open whether the user works “bottom–up” from

coarse sets X1 ⊂ X2 ⊂ . . . towards finer and finer sets, or if a set

X large enough for final accuracy is hierarchically decomposed “top–

down” into smaller and coarser sets. Both approaches arise in specific

circumstances, depending e.g. whether the fine data are at the user’s

disposal or not.

For each level index k = 1, . . . ,K there is a different scaling factor

ck, a different separation distance Sk, and a fill distance hk which all

decrease with increasing k. Ideally, the ratios of these parameters should

be independent of k to ensure a fixed generalized bandwidth B for all

levels, but in general the choice of the parameters depends on the re-

quired minimal accuracy of the approximation and the size and sparsity

constraints of the interpolation or collocation matrix Ak at level k.

Note that special thinning algorithms are available [FI98, DDFI05]

for maintaining quasi–uniformity efficiently when extracting coarser sub-

sets Xk−1 from finer sets Xk in the top–down scenario. In the bottom–

up situation, new data locations are usually placed adaptively where

residuals are large, and this automatically serves to avoid near–duplicate

data locations, though it does not necessarily guarantee quasi–uniformity.

Figures 5.9 and 5.10 show three sets of interpolation points and their

corresponding scaling factors. In these examples, we used a quasi–

Monte Carlo method [PTVF96] to generate a sequence of quasi-

random points to ensure quasi–uniformity of interpolation points at each

level. In [CGGC02], two multiscale schemes were employed for solv-

ing partial differential equations. Next, we briefly summarize these ap-

proaches. We do this in the context of the Method of Particular Solutions

as in the previous sections.
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C1

C1

C1

C2

C2

C2

Fig. 5.9. N1 = 30 with support radius c1, N2 = 100 with scale c2, and N3 =
303 with scale c3.

C3

C3C3

Fig. 5.10. N3 = 303 with scale c3.

5.8.2 Multiscale MPS Algorithm

For k = 1, . . . ,K with ck being the scaling factor for Xk, we let

f̃k(x) =
∑

j∈Ik

α
(k)
j φck

(
‖x − xj‖2

)
(5.8.2)

and at level k we construct an approximate particular solution of (5.4.5)

as

ũk
p(x) =

∑

j∈Ik

α
(k)
j ψck

(‖x − xj‖2), x ∈ Ω, (5.8.3)

where ψck
(‖x− xj‖2) is a solution of

Lψck
(‖x − xj‖2) = φck

(
‖x − xj‖2

)
, x ∈ Ω, j ∈ Ik, xj ∈ Xk.



184

The solutions ψck
(‖x − xj‖2), j ∈ Ik, k = 1, . . . ,K, can be computed

using explicit formulas such as those described in the previous sections.

For k = 1, the coefficients α
(1)
j , j ∈ I1, in (5.8.2) and (5.8.3) are deter-

mined by

f̃1(xi) = f(xi), i ∈ I1, (5.8.4)

while for k = 2, . . . ,K the coefficients α
(k)
j , j ∈ Ik in (5.8.2) and (5.8.3)

are computed using the interpolatory constraints

f̃k(xi) = f(xi) −
k−1∑

j=1

f̃ j(xi), i ∈ Ik. (5.8.5)

Consequently, at each level k = 1, . . . ,K, the inhomogeneous function f

is approximated by
∑k

i=1 f̃
i.

At the first level one chooses the support radius c1 large and the

number of points N1 in X1 small and obtains the unknown coefficient

vector a(1) with components α
(1)
j , j ∈ I1 by solving the N1 ×N1 system

Aφc1
a(1) = f (1)

where f (1) contains the values f(xj), j ∈ I1.

For subsequent levels k = 2, . . . ,K one interpolates the residual of the

previous levels. To compute the vector a(k) with components α
(k)
j , j ∈

Ik, one solves the Nk ×Nk system of the form

Aφck
a(k) = f (k)

with the vector f (k) consisting of the values f̃k(xj), j ∈ Ik. Due to

(5.8.5) and the inclusion (5.8.1), there are Nk−1 zero entries of f (k)

corresponding to points xi, i ∈ Ik−1, and the remaining Nk − Nk−1

entries are given by (5.8.5) for points xi with i ∈ Ik \ Ik−1.

As the level increases, one decreases the scaling factor ck and increases

the number of interpolation points.

The approximate particular solution ũp of (5.4.5) can be written as

ũp =
K∑

k=1

ũk
p (5.8.6)

with ũk
p, k = 1, . . . ,K, given by (5.8.3).

Using the approximate particular solution (5.8.6), the final step in our

algorithm is to compute an approximate solution ũh of the associated

homogeneous problem. One may apply boundary integral methods or
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the method of fundamental solutions to find the homogeneous solution

ũh.

Finally, as in the DRM, one takes ũ = ũh + ũp as an approximation

to the unique solution u of (5.1.1).

If the algorithm is run bottom–up, users can monitor the full residuals

rK := f − L

(
K∑

k=1

ũk
p

)
= f −

K∑

k=1

f̃k

and stop if a given tolerance on ‖rK‖∞ is reached. If new points for

Xk+1 ⊃ Xk are needed, one can add points y where |rK(y)| is maximal

and thus well above ‖rK‖∞ and the final tolerance. If the scaling is not

changed, this will decrease the residuals under weak assumptions, as is

proven in [SW00, HSZ03] on greedy algorithms. Users should select a

smaller scale for level k+1 only if a reasonable decrease of the residuals

results. If not, the point density at the old level was not large enough,

and the scale should be kept.

With these precautions, the above multiscale algorithm can be run

without difficulty. It ignores the additional homogeneous solution until

it has approximated the particular solution up to some accuracy. On

the downside, it controls only the MPS residual, not the full residual

of the PDE problem. Users will have to wait through all steps of the

algorithm until finally a full approximate solution to the PDE problem

can be displayed.

Thus it is desirable to have a technique which allows us to display an

approximate solution of the problem at each resolution level. This will

be done by the method we describe in the next section.

5.8.3 Multiscale MPS–MFS Algorithm

We now reformulate the previous method in such a way that it calculates

a full approximate solution to the PDE at each scale. The trade–off

is some additional increase in computation costs, because the algorithm

must include the homogeneous solution in each multiscale calculation.

For the starting level k = 1, we first calculate a particular solution ũ1
p

of

Lu1
p = f̃1 in Ω,

using the representations (5.8.3) and (5.8.4). Then ũ1
h is calculated as
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the approximate solution of the homogeneous problem

Lu1
h = 0 in Ω,

u1
h = g − ũ1

p in Γ.
(5.8.7)

The above homogeneous boundary value problem can be solved by using

the Method of Fundamental Solutions or other boundary methods. Then

we write ṽ1 := ũ1
p + ũ1

h and see that it approximately solves

Lv1 = f̃1 in Ω,

v1 = g in Γ.

For k = 2, . . . ,K, we write vk := ũk
p + ũk

h, where ũk
p is a particular

solution of

Luk
p = f̃k in Ω

computed using (5.8.3) and (5.8.5), while ũk
h is the approximate solution

of the homogeneous problem

Luk
h = 0, in Ω,

uk
h = −ũk

p in Γ.
(5.8.8)

Thus the algorithm solves the problem

Lvk = f̃k in Ω,

vk = 0 in Γ

approximately at each level k > 1.

If the steps are superimposed, we have approximate solutions to the

problem

L

(
K∑

k=1

vk

)
=

K∑

k=1

f̃k in Ω,

K∑

k=1

vk = g in Γ.

In contrast to the previous purely MPS–based multiscale method, the

multiscale MPS–MFS algorithm additionally requires solving the homo-

geneous problems (5.8.7) and (5.8.8) at levels k = 1, . . . ,K. Since in

practice the maximum number of levels K is small, the additional com-

putational cost involved in the multiscale MPS–MFS algorithm is jus-

tified, because the algorithm allows us to monitor a complete solution

at each step. For simple test problems, the multiscale MPS algorithm

should be sufficient.
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Example 5.8.9 Consider the following Poisson problem [CGGC02]:

∆u = f(x, y), (x, y) ∈ Ω,

u = g(x, y), (x, y) ∈ Γ
(5.8.10)

where Ω ∪ Γ = [1, 2]2. For testing purposes we chose f and g in such a

way that the exact solution of (5.8.10) is

u∗(x, y) = sin
πx

6
sin

7πx

4
sin

3πy

4
sin

5πy

4
, (x, y) ∈ Ω. (5.8.11)

The choice of u∗ in (5.8.11) is possible if the boundary data g(x, y) in

(5.8.10) is the same as in (5.8.11) and if the inhomogeneous term f(x, y)

is given by

f(x, y)

= −751π2

144
sin

πx

6
sin

7πx

4
sin

3πy

4
sin

5πy

4
+

7π2

12
cos

πx

6
cos

7πx

4

×sin
3πy

4
sin

5πy

4
+

15π2

8
sin

πx

6
sin

7πx

4
cos

3πy

4
cos

5πy

4
.

The profiles of the exact solution (left) and the forcing term f(x, y)

(right) are shown in Figure 5.11. In this example, we employed the

multiscale MPS–MFS algorithm described above and chose ε = 10−3.
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Fig. 5.11. The profiles of exact solution (left) and forcing term f(x, y) (right).

To interpolate f(x, y), we chose the Wendland–type compactly sup-

ported radial basis function ϕ(r) = (1 − r)4+ (4r + 1) . Using the quasi-

Monte Carlo based subroutine SOBSEQ [PTVF96], we generated N =

500 quasi-random points in the domain. Following our earlier notation,

we chose four levels with scales

c1 = 1.0, c2 = 0.8, c3 = 0.5, c4 = 0.2
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and

N1 = 30, N2 = 150, N3 = 300, N4 = 500

and for k = 1, 2, 3, 4 the sets Xk consisted of the first Nk points from

the generated quasi-random points in [1, 2]2.

For k = 1, 2, 3, 4 the sparsity structure (with non–zero entries nzk

and fill–in in %) of the resulting Nk ×Nk matrix Aφck
and the absolute

maximum error are given in Table 5.7.

Nk nzk fill–in (%) L∞ error

30 459 51 0.1984

150 9729 43.24 0.59E-3

300 22057 24.50 8.86E-3

500 13299 5.31 8.758E-3

Table 5.7. Sparsity pattern of the interpolation matrix and L∞ error

The profiles of the interpolation error ek = f −∑k
i=1 f̃

k of the forcing

term at each level k = 1, 2, 3, 4 are given in Figure 5.12. The main inter-

est is in the particular solutions obtained at each level. Their profiles are

given in Figure 5.13. As expected, from Figures 5.12 and 5.13, one ob-

serves that ‖ek‖∞ and ||ũk
p||∞ get smaller as the level increases; i.e. the

scaling factor c shrinks and the number of interpolation points increases.

The profiles of the solution produced at each level, ũk
p +uk

h, k = 1, 2, 3, 4,

are shown in Figure 5.14. One notes that the contribution of the solution

at levels 3 and 4 is almost insignificant. The overall errors on each level

are shown in Figure 5.15 which are consistent with the solution profile

in Figure 5.14. 2

5.8.4 Series Expansions for Differential Operators

The derivation of particular solutions for Helmholtz-type equations by

solving linear ordinary differential equations as shown in Section 5.7 is

somewhat tedious. In this section, we come back to the technique we

used in Section 5.7.7 to derive particular solutions for polynomial right–

hand sides. Coupled with symbolic software such as MATHEMATICA c©
or MAPLE c©, this approach can be applied to more complicated oper-

ators, but it is restricted to the case that φ is a polyharmonic function.
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From (5.7.27) and (5.7.33), a particular solution ψ of the Helmholtz

equation

∆ψ − λ2ψ = φ

is given by

ψ =
−1

λ2

L∑

k=0

(
∆

λ2

)k

φ (5.8.12)

where L is a sufficiently large positive integer. Notice that (5.8.12) is

valid only if φ satisfies ∆L+1φ = 0 for some positive integer L. Following

and generalizing Section 5.7.2, we take fundamental solutions of the

iterated Laplace operator, which are called polyharmonic splines (see

Table 1.3). Like fundamental solutions of the Laplace operator itself,

polyharmonic splines must depend on the space dimension d. In even

space dimensions, they are of the form φ(r) = r2n ln r with L + 1 =

(2n + d)/2 , while they are φ(r) = r2n−1 with L + 1 = (2n − 1 + d)/2

in odd space dimensions. For illustration, let us choose φ = r2 ln r in

(5.8.12) for two dimensions. It is called the thin–plate spline because it

is the fundamental solution of the thin–plate or biharmonic operator ∆2

in two dimensions, leading to L = 1 above. The following Mathematica

code can be used to produce ψ in (5.8.12) symbolically:

ψ [λ ] := Module [ {φ}, φ = r2 ∗ Log[r]; g = 0;L = 20;

For [ i = 0, i ≤ L, i+ +, g = φ+ g;

φ = Simplify
[(

1
r ∗ ∂r ∗ (r ∗ ∂r (φ))

)
/λ2
]
;

If [φ == 0,Break [ ]] ] ;

g = Simplify
[
−g/λ2

]]
;

In the above code, we choose L = 20 which is considered to be sufficiently

large to handle most of the cases. Using the above Mathematica code,

we obtain

ψ [λ] = −4 +
(
4 + r2λ2

)
Log [r]

λ4
. (5.8.13)

The particular solution ψ in (5.8.13) is equivalent to the last three terms

in (5.7.14) which we have derived in Section 5.7.2. In (5.8.13), there is

a singular term ln r that needs to be de-singularized. Hence, we still

need to follow the procedure as shown in Section 5.7.2 to cancel the

singularity in (5.8.13).

A similar technique for series expansions of differential operators can

be applied to other types of differential operators such as
(
∆ − λ2

)2
,

∆2 − λ4, product of Helmholtz operators, etc. It is almost impossible
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to derive the particular solutions for these types of differential operators

using the technique of Section 5.7.2. More specifically, let us consider

the particular solution of the following equation
(
∆2 − λ4

)
ψ = ϕ

which arises in solving the Berger equation. For ϕ = r2 ln r, it is

trivial that

ψ =
−r2 ln r

λ4
.

For ϕ = r4 ln r, we have

ψ =





r4 ln r

λ4
− 4 ln r + 96

λ8
− 64K0(λr)

λ8
, r > 0,

1

λ8

(
64γ + ln

(
λ

2

)
− 96

)
, r = 0.

For ϕ = r6 ln r, we have

ψ = − 1

λ4

(
r6 ln r +

1

λ4

(
576r2 ln r + 480

))
.

The fundamental solution for the operator ∆2 − λ4 in 2D can be found

in Table 4.1. With particular solution and fundamental solution both

available, the Berger equation can be solved without much effort.

5.8.5 Particular Solutions from Fundamental Solutions

We now provide a technique for constructing particular solutions to

Laplace or Helmholtz equations starting from fundamental solutions of

the Helmholtz equation [AC05].

We take a fundamental solution ψλ of the modified Helmholtz equa-

tion, i.e.

(∆ − λ)ψλ = −δ (5.8.14)

where λ ∈ IR and

ψλ(r) =





1

2π
K0(

√
λr), if λ > 0

−1

2π
ln(r), if λ = 0

i

4
H

(1)
0 (

√
−λr), if λ < 0
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in 2D and

ψλ(x) =
e−

√
λr

4πr

in 3D. Here K0 is the modified Bessel function of the second kind of

order zero, and H
(1)
0 is the Hankel function of order zero. Recall that

H
(1)
0 = J0 + iY0, where J0, Y0 are Bessel functions of the first and second

kind, respectively. The Bessel function J0 is analytic everywhere, while

K0 and Y0 exhibit logarithmic singular behavior at 0.

From (5.8.14) we get a particular solution to the Laplace operator via

∆ψλ = λψλ

and to the Helmholtz operator ∆ − µ as

(∆ − µ)ψλ = (λ − µ)ψλ (5.8.15)

except for the singularity at zero, which we have to cancel or shift away

by methods of the previous sections.

Suppose we can approximate a function f using the above fundamental

solutions of Helmholtz equations as basis functions as a superposition

f(x) ≃ f̃(x) =

p∑

i=1

n∑

j=1

aijψλi
(‖x− yj‖), (5.8.16)

where {λ1, . . . , λp} are p different nonzero real numbers and {y1, . . . ,yn}
are n different source points located on a fictitious boundary Γ̂ outside

the solution domain Ω.

For all x ∈ IRd\{0} we have ∆ψλ(x) = λψλ(x) and if

ũP (x) :=

p∑

i=1

n∑

j=1

aij

λi
ψλi

(‖x − yj‖) (5.8.17)

then

∆ũP = f̃ . (5.8.18)

By simply dividing aij by λi, a particular solution (5.8.18) can be ob-

tained from (5.8.16).

To justify the approximation of any function f ∈ L2(Ω) using the

basis function ψλi
in (5.8.16), we refer to the theoretical background

provided by [AC01].

The following MFS→MPS algorithm implements the above technique.

It works with fundamental solutions throughout and uses them to cal-

culate particular solutions.
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MFS→MPS Algorithm

(i) Choose m collocation points x1, ...,xm in the domain Ω,

(ii) choose n source points y1, ...,yn on the fictitious boundary Γ̂,

(iii) choose p nonzero frequencies λ1, ..., λp ∈ IR,

(iv) define the m × (np) matrix M

M := (M1, . . . ,Mp)

consisting of p blocks

Mi := (ψλi
(‖xj − yk‖))1≤j≤m, 1≤k≤n , 1 ≤ i ≤ p

of size m× n each,

(v) solve the (np) × (np) least-squares system

MTMa = MT f ,

where f = (f(x1), . . . , f(xm))T .

The vector solution a = (a11, . . . , an1, . . . , a1p, . . . , anp) ∈ IRnp will

provide an approximation of f in the form

f̃(x) =

p∑

k=1

n∑

j=1

ajkψλk
(‖x − yj‖). (5.8.19)

Since we just want to approximate a real–valued function, there is no

need to consider complex fundamental solutions. We can simply use the

real part of the complex fundamental solution as our basis function. For

instance, in the 2D case, it will be sufficient to use J0, which is a regular

function, as the basis. As a result, this allows us to admit points yj

inside Ω. This means that we can take our approximations from the

space

span{J0(
√
−λ‖x− y‖)|Ω : y ∈ IR2, λ ∈ (−∞, 0]}.

Similarly, in the 3D case, it suffices to consider

span

{
sin(

√
−λ‖x − y‖)
‖x − y‖ |Ω : y ∈ IR3, λ ∈ (−∞, 0]

}
.
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5.8.6 Inhomogeneous Helmholtz Equation

A similar technique can be applied to find a particular solution of the

inhomogeneous Helmholtz-type equation

∆u− µu = f

for any µ ∈ IR. We already pointed this out in (5.8.15). In fact, assuming

that we have an approximation of f given by f̃ in formula (5.8.19), then

from

ũP (x) =

p∑

k=1

n∑

j=1

ajk

λk − µ
ψλk

(‖x − yj‖) (5.8.20)

with λ1, ..., λp 6= µ, we get

(∆ − µ)ũP (x) =

p∑

k=1

n∑

j=1

ajk

λk − µ
(∆ − µ)ψλk

(‖x − yj‖)

=

p∑

k=1

n∑

j=1

ajk

λk − µ
(λk − µ)ψλk

(‖x − yj‖)

= f̃(x).

Once we have obtained the approximation of the particular solution ũP

in (5.8.20), we must then solve the problem

{
∆uH − µuH = 0, in Ω,

BuH = g − BũP , on Γ,

and this can be done using the classical method of fundamental solutions.

We must keep in mind that the condition on the boundary is now given

with an approximated ũP and a poor approximation of uP might carry

more significant errors to ũH .

We recall that the solution obtained by the method of fundamental

solutions will now be written in the form

ũH(x) =
m∑

j=1

ajψµ(‖x − yj‖).

Example 5.8.21 We consider the Poisson problem given in Example

5.8.9. To approximate the forcing term f(x, y) and thus the particular

solution, we used the Bessel function J0 as the basis function. We chose

400 quasi-random interior points in an extended domain [0.85, 2.15] ×
[0.85, 2.15] and 40 evenly distributed source points on the fictitious
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boundary which is a circle with center at (1.5, 1.5) and radius 5. The

wave numbers in (5.8.16) were chosen to be {1, 10, 20, . . . , 80}.
To evaluate the approximate homogeneous solution ũH , we chose 40

uniformly distributed points on the physical boundary and the same

number of points on the fictitious boundary. We performed our nu-

merical error evaluation on 400 uniform grid points in the domain. In

# of wave lengths ‖u− ũ‖∞
∥∥f − f̃

∥∥
∞

5 1.30E − 1 6.98E − 2

6 8.72E − 3 2.91E − 3

7 2.38E − 4 1.16E − 4

8 2.21E − 6 5.75E − 7

9 1.46E − 8 3.02E − 9

Table 5.8. The errors of u and f for various numbers of wave lengths.

Table 5.8, we show the maximum absolute errors of u and f for various

numbers of wave lengths with 40 fixed source points on the fictitious

boundary. This reveals that the number of wave lengths has great im-

pact on the numerical accuracy of the approximate solution ũ. This

is because the number of the basis function in (5.8.16) and (5.8.17) is

increased. 2

Example 5.8.22 We consider the following Helmholtz problem [AC05]

(∆ − µ)u = f(x, y), (x, y) ∈ Ω,

u = g(x, y), (x, y) ∈ Γ,

where Ω = [−1, 1]2, and

f(x, y) =
µ

1 + x4 + y2
− 2 + 2x4 − 20x6 − 6y2 + 12x2(1 + y2)

(1 + x4 + y2)3

g(x, y) =
1

1 + x4 + y2
.

The exact solution is given by

u∗(x, y) =
1

1 + x4 + y2
.

The solution parameters were chosen as follows:
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• 400 evenly distributed collocation points in an extended domain

W ⊃ Ω where W = [−1.2, 1.2]2.

• 16 source points evenly distributed

in the extended domain [−1.1, 1.1]2.

• 8 frequencies:

{λk}8
k=1 = {−1,−4,−9,−16,−25,−36,−49,−64}.

Note that we shall use values of µ different from these frequencies.

This information is required to approximate f and uP . Note that we

considered an extended domain W to produce a better approximation

of f in Ω.

To approximate the homogeneous solution uH , we chose the following

parameters:

• 40 collocation points on the physical boundary Γ.

• 40 source points on the fictitious boundary Γ̂ which is a circle

with center at (0, 0) and radius 5.

In this example, we placed the source points inside the domain for the

approximation of particular solutions. This distribution of the colloca-

tion and source points for the MFS→MPS algorithm on page 194 and

the traditional method of fundamental solutions are shown in Figure

5.16. This does not present a singularity problem because we have used

the nonsingular part of the Bessel function J0 as the basis. In fact,

we could have also placed the 16 source points on a circle outside the

domain. Now consider the Helmholtz equation with µ = −18. Using

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Fig. 5.16. Source points (circle) and collocation points (dot) using MFS→MPS
for evaluating ũP (left) and the traditional method of fundamental solutions
for evaluating ũH (right).
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the previous data with interior point sources, we obtained about 0.5%

maximum relative errors in the function approximation and about 0.1%

maximum relative errors in the approximation of the solution of the

Helmholtz equation. The profiles of the relative errors of f and u are

shown in Figure 5.17.
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Fig. 5.17. The profiles of relative errors of f and u.

2

5.8.7 Fast Solution of the MFS for Modified Helmholtz

Equations

In the formulation of the Method of Fundamental Solutions, we usually

obtain a dense matrix which is expensive to handle, especially for the

3D case. But for the modified Helmholtz equation, we have noticed that

its fundamental solutions K0(λr) in 2D and exp(−λr)/r in 3D have ex-

ponential decay. As a result, when λr is sufficiently large, most of the

entries of the formulated matrix become so small that they can be con-

sidered as negligible and thus can be truncated without loss of numerical

accuracy. After the truncation, the new resulting matrix becomes sparse

and can be treated efficiently using some sparse solver.

The wave number λ inK0(λr) or exp(−λr)/r depends on the governed

equation, and r depends on the size and geometric shape of the domain.

Thus the efficiency of the algorithm depends on the combination of these

two factors.

Example 5.8.23 To be more specific, we consider the following modified

Helmholtz equation with Dirichlet boundary condition

∆u− λ2u = (1 − λ2)(ex + ey), (x, y) ∈ Ω,

u = ex + ey, (x, y) ∈ Γ,
(5.8.24)
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where Ω is a bounded domain and Γ satisfies the following parametric

equation:

x = r(θ) cos θ, y = r(θ) sin θ,

r(θ) =

√
cos2 2θ +

√
1.1 − sin2 2θ, 0 ≤ θ ≤ 2π.

By the method of particular solutions, we reduce (5.8.24) to the following

homogeneous equation:

∆v − λ2v = 0, (x, y) ∈ Ω,

v = ex + ey − ũp, (x, y) ∈ Γ.

Here we choose λ2 = 1000. To evaluate the approximate particular so-

lution, 100 evenly distributed grid points were chosen in the extended

domain [−1.5, 1.5] × [−1, 1] plus 100 boundary points which were also

used as the collocation points for the method of fundamental solutions.

The distribution of these points is shown in Figure 5.18. Furthermore,

third order polyharmonic splines were chosen as the basis function to

interpolate the forcing term of (5.8.24). Let A be the coefficient ma-
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−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5.18. The distribution of interpolation points and collocation points.

trix in the formulation of the method of fundamental solutions. The

maximum and minimum coefficients of A are εmax = 5.346× 10−92 and

εmin = 2.157×10−131 respectively. We notice that there is a wide margin
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between εmax and εmin. Let the truncation value be ε. This means

aij =





0, aij < ε,

aij , i = j,

aij , aij ≥ ε,

where aij is the entry in A. To ensure the matrix is nonsingular after

the truncation, we should always keep the diagonal entries of A. For

ε = 10−95, there are only 412 nonzero entries in A. This means 96% of

the entries of A were truncated. The profile of nonzero entries of A is

shown in Figure 5.19. Surprisingly, the maximum absolute errors of the

solution (3.35×10−5) before and after the truncation are identical. The

absolute maximum error were computed on the 60 test points located

on the boundary. We also observe that the condition numbers of A

before and after the truncation are 1035 and 1018 respectively. The

improvement of the condition number does not affect the final result.
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Fig. 5.19. The profile of nonzero entries of A.

Using the same setting as just described, some further numerical re-

sults using various wave number λ2 are given in Table 5.9 where L∞
denotes the absolute maximum error. In all cases, the L∞ are exactly

the same before and after the truncation. The last column of Table 5.9

shows the condition numbers before and after the truncation.

2

One of the important applications of using modified Helmholtz equa-
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λ2 εmin εmax ε L∞ #( 6= 0) Cond. #

10 2.60E-10 2.54E-14 2.60E-11 5.49E-2 12.32% 1020 : 109

100 4.58E-30 1.41E-42 4.58E-32 1.023E-3 7.72% 1023 : 108

500 1.68E-65 2.22E-93 1.68E-67 8.55E-5 3.76% 1029 : 1013

Table 5.9. Numerical results for various values of λ2.

tions is in the area of time–dependent problems which will be described

in the next chapter. The above described fast solution algorithm can be

applied to the time–dependent problems in case of large wave numbers.

5.9 Solving Large Problems on Circular Points

In case of specially distributed interpolation or collocation points, a

surprisingly effective numerical technique for reconstruction of functions

from data can be applied [KCS07]. Though it could also be presented at

the end of Chapter 2, we present it here due to its applicability within

the Method of Particular Solutions.

Assume that the forcing term of a two–dimensional PDE is given as a

global formula, and assume that we want to approximate it by a linear

combination of particular solutions. Then we are free to choose the data

points for reconstruction, and we can make use of this freedom.

We choose a large circle around the domain in question, and choose

a number m of concentric circles within this circle. On each circle, we

choose the same number n of equidistant points. In this way, the resul-

tant interpolation matrix has the special feature of blocks of circulant

matrices due to symmetry. The circulant matrix has many attractive

properties which allow us to solve linear equations that contains them

efficiently through the use of the fast Fourier transform.

For simplicity, assume that 12 = 3 · 4 interpolation points are dis-

tributed in the circular form with n = 4 equidistant points on m = 3

circles as shown in Figure 5.20.

We focus on reconstruction by interpolation, and we let f(x) be the

function to be interpolated. By the usual radial basis function interpo-
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Fig. 5.20. Distribution of 12 circulant points.

lation scheme as shown in Chapter 1.1, we have

f(x) ≃ f̃(x) =

12∑

j=1

ajϕ (‖x − xj‖) .

As the standard linear system for interpolation, we have

f(xi) = f̃(xi) =

12∑

j=1

ajϕ (‖xi − xj‖) , 1 ≤ i ≤ 12, (5.9.1)

which can be formulated in the matrix form Aϕa = f where

a = (a1, a2, . . . , a12)
T
,

f = (f(x1), f(x2), . . . , f(x12))
T
,

and

Aϕ =




ϕ1,1 ϕ1,2 · · · ϕ1,12

ϕ2,1 ϕ2,2 · · · ϕ2,12

...
...

. . .
...

ϕ1,12 ϕ12,12 · · · ϕ12,12


 ,
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with ϕij := ϕ (‖xi − xj‖). Let

A11 =




ϕ1,1 ϕ1,2 ϕ1,3 ϕ1,4

ϕ2,1 ϕ2,2 ϕ2,3 ϕ2,4

ϕ3,1 ϕ3,2 ϕ3,3 ϕ3,4

ϕ4,1 ϕ4,2 ϕ4,3 ϕ4,4


 ,

A12 =




ϕ1,5 ϕ1,6 ϕ1,7 ϕ1,8

ϕ2,5 ϕ2,6 ϕ2,7 ϕ2,8

ϕ3,5 ϕ3,6 ϕ3,7 ϕ3,8

ϕ4,5 ϕ4,6 ϕ4,7 ϕ4,8


 ,

A13 =




ϕ1,9 ϕ1,10 ϕ1,11 ϕ1,12

ϕ2,9 ϕ2,10 ϕ2,11 ϕ2,12

ϕ3,9 ϕ3,10 ϕ3,11 ϕ3,12

ϕ4,9 ϕ4,10 ϕ4,11 ϕ4,12


 .

Similarly, A21,A22,A23,A31,A32, and A33 can be defined in a similar

way as above, blocking each set of 4 points on each circle. Then Aϕ can

be written as a block matrix as follows

Aϕ =




A11 A12 A13

A21 A22 A23

A31 A32 A33



 . (5.9.2)

Due to the special geometric placement of points, each block matrix Aij

has the structure of a circulant matrix which is a special kind of Toeplitz

matrix where each row vector is rotated one element to the right relative

to the preceding row vector. The circulant matrix circ(a0, a1, · · · , an) is

defined as follows:

circ(a0, a1, · · · , an) =:




a0 a1 · · · an−1 an

an a0 · · · an−2 an−1

...
...

...
...

...

a2 a3 · · · a0 a1

a1 a2 · · · an a0



.

For example, in A11, due to the symmetry, we have

ϕ1,1 = ϕ2,2 = ϕ3,3 = ϕ4,4

ϕ1,2 = ϕ2,1 = ϕ2,3 = ϕ3,2 = ϕ4,1 = ϕ1,4 = ϕ3,4 = ϕ4,3

ϕ1,3 = ϕ3,1 = ϕ2,4 = ϕ4,2.
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Hence,

A11 =




ϕ1,1 ϕ1,2 ϕ1,3 ϕ1,2

ϕ1,2 ϕ1,1 ϕ1,2 ϕ1,3

ϕ1,3 ϕ1,2 ϕ1,1 ϕ1,2

ϕ12 ϕ1,3 ϕ1,2 ϕ1,1


 =: circ(ϕ1,1, ϕ1,2, ϕ1,3, ϕ1,2).

For A12, we obtain

A12 = circ(ϕ1,5, ϕ1,6, ϕ1,6, ϕ1,5).

Similarly, all the other block matrices A13,A21,A22,A23,A31,A32, and

A33 in (5.9.2) have the similar circulant structure. Due to this particular

form, (5.9.1) can be efficiently solved using special properties of circulant

matrices [Dav79]. The main idea is to break the full system of equations

into smaller block systems and solve them individually and efficiently.

We will now give a general procedure for this.

In this approach, we assume that the given function to be approxi-

mated can be extended to a larger circle containing the Ω on which we

actually need the reconstruction. We can assume that the circle is cen-

tered at the origin. To generalize the above particular case, we choose m

concentric circles with n equidistant interpolation points on each circle.

This can be achieved in the following way:

ΩRi
= {x ∈ IR2 : |x| < Ri}, 1 ≤ i ≤ m,

where R1 < R2 < . . . < Rm and Ω ⊆ ΩRm
. A special case is shown in

Figure 5.21.

On the circles ∂ΩRi
, 1 ≤ i ≤ m, we define the mn collocation points

{xi,j}m,n
i=1,j=1 = {(xi,j , yi,j)}m,n

i=1,j=1, by

xi,j = Ri cos

(
2(j − 1)π

n
+

2αiπ

n

)

yi,j = Ri sin

(
2(j − 1)π

n
+

2αiπ

n

)
,

where 0 ≤ αi ≤ 1, 1 ≤ j ≤ n. In this way, the starting position of the

points on each circle of radius Ri is rotated by an angle 2αiπ/n. Such

a rotation will ensure that the interpolation points are more uniformly

distributed. The radii of the concentric circles can be chosen arbitrarily,

but may be evenly divided as follows:

Ri =
i

m
rm, 1 ≤ i ≤ m,
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Fig. 5.21. The domain of the function and the circular interpolation points.

where rm is the radius of the largest circle. In Figure 5.21, we present a

typical distribution of collocation points with n = 20,m = 20, rmax = 1,

and αi = 0 for i = 1, 3, · · · , 19, αi = 0.5, for i = 2, 4, · · · , 20.

For the mn circular points given above, the collocation equations

(5.9.1) can be generalized to the following system

f(xi,k) =

m∑

ℓ=1

n∑

j=1

aℓ,jϕ(‖xℓ,j −xi,k‖2), 1 ≤ i ≤ m, 1 ≤ k ≤ n. (5.9.3)

In matrix form, we have

Aϕa = f (5.9.4)

where the mn×mn matrix Aϕ has the structure

Aϕ =




A11 A12 . . . A1,m

A21 A22 . . . A2,m

...
...

. . .
...

Am1 Am2 . . . Am,m


 (5.9.5)
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where each of the n× n submatrices Ai,ℓ is circulant due to

Ai,ℓ = (ϕ(‖xi,k − xℓ,j‖2))1≤j,k≤n

= (ϕ(‖Rk−1xi,1 −Rj−1xℓ,1‖2))1≤j,k≤n

= (ϕ(‖Rk−1(xi,1 −Rj+n−kxℓ,1)‖2))1≤j,k≤n

= (ϕ(‖xi,1 −Rj+n−kxℓ,1‖2))1≤j,k≤n

= circ(ϕ ‖xi,1 − xℓ,1‖2 , . . . , ϕ ‖xi,1 − xℓ,n‖2), 1 ≤ i, ℓ ≤ m,

if we denote rotation by an angle of 2π/n by R. Also, we have

f(i−1)n+j = f(xi,j), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Altogether, our system is block–circulant, and such systems have an

efficient solution procedure which we outline here.

It is known that any circulant matrix can be diagonalized in the fol-

lowing way. If C = circ(c1, . . . , cn), then

C = U∗DU

where D = diag(d1, . . . , dn), dj =
∑n

k=1 ckω
(k−1)(j−1), and the n × n

matrix U is the matrix arising in the Discrete Fourier Transform,

and is the conjugate of the matrix (see [Dav79])

U∗ =
1

n1/2




1 1 1 . . . 1

1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)




,

with ω = e2πι/n.

Next, we denote the matrix tensor product by ⊗. The tensor product

of the m× n matrix V and the ℓ× k matrix W is the mℓ× nk matrix

[Mey00]

V ⊗ W =




v11W v12W · · · v1nW

v21W v22W · · · v2nW
...

...
. . .

...

vm1W vm2W · · · vmnW


 .

We therefore premultiply the system (5.9.4) by the block diagonal mn×
mn matrix Im ⊗ U and, using the fact that U is unitary, we have

(Im ⊗ U)Aϕ (Im ⊗ U∗) (Im ⊗ U)a = (Im ⊗ U) f ,
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since (Im ⊗ U∗) (Im ⊗ U) = Imn. This yields

Ãϕã = f̃ , (5.9.6)

where ã = (Im ⊗ U)a , f̃ = (Im ⊗ U) f ,

Ãϕ =




D11 D12 . . . D1,m

D21 D22 . . . D2,m

...
...

. . .
...

Dm1 Dm2 . . . Dm,m


 (5.9.7)

and each n × n submatrix Dk,ℓ is diagonal and symmetric. If the sub-

matrix Ai,ℓ of Aϕ in (5.9.5) is circulant, i.e.

Ai,ℓ = circ(ci,ℓ1 , . . . , ci,ℓn )

=




ci,ℓ1 ci,ℓ2 ci,ℓ3 . . . ci,ℓn

ci,ℓn ci,ℓ1 ci,ℓ2 . . . ci,ℓn−1

ci,ℓn−1 ci,ℓn ci,ℓ1 . . . ci,ℓn−2
...

...
...

. . .
...

ci,ℓ2 ci,ℓ3 ci,ℓ4 . . . ci,ℓ1



,

then the corresponding submatrix is Di,ℓ = diag(di,ℓ
1 , . . . , di,ℓ

n ), where

di,ℓ
j =

n∑

k=1

ci,ℓk ω(k−1)(j−1), 1 ≤ j ≤ n.

Equipped with this important property, the system (5.9.6) can be de-

composed into n complex systems of equations, each of size m×m, i.e.

Ej ãj = f̃j , 1 ≤ j ≤ n, (5.9.8)

where

(Ej)i,ℓ = di,ℓ
j , 1 ≤ i, ℓ ≤ m, 1 ≤ j ≤ n,

(f̃j)i = f(i−1)n+j = f(xi,j), 1 ≤ j ≤ n, 1 ≤ i ≤ m,

and

(ãj)i = a(i−1)n+j = ai,j , 1 ≤ j ≤ n, 1 ≤ i ≤ m.

In other words, the entries (i, ℓ) of the matrix Ej are formed by extract-

ing the jth diagonal entry of each Di,ℓ.
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We summarize the above procedure in the following matrix decom-

position algorithm for the evaluation of coefficients of a = {aj}mn
j=1 in

(5.9.3):

Algorithm of Matrix Decomposition

Step 1 Compute f̃ = (Im ⊗ U) f.

Step 2 Evaluate the m2n elements di,ℓ
j , 1 ≤ i, ℓ ≤ m, 1 ≤ j ≤ n.

Step 3 Solve the m×m systems Ej ãj = f̃j , 1 ≤ j ≤ n.

Step 4 Compute a = (Im ⊗ U∗) ã.

Due to the form of the unitary matrix U, the operation in Step 1

can be efficiently performed using the Fast Fourier Transform (FFT).

The operation count then is O(mn lnn). Similarly, because of the form

of the matrix U∗, the operation in Step 4 can be carried out via inverse

FFTs at a cost of order O(mn lnn).

In Step 3, we need to solve n complex linear m×m systems. Gauss

elimination with partial pivoting can be employed at a cost of O(nm3)

operations. In Step 2, we apply FFTs at a cost of O(m2n lnn) opera-

tions.

It is noteworthy that in this algorithm we do not have to physically

store the interpolation points. All we need is to store the diagonal ele-

ments of Dij as shown in (5.9.7). When m and n are large, this results

in substantial saving in storage. Furthermore, the diagonal entries of

Dij are conjugate complex numbers. As a result, we need to store only

half of them in the computer memory. The other half of the conjugate

numbers can be generated when needed. This also presents a great sav-

ing in memory space on a computer. This allows us to solve large-scale

problems of this specific form without using the domain decomposition

method or any other of the techniques described in Section 2.8.

Some limitations of the above algorithm include the fact that it is

not suitable for the interpolation of data at fixed scattered locations. If

working on a non–circular domain, we also need to be able to smoothly

extend the function to be reconstructed to the exterior of the domain un-

der consideration. Furthermore, radial basis functions with polynomial

augmentation cannot be used.

Example 5.9.9 Here we perform some numerical tests [KCS07] by using

two of the benchmark functions of R. Franke [Fra82] on the unit square.
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Two of these test functions are given as follows:

F1(x, y) =
3eh1(x,y)

4
+

3eh2(x,y)

4
+
eh3(x,y)

2
− eh4(x,y)

5

where

h1(x, y) =
−1

4

(
(9x− 2)2 + (9y − 2)2

)
,

h2(x, y) =
−1

49
(9x+ 1)2 − 1

10
(9y + 1)2,

h3(x, y) =
−1

4
(9x− 7)2 − 1

4
(9y − 3)2,

h4(x, y) = −(9x− 4)2 − (9y − 7)2,

F2(x, y) = 1
9 [tanh(9y − 9x) + 1] .
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Fig. 5.22. Profiles of test functions F1 and F2.

We denote by m the number of concentric circles, by n the number of

interpolation points that are evenly distributed on each circle, and by

rm the radius of the largest circle centered at (0.5, 0.5) which covers the

unit square [0, 1]×[0, 1]. We used multiquadrics with a scaling constant

c as in (2.6.1).

We chose 400 evenly distributed test points in the unit square for

the evaluation of the absolute maximum error. The numerical results in

Table 5.10 were obtained by choosing various parameters c, rm,m, and n.

Consequently, the total number of interpolation points used for m = n =

90, 110, 130, 150 is 8100, 12100, 16900, and 22500, respectively. The

accuracy of the results presented in Table 5.10 is excellent. Furthermore,

the matrix decomposition algorithm is also highly efficient. Using a

Pentium 4 (3.19GHZ) PC, the CPU time for various m and n is also

listed in Table 5.10.
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m n c F1

(∥∥∥f − f̃
∥∥∥
∞

)
F2

(∥∥∥f − f̃
∥∥∥
∞

)
CPU (seconds)

90 90 0.1 1.17E − 09 2.18E − 09 1.57

110 110 0.1 2.10E − 10 2.81E − 10 2.56

130 130 0.09 5.43E − 11 5.41E − 11 3.92

150 150 0.07 2.92E − 11 4.08E − 11 5.67

Table 5.10. Absolute maximum errors for the two test functions with

rm = 1.0.

As is well known, a challenge when using radial basis functions is

the limitation in the number of interpolation points we can use. Here

we wish to make m and n as large as possible. To break the barrier

of memory limitation, further consideration of memory management is

required. Instead of storing all the Ej, j = 1, . . . , n in (5.9.8), we

simply subdivide n into k equal groups, depending on the capacity of

the computer, and store Ej accordingly. We then solve these group by

group. The price one pays for this is the additional evaluation of Dij

in (5.9.7) k times. In this way, we use computing time in exchange

for memory space. The number k can be adjusted depending on the

computer hardware system used. As shown in Table 5.11, we managed

to reachm = 250, n = 400 with k = 2 (i.e. 100, 000 interpolation points)

without encountering problems. Without memory management (k = 1),

the CPU times in Table 5.11 are 26.92, 29.75, 44.56 respectively. Thus,

this method enables us to solve large–scale problems on a standard PC.

Here we used multiquadrics with a scale factor c = 0.04. The better

accuracy with larger rm is consistent with the results in Table 5.10.

Since we solve a much smaller m×m system n times instead of solving

a large mn×mn system, the algorithm is suitable for parallel implemen-

tation. The computer running time can thus be significantly reduced.

2

For engineering applications, it is important to have good approxima-

tions of the gradient and second derivatives of a given function. But it

is known that numerical differentiation is inherently ill-posed. A small

change of the function may cause significant change in its derivatives.

The approximation of the first derivative of a given function is unstable

by any numerical algorithm, although the instability is often manage-
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m n
∥∥∥f − f̃

∥∥∥
∞

CPU time (seconds)

250 250 2.68E-11 43.53

250 300 4.07E-11 47.15

250 400 7.29E-11 54.23

Table 5.11. Absolute maximum error and CPU time for F1 with

c = 0.04 and rm = 1.0.

able. The task of approximating higher derivatives is even more chal-

lenging. Thus we also treat derivative evaluation here, but we remind

the reader that interpolation of smooth functions by smooth radial basis

functions will always yield good approximations also to the derivatives

of the given function (see Section 2.3).

Example 5.9.10 In this example, we further consider the approxima-

tion of the first and second partial derivatives of the following function

[KCS07]:

f(x, y) := F3(x, y) := x exp(−x2 − y2), (x, y) ∈ [0, 1]× [0, 1] .

Then,

∇f(x, y) =

(
(1 − 2x2) exp(−x2 − y2), 2xy exp(−x2 − y2)

)
,

∂2f

∂x2
(x, y) = (4x3 − 6x) exp(−x2 − y2),

∂2f

∂y2
(x, y) = −(2x− 4xy2) exp(−x2 − y2).

To approximate the partial derivatives of a given function, we take

the partial derivatives of the basis function in (5.9.3); i.e. ,

∂f

∂x
(x, y) ≃ ∂f̃

∂x
(x, y)) =

mn∑

j=1

aj
∂ϕj

∂x
(x, y),

∂2f

∂x2
(x, y) ≃ ∂2f̃

∂x2
(x, y) =

mn∑

j=1

aj
∂2ϕj

∂x2
(x, y),
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∂f

∂y
(x, y) ≃ ∂f̃

∂y
(x, y) =

mn∑

j=1

aj
∂ϕj

∂y
(x, y),

∂2f

∂y2
(x, y) ≃ ∂2f̃

∂y2
(x, y) =

mn∑

j=1

aj
∂2ϕj

∂y2
(x, y),

with

ϕj(x, y) =
√
ρ2

j(x, y) + c2, ρ2
j(x, y) := (x− xj)

2 + (y − yj)
2

and
∂ϕj

∂x
=

x− xj√
ρ2

j + c2
,

∂ϕj

∂y
=

y − yj√
ρ2

j + c2
,

∂2ϕj

∂x2
=

(y − yj)
2
+ c2

(
ρ2

j + c2
)3/2

,
∂2ϕj

∂y2
=

(x− xj)
2

+ c2

(
ρ2

j + c2
)3/2

.

We chose multiquadrics as the basis functions, and rm = 1.0. Similar

to the last example, we chose 400 evenly distributed points in the given

domain for the evaluation of the absolute maximum error. From Table

5.12, we observe that the approximations of the first partial derivatives

are less accurate than the function approximation by two orders of mag-

nitude. The second derivatives are two to three orders of magnitude less

accurate than the approximations of the first derivatives. These results

are consistent with Section 2.3 and much better than any other tradi-

tional numerical method using divided differences. In order to achieve

higher accuracy in approximating the second derivatives, we can in this

case extend the region covered by the interpolation circles. For instance,

if we let m = n = 140, c = 0.05, rm = 1.2, we obtain the following re-

sults:

ǫ :=
∥∥∥f − f̃

∥∥∥
∞

= 2.58E− 13 ,

ǫx :=
∥∥∥∂f

∂x − ∂f̃
∂x

∥∥∥
∞

= 3.63E− 11 ,

ǫy :=
∥∥∥∂f

∂y − ∂f̃
∂y

∥∥∥
∞

= 3.69E− 11 ,

ǫxx :=
∥∥∥∂2f

∂x2 − ∂2f̃
∂x2

∥∥∥
∞

= 6.16E− 9 ,

ǫyy :=
∥∥∥∂2f

∂y2 − ∂2f̃
∂y2

∥∥∥
∞

= 4.84E− 9 .

The above notation is also used in Table 5.12. 2
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m = n c ǫ ǫx ǫy ǫxx ǫyy

60 0.2 1.17E-09 7.07E-08 9.79E-07 9.01E-06 8.48E-06

80 0.2 5.69E-10 1.06E-08 1.16E-08 1.30E-06 1.32E-06

100 0.1 5.73E-10 3.45E-08 3.98E-08 1.01E-05 8.54E-06

120 0.08 4.75E-11 2.43E-08 1.98E-08 6.17E-07 7.98E-07

140 0.07 2.26E-11 3.69E-09 4.13E-09 1.03E-06 7.17E-07

160 0.05 4.22E-12 3.61E-09 4.10E-09 4.23E-07 3.63E-07

Table 5.12. Absolute maximum error for function F3 and its partial

derivatives.

Example 5.9.11 In this example we applied the above matrix decom-

position algorithm and the Method of Particular Solutions to solve the

following Poisson problem:

∆u = 2ex−y, (x, y) ∈ Ω,

u = ex−y + ex cos y, (x, y) ∈ Γ,

where the parametric representation of the boundary curve Γ is given

by




x = (1 + cos2 4t) cos t,

y = (1 + cos2 4t) sin t,
t ∈ [0, 2π] ,

which is illustrated in Figure 5.23.

To get an approximate particular solution, we chose multiquadrics as

the basis functions. The close form approximate particular solution can

be found in (5.5.10) and (5.5.12). The collocation points were chosen in

the form of concentrated circles as described in this section. We chose

m = n = 100, c = 0.1, and rm = 2.8. To approximate the homogeneous

solution, we applied the Method of Fundamental Solutions with 80 col-

location points evenly distributed (in terms of angle) on the boundary

and the same number of source points on the fictitious circle with center

at (0, 0) and radius 8. Using the Maximum Principle [PW67], it can

be shown that the maximum error of the Method of Fundamental So-

lutions occurs on the boundary. Hence, we chose 200 testing points on

the boundary and computed the absolute maximum error. The result of
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Fig. 5.23. The profile of of the star–shaped boundary.

combining these two approaches is amazing. We obtained an absolute

maximum error 1.231E − 10.

As we know, the method of fundamental solutions can be almost as

accurate as machine accuracy for the homogeneous equations if the exact

boundary conditions are given. One of the reasons preventing us from

obtaining such accuracy for inhomogeneous equations is the accuracy

of evaluating particular solutions. This example shows that if we can

increase the accuracy of approximating the inhomogeneous term, we can

obtain extremely high accuracy of solving inhomogeneous problems. 2
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Time–Dependent Problems

Simple time–dependent problems can be tackled by the Method of

Lines we sketched in Section 2.10. It requires a spatial discretization

and solves a system of ordinary differential equations in time for the co-

efficients of the spatial representation of the solution. But in this chapter

we will further extend the methodology we introduced for solving ellip-

tic problems in the last two chapters to various types of time–dependent

problems which require neither domain nor boundary discretizations.

We shall focus on algorithms which are primarily based on the reduc-

tion of boundary value problems for various time–dependent partial dif-

ferential equations to time-independent inhomogeneous Helmholtz-type

equations. Using the particular solutions derived in Chapter 5, the inho-

mogeneities can be further eliminated. Consequently, the resulting ho-

mogeneous equations can be solved using a variety of standard boundary

methods. As we have shown in Chapter 4, the Method of Fundamental

Solutions is a highly efficient boundary meshless method. In this chap-

ter, the MFS will be our main tool for solving homogeneous problems.

For reducing time–dependent problems to time-independent ones, we

shall employ two techniques: the Laplace transform in Section 6.1 and

a specific time-stepping method in Section 6.2.

6.1 Method of Laplace Transforms

In this section several important numerical methods are combined to

solve time–dependent problems. The overall solution procedure can be

summarized as follows:

(i) The Laplace transform temporarily removes the time variable.

(ii) The Method of Particular Solutions (MPS) from Chapter 5 splits

215
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the resulting elliptic Helmholtz-type boundary value problem into

two subproblems: finding a particular solution and a homoge-

neous solution.

(iii) Construct an approximate particular solution using radial basis

functions, ignoring boundary conditions.

(iv) The Method of Fundamental Solutions (MFS) from Chapter 4

solves the homogeneous boundary value problem without any do-

main or boundary discretization.

(v) The well-known Stehfest algorithm [Ste70] inverts the Laplace

transform and finally provides a solution of the time–dependent

problem we started with.

6.1.1 Applying the Laplace Transform

We shall explain this by boundary value problems for the diffusion equa-

tion. Let Ω be a bounded domain in IRd with Dirichlet and Neumann

boundaries Γ = ΓD ∪ ΓN ,ΓD ∩ ΓN = ∅. We consider the following

inhomogeneous diffusion equation

1

k

∂u(x, t)

∂t
+ f(x, t) = ∆u(x, t), x ∈ Ω, t > 0, (6.1.1)

with boundary conditions

u(x, t) = g1(x, t), x ∈ ΓD, t > 0,

∂u

∂n
(x, t) = g2(x, t), x ∈ ΓN , t > 0,

and initial condition

u(x, 0) = u0(x), x ∈ Ω,

where n is the outward unit vector normal to Γ. The diffusion coeffi-

cient k is assumed to be constant with respect to space and time. The

functions u0(x), f(x, t), g1(x, t) and g2(x, t) are given.

To temporarily remove the time variable, we first define the Laplace

transform of a given real-valued function g on [0,∞), when it exists,

by

L [g(·)] (s) := G(s) :=

∫ ∞

0

g(t)e−stdt (6.1.2)

where the transform parameter s is real and positive. By integration by
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parts, we have

L
[
∂u

∂t
(x, t)

]
(s) =

∫ ∞

0

∂u

∂t
(x, t)e−stdt = sU(x, s) − u0(x). (6.1.3)

By direct substitution of (6.1.2) and (6.1.3) into (6.1.1), we obtain

(
∆ − s

k

)
U(x, s) = F (x, s) − u0(x)

k
, x ∈ Ω,

U(x, s) = G1(x, s), x ∈ ΓD,
∂U

∂n
(x, s) = G2(x, s), x ∈ ΓN ,

(6.1.4)

where F (x, s) = L [f(x, ·)] (s), Gi(x, s) = L [gi(x, ·)] (s), i = 1, 2. The

modified Helmholtz equation in (6.1.4) is inhomogeneous. The Method

of Particular Solutions (MPS) and the Method of Fundamental Solutions

(MFS) introduced in the last two chapters can be applied to solve (6.1.4).

A similar procedure can be applied to the following wave equation

∆u(x, t) =
∂2u

∂t2
(x, t), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ ΓD

∂u

∂t
(x, 0) = v0(x), x ∈ ΓN

(6.1.5)

with Dirichlet boundary conditions

u(x, t) = g(x, t), x ∈ ΓD, t > 0. (6.1.6)

By Laplace transform, we have

L
[
∂2u

∂t2
(x, t)

]
(s) =

∫ ∞

0

∂2u

∂t2
e−stdt

= −∂u
∂t

(x, 0) + s

∫ ∞

0

∂u

∂t
(x, t)e−stdt

= s2U(x, s) − su(x, 0) − ∂u

∂t
(x, 0)

= s2U(x, s) − su0(x) − v0(x).

Once again, (6.1.5)-(6.1.6) can be reduced to the following inhomoge-

neous modified Helmholtz problem

∆U(x, s) − s2U(x, s) = −su0 − v0, x ∈ Ω,

U(x, s) = G(x, s), x ∈ ΓD,

where U(x, s) = L [u(x, ·)] (s) and G(x, s) = L [g(x, ·)] (s).
Notice that the solution processes for solving the diffusion equations

and wave equations are practically the same. If the parameter k behaves
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nicely, the same approach can also be applied to reaction-diffusion equa-

tions of the type

1

k

∂u(x, t)

∂t
= ∆u(x, t) − λ2u

without additional difficulty. After suitable modifications the proce-

dure can be implemented similarly for convection-diffusion and nonlinear

equations.

6.1.2 Inverting the Laplace Transform

Once the approximate solution of U(x, s) is found in the Laplace space,

we need to invert it back to the original time space which can be achieved

by applying numerical inverse Laplace transform schemes. There are

many such schemes in the literature. Among them, the Stehfest algo-

rithm [Ste70] has been successfully implemented in the context of bound-

ary element methods [CAB92, ZSL94]. g There are two major steps in

the Stehfest algorithm. First, one needs to use ns distinct parameters s

for a given observation time t, e.g.

sν =
ln 2

t
ν, ν = 1, 2, · · · , ns,

where ns is the number of terms in the Stehfest algorithm and must be

an even number. For each sν , we need to obtain a solution U(x, sν) from

(6.1.4) at any given point x ∈ Ω ∪ ΓD.

Second, one needs to invert the solution from the Laplace transform

space to the time domain. The inversion procedure is

u(x, t) =
ln 2

t

ns∑

ν=1

Wν · U(x, sν) (6.1.7)

where

Wν = (−1)
ns
2 +ν

min{ν, ns
2 }∑

k= 1
2 (ν+1)

k
ns
2 (2k)!(

ns

2 − k
)
!k!(k − 1)!(ν − k)!(2k − ν)!

.

The accuracy of the Stehfest algorithm depends on the correct choice of

the number ns of terms in (6.1.7). As ns increases, the accuracy improves

first, but then round-off errors become dominant and finally the accuracy

declines. This is a rather common phenomenon in practical numerical

computation. The optimal ns has a significant impact on the quality

of the final solution of our proposed method. According to Stehfest’s
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test of his algorithm on 50 test functions with known inverse Laplace

transforms, he concluded that the optimal value of ns is 10 for single

precision variables and 18 for double precision variables. The accuracy

of the results provided by Moridis and Reddell [MR91] and Zhu et. al.

[ZSL94] differed little for values of ns between 6 and 16.

Example 6.1.8 As a simple model problem [CGR98], we consider the

flow of heat in Eq. (6.1.1) with f(x, y, t) = 0 in the finite rectangle

Ω = [a, b]2 where a = b = 0.2 meters, and with a unit initial temperature

and boundaries kept at zero temperature. The exact solution for the

temperature distribution was given by Carslaw and Jaeger [CJ59] as

u∗(x, y, t) =
16

π2

∞∑

n=0

∞∑

m=0

Ln,m cos
(2n+ 1)πx

2a
cos

(2m+ 1)πy

2b
e−Dn,mt

where

Ln,m =
(−1)n+m

(2n+ 1)(2m+ 1)
,

Dn,m =
kπ2

4

(
(2n+ 1)2

a2
+

(2m+ 1)2

b2

)
.

Note that k is the thermal diffusivity of the substance with units of

[L2][T−1]. In this example, we chose a thermal diffusivity of k = 5.8 ×
10−7 m2/ sec and an observation time tobs of 9000 seconds. The solution

profile is shown in Figure 6.1.
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Fig. 6.1. The profile of the temperature distribution on the whole domain
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To approximate the forcing term by thin–plate splines, we chose 20

evenly distributed collocation points in the domain. To obtain an ap-

proximate homogeneous solution by the Method of Fundamental Solu-

tions, we chose 16 equally distributed collocation points on the boundary

and the same number of source points evenly distributed on a circle with

center at (0, 0) and radius r = 3.0 meters.

The relative errors for various ns on (x, 0.025), 0 ≤ x ≤ 0.2, are shown

in Figure 6.2. We observed that the relative errors were bounded within

0.16% for ns ≥ 10. With increasing ns the relative error becomes stable.

The overall profile of the absolute error for ns = 12 is shown in Figure

6.3. In the Laplace transform space, the forcing term of the modified

Helmholtz equation is the constant 1/k, and the thin–plate splines with

the augmented linear term approximates 1/k exactly. Hence, the domi-

nant error comes from the numerical inversion of the Laplace transform.

Similar results can be expected for problems on general domains and

with unknown exact solutions.
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Fig. 6.2. Relative errors for various ns

2

6.2 Time–stepping Methods

Since numerical inversion of the Laplace transform is an ill-posed prob-

lem, small truncation errors are magnified in the numerical inversion

process. As a result, the accuracy of the final result is greatly affected.
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In this section, we introduce another popular method for solving time–

dependent problems using a time difference scheme.

The standard Method of Lines takes a spatial discretization of the

domain Ω by points xj ∈ Ω, defines univariate functions uj(t) ≈ u(xj , t)

and transforms the partial differential equation into a system of spatially

coupled ordinary differential equations (ODEs) for these functions.

Then one can use any package for solving large systems of ODEs for

the numerical determination of the uj(t). These methods construct spa-

tial discretizations at various time levels tk determined by the ODE

solver. Radial basis functions can then serve to provide the full spatial

approximations ũ(x, tk) as interpolants or approximants based on the

data provided by the values uj(tk) ≈ u(xj , tk). Therefore classical line

methods based on radial basis functions reduce to spatial interpolation

or approximation, at each time level, as described in the introductory

sections. A somewhat more sophisticated recent variation expressing

spatial derivatives of radial basis function approximations directly in

terms of the spatial data is due to Fasshauer [Fas04, FF07] and closely

related to pseudospectral methods.

But these methods do not take advantage of fundamental or particular

solutions, as provided by the previous sections. Thus we now describe a

technique which use these to construct approximations at various time

levels, connecting them in time by certain time–stepping methods.
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6.2.1 Diffusion Equation

A simple thermal diffusion process can be modeled by

1

k

∂u

∂t
(x, t) + f(x, t) = ∆u(x, t) (6.2.1)

for all x in a closed spatial domain Ω ⊂ IRd, d = 2, 3 with boundary Γ

and for time t ≥ 0. Here u is the temperature, f is the internal heat

generator, and k is the thermal conductivity. If n is the outward unit

normal vector and q = ∂u/∂n is the heat flux, one can prescribe three

different types of boundary conditions

temperature : u(x, t) = ū(x), x ∈ ΓD,

flux :
∂u

∂n
(x, t) = −q̄(x), x ∈ ΓN ,

convection :
∂u

∂n
(x, t) = −h(u(x, t) − u∞), x ∈ ΓC ,

for all t ≥ 0, where h is the heat transfer coefficient and u∞ is the

ambient temperature. The initial condition is given by

u(x, 0) = g(x), x ∈ Ω.

Now the spatial variables are discretized using a combination of the

Method of Fundamental Solutions of Chapter 4 and the Method of Par-

ticular Solutions of Chapter 5, while time is discretized using the finite

difference method.

Generalized trapezoidal methods (θ-methods) are a standard

way of doing this. They are defined as follows [PBW92]. Let the time

step be δt > 0 and define the time mesh tn = nδt, n ≥ 0. For tn−1 ≤
t ≤ tn, approximate u(x, t) by

u(x, t) ≃ θu(x, tn) + (1 − θ)u(x, tn−1) (6.2.5)

f(x, t) ≃ θf(x, tn) + (1 − θ)f(x, tn−1) (6.2.6)

so that

∆u(x, t) ≃ θ∆u(x, tn) + (1 − θ)∆u(x, tn−1) (6.2.7)

and

∂u

∂t
(x, t) ≃ u(x, tn) − u(x, tn−1)

δt
.

Note that the implicit Euler method arises for θ = 1 while the Crank–

Nicholson method has θ = 1/2. Let Γ = ΓD ∪ ΓN ∪ ΓC be a disjoint
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splitting of the spatial boundary. Then (6.2.1) can be discretized as

1

k

un − un−1

δt
= θ(∆un − fn) + (1 − θ)(∆un−1 − fn−1) (6.2.8)

where δt is the time step, un = u(x, tn), fn = f(x, tn), and 0 < θ ≤ 1.

In particular, forward differences (θ = 0) cannot be used in the present

formulation. The transformed temperature is defined by

vn = un +
(1 − θ)

θ
un−1. (6.2.9)

Rearranging (6.2.8) gives

∆vn − λ2vn = − 1

θ2kδt
un−1 +

(1 − θ)

θ
fn−1 + fn (6.2.10)

where λ2 = 1/θkδt and u0(x) = g(x). We note that after vn is evaluated,

un can be retrieved from (6.2.9).

Now the diffusion equation (6.2.1) has been transformed into a series

of inhomogeneous modified Helmholtz equations (6.2.10) which can be

solved by a boundary type approach. The most challenging part of

the solution procedure is to effectively obtain an approximate particular

solution.

To solve (6.2.1) at each time step, our standard procedure of splitting

the given problem into a homogeneous solution vn
h , and a particular

solution vn
p is applied, i.e. vn = vn

h +vn
p . The governing equation for the

particular solution is given by

∆vn
p − λ2vn

p = − 1

θ2kδt
un−1 +

(1 − θ)

θ
fn−1 + fn. (6.2.11)

As we have indicated in the previous chapters, the particular solution vn
p

is not required to satisfy any boundary condition. The governing system

for the homogeneous solution vn
h is then given by

∆vn
h (x) − λ2vn

h(x) = 0, x ∈ Ω,

vn
h(x) = ū(x) − vn

p (x), x ∈ ΓD,

qn
h(x) = q̄(x) − qn

p (x), x ∈ ΓN ,

(kqn
h + hvn

h) (x) = −kqn
p (x) − hvn

p (x) + hu∞(x), x ∈ ΓC .

The right-hand side of (6.2.11) is completely known at each time step

and can be approximated by polyharmonic splines as shown in Chapter

2.
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Example 6.2.12 Consider the parabolic equation

∂u

∂t
(x1, x2, t) = ∆u(x1, x2, t) + f(x1, x2, t)

in the 2D domain [−2, 2]× [−2, 2]. The forcing term is given by

f(x1, x2, t) = sinx1 sinx2(2 sin t+ cos t).

The initial and boundary conditions lead to the solution

u∗(x1, x2, t) = sinx1 sinx2 sin t.

To approximate the forcing term f , we chose 132 interpolation points

in which 32 boundary points were used as the collocation points for the

Method of Fundamental Solutions. We chose the polyharmonic spline

(r4 ln r) of order two from Table 1.3 as the radial basis function. To

evaluate the homogeneous solution using the Method of Fundamental

Solutions, we chose 32 source points on a circle with center at (0, 0) and

radius 8.

To verify the effectiveness of the method, we computed the errors on

a point randomly chosen at (0.889, 0.889). The errors for δt = 0.05 and

δt = 0.025 are shown in Figure 6.4. Similar results were also obtained

at other points. The results are highly accurate for the smaller time

step δt. Increasing the number of interpolation points has only a small

influence on the numerical accuracy.
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Fig. 6.4. Example 6.2.12. Errors for δt = 0.05 and δt = 0.025 at (0.889, 0.889).

To evaluate the global error, we chose 400 evenly distributed points
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on the domain and computed the errors using δt = 0.0125 at t = 10.

The profile of the error over the domain is shown in Figure 6.5, while the

exact solution at t = 10 is displayed in Figure 6.6. The error decreases

linearly with the time step chosen, as shown in Figure 6.7.
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Fig. 6.5. Example 6.2.12. Errors at t = 10 using δt = 0.0125.
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Fig. 6.6. Example 6.2.12. Exact solution at t = 10.

2

Example 6.2.13 Consider the diffusion equation (6.2.1) in a 3D cube

0 ≤ x1, x2, x3 ≤ 1 with k = 1 [ICT04]. The boundary conditions are
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Fig. 6.7. Example 6.2.12. Error in terms of the time discretization.

given by

u(0, x2, x3, t) = 0, u(1, x2, x3, t) = 1, (6.2.14)

∂u

∂n
(x1, x2, 0, t) =

∂u

∂n
(x1, x2, 1, t) = 0, (6.2.15)

∂u

∂n
(x1, 0, x3, t) =

∂u

∂n
(x1, 1, x3, t) = 0 (6.2.16)

on the sides of the cube and for positive t. The initial condition is given

by u(x1, x2, x3, 0) = 0 for 0 < x1, x2, x3 < 1. This problem represents

the problem of an insulated unit bar with initial temperature 0 whose

left-hand boundary is isothermal at 0 and whose right hand boundary

is impulsively raised to 1 at time t = 0. The exact solution can be

determined using a separation of variables and is given in [O’N99].

The domain is discretized with 218 source points outside the domain

and 343 collocation points, of which 218 are located on the surface of the

domain while the remaining 125 collocation points are located in the in-

terior of the domain. The radius of the fictitious boundary is 8. In Table

6.1, PS1, PS2 and PS3 denote errors obtained via polyharmonic splines

r2k−1, k = 1, 2, 3, respectively. In general, the results get better with

higher-order polyharmonic splines and reduced time steps, but this is

not always the case. Care must be taken when either reducing the time

step or going to higher-order polyharmonic splines since the higher-order

polyharmonic splines result in worse conditioning of the linear system

associated with the particular solution, while smaller time steps result



Time–Dependent Problems 227

in worse condition of the linear system associated with the homogeneous

solution. In fact, for small time steps, the Euler implicit method (θ = 1)

is more accurate than the Crank–Nicholson method (θ = 1/2) despite

the difference in the local truncation error for the two methods. The cur-

rent results are consistent with findings of Muleshkov et. al. [MGC99]

who showed that significant improvement in accuracy can be obtained

using higher-order polyharmonic splines for elliptic boundary value prob-

lems. Further, they observed limited improvement for time–dependent

problems, presumably because the dominating error was caused by the

time-stepping scheme. 2

θ ∆t PS1 PS2 PS3

0.01 1.00E − 2 2.83E − 3 1.38E − 2
0.005 1.57E − 2 2.77E − 3 2.40E − 3

0.5 0.002 2.92E − 2 2.47E − 3 1.96E − 3
0.001 4.56E − 2 2.50E − 3 overflow

0.01 1.73E − 2 1.39E − 2 1.38E − 2
0.005 1.35E − 2 7.20E − 3 7.07E − 3

1 0.002 1.84E − 2 3.31E − 3 3.02E − 3
0.001 2.86E − 2 2.26E − 3 1.76E − 3

Table 6.1. Example 6.2.13. Absolute maximum errors at t = 1 using

polyharmonic splines.

6.2.2 Convection-Diffusion Problems

The standard two-dimensional convection-diffusion equation is of

the form

1

k

∂u

∂t
+ wx

∂u

∂x
+ wy

∂u

∂y
+ f = ∆u, (6.2.17)

where wx and wy are the components of a variable velocity vector field

and f is the source term. The solution to this problem is formulated in

the same manner as before by explicitly combining the convection and

source terms, i.e.

F = wx
∂u

∂x
+ wy

∂u

∂y
+ f.
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In this way, (6.2.17) can be solved like (6.2.1) in the diffusion case.

Consequently,

∆vn
p − λ2vn

p = − 1

θ2kδt
un−1 +

(1 − θ)

θ
Fn−1 + Fn

is another inhomogeneous modified Helmholtz equation which can be

solved similar to the case of diffusion equations as before.

6.2.3 Semi-nonlinear Diffusion Equation

If the convection term in (6.2.17) is replaced by a general nonlinear term

of the form f(x, t, u,∇u), the method given above can be modified to

solve the nonlinear diffusion equation

1

k

∂u

∂t
(x, t) + f(x, t,∇u, u) = ∆u(x, t). (6.2.18)

Again, u(x, t) can be approximated by (6.2.5) using the θ–method. In

the next example, we choose θ = 1 Similar to the derivation of (6.2.10),

we can reformulate (6.2.18) as

∆vn − λ2vn = − 1

θ2kδt
un−1 + fn−1,

where vn is defined in (6.2.9). Interestingly, this scheme requires no

spatial iteration. This is in sharp contrast to the steady state case

∂u/∂t = 0 [Che95].

Example 6.2.19 We first consider the two-dimensional Fisher equa-

tion [Bri86, Lan99]

∂u

∂t
= ∆u+ κu(1 − u) in Ω × (0, T ], κ ≥ 0, (6.2.20)

with initial and boundary conditions

u(x, 0) = J0

(
c

√
x2

1

9
+ x2

2

)
in Ω, (6.2.21)

u(x, t) = 0 on Γ × (0, T ], (6.2.22)

where J0 is the first kind Bessel function of order zero, c ≃ 2.4048 is

the first zero of J0 and x = (x1, x2). The physical domain is an ellipse

Ω ∪ Γ = {(x1, x2) : x2
1/9 + x2

2 ≤ 1}.
The existence and uniqueness of a solution to (6.2.20)-(6.2.22) was

proven by Britton [Bri86]. Furthermore, there exists a critical value

δ∗ > 0 such that the zero solution is a stable steady state for κ < δ∗,
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while it is unstable for κ > δ∗. Finally, for κ > δ∗ there exists at least one

non–trivial non–negative solution of (6.2.20)-(6.2.22). Langdon [Lan99]

verified these results numerically by using a domain embedding bound-

ary integral method. Both approaches were carried out in a natural way

and do not require spatial iteration; i.e. a nonlinear problem can be

solved the same way as a linear one.

To handle this problem, we used thin–plate splines as basis functions

[GC01]. A total of 110 quasi-random points, including 32 uniformly dis-

tributed points on the boundary, were chosen in Ω ∪ Γ for interpolating

the forcing term. The Method of Fundamental Solutions was used to

calculate homogeneous solutions, based on 32 evenly spaced points cho-

sen on a fictitious boundary which is a circle with center at (0, 0) and

radius 15.

Figure 6.8 shows the convergence to a trivial steady state for κ = 1, 3

and to non–trivial steady states for κ = 5 and 10 at the observation

point (0, 0). Here we used the backward time difference scheme (θ = 1)

with δt = 0.02.

From Figure 6.8, we can deduce that the critical value δ∗ satisfies

3 < δ∗ < 5. Refined bounds on δ∗ can be obtained by the bisec-

tion method [Che95]. In Table 6.2, the results of our technique are

in excellent agreement with [Lan99]. To evaluate the non–trivial steady

state solution of (6.2.20)-(6.2.22), we take t sufficiently large such that

‖v̂n+1 − v̂n‖∞ < 10−6. The profiles of non–trivial steady state solutions

for κ = 5 are given in Figure 6.9. Based on our numerical results on the

110 quasi-random points, we used a standard thin–plate spline surface

reconstruction method to produce the graph in Figure 6.9.

2

Example 6.2.23 We further consider the Burgers equation

∂u

∂t
− α∆u = −u

(
∂u

∂x1
+

∂u

∂x2

)
, in Ω × (0, T ],

u(x, t) = g1(x, t), on Γ × (0, T ],

u(x, 0) = g2(x), in Ω,

in two dimensions on Ω = [0, 1]×[0, 1] [LHC02]. The boundary condition

g1(x, t) and initial condition g2(x) are chosen to satisfy the exact solution

u∗(x1, x2, t) =
1

1 + exp

(
x1 + x2 − t

2α

) . (6.2.24)
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u(0, 0) (Langdon) u(0, 0) (MFS-MPS)

Time k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

0.5 3.46E-1 6.14E-1 9.04E-1 3.45E-1 6.15E-1 9.03E-1

1.0 1.41E-1 5.48E-1 8.67E-1 1.40E-1 5.49E-1 8.69E-1

1.5 5.96E-2 5.22E-1 8.50E-1 5.89E-2 5.23E-1 8.54E-1

2.0 2.54E-2 5.10E-1 8.42E-1 2.50E-2 5.10E-1 8.47E-1

2.5 1.08E-2 5.04E-1 8.37E-1 1.06E-2 5.04E-1 8.43E-1

3.0 4.66E-3 5.01E-1 8.34E-1 4.55E-3 5.01E-1 8.40E-1

3.5 1.99E-3 5.00E-1 8.32E-1 1.94E-3 5.00E-1 8.39E-1

4.0 8.57E-4 4.99E-1 8.31E-1 8.31E-4 4.99E-1 8.38E-1

4.5 3.67E-4 4.99E-1 8.30E-1 3.55E-4 4.99E-1 8.38E-1

5.0 1.57E-4 4.99E-1 8.29E-1 1.51E-4 4.99E-1 8.37E-1

Table 6.2. Example 6.2.19. Comparison of u(0, 0) using different

methods.

The solution in (6.2.24) is a wave front moving along the line x1 +x2− t.
The profile for α = 0.05 and t = 1.0 is shown in Figure 6.10. The

numerical solutions were obtained by choosing the fully implicit time

stepping scheme θ = 1 and the time step δt = 0.01. From (6.2.9)-

(6.2.10), we have

∆un − 1

αδt
un = − 1

αδt
un−1 +

1

α
un−1

(
∂un−1

∂x1
+
∂un−1

∂x2

)
.

The spatial domain Ω is discretized by 19×19 uniform grid points inside

Ω. Third order polyharmonic splines (r6 ln r) are chosen to approximate

the forcing term. For the implementation of the Method of Fundamental

Solutions, 32 points were evenly distributed on the boundary Γ. For the

initial step, u0 = g2(x) and

∂u0

∂xi
=
∂g2
∂xi

, i = 1, 2,

are used. For the time step n ≥ 1, we have

∂un

∂xi
=
∂un

h

∂xi
+
∂un

p

∂xi
, i = 1, 2,
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Fig. 6.9. Example 6.2.19. Profile of steady state solution for κ = 5.

where ∂un
h/∂xi and ∂un

p/∂xi can be obtained using (4.2.10) and (5.4.7),

respectively. The profiles of the absolute error (left) and exact solution

(right) at time t = 1 are shown in Figure 6.10. 2
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6.3 Operator-Splitting Methods

Consider the nonlinear diffusion–reaction equation

∂u

∂t
= ∆u+ f(u) on Ω (6.3.1)

with boundary conditions

u(x, t) = u0(x, t), on ΓD,
∂u

∂n
(x, t) = 0, on ΓN ,

where Γ = ΓD ∪ ΓN denotes the boundary of Ω, and f is a nonlinear

forcing function. The operator splitting method is a procedure to

separate the elliptic operator from the nonlinear forcing term, followed

by an approach similar to the alternating direction implicit (ADI) pro-

cedure proposed by Peaceman and Rachford [PR55]. Balakrishnan et.

al. [BSR02] generalized the procedure in the context of the Method of

Fundamental Solutions and Radial Basis Functions.

In general, a time–dependent problem can be written as

∂u

∂t
= L1 + L2 + · · ·Ln

via a sum of n operators L1, L2, · · · , Ln. In (6.3.1), we have the following

expressions

L1 = f(u) (6.3.2)

L2 = ∆u. (6.3.3)

To discretize ∂u/∂t, a two-time-step finite difference scheme can be used.
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More specifically, the non–linear forcing term in (6.3.2) is evaluated ex-

plicitly at each half time step and the resulting solution is then used for

an implicit solution of the Laplacian term in (6.3.3). For the first half

step, we can use the second order explicit Adams-Bashforth scheme

and obtain

un+1/2 − un

δt
=

3

2
f(un) − 1

2
f(un−1). (6.3.4)

The solution un+1/2 from (6.3.4) is then used in the next half step, which

can be discretized implicitly using the second order Adams-Moulton

scheme as

un+1 − un+1/2

δt
=

1

2
(∆un+1 + ∆un). (6.3.5)

We observe that the non–linear term in (6.3.4) is evaluated explicitly

without any spatial iteration. We also note that the evaluation of the

Laplace operator for the previous step in (6.3.5) will add some error

to the one induced by the time difference scheme. To circumvent this

difficulty, the dependent variable in (6.3.5) is transformed to u∗ via

u∗ ≡ un + un+1

2
. (6.3.6)

Then

∆u∗ − 2u∗

δt
= −(

3

2
fn − 1

2
fn−1) − 2un

δt
(6.3.7)

can be achieved by using (6.3.4)-(6.3.6) and some algebraic manipula-

tions. Again, we observe that (6.3.7) is a modified Helmholtz equation,

solvable by the procedures of the previous chapters. Fortunately, at each

time step the non–homogeneous term is explicitly known. Furthermore,

u∗ can be computed at each time step by the solution of (6.3.7). The val-

ues of un+1 are then extracted from the computed values of u∗ through

(6.3.6). We remark that the whole solution process needs the function

values at the current and previous time step. Hence, the method itself

is not self-starting, and an extrapolated explicit forward Euler method

is used for simplicity for the first time step to initiate the time stepping.

For numerical examples and further details, we refer the reader to the

work of Balakrishnan et. al. [BSR02].

6.3.1 Stokes Flow

The Stokes flow problem is a simplification of the Navier-Stokes

problem, in which the nonlinear convective terms are very small and
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can be neglected. For the solution of Stokes flows using the velocity–

vorticity formulation, the governing equations can be written as a

system of diffusion-type and Poisson–type equations for the components

of the vorticity and velocity field, respectively. This means





∂ω

∂t
= ∆ω

∆u = −∇× ω

in Ω (6.3.8)

u = U on Γ (6.3.9)

where u is the velocity vector, ω the vorticity vector, U the given bound-

ary velocity and Ω, Γ denote the domain and its boundary, respectively.

Furthermore, the vorticity vector ω can be expressed as

ω = ∇× u.

One of the advantages of this formulation is the separation of the kine-

matic and kinetic aspects of the fluid flow.

The general numerical procedure for solving (6.3.8) and (6.3.9) can be

described as follows:

(i) Set the initial value to be zero:

u0(x) = (u0
1(x), u0

2(x), u0
3(x)) = (0, 0, 0)

ω0(x) = (ω0
1(x), ω0

2(x), ω0
3(x)) = (0, 0, 0)

and un = u(x, nδt), ωn = ω(x, nδt).

(ii) Solve ∆un+1 = 0 with the given boundary velocity condition

u = U (Laplace equation).

(iii) Obtain the vorticity on the boundary using ωn+1 = ∇× un+1.

(iv) Solve the diffusion equation in (6.3.8) for ωn+1 with the boundary

condition from step (iii).

(v) Solve the velocity equation in (6.3.9) with the given boundary

condition (Poisson equation) for un+1. The forcing term is the

derivative of the vorticity components obtained from step (iv).

(vi) Repeat step (iii)-(v) until the solutions are convergent.
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6.4 Wave Equation

The initial-boundary value problem for the wave equation is

∂2u

∂t2
(x, t) = ∆u(x, t) − cu(x, t) − f(x, t), x ∈ Ω, t > 0,

u (x, 0) = g1 (x) , x ∈ Ω,
∂u

∂t
(x, 0) = g2 (x) , x ∈ Ω,

u (x, t) = h (x, t) , x ∈ Γ, t ≥ 0.

(6.4.1)

Again we consider only the class of generalized trapezoidal methods as

described in Section 6.2.1. Defining un ≡ u (x, tn) again, we approximate

∂2u

∂t2
≃ un+1 − 2un + un−1

δt2
(6.4.2)

and use the formulas of the θ−method as in (6.2.5)-(6.2.7) to get

∆u− cu− f ≃ θ
(
∆un+1 − cun+1 − fn+1

)

+ (1 − θ) (∆un − cun − fn) .
(6.4.3)

When using (6.4.2)-(6.4.3) for (6.4.1), un satisfies

un+1 − 2un + un−1

δt2
= θ∆un+1 + (1 − θ) ∆un

−c
(
θun+1 + (1 − θ) un)

−
(
θfn+1 + (1 − θ)fn) .

(6.4.4)

To avoid evaluating ∆un at each step, we use the same transformation

as in (6.2.9). Rearranging (6.4.4) gives

∆vn+1 − λ2vn+1 = −1 + θ

θ2δt2
un +

1

θδt2
un−1 + fn+1 +

1 − θ

θ
fn (6.4.5)

where

λ2 = c+
1

θδt2
,

and v is defined in (6.2.9). The right hand side of (6.4.5) contains only

the known values of the previous step. When θ = 1, we obtain the

following implicit formulation

∆un+1 − λ2un+1 = −
(

2un − un−1

δt2

)
+ fn.

With the approximation

∂u

∂t
≃ un+1 − un

δt
,
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we get the initial conditions

u0 (x) = g1 (x) , x ∈ Ω ∪ Γ, (6.4.6)

u1 (x) = g1 (x) + δtg2 (x) , x ∈ Ω ∪ Γ, (6.4.7)

and boundary conditions

un+1 (x) = hn+1 (x) , x ∈ Γ.

Note that (6.4.5) is again a modified Helmholtz equation. Hence at each

time step un satisfies a boundary-value problem for a modified Helmholtz

equation. The solution procedure is quite similar to the diffusion equa-

tion using the approach described in Section 6.2.1.

Example 6.4.8 Consider the wave equation

∂2u

∂t2
(x, t) = ∆u(x, t), x ∈ Ω, t > 0

u (x, 0) = sin2 (πx1) sin(πx2), x ∈ Ω,
∂u

∂t
(x, 0) = 0, x ∈ Ω,

u (x, t) = 0, x ∈ Γ,

where x = (x1, x2), Ω∪Γ = [0, 1]× [0, 1]. The exact solution is given by

u(x1, x2, t) =
−8

π

∞∑

n=1,3,5,···

cos
(
πt
√
n2 + 1

)

n(n2 − 4)
sinnπx1 sinπx2.

To evaluate the particular solution at each time step, we chose 121 evenly

distributed grid points on Ω ∪ Γ. As our radial basis function we chose

polyharmonic splines (1.3) of order two, i.e. φ(r) = r4 ln r. To solve the

homogeneous equation, we chose 32 collocation points on the boundary

and 32 source points on the fictitious circle with center at (0.5, 0.5) and

radius r = 2. For the time-stepping scheme, we chose the fully implicit

method with θ = 1. Figure 6.11 shows both the profiles of the exact and

the approximate solution at (0.5, 0.5) over the time interval 0 ≤ t ≤ 6.

We have noticed that the larger errors occur near turning points of each

cycle. The accuracy when using the smaller time step (dt = 0.001) is far

better than the larger time step (dt = 0.01). The profiles of the exact

solution and the error u − un on the whole domain at t = 2.8, 6 using

δt = 0.001 are shown in Figures 6.12-6.13. 2
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Fig. 6.11. Example 6.4.8: un(0.5, 0.5) for δt = 0.01 and 0.001
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Fig. 6.12. Example 6.4.8: The profiles of un (left) and errors (right) at t = 2.8
using δt = 0.001

Example 6.4.9 Consider the wave equation

∂2u

∂t2
(x, t) = ∆u(x, t) + f(x, t), x ∈ Ω, t > 0,

u (x, 0) = x1(1 − x1)x2(1 − x2), x ∈ Ω,
∂u

∂t
(x, 0) = 0, x ∈ Ω,

u (x, t) = x1(1 − x1)x2(1 − x2) cos(t), x ∈ Γ,

00.20.40.60.81

0

0.5

1

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

X

T = 6

Y

u
(x

,y
)

00.20.40.60.81

0

0.5

1

−0.04

−0.02

0

0.02

0.04

0.06

X

T = 6

Y

E
rr

or

Fig. 6.13. The profiles of un (left) and errors (right) at t = 6 using δt = 0.001.
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where

f(x, t) = (2x1(1 − x1) + 2x2(1 − x2) − x1(1 − x1)x2(1 − x2)) cos(t)

and x = (x1, x2), Ω ∪ Γ = [0, 1] × [0, 1]. The exact solution is

u∗(x1, x2, t) = x1(1 − x1)x2(1 − x2) cos(t).

The number of collocation points, the radial basis function, and the

time-stepping scheme are like in the previous example. For the time

step we chose δt = 0.05. From (6.4.7), the initial condition ∂u
∂t = 0

implies u0 = u1. The profiles of u(x1, x2) and the errors at t = 1, 3, 5

are shown in Figures 6.14 to 6.16. The solution u is vibrating up and

down. In Figure 6.17, we show the errors of u(0.5, 0.5, t) for 0 ≤ t ≤ 20

using time steps δt = 0.01, and 0.025. This shows that the error is

oscillating, but stable. However, the smaller time step did not improve

the error as much as in the last example and for the diffusion equation

in Example 6.2.12. We offer no further explanation here as no error

analysis is available. It is possible that the source term f(x, t) cancels

the damping effect as shown in the previous example.
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Fig. 6.14. Example 6.4.9: The profiles of un (left) and errors (right) at t = 1.
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Fig. 6.15. Example 6.4.9: The profiles of un (left) and errors (right) at t = 3.
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Fig. 6.16. Example 6.4.9: The profiles of un (left) and errors (right) at t = 5.
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