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Overview

1. Historical Remarks: From RBF to Kernels
2. Kernel Techniques

3. Simplification by Relaxation
4. Online Learning and Greedy Methods
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Development of Kernel Techniques

1. Radial Basis Functions (with a little help from Will)
2. Computer—Aided Design
3. Meshless Methods for PDE Solving in Engineering

4. Learning with Kernels
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Reconstruction of Functions
Problem: Find v : 2 — IR

Given: Data
Discrete scattered data (xj, u(z;)), 1<j <N

(;3 Au(z)) x €
PDE data {( () yE@Q}
)

General functionals (A, A(u)), A € A = set of functionals
Learning

Problem: Find v : € > Stimulus +— Response
Given: Training data

(LEj,U(LL"j)), 1<y <N
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Why Kernels?
Data (xj,u(z;)) € A x IR, 1 <j <N
General linear reconstruction:

u(z) = é:l Lj(z) u(z;)
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Error estimate
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minimize wrt. L;(z)

(5x,5xk)H* = jgl L;k(fl?) (5;[].,5%)}]*, 1 S k S N

—_—————
=K (z,x},) =K (xj,21)

Optimal L} is Lagrange interpolant
on span {K(z,z;) : 1 <k <N}

Necessary: v € RKHS H

Generalization: Arbitrary data functionals A € H*
(meshless collocation methods)
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Generalized Data
Data (Aj, \j(u)) € H* x IR, 1 < j < N
General linear reconstruction:

Z LiAju
3213’

Error estimate with test functional y € H*

= (M - él M(LJ)AJD (u)

n
< lp— SNl
j=1 o
minimize wrt. u(L;)

(b, Ade) e = 20 pu(Ly) (Ajy M), 1 < k<N

_’_/ j:
=K (Aj,AL)

::K(Mv/\k)

Optimal L7 is Lagrange interpolant
on span {Riesz representer of A\, : 1 <k < N}

Necessary: v € RKHS H, A\; € H*
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Second Optimality Property
Data (zj,u(z;) € A x IR, 1<j <N

Optimal linear reconstruction:

u(z) = é:l L;‘(x)u(xj)

Minimization of norm
under all other interpolants:

ve H }

ot =min ol 05T
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Learning with Kernels
Training data (xj, u(z;)) € X x IR, 1 <j <N

Kernel Trick:
b () — H = feature space
O(z) = K(z,-) € H
K(z,y) = (K(z,-),K(y,-)n
= ( (@), D(y)) u

j Liu(z;)

= Z o K (v, ;)

Optimal L} is Lagrange interpolant
on span {K(z,z;) : 1 <k <N}

Minimization of norm
under all other interpolants:

veH
v(zj) =u(z;), L<j<N

| = min{HvHH :

For Classification:

Minimization of ||v||z is maximization
of separation margin
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Simplification by Relaxation

Unrelaxed:

lallg = min{folly - 057
e L e
W) = X Luls)
j:

N
= > a;K(z, 1)) full sum!
j=1

Relaxed: Given € > ()

= min ol - 5
T T () —ulz)| <6, 1< <N
N
ut(x) = o;K(x,z;)  reduced sum!

j=1
() —u(z;j)|=e
Reason: Kuhn-Tucker conditions for linear constraints
Support Vectors: z; with v(z7) — u(zj) = *e

Quadratic problem: Minimize ||v||% = Zﬁ[k:l ajoa K (Tg, x))

Open problem: Bound on # of support vectors
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Online Learning
Given € > 0. Current “knowledge”:
ut(x) = > o K(z,r;) reduced sum!
j=1
|v(xj)—u(zj)|=e
Iteration of Online Learning:

1. Wait for new training sample (z, u(x))

2. If |u(z) — u*(x)| < € do nothing.

*

3. If |u(x) — u*(x)| > € set x,41 := z and update u
to u*™* with (Learning by new blunders)

lu(x;) —u(z))] <€ 1<j<n+1

Theorem ||u*||g < ||u™||x (knowledge gain)

The increase can be quantified and bounded below.

Theorem If () is compact, and if the presented samples
satisfy

= 228 12 |y — xj|l2 — 0 for k — oo

the algorithm performs only a finite number of steps.
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Snape Teaching

Theorem If () is compact, and if the teacher always
poses the hardest possible problem, i.e.

[u(@ni1) = u(@n)| = [Ju = w0

then the algorithm performs only a finite number of steps.

Drawback: Number of memorized samples grows

Goal: Forgetting well-learned samples
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Forgetful Students

Given €> 0 > 0. Current “knowledge”:
u*(x) = o K (x, ;) reduced sum!

J

o(aj)—u(aj)|=0

1

Iteration of Forgetful Online Learning:
1. Wait for new training sample (z, u(x))
2. If |u(z) — u*(x)| < € do nothing.

3. If |u(x) — u*(x)] > € set x,41 := z and update u*
to u*™* with (Learning by new blunders)

ju(x;) —u(z;)] <6, 1<j<n+l

4. Discard old samples with < § above.
(Forget well-managed samples)

Theorem Similar results as in the “memorizing” case.
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Implementation
Given € > 0, training data (z;, u(x;)), 1 < j <n.

Quadratic Optimization Problem

n
Minimize _kzl ajapK (2, xp)
jik=
n

—e < Y o;K(zj,vr) —u(zr) <€, 1<k<n
j=1

Required:
Fast update method based on active sets

Problem:
Quadratic objective function

Current workaround:
Linear systems for interpolation,
Greedy Techniques

Example: Previous algorithm with 6 = 0.
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n

Learning the ‘“peaks” Function

Online learning, random samples, € = 0.01

After some 100 samples: starts to discard
After some 400 learning steps: nothing to learn
Final complexity: about 35 support vectors

Energy versus iterations
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n

Boston Census Data

22784 training samples with 16 variables describing input

data for estimating the price of houses from the 1990 US

census. Method: Greedy with Snape teaching
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Open Problems
Find non—quadratic forgetful method
Find fast quadratic update method

Prove upper bounds for number of support
vectors

Understand bias—variance tradeoff

Use learning techniques for solving PDEs
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