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Overview

1. Historical Remarks: From RBF to Kernels

2. Kernel Techniques

3. Simplification by Relaxation

4. Online Learning and Greedy Methods
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Development of Kernel Techniques

1. Radial Basis Functions (with a little help from Will)

2. Computer–Aided Design

3. Meshless Methods for PDE Solving in Engineering

4. Learning with Kernels
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Reconstruction of Functions

Problem: Find u : Ω → IR

Given: Data

Discrete scattered data (xj, u(xj)), 1 ≤ j ≤ N

PDE data







(x, ∆u(x)) x ∈ Ω

(y, u(y)) y ∈ ∂Ω







General functionals (λ, λ(u)), λ ∈ Λ = set of functionals

Learning

Problem: Find u : Ω 3 Stimulus 7→ Response

Given: Training data

(xj, u(xj)), 1 ≤ j ≤ N
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Why Kernels?

Data (xj, u(xj)) ∈ Ω × IR, 1 ≤ j ≤ N

General linear reconstruction:

ũ(x) :=
n∑

j=1
Lj(x)
︸ ︷︷ ︸

=?

u(xj)

Error estimate

|u(x) − ũ(x)|2 =
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u(x) −
n∑

j=1
Lj(x)u(xj)
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


δx −

n∑

j=1
Lj(x)δxj




 (u)

∣
∣
∣
∣
∣
∣
∣

2

≤

∥
∥
∥
∥
∥
∥
∥

δx −
n∑

j=1
Lj(x)δxj

∥
∥
∥
∥
∥
∥
∥

2

H∗
︸ ︷︷ ︸

minimize wrt. Lj(x)

‖u‖2
H

(δx, δxk
)H∗

︸ ︷︷ ︸

=:K(x,xk)

=
n∑

j=1
L∗

j(x) (δxj
, δxk

)H∗
︸ ︷︷ ︸

=:K(xj ,xk)

, 1 ≤ k ≤ N

Optimal L∗
j is Lagrange interpolant

on span {K(x, xk) : 1 ≤ k ≤ N}

Necessary: u ∈ RKHS H

Generalization: Arbitrary data functionals λ ∈ H∗

(meshless collocation methods)
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Generalized Data

Data (λj, λj(u)) ∈ H∗ × IR, 1 ≤ j ≤ N

General linear reconstruction:

ũ :=
n∑

j=1
Lj
︸︷︷︸

=?

λju

Error estimate with test functional µ ∈ H∗

|µ(u) − µ(ũ)|2 =
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µ(u) −
n∑

j=1
µ(Lj)λj(u)
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
µ −

n∑

j=1
µ(Lj)λj




 (u)
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∥
∥
∥
∥
∥

µ −
n∑

j=1
µ(Lj)λj

∥
∥
∥
∥
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2

H∗
︸ ︷︷ ︸

minimize wrt. µ(Lj)

‖u‖2
H

(µ, λk)H∗
︸ ︷︷ ︸

=:K(µ,λk)

=
n∑

j=1
µ(L∗

j) (λj, λk)H∗
︸ ︷︷ ︸

=:K(λj ,λk)

, 1 ≤ k ≤ N

Optimal L∗
j is Lagrange interpolant

on span {Riesz representer of λk : 1 ≤ k ≤ N}

Necessary: u ∈ RKHS H , λj ∈ H∗
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Second Optimality Property

Data (xj, u(xj)) ∈ Ω × IR, 1 ≤ j ≤ N

Optimal linear reconstruction:

u∗(x) :=
n∑

j=1
L∗

j(x)u(xj)

Minimization of norm

under all other interpolants:

‖u∗‖H = min






‖v‖H :

v ∈ H

v(xj) = u(xj), 1 ≤ j ≤ N






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Learning with Kernels

Training data (xj, u(xj)) ∈ Ω × IR, 1 ≤ j ≤ N

Kernel Trick:

Φ Ω → H = feature space

Φ(x) := K(x, ·) ∈ H

K(x, y) = (K(x, ·), K(y, ·))H

= (Φ(x), Φ(y))H

u∗(x) =
N∑

j=1
L∗

ju(xj)

=
N∑

j=1
α∗

jK(x, xj)

Optimal L∗
j is Lagrange interpolant

on span {K(x, xk) : 1 ≤ k ≤ N}

Minimization of norm

under all other interpolants:

‖u∗‖H = min






‖v‖H :

v ∈ H

v(xj) = u(xj), 1 ≤ j ≤ N







For Classification:

Minimization of ‖v‖H is maximization

of separation margin
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Simplification by Relaxation

Unrelaxed:

‖u∗‖H = min






‖v‖H :

v ∈ H

v(xj) = u(xj), 1 ≤ j ≤ N







u∗(x) =
N∑

j=1
L∗

ju(xj)

=
N∑

j=1
α∗

jK(x, xj) full sum!

Relaxed: Given ε ≥ 0

‖u∗‖H = min






‖v‖H :

v ∈ H

|v(xj) − u(xj)| ≤ ε, 1 ≤ j ≤ N







u∗(x) =
N∑

j=1

|v(xj)−u(xj)|=ε

α∗
jK(x, xj) reduced sum!

Reason: Kuhn–Tucker conditions for linear constraints

Support Vectors: x±
j with v(x±

j ) − u(x±
j ) = ±ε

Quadratic problem: Minimize ‖v‖2
H =

∑N
j,k=1 αjαkK(xk, xj)

Open problem: Bound on # of support vectors
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Online Learning

Given ε ≥ 0. Current “knowledge”:

u∗(x) =
n∑

j=1

|v(xj)−u(xj)|=ε

α∗
jK(x, xj) reduced sum!

Iteration of Online Learning:

1. Wait for new training sample (x, u(x))

2. If |u(x) − u∗(x)| ≤ ε do nothing.

3. If |u(x) − u∗(x)| > ε set xn+1 := x and update u∗

to u∗∗ with (Learning by new blunders)

|u(xj) − u∗∗(xj)| ≤ ε, 1 ≤ j ≤ n + 1.

Theorem ‖u∗‖H < ‖u∗∗‖H (knowledge gain)

The increase can be quantified and bounded below.

Theorem If Ω is compact, and if the presented samples

satisfy

hk := sup
y∈Ω

min
1≤j≤k

‖y − xj‖2 → 0 for k → ∞

the algorithm performs only a finite number of steps.
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Snape Teaching

Theorem If Ω is compact, and if the teacher always

poses the hardest possible problem, i.e.

|u(xn+1) − u∗(xn+1)| = ‖u − u∗‖∞,Ω

then the algorithm performs only a finite number of steps.

Drawback: Number of memorized samples grows

Goal: Forgetting well–learned samples

Will Light Memorial Conference, Leicester, Dec. 19th, 2003, 11



Forgetful Students

Given ε> δ ≥ 0. Current “knowledge”:

u∗(x) =
n∑

j=1

|v(xj)−u(xj)|=δ

α∗
jK(x, xj) reduced sum!

Iteration of Forgetful Online Learning:

1. Wait for new training sample (x, u(x))

2. If |u(x) − u∗(x)| ≤ ε do nothing.

3. If |u(x) − u∗(x)| > ε set xn+1 := x and update u∗

to u∗∗ with (Learning by new blunders)

|u(xj) − u∗∗(xj)| ≤ δ, 1 ≤ j ≤ n + 1.

4. Discard old samples with < δ above.

(Forget well–managed samples)

Theorem Similar results as in the “memorizing” case.
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Implementation

Given ε ≥ 0, training data (xj, u(xj)), 1 ≤ j ≤ n.

Quadratic Optimization Problem

Minimize
n∑

j,k=1
αjαkK(xj, xk)

−ε ≤
n∑

j=1
αjK(xj, xk) − u(xk) ≤ ε, 1 ≤ k ≤ n

Required:

Fast update method based on active sets

Problem:

Quadratic objective function

Current workaround:

Linear systems for interpolation,

Greedy Techniques

Example: Previous algorithm with δ = 0.
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Learning the “peaks” Function

Online learning, random samples, ε = 0.01

After some 100 samples: starts to discard

After some 400 learning steps: nothing to learn

Final complexity: about 35 support vectors

in
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Boston Census Data

22784 training samples with 16 variables describing input

data for estimating the price of houses from the 1990 US

census. Method: Greedy with Snape teaching

in
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Open Problems

Find non–quadratic forgetful method

Find fast quadratic update method

Prove upper bounds for number of support

vectors

Understand bias–variance tradeoff

Use learning techniques for solving PDEs
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