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Abstract

For readers working in applications, this paper serves as a basic primer for the
calculation of (pseudo-) random functions. Keeping probabilistic arguments at a
minimum in favour of computation, random functions are studied by randomiz-
ing coefficients of expansions. This reveals a natural connection to Reproducing
Kernel Hilbert spaces. Randomizing the coefficients of orthonormal Newton bases
of Reproducing Kernel Hilbert spaces allows a comprehensive, constructive, and
computational presentation, providing regularity results and error bounds in terms
of variances. The approach is unexpectedly general, because paths of most random
fields are shown to arise this way. A natural extension allows to use expansions
in L2 spaces, in particular wavelets and finite elements. Smoothing operators are
introduced for the transition from white noise to random functions in higher-order
Sobolev spaces, without solving stochastic partial differential equations. Numeri-
cal examples serve for illustration.

1 Introduction
It is well-known how to calculate (pseudo-) random numbers. All useful programming
languages have routines for this. But how to calculate (pseudo-) random functions?
These are useful for testing the behaviour of numerical algorithms to see how the re-
sults vary for varying inputs with specified properties [5, 22]. Therefore this paper
primarily addresses readers working on computational applications, and only a mini-
mum of probabilistic or stochastic background is assumed. The focus is on functions
as programmable mappings with prescribed smoothness properties, not finite sets of
random values. Because Sobolev spaces are central to numerical algorithms, a goal is
to calculate (pseudo-) random functions from Sobolev spaces.

For random functions, hardly any literature is on the market. Even random sequences
are widely avoided topics. In particular, “Axiomatic probability theory deliberately
avoids a definition of a random sequence” [2, p. 44] and “The Bourbaki school con-
sidered the statement "let us consider a random sequence" an abuse of language [36,
p.166], cited after the 2025 wikipedia entry for “Random Sequence”. We do not discuss
the reasons here. Nevertheless, Spatial Statistics consider random fields and use their
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paths acting as random functions. This uses heavy probabilistic machinery to circum-
vent the aforementioned problem. We ignore most of the vast literature in this direc-
tion, taking a computational shortcut, being strongly influenced by [12–14, 19, 31, 34],
suggested for further reading.

The easiest way to generate random functions on a domain Ω is to start from finite
linear combinations

fW,V (x) :=
n

∑
k=1

wk(x)vk, x ∈ Ω (1)

of given basis functions wk, 1 ≤ k ≤ n, using independently sampled random scalar
coefficients vk with mean zero and unit variance. Looking at the properties of such
random functions, Section 2.1 shows that kernels

CW (x,y) =
n

∑
k=1

wk(x)wk(y), x, y ∈ Ω (2)

now arise necessarily as covariance functions that connect the covariance of values at
different points. The pointwise values of such random functions are events of classical
random variables, and these define a random field. In contrast to the standard literature
on random fields, we start with random functions to obtain random fields, not the other
way round.

Section 2.2 turns to expansions into infinite series, and then summability of

CW (x,x) =
∞

∑
k=1

w2
k(x), x ∈ Ω

must be assumed and allows to define a kernel via (2) for n = ∞. It induces a Hilbert
space H (CW ) where the wk of W := {wk}k∈N are orthonormal, and all theoretical
and computational tools based on kernels are available [see 4, 10, 30, 38, with the
references therein].

The case n = ∞ requires special care: the pointwise values of such random functions
are values of random series. They are what Section 2.2 calls generalized random vari-
ables, ignoring the probability spaces for series of random variables. Then Theorem 2
in Section 2.3 states that the theory of random functions based on series with random
coefficients is equivalent to the theory of reproducing kernel Hilbert spaces where or-
thonormal expansions have uncorrelated random coefficients. The values of random
functions at points are generalized random variables, defining a generalized random
field.

Section 3.1 uses this to show in Theorem 3 that pointwise properties of random func-
tions based on orthonormal expansions into W = {wk}k∈N are equivalent to pointwise
properties of deterministic functions in the Hilbert space H (CW ). The connection is
by the admissible functionals in the dual space H (CW )∗, for instance pointwise deriva-
tives. They define generalized random variables whose variance equals the square of
their norm in H (CW )∗.
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Such a close connection between deterministic and stochastic regularity does not hold
in the global case, i.e. when norms of random functions are considered.

Since the random expansion coefficients of a random function in terms of an orthonor-
mal system W = {wk}k∈N are almost surely not square summable, the function does
almost surely not lie in the Hilbert space H (CW ). But it may lie in larger spaces with
weaker norms almost surely, and such spaces are characterized by weighted expansions
in Section 3.3.

Then Section 4 uses the efficiently computable Newton basis of any kernel-based Hilbert
space H (C) for actual computation of (pseudo-) random functions. While the standard
calculation of values of random fields works on finite sets only, using the Cholesky
decomposition of kernel matrices, our use of the Newton basis provides a series of
computable random functions. The finite partial sums of the series are functions in the
Hilbert space H (CW ), and their values are classical random variables, but the limit in
the Hilbert space norm does not exist. However, the variance of the truncation error
can be calculated pointwise and it converges to zero as fast as the deterministic kernel
expansion converges pointwise, see Theorem 7.

Section 5 is the only one that addresses readers with a full background in Probability
and Statistics. It compares the approach of this paper with the bottom-up construction
of random functions via their random values, i.e. as paths of random fields. The main
result in Theorem 8 is that all given second-order random fields coincide pointwise,
and up to random variables with mean and variance zero, i.e. almost surely, with a
generalized random field constructed by the approach of this paper. Our top-down ap-
proach from expansions to random functions to random fields does not lose generality
when compared to the bottom-up strategy starting from random fields to define random
functions.

The connection of expansions to kernels and Hilbert spaces is strong enough to allow a
generalization to the Hilbert space L2(Ω) in Section 6, using the duality between func-
tions and functionals there. Going to weighted expansions, this leads to generalized
Sobolev spaces Hβ as subspaces of L2(Ω), and Theorem 9 proves that orthonormal
systems in L2(Ω) lead to generalized random functionals that are in H−β if β > 1/2,
but almost surely not if β ≤ 1/2, in particular not in H0 = L2. Haar wavelets are an
orthonormal basis in L2 that serves as an example for generalized random functions in
Section 6.2.

The transition from a Sobolev space of lower order to a space of higher order is a
smoothing map, and in the scale of classical global Sobolev spaces on Rd , it can be
realized as a convolution with a Matérn kernel [24]. When starting from cheaply com-
putable white noise, this yields another bottom-up technique for constructing random
functions. This is sketched in Section 6.3, including the case of smoothing a random-
ized finite element expansion. While the standard literature [15, 16] on random fields
implements smoothing maps via stochastic partial differential equations, this approach
avoids PDEs and smoothes the basis or uses weighted expansions.

Section 7 concludes the paper, providing numerical examples.
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2 Randomized Expansions
The simplest way to construct random functions is to take a basis of a space of real-
valued functions on a domain Ω and form linear combinations (1) with random coeffi-
cients.

2.1 Finitely many basis functions
For a basis w1, . . . ,wn of a space of real-valued functions on a domain Ω, we form linear
combinations (1) with random coefficients v1, . . . ,vn that are realizations of random
variables V1, . . . ,Vn. From here on, all random variables will be defined over R and
always assumed to be second-order, i.e. they have well-defined mean and variance.
With no loss of generality, the random variables Vk are assumed to have zero mean and
unit variance. Such random functions are easy to compute, if real-valued (pseudo-)
random number generators are available.

For fixed x∈ Ω, the random values fW,V (x) are events (realizations) from a random
variable fW (x) having zero mean. If the random coefficients Vk are uncorrelated, two
such random variables have covariance

Cov( fW (x), fW (y)) =
n

∑
k=1

wk(x)wk(y),

and the variance of fW (x) is

Var( fW (x)) =
n

∑
k=1

wk(x)2.

The numerical calculation of coefficients is easy if the random variables V1, . . . ,Vn are
independent, but all other cases become computationally cumbersome, especially when
n becomes large.

If users want a specified covariance function C, they have to pick a basis w1, . . . ,wn
with

C(x,y) =
n

∑
k=1

wk(x)wk(y) for all x,y ∈ Ω, (3)

and all such bases do the job. However, if the user seeks for a specific covariance func-
tion in an algebraically closed form, they will often need to go to n = ∞, see the next
section. For a given basis, the positive semidefinite finite-rank kernel (3) is a conse-
quence. Choosing different uncorrelated distributions for the Vk will change the distri-
butions of the random variables fW (x) while keeping zero mean and the above variance.
If all coefficient distributions are standardized normal (Gaussian) distributions, and if
all coefficients are uncorrelated, they are also independent and the distribution of fW (x)
is normal, and fully defined by the above variance.

This is independent of the choice of W and C. Prescribing a specific covariance func-
tion will ony rarely work with finitely many functions. Therefore we need to let n go
to infinity in the next section.
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2.2 Going to Infinity
This section mimicks the previous one, with the additional requirement that the number
of elements in the considered linear combination is arbitrarily large (n → ∞). To avoid
pathological cases, we need to work under the additional assumption that

∞

∑
k=1

wk(x)2 < ∞, (4)

which ensures convergence of the resulting expansion-based covariance, obtained through

C(x,y) =
∞

∑
k=1

wk(x)wk(y) for all x,y ∈ Ω. (5)

For a fixed point x in the domain Ω, we have real-valued random events

fW,V (x) :=
∞

∑
k=1

wk(x)vk, x ∈ Ω. (6)

This is a series of second-order uncorrelated random variables, and the sum of vari-
ances is convergent by (4). The mean-square limit fW (x) exists almost surely, and its
variance is given by (4). We ignore the peculiarities of the probability spaces for series
of random variables and call sums of such series generalized random variables.

More generally , if {αn}n∈N ∈ ℓ2 is a square summable sequence and if Vn are second-
order zero-mean random variables with variance one, the random series

Vα := ∑
n∈N

αnVn

is a generalized random variable that has the variance

Var(Vα) = ∥α∥2
ℓ2
= ∑

n∈N
α

2
n .

Furthermore, the covariance between two such variables is

Cov(Vα ,Vβ ) = (α,β )ℓ2 = ∑
n∈N

αβ .

So far, we have

Theorem 1. Under the assumption (4), the pointwise random values fW,V (x) of (6)
define a generalized random variable fW (x) with variance

Var( fW (x)) = ∑
n∈N

w2
n(x)< ∞

which has finite values almost surely. The covariance between any pair of generalized
random variables at points x and y is then attained through

Cov( fW (x), fW (y)) = ∑
n∈N

wn(x)wn(y), (7)
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and the function
C(x,y) := ∑

n∈N
wn(x)wn(y) (8)

is a positive semidefinite expansion kernel [8] that is a covariance function via (7).

Such kernels are abundant in Machine Learning [6, 32, 33].

2.3 Connection to Hilbert Spaces
Defining (wn,wm)H (C) := δnm with the Kronecker symbol leads to a Hilbert space
H (C) with reproducing kernel C in which the wn are orthonormal. The converse is
also true: If the wn are an orthonormal system in a Hilbert space H (C) where C is
reproducing, the above series representation follows. In statistics, it is customary to
seek for a process having a specified correlation function (which is by construction
positive semidefinite). A simple recipe is to consider the Hilbert space generated by
the desired correlation C, and then pick an orthonormal expansion W = {wn}n∈N that
is defined therein.

We summarize:

Theorem 2. Random functions based on series (6) with (4) and uncorrelated random
coefficients lead to the Hilbert space H (C) for a kernel C defined by (5), and the
expansion is orthonormal there. The values of such random functions at points are
generalized random variables.

3 Properties of Random Functions
Section 3.3 will analyze the classical deterministic regularity of single random func-
tions calculated using expansions. But first we look at regularity statements that hold
for all samples. They can be seen as probabilistic properties of our algorithm for com-
puting random functions. We shall connect these properties to standard deterministic
properties of the covariance kernel.

3.1 Pointwise Regularity
By Theorem 1, pointwise values of random functions of the form (6) are generalized
random variables and have a finite value almost surely. They define a generalized ran-
dom field on Ω. We shall clarify in Section 5 how the standard notion of random fields
fits in here, but note that we do not need to go into this at all under a computational
viewpoint.

However, we can deal with pointwise derivatives of random functions and show under
which conditions they exist and are generalized random variables. They can be defined
as limits of divided differences, and the latter are linear combinations

λX ,a( f ) := ∑
x j∈X

a j f (x j)
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of point evaluation functionals, for finite sets X ⊂ Ω and vectors a ∈ R|X |. They are in
the dual H (C)∗ of the native Hilbert space H (C) of C and have norm

∥λX ,a( f )∥2
H (C)∗ := ∑

x j ,xk∈X
a jakC(x j,xk) = λ

u
X ,aλ

v
X ,aC(u,v).

Here, the superscript denotes the variable the functional acts on. We can consider all
well-defined limits λ of those in H (C)∗, and they have norms

∥λ∥2
H (C)∗ = λ

u
λ

vC(u,v).

If pointwise functionals like f 7→ Dα f (x) involving multivariate derivatives of order α

have finite norm in H (C)∗, i.e.

(Dα)u(x)(Dα)v(x)C(u,v)< ∞,

they are continuous on H (C) and characterize the pointwise regularity of these func-
tions.

To move towards randomness, we apply those functionals to random functions based
on orthonormal expansions W = {wn}n∈N, i.e.

λX ,a( fW,V ) := ∑
x j∈X

a j fW,V (x j) = ∑
n∈N

∑
x j∈X

a jwn(x j)vn.

This is a generalized random variable if

∑
n∈N

(
∑

x j∈X
a jwn(x j)

)2

is finite, and this is the squared norm of λX ,a in H (C)∗, independent of the chosen
expansion. This extends to the limits in H (C)∗, and we get that all continuous func-
tionals on H (C)∗ lead to generalized random variables when applied to the random
functions of (6). In a sloppy formulation:

Theorem 3. Pointwise regularity of functions in a Hilbert space generated by a ker-
nel C is the same as pointwise regularity in the mean-square sense of the generalized
random fields based on arbitrary orthonormal expansions of C.

3.2 Mean-Square Continuity
If we specialize the previous section to functionals λx supported on a single point

x ∈ Ω, like point or derivative evaluations at x, we see that they define a zero-mean
generalized random variable λx,W with events

λx( fW,V ) = ∑
n∈N

λx(wn)vn

and variance
Var(λx,W ) = ∥λx∥2

H (C)∗ = λ
u
x λ

v
x C(u,v)
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independent of the expansion W . This defines a generalized random field with covari-
ance

Cov(λx,W ,λy,W ) = λ
u
x λ

v
y C(u,v) =: Cλ (x,y).

Theorem 4. [1]
Mean-square continuity of this field is equivalent to continuity of its covariance kernel
near the diagonal, i.e.

lim
x→y

Cλ (x,x) =Cλ (y,y) and lim
x→y

Cλ (x,y) =Cλ (y,y) for all x,y ∈ Ω.

3.3 Norms of Random Functions
The random functions fW,V are almost surely not in the Hilbert space H (C), because
this would require square summability of the vn. In which spaces do they lie?

Assume that the pointwise convergence rate of the wn(x) is good enough to satisfy

∑
n∈N

w2
n(x)n

2β < ∞ (9)

for some β > 1/2. This defines a scale of spaces with a parametric class of kernels

Cγ(x,y) := ∑
n∈N

wn(x)wn(y)n2γ

for γ ∈ [0,β ], and the elements wnnγ are orthonormal in the correspondent Hilbert space
H (Cγ) , leading to

(wn,wm)Cγ
= δnmn−2γ , n, m,∈ N.

This construction is well-known from trigonometric or other orthogonal series, and it
applies also to Sobolev spaces for certain decay rates and eigenfunction expansions.
Improved rates in the sense of (9) means more smoothness of the functions.

Under (9), we have that there exists a class of expansion fields { fW,V,γ , γ ∈ [0,β ]}, such
that

fW,V,γ(x) = ∑
n

wn(x)ṽn

with ṽn := vnnγ , having a covariance function Cγ .

The functions of the form (6) now lie in H (Cγ) if and only if

∑
n∈N

(wn,wn)Cγ
v2

n = ∑
n

n−2γ v2
n < ∞,

and this is true for random functions almost surely if γ > 1/2. Consequently,

Theorem 5. The above random functions lie almost surely in all spaces H (Cγ) for γ >
1/2, but almost surely not in H (C1/2) and all smaller spaces like H (C) = H (C0).
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In practice, one has to truncate the series, and then the random functions lie in
H (C). They have an “asymptotic roughness” that forces the limit to a larger space.
This calls for an examination of the limit process.

To come closer to Sobolev spaces, one can turn the argument upside-down and work
with an orthonormal system U = {un}n∈N in L2(Ω) on a bounded domain Ω ⊂ Rd for
a fixed dimension. Then a scale of spaces Hm(Ω) norm-equivalent to classical Sobolev
spaces W m

2 (Ω) arises by defining wn,m := unn−m/d to be orthonormal in Hm(Ω). This
behaviour mimics what happens for Mercer/Karhunen-Loève expansions of the Matérn
kernels Mm−d/2,1 in the notation of [24] of standard Sobolev spaces W m

2 (Rd). By
[28], the eigenvalues decay like n−2m/d , but we suppress further details. The kernel of
Hm(Ω) then is

Cm(x,y) := ∑
n∈N

wn,m(x)wn,m(y) = ∑
n∈N

n−2m/dun(x)un(y)

and the correspondent random functions are

fU,m,V (x) = ∑
n∈N

un(x)n−m/dvn.

Their norm in Hµ(Ω) is given by

∥ fU,m,V∥2
Hµ (Ω) = ∑

n∈N
∥un∥2

Hµ (Ω)n
−2m/dv2

n

= ∑
n∈N

n2µ/dn−2m/dv2
n

and this is finite almost surely if µ < m−d/2.

Theorem 6. Random functions based on orthonormal expansions in Hm(Ω) lie almost
surely in all spaces Hµ(Ω) for µ < m−d/2, but almost surely not in Hm−d/2(Ω) and
all smaller spaces.

However, the above derivation has two shortcomings. First, it uses the asymptotics
of the Mercer expansion, which is computationally expensive. Second, the intermediate
Sobolev spaces are defined by changes of weights and have nonstandard expansion
kernels. They should be norm-equivalent to the classical Sobolev spaces, but this needs
proof.

4 Calculation of Random Functions via Newton Bases
It is well-known that kernels have two sorts of orthonormal bases. The Mercer theorem
[20] applied above yields eigenfunctions of the integral operator defined by the kernel,
and these lead to Karhunen-Loéve expansions under a probabilistic interpretation. The
other case uses the Newton basis [21, 23] and is computationally much cheaper. The
probabilistic literature uses it for their standard sampling algorithms, ignoring the un-
derlying orthonormal system of functions. Here, we focus on the deterministic Newton
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basis expansion and randomize it along the lines of the previous sections. But recall
that pointwise regularity of random functions does not depend on the expansion chosen,
by Theorem 3.

The Newton basis for a sequence x1,x2, . . . , of given points is recursively defined by

N j(x j)
2 = C(x j,x j)−

j−1

∑
m=1

Nm(x j)
2, j ≥ 1,

N j(x)N j(x j) = C(x,x j)−
j−1

∑
m=1

Nm(x)Nm(x j), j ≥ 1, x ∈ Ω.

(10)

Then the generated functions have the properties

N j(x) ∈ span{C(x,x1), . . . ,C(x,x j)},
N j(xk) = 0, 1 ≤ k < j,

where the second property is shared with the Newton basis polynmials

N j(x) =
j−1

∏
k=1

(x− xk), j ≥ 1

of order j for univariate interpolation. The basis is orthonormal in the Hilbert space
H (C) and (8) takes the form

C(x,y) = ∑
j∈N

N j(x)N j(y) for all x,y ∈ Ω. (11)

The basis has uniformly bounded values due to

C(x,x) = ∑
j∈N

N j(x)2 for all x ∈ Ω,

and it yields Cholesky decompositions of all kernel matrices with entries C(xi,xk), 1 ≤
i,k ≤ n via

C(xi,xk) =
min(i,k)

∑
j=1

N j(xi)N j(xk), 1 ≤ i,k ≤ n. (12)

But here we focus on functions, not on matrices, and we can define generalized random
variables fN(x) with values

fN,V (x) := ∑
j∈N

N j(x)v j for all x ∈ Ω

based on samples v j from uncorrelated standardized random variables Vj. At points xk
the series is finite, namely

fN,V (xk) :=
k

∑
j=1

N j(xk)v j for all k ∈ N,
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and it defines a classical random variable fN(xk) that depends only on the first k samples
v1, . . . ,vk. The partial sums

fN,V,n(x) :=
n

∑
j=1

N j(x)v j for all x ∈ Ω

are in the Hilbert space H (C), defining classical random variables fN,n(x), and their
recursion is

fN,V,n+1(x) = fN,V,n(x)+Nn+1(x)vn+1

for a new sample vn+1.

Theorem 7. The variance of the truncation error of the partial sums is

Var( fN(x)− fN,n(x)) =C(x,x)−
n

∑
j=1

N2
j (x) =

∞

∑
j=n+1

N2
j (x) (13)

converging to zero at the same rate as (11). The decrease of the variance of the trun-
cation at x in step n is N2

n (x).

The deterministic function (13) is the square of the well-known Power Function
Px1,...,xn(x) arising in error bounds for deterministic kernel-based interpolation and as
the variance of the Kriging error in Spatial Statistics.

It vanishes at x1, . . . ,xn, and a good choice for xn+1 is the maximum of it in Ω. This
is the well-known P-greedy strategy dating back to [9], with asymptotically optimal
properties due to [27]. There is a matrix-free implementation [23] of the construction
of Newton bases, and it can easily be adapted to generate random functions by picking
random coefficients. It will be used for numerical examples in Section 7, and we shall
use

∥Var( fN(x)− fN,n(x))∥∞ ≤Var( fN(xn+1)− fN,n(xn+1)) = Nn+1(xn+1)
2 (14)

to control the maximum of all pointwise variances in (13).

Corollary 1. If the P-greedy method is used for point selection, the variance of the
truncation error converges uniformly on the set of eligible points, and the rate is the
same as for (11).

Much more information on the truncation error can be found in [39] for the Gaus-
sian case, and in [34], both focusing on probability theory.

In Sobolev spaces W m
2 (Ω) for Ω ⊂ Rd and m > d/2, the Matérn kernel Mm−d/2,1 in

the notation of [24] is reproducing, and one can use the Newton basis there. If the
P-greedy point selection is used, [27] shows that

Var( fN(x)− fN,n(x))≤ cn1−2m/d (15)

holds uniformly in Ω, but numerical evidence in [27] shows convergence at least like
n−2m/d . This implies that the partial sums of random expansions converge at a rate the
increases with m, but by Theorem 6, the limit is not in W m

2 (Ω) though the partial sums
are. The “limiting” space is W m−d/2

2 (Ω). Figure 2 will show examples.
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5 Starting From Random Fields
For readers interested in computations, this section can be skipped. But for readers
with a background in Probability and Statistics, we explain the connection to the vast
literature on Random Fields here, but leave details to the references [14, 19, 31, 34]
close to this paper.

In the nondeterministic literature it is customary [1, 3] to start with a random field
that has a random variable R(x) at each point x of Ω in such a way that hidden joint
distributions behind the scene allow to say that

Cov(R(x),R(y)) =C(x,y) for all x,y ∈ Ω

is a positive semidefinite covariance function, i.e. a positive semidefinite kernel. To
arrive bottom-up at a random function, called a path of the random field, is somewhat
problematic because it is unclear how to sample infinitely many correlated random
variables simultaneously, and how to work with joint distributions of infinitely many
random variables. Recall how Section 2 circumvents this problem, allowing to pro-
ceed top-down by constructing random functions first, using randomized expansions,
and taking their values at points afterwards to define a generalized random field. The
literature has randomized expansions as well, but mainly focusing on Karhunen-Loéve
expansions that are based on Mercer expansions [20]. Randomized expansions into
the Newton basis like in Section 4 are behind the curtains, when sampling is done via
Cholesky decompositions of kernel matrices along (12). This is the standard technique
for calculating finitely many values of paths of random fields, via a decorrelation.

Since the bottom-up approach is not restricted to expansions, it may be that it is much
more general. But we shall show that both approaches are equivalent under mild hy-
potheses.

We assume a second-order zero-mean random field x 7→ R(x) on a bounded domain
Ω ⊂ Rd that has a well-defined covariance function CR. Then we define the Hilbert
space VR as the closure of linear combinations of all R(x) under covariance as an inner
product, and modulo random variables of mean and variance zero. The map CR(x, ·) 7→
R(x) then is the Loéve isometry [18] between the reproducing kernel Hilbert space
H (CR) and VR. Since we have both CR and H (CR), we can take any orthonormal
system W = {wn}n∈N in H (CR) and map it to an uncorrelated system {RW,n}n∈N of
generalized random variables in VR. Then

Cov(R(x),RW,n) = (CR(x, ·),wn)H (CR) = wn(x) for all n ∈ N, x ∈ Ω.

The expansion
CR(x, ·) = ∑

n∈N
wn(x)wn(·) for all x ∈ Ω

then maps to an expansion

R(x) = ∑
n∈N

wn(x)RW,n for all x ∈ Ω
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which is an identity in VR, i.e. it holds modulo generalized random variables of mean
and variance zero.

Theorem 8. Up to pointwise modifications in the mean-square sense, all given zero-
mean second-order random fields with a well-defined covariance function coincide
pointwise with an expansion-based generalized random field with uncorrelated coef-
ficients.

This holds for all expansions, but each expansion W has its correspondent uncor-
related generalized random variables RW,n for generating the coefficients. Paths of
random fields, like functions in L2(Ω), admit certain modifications almost everywhere,
but the computation of random functions via expansions avoids such ambiguities.

If the Newton basis on a countable point set X∞ = {xn}n∈N is used for the orthonor-
mal system, the coefficient distributions can be recursively characterized. The first
coefficient is determined by R(x1), and the (n+ 1)-st follows the joint distribution on
x1, . . . ,xn+1 conditioned to the values y1, . . . ,yn that fN,V,n has on x1, . . . ,xn after deter-
mining v1, . . . ,vn. The variance of that distribution is P2

x1,...,xn(xn+1) using the Power
function, see (13). It is the Kriging variance for prediction at xn+1 from values at
x1, . . . ,xn for given values y1, . . . ,yn there. In case of Gaussianity, it is clear how to
sample vn+1, but in general the conditional distribution is hard to calculate except for
the known variance, and there is no guaranteed independence though there is uncorre-
latedness. This is a strong limitation for practical algorithms in the general case.

Conversely, if an expansion-based random function generator is working with inde-
pendent coefficients for computational simplicity, it will fail to be fully general when
there is no Gaussianity. However, the class of generalized random fields calculated via
expansions and independent coefficients without Gaussianity is interesting in itself and
deserves further study.

6 Expansions Related to L2

Expansions like (6) can make sense also in L2(Ω), provided that convergence takes
place in L2(Ω).

6.1 The Kernel of L2

The “kernel” now has no continuous function values, and (8) will not make sense.
But a kernel of L2(Ω) is well-defined when replacing point evaluation functionals by
functionals λg ∈ L2(Ω)∗ for g ∈ L2(Ω) with

λg( f ) := ( f ,g)L2(Ω) for all f ,g ∈ L2(Ω).

The kernel then is

C(λ f ,λg) := ( f ,g)L2(Ω) = (λ f ,λg)L2(Ω)∗ for all f ,g ∈ L2(Ω),
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generalizing the standard pointwise kernel property

C(x,y) = (δx,δy)H (C)∗ for all x,y ∈ Ω

based on point evaluation functionals δx : f 7→ f (x).
“Pointwise” generalized random variables fW,g are now defined for any “point”

g ∈ L2(Ω) or λg ∈ L2(Ω)∗ via sample values

V 7→ fW,V,g :=
∞

∑
k=1

(wk,g)L2(Ω)vk =
∞

∑
k=1

λg(wk)vk, g ∈ L2(Ω), λg ∈ L2(Ω)∗,

and we have
Cov( fW,g, fW,h) = (g,h)L2(Ω) for all g,h ∈ L2(Ω).

Theorem 2 holds in that “pointwise” sense.

Global convergence results require a Sobolev-type scale of spaces

Hβ :=

{
f : ∥ f∥2

Hβ := ∑
n∈N

( f ,wn)
2
L2(Ω)n

2β < ∞

}
(16)

like in (9), with duals

H−β :=

{
λ : ∥λ∥2

H−β := ∑
n∈N

λ (wn)
2n−2β < ∞

}
.

We need to identify the above pointwise random values fW,V,g as values of something
in a space as functions of g. Using the linearity in g, events

λW,V : g 7→
∞

∑
k=1

(wk,g)L2(Ω)vk = fW,V,g

define a generalized random linear functional λW . Its events are in H−β , if

∥λW,V∥2
H−β = ∑

n∈N
λW,V (wn)

2n−2β = ∑
n∈N

v2
nn−2β < ∞,

and this holds almost surely if β > 1/2, but almost surely not if β ≤ 1/2. The L2(Ω)
version of Theorem 5 then is

Theorem 9. Orthonormal systems in L2(Ω) lead to generalized random functionals
that are in H−β if β > 1/2, but almost surely not if β ≤ 1/2.

We can define operators Dγ on sequence spaces that map sequences {cn}n∈N to
sequences {cnnγ}n∈N. Applied to expansions in the Sobolev scale (16), this maps Hβ

isometrically to Hβ−γ , and therefore the inverse D−γ can be called a smoothing map
that takes Hβ isometrically to Hβ+γ . Applying the smoothing map D−γ to any or-
thonormal expansion in L2(Ω) therefore yields
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Corollary 2. Transforming random functions based on an orthonormal expansion in
L2(Ω) by D−β leads to random functions based on an orthonormal expansions in Hβ ,
and these are almost surely in Hβ−γ if γ > 1/2.

Simple examples of this are given by expansions into trigonometric series, where
D is differentiation and D(exp(inϕ) = inexp(inϕ), but we aim at a more general case
in the next section.

6.2 Random Functions From Haar Wavelets
Consider the well-known Haar mother wavelet

ψ(t) =

 1 0 ≤ t ≤ 1/2
−1 1/2 ≤ t ≤ 1

0 otherwise,


and form the univariate L2 orthonormal system

ψn,k(t) = 2n
ψ(2n t − k)

where n and k vary in Z for L2(R), while on L2[0,1] the indices are in N with 0≤ k ≤ 2n

and the function 1 must be added. We treat both cases here, ignoring the range of n
and k. The transition to arbitrary space dimensions d is easy by using d-variate index
vectors.

This aims at L2 as a space where point evaluations are not continuous, and consequently
the formula

C(x,y) = ∑
n,k

ψn,k(x)ψn,k(y)

yields ∞ for x = y. Instead, the formula

( f ,g)L2 = ∑
n,k
( f ,ψn,k)L2(ψn,k,g)L2 =: C( f ,g) for all f ,g ∈ L2

generates the standard kernel in L2 in function form. Recall the bra-ket notation in
Quantum Mechanics when it comes to orthonormal bases.

Using uncorrelated samples vn,k from mean-zero variance-one random variables Vn,k,
we can formally define functions

pS,ψ := ∑
n,k

vn,kψn,k (17)

whose partial sums are in L2, but convergence is a problem. The “pointwise” approach
now takes arbitrary functionals λ ∈ L∗

2 to define events

λ (pS,ψ) = ∑
n,k

vn,kλ (ψn,k)
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that are events of generalized random variables. As functions of λ , they are events of
a random linear functional λψ . The weights nβ for defining Hβ must now be replaced
by functions β (n,k), and the events are in H−β almost surely, if ∑n,k β−1(n,k) < ∞.
Sobolev spaces arise by special choices of weights [35], and smoothing operators like
in Section 6 based on coefficients can be applied to reach higher-order Sobolev spaces.

6.3 Random Functions From White Noise
Physics has the idea of white noise as a deterministic signal with uniform spectrum. It
cannot be realized adequately in L2. In Spatial Statistics on sets Ω, a standard definition
is to sample at each point x independently from a fixed distribution R. This can be
called Gaussian white noise for R being N (0,1), the standardized normal distribution,
and it simply is s(x) for the samples at x.

This is a purely bottom-up strategy like in Section 5, and it can easily be handled
using independence. After independent sampling, one has a function with well-defined
values, but any deterministic conclusion based on the values is unreliable, and the
function is not measurable. Furthermore, the spectrum is undefined.

To arrive at random functions starting from white noise, we can use [11] to convolve
white noise fW with sufficiently smooth functions K to get generalized random vari-
ables ( fW ∗K)(x) with covariance

(K ∗K)(x− y) =Cov(( fW ∗K)(x),( fW ∗K)(y)) for all x,y ∈ Rd .

To arrive at a kernel C, one has to take the convolution C = K ∗K. This does not
imply that the convolution fW ∗K is in H (C) as a function, but the random field has
correct covariance, and this paper applies. Functions in H (C) have the form ∗√C ∗ g
with L2 functions g and the convolution square root of C, and this matches perfectly,
because fW /∈ L2 almost surely. This is a classical way to generate random functions
and random fields [1, 13]. It falls into the scope of this paper via Theorem 8.

However, now the calculations are different, and one has to work with convolution
kernels. In case of global Sobolev spaces on Rd , a smoothing operator is defined by
convolution with Matérn kernels. In particular, in the notation of [24], convolution in
Rd with the Matérn kernel Mγ−d/2,1 takes Hν(Rd) into Hν+γ(Rd). We can denote this
smoothing operator by ∆−γ by Fourier transform arguments, and its action can be seen
as solving an equation ∆γ u = f for a function f ∈ Hν to get a function in Hν+γ . On
bounded domains, boundary conditions interfere, but we omit details. This observation
is used in various papers in Statistical Sciences starting from [16], solving the equation
as a stochastic partial differential equation.

6.4 Random Functions From Finite Elements
For illustration of the above arguments, we consider a convenient computational tech-
nique by coarsening the resolution of the noise, and it leads back to an expansion in
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L2(Ω). Take a random function (1) where each wk is one on its support Wk, and all
supports are disjoint. This is an expansion into piecewise constant finite elements, and
it approximates white noise by coarsening the sample. The covariances are

Cov( fW,V (x), fW,V (y)) = ∑
k

wk(x)wk(y)

like in Section 2.1. This kernel is zero unless x and y are in a common Wk, and in that
case the covariance is one. We get an orthonormal expansion in L2 if we change to

fW,V,Vol(x) := ∑
k

vk(vol(Wk))
−1/2wk(x)

because
(wn,wm)2 = δmnvol(Wn).

Let us go on with the original approximation and see what happens after applying a
smoothing operator. We could take the operator D−γ based on expansion coefficients,
but since we already have global functions, we can convolve with a smooth function K.
The result is

(K ∗ fW,V )(x) =
∫
R

K(x,y) fW,V (y)dy = ∑
k

vk

∫
Wk

K(x,y)dy = ∑
k

vk(K ∗wk)(x),

which is an expansion into the K-convolved original basis. This approach works simi-
larly when starting from classical finite element bases, but the resulting kernel will not
be piecewise diagonal.

Convolutions of kernels with piecewise constant functions wk generating L2(Rd) can
be calculated symbolically by MAPLE or other systems, and we shall use this in the
next section.

7 Numerical Examples
We start with the P-greedy Newton basis algorithm applied to Matérn kernels with
Gaussian coefficients. The domain is the unit circle with the lower left quadrant miss-
ing. The point selection for a case with m = 6 in 2D is in Figure 1 together with one
of the random functions. The P-greedy method selected 266 out of 963 points for a
residual variance tolerance of 1.e-12. Figure 2 shows the convergence behaviour for
increasing n, for m = 1.5, 2.5, 4, and 6. The observed convergence rates were 0.51,
1.54, 3.19 and 6.85 (green lines fitting the observations), while the red lines are for
m = 1.5, 2.5,4, and 6 to compare with the rates 2m/d −1 = m−1 mentioned in (15).
The agreement is good, but the high-order cases may not be carried out up to their final
asymptotics.

Haar wavelets were implemented in L2[0,1], extended by zero to R and then convolved
with Matérn kernels generating W m

2 (R). These functions can be calculated explicitly as
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Figure 1: Selected points and a single random function

Figure 2: Convergence of residual variances for increasing numbers of selected points,
for 2D Matérn kernels with m = 1.5, 2.5, 3, and 5.
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Figure 3: Random Functions based on Haar wavelets on [0,1], smoothed for Sobolev
order m = 0,1,2,3.

splines consisting of exponentials and polynomials. Starting from “Haar white noise”
(17) in the top left of Figure 3, smoothings for m = 1,2,3 via

Mm−1/2,1 ∗ pS,ψ = ∑
n,k

vn,k(Mm−1/2,1 ∗ψn,k)

follow in reading order, using the same random Gaussian coefficients. The final random
function is in red, the starting partial sum is in cyan, followed by partial sums for
n = 1,2, . . . ,9. The m = 1 case illustrates the smoothness difference between partial
sums and the limit that has “asymptotic roughness”.

8 Conclusions and Open Problems
Calculating random functions can be done by randomizing coefficients of basis

functions. This can be analyzed without using advanced Probability and Statistics. It
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leads to kernels and their native Hilbert spaces, and the chosen bases will be orthonor-
mal there. Paths of random fields require much more probabilistic machinery, but turn
out not to be seriously more general. Choosing Newton bases recovers the standard
algorithm for sampling random fields on finite subsets via Cholesky decompositions of
kernel matrices. Partial sums of these randomized expansions are in the native Hilbert
space, but the limits are not. However, the variance of the truncation error can be ex-
pressed by the well-known Power Function and proven to be convergent to zero. If
points for the Newton basis are selected by the P-greedy method, the convergence rate
is close to optimal.

By certain modifications, the suggested randomized orthonormal expansions also work
in L2, and Haar wavelet bases are an example. Smoothing operators take such ex-
pansions into Sobolev spaces, allowing scales of spaces defined via weighted expan-
sions. This is well-known for expansions into Mercer-Karhunen-Loéve bases and into
Haar wavelets, but it should be proven for Newton expansions based on the P-greedy
method.

The connection of smoothing operators to techniques based on Stochastic Partial Dif-
ferential Equations (SPDEs) should be further investigated. For instance: if an SPDE is
numerically solved via finite element bases, is this the same as using convolution, or at
least comparable? What is the effect of boundary conditions in both cases? Smoothing
operators via convolutions should be calculated explicitly, or good numerical approx-
imations thereof. If these are based on finitely many points, they will possibly be
connected to the SPDE methods.

The randomized expansions of this paper provide plenty of algorithms for the imple-
mentation of random function generators. But what are their properties? Given a mea-
surable set M ⊂ Ω×R in graph space, what is the probability that a random function
has its graph in M? How does this vary with the expansion and the coefficient distri-
butions? This has a background connection to the statement of Probability Theory that
random functions are associated with measures µ on sets A of function spaces via

µ(A) = Prob{ f ∈ A, for all events f}.

These probabilities are a property of the random function generator rather than a prop-
erty of random functions, and it is interesting to see how random function generators
differ.

The standard algorithm using the Newton basis (or Cholesky decompositions, equiv-
alently) is computationally still quite expensive if the smoothness of the kernel C is
low and users want an extremely small variance of the truncation error. The probabilis-
tic literature [7, 16, 26, 37] has various algorithms for speed-up, mainly transitions to
a Markovian process or to sparse approximate inverses (precision matrices) of kernel
matrices. From the viewpoint of Numerical Analysis, this is a form of localization
that changes the kernel and deserves further investigations that will be useful also for
localized deterministic settings [29].
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We omit techniques based on Random Fourier Features [17, 25]. These introduce ran-
domness in frequence space and deserve a comparison with the methods proposed here.
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