AN EXTENDED CONTINUOUS
NEWTON METHOD

I. Dienertand R. Schaback®

Communicated by L.C.W. Dixon

1 Introduction

The problem of determining the global minimum and all global minimizers
of a sufficiently smooth function f on a subset of IR" has received increas-
ing interest during the last two decades. The most widely used methods
are of stochastic nature and only comparatively few deterministic method-
s have been considered. Among the deterministic methods the continuous
Newton method is of particular interest, since it is related to the well known
usual Newton method and since the trajectories it generates have very nice
properties. In section 1.1 we describe this method. In sections 1.2 and 1.3,
we recall an extension first introduced in Refs. 1-2 which overcomes some
shortcomings of the original method. In sections 2 and 3 we describe a nu-
merical approach and some implementational details. Finally, in section 5,
we present the results of some numerical tests of the method.

TThe authors would like to thank L.C.W. Dixon for pointing out some errors in the
original version of this paper and for several suggestions of improvements.

! Assistant Professor, Institut for Numerical and Applied Mathematics, University of
Gottingen, Gottingen, Germany.

$Full Professor, Institut for Numerical and Applied Mathematics, University of
Gottingen, Gottingen, Germany.

1.1 Branin’s Method

Let f : B — IR be a twice differentiable function on the bounded region
B C IR". We consider the problem of finding all critical points of f in B by
using a trajectory method. Such methods consist in numerically following
certain implicitly defined curves in B which theoretically contain all critical
points. One such method was proposed by Branin (Ref. 3) in 1972 and
has since then become known as the Continuous Newton Method. Actually
Branin considered the more general problem of determining all zeros of a
function F': IR" — IR™. In our setting we take I’ to be the gradient V f of
f.

We denote the Hessian matrix of f at « by Hy(x), its adjoint matrix by
H #(x), and consider the following autonomous differential equation:

de/dt = —H(2)V f(z). (1)

If the integration is started in x, the direction of V f(x) along the solution
curves obviously stays parallel to V f(xg). This important property is used
later to define a more general set of curves. Euler’s discretization yields

i = a — heH () V f () (2)

with suitably chosen steplengths hy. If |Hy(z)| # 0 we have the relation
Hy(z) = |Hy(2)|H; ' (x) and (2) is just the damped Newton iteration method
for finding zeros of V£, i.e. critical points of f.

Equation (1) has two types of stationary points. One occurs if V f(z) = 0,
ie. if x is a critical point of f. The other occurs if Vf(z) # 0 but
[:]f(:z:)Vf(:zj) = 0. These were called extrancous singularities by Branin.

Branin’s method consists in selecting a starting point xg and following the
corresponding curve defined by (1). If a critical point is found on the path,
it is output and the sign in (1) reversed. The integration is then continued
until the next critical point is found or a termination criterion is satisfied.

The numerical implementations of Branin’s algorithm so far have used dif-
ferent integration techniques, sometimes coupled with interpolation schemes
(see Refs. 4-6). These approaches do not seem to be particularly efficient,
since they hardly take the special structure of the defining equation (1) into
account.

The main problem with this method (and all other trajectory methods) is,
that in general not all critical points of f lie on a single connected trajectory

component and thus other trajectory components have to be found. This
problem was tackled in Ref. 2 by an extension of Branin’s approach. The
corresponding numerical method will be described in this paper.

1.2 Extension of Branin’s Method

In Ref. 1 a new way to look at the trajectories generated by the continuous
Newton method was proposed. The trajectories can be obtained in the form

(T, f)~4(0) for suitably defined functions (7, f) : IR"™ — IR"™*.

Definitionl.1. Let f : IR" — IR be continuously differentiable and let
g € IR" be a fixed nonzero direction. Then we call the set

T,(f) :={x € R"|Vf(x) and g are parallel}

a Newton trajectory of f. Let G : IR™ — IR"' be a linear map of rank
n — 1 such that Gg = 0. Except for this, G can be arbitrarily chosen, e.g. as
G =(gl,¢% ...,9._,)", where ¢1,92,...,9n_1,¢n := g form an orthonormal
basis of IR" and ! stands for transposition. We use (¢ later for dimensional
recursion (see section 3.3). With a fixed choice of such a matrix GG we define
the continuous map (7,f) by

(T,f): IR" — IR", z— GV f(x).
Obviously we have (T, f)~'(0) = T,(f), and
Ty(f) ={x € R"|GV f(x) = 0}. (3)

The set (T,f)~'(0) is independent of the special choice of GG as long as
the kernel of (i is spanned by g. Also, T,(f) = Th(f) if g and h are linearly

dependent and nonzero. The (trivial) but important property of the Newton
trajectories is given by the following

Theorem 1.1 Let g, h € IR" be linearly independent vectors and f continu-
ously differentiable. Then T,(f) NTy(f) = Crit(f), the set of critical points

of f.

Thus, in principle, one can find all critical points by completely tracing
a Newton trajectory for f. In practice, however, various difficulties arise.

4

First, T,(f) might not be one-dimensional. This problem can be removed by
imposing generic regularity conditions on f. A harder problem is that T,(f)
is not connected in general. Conditions on f which guarantee connectedness
were given in Ref. 1, but these conditions are too strong to apply in the
general case.

An attempt to cope with this problem was made in Ref. 2. The con-
struction described in that paper is very general and leads to a locally 1-
dimensional net of curves connecting all critical points. However, numerical
tracing of the whole net is not generally possible, because of certain “one—
way-streets”, i.e. paths whose “entrances” can be found, whose “exits”, how-
ever, depend on global information about f and are overlooked by numerical
methods. Details will be described below. Every critical point defines a nu-
merically traceable subnet which often contains many or all critical points of
f. In the next section we give a short summary of the construction for the
special case of Newton trajectories . For details and the general construction
the reader should consult Ref. 2.

1.3 Connecting the Components

Let B C IR™ be a bounded convex region in R". Suppose 0 # g € IR"
is given and the critical points of the function f : B — IR are distributed
among several disconnected components of the locally 1-dimensional Newton
trajectory T,(f). Let us further suppose that f is constant on the boundary
of B and that this boundary contains no critical points of f. Define an
auxiliary function Q on B by x — ¢'z, where ' stands for transposition and

write Q(:L') for Q71(Q(x)). Then it is shown in Ref. 2 that the set

T,(Hull Q) (4)

zel

is connected where the Q(:L') are the touching hyperplanes of T,(f). Geo-
metrically, (4) means that the disconnected components of T,(f) are joined
together by a limited number of parallel hyperplanes orthogonal to g. Only
those hyperplanes are needed which are “touching” T,(f) in some point z.
These “touching points” form a set I'. An example is given in Figure 3,
and details are explained below. If n = 2 the set defined by (4) is already
generically 1-dimensional and connected, since in this case the ()-contours

are straight lines. If n > 3, the ()-contours are intersections of hyperplanes
in IR" with the convex set B. However, the entire ()-contours are not needed.
Only the (nonempty) set

T,(Hn Q) (5)

zel

is of interest since its elements are possible starting points for new compo-
nents of T,(f).

In Ref. 2, it is shown that the set T,(f) N Q(:L') is equal to the set of
critical points for the function f restricted to Q(:L') Thus we have a problem
of the same form as the original one, but posed on the (n — 1)-dimensional
linear space Q(:L') This argument can be repeated, until the dimension of the
base space is 2. Each problem generates locally 1-dimensional trajectories,
and the overall result is a locally 1-dimensional trajectory net which contains
T,(f). Recursion through dimensions involves a simplification, because more
and more components of GV f(x) are replaced by linear functions (see section
3.3 below).

For the purpose of the present paper a simplified concept of touching
points and touching hyperplanes suffices:

Definition1.2. Let x be a point on T,(f). Then x is called a touching point
of T,(f) if there exists a neighbourhood U of @ such that T,(f)NU is contained
in only one of the two closed halfspaces defined by Q(:L') The set Q(:L') is
then called a touching hyperplane. Let I' be a subset of all touching points
that contains at least one touching point from every touching hyperplane.

Let z be a point on Ty,(f) and suppose T,(f) is a C'' curve in a neigh-
borhood of . Let ¢ :[0,1] — B be a regular local parametrization of T;(f),
and © = ¢(ty). Then Q(:L') is a touching hyperplane, if ¢ is an isolated zero
of gtq'ﬁ(t) with sign change or a point of an interval where gtq'ﬁ(t) vanishes
identically. This fact will be used later as a criterion for the detection of
touching hyperplanes.

2 Numerical Method

2.1 Overview

The special form (3) of the trajectories will in principle be invariant during
recursion through the dimension of the problem. Therefore we propose a
numerical method that makes exhaustive use of this special structure.

The algorithm will be described bottom—up in several stages:

(i) Computation of local steps;

(ii) Control of stepsize and direction;

)
)
(iii) Detection and treatment of exceptional points;
(iv) Recursion through dimensions;

)

(v) Bookkeeping strategy.

It uses a fixed vector ¢ € IR"\ {0} and an arbitrarily chosen matrix G :
R" — IR"' with rankG = n — 1 and Gg = 0.

2.2 Computation of Local Steps

A local step at a point @ € IR" near a trajectory T,(f) will be dependent on
a single control parameter p €10, %dcptp], where deptp is an input parameter
describing the minimal expected distance between exceptional points, i.e.
critical points. It steers the “resolution” of the algorithm. The local step
h(x,p) is computed under the assumption rank(GHy(z)) =n — 1 by

Step L1. Find a vector z(z) € IR" with

GHe(x)z(x) = 0,
Ma)z(z) = 1.

This can be done by incomplete LU factorization, and the decomposi-
tion should be stored for later use. Since z(x) is determined only up
to a sign, we employ a fixed strategy to choose a sign, but allow an
additional control parameter ¢ € {—1, +1} to reverse orientation of

Step L2. Solve the system

(Gg(f;;ﬁ)) h(x.p) = (—GZf(w))

for the step h(x,p), using the factorization calculated in step L1.

We note some simple facts:

Theorem 2.1. The step h(x,p) satisfies

h(z,p) = h(z,0) +p- z();

) h(
b) z(x) is tangential to T,(f) if @ € T,(f);
) h(
) =(

a

(¢) h(x,0) is the Newton step for the system GV f(x) = 0 defining T,(f);
(d

If 2 is on the trajectory, properties a) and b) imply that h(x, p) is a predictor
step for large p, where p acts as a stepsize. Properties a) and c) show that

z(x) is orthogonal to h(x,0).

h(x,p) is a corrector for small p, performing a Newton step towards the
trajectory. Indeed, when x is near the trajectory T,(f), the vector z(x) is
nearly parallel to T,(f), and since h(x,0) is orthogonal to z(x), it will point
towards the trajectory, being approximately orthogonal to the tangent at the
nearest point (see Figure 1).

For efficiency reasons, property a) suggests to compute h(x,0) first in step
L2; then control of p does not require much additional work for computing
h(x,p) for different values of p.

In contrast to other methods (see Refs. 10-11) we only need a single
parameter to control both predictor stepsize and the relative weight of pre-
diction versus correction. The drawback is that we do not use high—order
predictors.

2.3 Control of Local Steps

The choice of the parameter p of a local step should make sure that the
progress along the trajectory is as large as possible under the restriction that
the trajectory is not “lost”. To define the latter notion we simply postulate
that there exists a neighborhood U of @ + h(x, p) such that a unique point of

8

Figure 1: Local control.

the trajectory should exist in U' N H for a hyperplane H through « + h(z,p)
with normal vector z(x + h(x,p)) (see Fig. 1).

This can be guaranteed by the Newton-Kantorovitch theorem (see e.g.
Ref. 7) applied to the system

_ [GVf(z+h(z,p)+y) | _
Ax,p(y) = (Zt(x + h(:}c,p))y) =0,

because for a solution Y'(x,p) of A, ,(Y(x,p)) = 0 we have

v+ h(z,p)+Y(x,p) € Ty(f),
Z(x + bz, p))Y(z,p) = 0.

The standard form of the Newton—Kantorovitch theorem explicitly gives two

radii 0 < r < R of balls B, and Bg around the starting point y = 0; there is

a solution of the system in the smaller ball and there is no other solution in
the larger ball. In our case the required bounds for

I(AL,)7HON < D,
1(A%,) 71 (0)Aep (0)]] <

9

can be calculated directly, and the Lipschitz constant L for A} (y) as a
function of y can be estimated numerically. We then accept a step h(z,p),
if the Newton—Kantorovitch theorem is applicable, i.e. if 2Dnl < 1. This
guarantees existence of the solution Y (x, p) within

Y (z,p)| < D'L7'(1 — /1 —=2DLy) =:r

and uniqueness within

IV (z,p)| < DT'LTHL+ /1 = 2DLy) =: R,

if the Lipschitz constant L is assumed to be correctly estimated. The actual
radii r and R for existence and uniqueness are not explicitly controlled by
our method. It suffices to be sure that there always is a unique trajectory
point near to the actually calculated point. The flaws of this argument
are that the Lipschitz constant is only an estimate and that acceptance of
h(x,p) tacitly assumes that all smaller values of p are acceptable, too. This
is motivated by Theorem 2.1, but leaves a possibility for the algorithm to
switch to a different locally unique trajectory without notice. This, however,
is an improbable event because switching over to a hidden quasi—bifurcation
branch (see Fig. 2) will often give a jump in the orientation of z(x). This
jump is detectable by checking the sign of z'(x)z(x + h(x,p)), using the fact
that the trajectory is traced with a fixed algorithm determining the local
orientation of z(x) in continous dependence on .

Figure 2: Quasi-bifurcation with hidden switch to another trajectory com-
ponent, recognizable by checking orientation.

Control of p is simply done by decreasing p by a certain factor less than
unity whenever h(x, p) is not accepted. This brings the new direction “closer”
to the actual trajectory. After an accepted step, p is increased again.

10

3 Exceptional Cases

3.1 Regularity and Bifurcation
Since T,(f) = (GVf)7*(0) the assumption rankGH; = n — 1 on T,(f) is

generic, because 0 needs only to be a regular value of GV f to ensure non-
degeneracy. Small perturbations of ¢ will remove singularities, and in practice
the algorithm will encounter only “quasi—bifurcations” in the sense of Fig. 2.

The mildly degenerate cases of this sort are overcome by the automatic
use of small values of p along a single trajectory; the others will lead to a rank
loss when trying an incomplete LU factorization in step L1. If the rank loss
concerns just one dimension, a projection onto a two-dimensional subspace
is possible, and the asymptotes of hyperbolae like in Fig. 2 can be calculated
giving the necessary information to handle the bifurcation. Other cases have
to be eliminated by choosing other values of g, such that (hopefully) 0 is now
a regular value for GV f. Practical experience shows that it is not worthwhile
to handle genuine bifurcations explicitly, because they are very rare indeed
and the necessary computing effort is better invested into tracing a trajectory
system for a different g. We therefore simply assume for our method that 0
is a regular value for GV f.

3.2 Critical Points and Touching Points

In contrast to earlier trajectory algorithms the tracing method described so
far will only slow down near quasi-bifurcations or in regions with very large
Lipschitz constants for the Hessian along the trajectory, but not necessarily
near critical points or touching points. These are detected by additionally
monitoring two simple real-valued functions that necessarily vanish at these
points and have a sign change in nondegenerate cases:

v(z) = ¢'Vf(z), for critical points,
0,(x) = g'z(x), for touching points.
Theorem 3.1.

(a) The function 7,(x) has zeros on T,(f) in critical points only, and these
zeros x* are simple, if g ¢ kerH(a*), e.g. if H¢(2*) is nondegenerate.

11

(b) Isolated touching points & on T,(f) are characterized by the property
that 6,(x) has a zero with sign change at z.

(c¢) If T,(f) is nondegenerate around an isolated touching point, ,(x) will
have a zero with sign change on any curve sufficiently close to Ty (f).

Proof : The equations
¢'Vflx)=0 and GVf(z)=0
imply V f(x) = 0 and vice versa; a zero 2™ of the derivative of v, would imply
Va(a™) = g'Hy(2") =0,

proving assertion a). The other statements are immediate consequences of
the definition of touching points. O

If Hs(x*) is nonsingular in a critical point 2*, the trajectory T,(f) inter-
sects the zero set of v,(x) transversally, and therefore the numerical detection
of critical points via a sign change of ~,(x) is numerically stable even if the
trajectory is not followed exactly.

The exact detection of touching points is somewhat more problematic,
because their definition already involves a higher derivative than needed for
critical points. Fortunately, touching points need not be calculated very
precisely for the following reasons:

(i) Imprecisely calculated touching points can be seen as exact touching
points of trajectories with a slightly perturbed ¢g. The algorithm fol-
lows a G—contour on a hyperplane parallel and very near to the exact
one, until a new trajectory component is hit (see Fig. 3 for illustra-
tion). In nondegenerate situations this trajectory component will cut
all parallel hyperplanes transversally, and the algorithm simply reaches
the new trajectory component in s slightly different point. Here the
“one—way—streets” come up again: touching points are the well-defined
“entrances”, but the exits lie somewhere on a new trajectory compo-
nent. Errors in the calculation of touching—points just result in tracing
a neighbouring “one—way—street”, but the exit will normally lead to
the same new trajectory component.

(ii) If a touching point is falsely assumed to exist, the algorithm gets an
additional chance for recursion, and no information is lost.

12

The actual calculation of critical points and touching points employs the
following strategy:

Step C1. Halt trajectory tracing whenever one of the indicator func-
tions v, or 8, is very small or has a sign change.

Step C2. Try to find an approximate zero or a local minimum of the
indicator function by bisection. Use small values of p for this calcula-
tion, to make sure to be very near the actual trajectory Ty(f).

Step C3. Record the solution for later use, and follow the bookkeeping
strategy described in section 3.4.

3.3 Dimensional Recursion by Projection

If

G = , ¢ €R", 1<i<n, g,:=g

is the matrix chosen when starting the procedure for the original n—dimensional
problem, dimensional recursion simply uses the system

g1 Hy(x) —giVf(x)
9p 1 Hy () —Gr_1 V()
It h(z,p) = 0 :
gk 0

#(x)

where z(x) is a normalized solution of the homogeneous system without the
last equation. Given a starting point x € IR" for the m—dimensional sub-
problem, everything is projected onto the affine space « + span{gq,...,9m},

13

and after some simple reductions eliminating n — m homogeneous equations
the problem has the same form as before. The reductions are independent
of # and can be done once for all before actually tracing the trajectory.

3.4 Bookkeeping Strategy

The algorithm normally detects many critical points and touching points
for subproblems on different dimension levels, forming a tree-like dynamical
data structure. To avoid multiple tracing of the same or neighboring tra-
jectories, and to avoid low—dimensional subproblems whenever possible, a
serious bookkeeping problem arises which greatly influences the performance
of the algorithm.

The algorithm has been programmed by A. Drexler (Ref. 8) who solved
most of the implementational problems. To keep a record of what is achieved,
a dynamically varying list of possible and yet unused starting points and of
critical points on each level is kept. On each dimension level m the traced
trajectories start in a touching point z,,41 which was found and registered on
level m 4 1. Therefore the starting point of the whole algorithm is formally
classified and recorded as a touching point of a virtual problem of dimension
n + 1. The trajectory on level m has to be traced in both directions (this
is where the initial orientation of z(#,,4+1) has to be chosen and recorded in
order to be reversed later) and a backward pointer to &,,41 is kept for the
whole tracing.

The computation halts at the boundary of a prescribed large cube B,
to which the whole process is assumed to be confined, or if a critical- or
touching point is found twice on level m. The latter is done to recognize cyclic
trajectories and to avoid repeated tracing of parts of the current trajectory.

In either case the local trajectory section is declared to be completely
traced; if this is the case for the other orientation, too, the complete trajec-
tory component is considered to be traced, and %,,,1 is marked as “traced”
on the list.

New critical— or touching points found on level m are added to the list
on that level. For efficiency reasons, tracing continues until a trajectory—
component on level m has been traced in both directions.

To start a new trajectory the tree-like data structure is searched for avail-
able new starting points, always beginning at the highest possible dimension
level. The search algorithm uses the fact that a critical point recorded on

14

level m starts a new trajectory component on level m + 1 while a touching
point recorded on level m starts a new trajectory on level m — 1. Recording
the exceptional points on “their” level facilitates cycle checking, which must
be efficient because it occurs very frequently.

3.5 Reducing the Number of Touching Points

Whenever the quantity
R A (6)
for two touching points #; and Z5 on level m on the same trajectory is small,
the new trajectory components 77 and Ty starting at #; and 5 on level m —1
will be confined to parallel touching hyperplanes on level m with distance
p. On both hyperplanes the same function is used to define the trajectory,
and thus Ty and Ty will differ only slightly on level m — 1. This also holds
for the critical points on them, and these will normally lead then to the
same trajectory on level m again. Since we are really interested in touching
hyperplanes and not in touching points, it is reasonable to start the recursion
in only one of #! and 2. Note that this argument is quite similar to the
one used to explain possible tolerances in the calculation of touching points.
Thus each new touching point ¥, of a trajectory on level m is compared
to the other touching points already found on the same level. If the differ-
ence defined by (6) is less than an input parameter p, the touching point
T, 1s discarded. This important additional strategy strategy keeps the algo-
rithm from tracing large numbers of similar trajectories on parallel touching
hyperplanes without getting any new information (see fig. 3). It is not sen-
sitively dependent on the actual value of p, provided that p is neither zero
nor extremely small (see Table 2 below).

4 Example

In order clarify some of the points made in the preceding sections we now
discuss a larger example. It has been produced by applying the present
method to the function f, defined in section 5, where n := 4 and d := 5.
The parameter p was set to 1 and we considered the region [—6,6]* C IR*.
Furthermore, we traced three levels, i.e. we had to solve subproblems of
dimension 4,3 and 2. Fig. 4 shows the graph traced by the Algorithm.

15

The three levels in the figure correspond to the 4,3 and 2 dimensional
subproblems. The different trajectory components are represented by strings
consisting of the symbols T, ¢, C, ¢, and 3. T and ¢ stand for touching points
and C and ¢ for critical points on the respective level (dimension). The
symbol () denotes a trajectory on which no touching points and no critical
points were found. The symbol 4 means that a trajectory was found, which
had been traced before and thus is not traced again. In Fig. 4 the trajectory
components on the different levels are joined by arrows labeled by sequence
numbers indicating the order in which the tree was traversed.

One type of arrow originates at a touching point (denoted by the symbol
‘t’) at level L = 4 or 3 and leads to a subproblem in dimension [— 1.
Thus such an arrow points to a trajectory component at level L — 1. The
other type of arrow originates at critical points on a level L. = 2 or 3 and
points to a trajectory component traced at level L + 1. The symbols ‘1’
denote touching points which were not expanded because of the p-heuristic
described in section 3.5, or because they occured on the lowest possible level,
i.e. on level 2. The symbols ‘c’ denote critical points of an L-dimensional
subproblem which initiates a new problem in dimension L + 1. The symbols
‘C’ on level L stand for critical points that do not initiate a new problem on
level L 4+ 1 either because L. = 4 or they result from the fact that a touching
point ¢ on level L is a critical point for the corresponding subproblem on
level L — 1.

As can be seen from figure 4 the algorithm found 9 critical points on level
4. These are critical points of f,.

The algorithm was started at the origin and the vector ¢ was taken as the
gradient of f, at the origin. The first trajectory component traced contained
2 critical points of f, (arrow labeled 1). Furthermore, two touching points
were found.

Then a 3-dimensional problem was started at the first touching point
found on level 4 (arrow 2). This 3-dimensional problem led to 2 touching
points on level 3. One of them was discarded by the p-heuristic. It is thus
marked with “T’. Next, according to the strategy described in section 3.4, a
new 3-dimensional problem is started at the second touching point found on
level 4 (arrow 3). This leads to 2 new touching points on level 3.

To continue, the algorithm selected the touching point remaining in the
first trajectory traced on level 3 (arrow 4) and starts a subproblem on level 2,
i.e. a 2-dimensional problem. Two touching points and one critical point are

16

found. The two touching points are labeled ‘T’ rather than ‘t’ since the
bottom level was reached and no dimensional recursion was to be performed.

At the next step the algorithem selects the critical point found on level
2 and starts in it a new problem on level 3 (arrow 5). This leads to 3
critical points on level 3 which are expanded (and lead to problems on level
4) into the trajectories pointed to by the arrows labeled 6,7 and 8. One of
the new trajectories on level 4 contains no critical points and no touching
points. Thus it is labeled @) in figure 4. The other two trajectory components
on level 4 contain respectively 2 and 5 critical points of f, and no further
critical points are found by subsequent tracing.

5 Numerical Tests

5.1 Test Problems

The algorithm has been tested on a large number of problems with up to
32 dimensions. Along with some of these problems we include here, for
the purpose of comparison, some standard test problems extracted from the
literature.

1. The two-dimensional siz—hump-camelback function defined by

1
felx) = g:zj? — 2.1 4 427 + 2120 — 423 + 42

is a standard test problem. The function f. has 15 critical points in the
region [—2.5,2.5]%. Their minimum distance from each other is greater

than 0.3.

2. This test problem is the error function of a two-dimensional linear
Chebyshev approximation:

fi(x) 0.066581 sin (71) sin (wa3)

0.002503 (sin (waq) sin (37a,) + sin (37aq) sin (71':1;2))
0.000086 sin (37x4) sin (37 az)

0.000559 (sin (waq) sin (hray) + sin (hraq) sin (71':1;2))

— 21(1 = aq)xa(l — z9).

+ + +

17

The function f; has 51 critical points in the region [0, 1]%. Their mini-
mum distance from each other is greater than 0.05. Many of the critical
points have narrow oval regions of attraction.

3. This problem is defined by

where d = 5 and

a1:2, Alz—l, $%——2, $%IO7
ag =3, N\g=-2, 22=3, 2i=0,
az=1, A\3=-3, a}=1, a3=2,
ay=4, \y=-3, z1=0, a3=2,
as=2, A\s=-2, 27=0, a5=-1.

The function f. has 9 critical points in the region [—5,5]?. Their
minimum distance from each other is greater than 0.95. The maxima
of this function are sharp peaks. A contour plot of this function along
with a Newton—trajectory and the touching hyperplanes is shown in

Fig. 3.
4. The four—dimensional Shekel functions are defined by (cf. Ref. 9)

d
1

where d > 1, the a' are vectors in IR", and the ¢; are real numbers
defined as in Ref. 9. Common values for d are 5, 7, and 10. (In
the literature the resulting functions functions are usually denoted by
SQRN5, SQRNT and SQRN10.) For these d the functions fs apparently
have 11, 13, and 21 critical points in the region [0, 12]*. Their minimum
distance from each other is greater than 0.55, 0.9, and 0.75. Some of
the extrema of f; have tiny regions of attraction.

5. The last example is n—dimensional:

d

fola) := Z arctan <||:1; — ai||2>

=1

18

on the region [—6,6]", where d > 1 and the vectors a' € [—6,6]" are
randomly chosen. The number of critical points and the appropriate
domain of search both depend on d and the a'. For d = 3 and d = 10
and the vectors chosen for the examples given in Tab. 4 the number of
critical points is given by the righthand entries of the table below and
the minimum distance of critical points from each other is given by the
lefthand entries:

n|d=3|d=10
21201510215
8 11.715(1.6]13
161355 1.5](13

5.2 Test Results

The tests were conducted by A. Drexler using the program described in
Ref. 8. Each test was run 10 times with random starting points x5 and fixed
estimates for deptp and p. The vector g was computed as ¢ := V f(x,), and
the maximal number of levels to be traced was prescribed via a constant /..

In Tables 1-4, the len entries list the average length of the trajectories by
levels and in total. The lengths were computed by seperately summing the
lengths of the steps taken in the various (n — k)—dimensional subproblems for
kE=0,1,..., 4 — 1. The evals entries list the average number of gradient—
and Hessian evaluations by levels and in total. Since the ultimate goal was
to find all critical points and numerous critical points were found in every
case the succ entries list the percentage of runs that successfully found all
critical points.

The “Level” entry indicates the dimension of the subproblem traced in
the corresponding row; when there are [,,,, traced levels for an n—dimensional
problem, we have [,,,, rows with dimensions n,n—1,...,n—1[,.,,+1 indicated
below “Level”.

5.3 Conclusions

The test results show that the method is able to find all critical points for
an astonishingly large percentage of test runs. It should not be applied with
high resolution (i.e. deptp small, p = 0,1, = n) for a single value of ¢ and
xg, tracing trajectories recursively through all levels, because the computing

19

Table 1: Results for the functions f. and f;.
fo, deptp =03, p=0 | fi, deptp =0.05, p=0

n=2 Level | len evals succ len evals succ
Loz = 2| 15.0 465 100% 7.8 1536 90%
—— 21 16.5 533 10.0 2131

11139 112 4.7 294

Total | 30.4 645 100% | 14.7 2425 100%

Table 2: Results for the function f..

deptp = 0.95 p=20 p =09 p = 1000
n =2 Level | len evals succ len evals succ len evals succ
Lmas = 1 2 | 173 482 20%
lmaz = 2 2 52.2 1671 46.0 1425 33.9 1015
1 62.9 211 42.7 142 11.0 38
Total 115 1882 90% 88.7 1567 90% 44.9 1053 80%

effort increases too much (see Table 4, n = 8,16). However, the method
has rather good chances to find all critical points when applied for a small
number of different choices of z; and ¢, tracing only a small number of levels
with values of deptp and p which are not too small. Recursion by at least one
or two levels is strongly recommended (see Table 3). The chance of finding
all critical points is enhanced, of course, when several runs with different
starting points are made.

It is always a difficult issue to compare the efficiency of different algo-
rithms for global optimization. For local optimization one common criterion
is the local convergence rate and the size of the regions of convergence. But
for global optimization there is, as yet, no generally accepted measure for
the efficiency on which comparisons could be based. One usually compares
the number of function evaluations for some test problems. Furthermore, our
method is designed to compute all stationary points and not just the global
minimizers. Since many methods were tested on the Shekel-functions f,; and
results for this function are given in the literature we shall briefly compare
our results for these functions (Table 3) with the results obtained by other
researchers (cf. Ref. 9).

Branins original method needs 5500, 5020 and 4860 gradient and hessian

20

Table 3: Results for the functions f;.

d = 5, deptp = 0.55 d =7, deptp = 0.9 d = 10, deptp = 0.75
n =4 Level len evals succ len evals succ len evals succ
lmaz = 1 4 28.3 551 0% 37.9 715 0% 29.7 540 0%
lmaz = 2 4 46.0 942 64.0 1233 68.7 1304
p=1.0 3 61.5 1153 79.0 1388 59.1 987

Total 108 2095 30% 143 2661 30% 128 2291 10%

lmaz = 4 4 | 77.8 1646 94.2 1823 125 2419
p=10 3 170 3277 185 3190 187 3051
2 176 1806 214 1805 235 2325
1] 299 121 44.3 120 85.8 279

Total 454 6850 100% 537 6938 100% 633 8074 60%

evaluations for SQRN5, SQRNT and SQRN10 respectively. In a much more
efficient implementation of the method by J. Gomulka (cf. Ref. 5) these
numbers were reduced to 275, 251 and 243 gradient and hessian evaluations
respectively. Since these implementations traced only one component on level
n we have to compare these results with the numbers given in the first row
of table 3. Thus the numbers for our method are 551, 715 and 540 gradient
and hessian evaluations. In comparing these numbers one has to keep in
mind that our results are averages obtained by starting the method in 10
randomly generated starting points within the feasible region whereas the
numbers given by Gomulka are the results for a single run. So we might claim
that the efficiency of our implementation (considered as an implementation
of Branins method, i.e. with /,,,, = 1) is roughly comparable to the efficient
implementation by Gomulka. It has been already observed by Gomulka that,
for these examples, it is a matter of “pure chance”, wether the ordinary
Branin method finds the global minimizer. However, as can be seen from the
results in table 3 for /,,,, = 2,4, our scheme of dimensional recursion greatly
enhances the probability that all stationary points are found. For [,,,, = 2
and 4 the global minimizer was found for all three functions in every case.
A comparison of our method with a stochastic method is even more diffi-
cult. We shall briefly compare the present method with the efficient “Multi
Level Single Linkage” (MLSL) method proposed in Ref. 12. The authors
report 404, 432 and 564 function evaluations respectively. However, it is
not clear from their presentation, how these numbers were obtained. For

21

Table 4: Results for the functions f,.

d=23 d=10

Level | len evals succ len evals succ
n = deptp = 2.0 deptp = 0.2
Loy = 1 2| 21.6 263 60% 14.2 357 0%
lpaz = 2 2| 30.6 360 23.5 626
p=1.0 11 32.3 49 29.8 316

Total | 62.9 409 100% | 53.4 942 30%
n =3~ deptp = 1.7 deptp = 1.6
lpar = 1 8| 36.8 1013 60% 37.5 985 0%
lpaz = 2 81 59.8 1643 69.5 1818
p=1.0 71 65.1 1770 60.8 1644

Total | 125 3413 80% 130 3462 10%
n =16 deptp = 3.5 deptp = 1.5
law = 1 16 | 30.8 559 0% 85.0 3068 10%
lpaz = 2 16| 77.6 1392 147 5358
p=1.0 15| 51.8 1055 117 4740

Total | 129 2447 80% 264 10098 40%

instance, MLSL generates an initial sample of function values, then selects
certain points from this sample in which local searches are started. For these
local minimizations a variable metric method (VAI0AD) was used. There-
after the sample is increased and new local searches are initiated until a
stopping criterium is satisfied. Obviously, at least the gradient of the func-
tion must also be evaluated a certain number of times. Also it is not clear,
wether the function evaluations used to generate the initial sample were in-
cluded in the numbers. MLSL did not find the global minimizer for SQRNT
in one of four runs. Although this problem could be avoided, by choosing
different parameters for the stopping criterium, this modification resulted in
more function evaluations (factors 2 and 3 for SQRN7 and SQRN10).

The efficiency of the numerical implementation described above can be
further improved, for instance by using update schemes for the Hessian ma-
trix. We do not claim that our method is more efficient than most other
methods. Instead we feel that, in the lack of generally accepted measures for
the performance of algorithms for global optimization, at present all methods

22

have distinct advantages and drawbacks. The main purpose of this study was
to show that the general idea of recursive descent proposed in Ref. 2 is nu-
merically feasible and yields satisfactory results. Since Newton—trajectories
have strong theoretical properties it can be hoped that future results on the
topology of the Newton—trajectories can in some practically important cases
guarantee that all critical points are found.

The idea of Newton—trajectories is not limited to IR™ but can be extended
to functions on differentiable manifolds. Moreover, insight into the geometric
structure of the trajectories might also help with the study of the convergence
behavior of the usual Newton method.

23

References

1]

DIENER, I., On the Global Convergence of Path-Following Methods to
Determine All Solutions to a System of Nonlinear Equations, Mathe-
matical Programming, Vol. 39, pp. 181-188, 1987.

DIENER, I., Trajectory Nets Connecting All Critical Points of a Smooth
Function, Mathematical Programming, Vol. 36, pp. 340-352, 1986.

BrANIN, F.H., A Widely Convergent Method for Finding Multiple So-
lutions of Simultaneous Nonlinear Equations, IBM. Journal of Research
and Development, pp. 504-522, 1972.

GOMULKA, J., Remarks on Branin’s Method for Solving Nonlinear E-
quations, Towards Global Optimisation, Edited by L.C.W. Dixon and
G.P. Szego, North-Holland, Amsterdam, Holland, Vol. 1, pp. 96-106,
1975.

GoMULKA, J., Two Implementations of Branin’s Method: Numerical
Ezxperience, Towards Global Optimisation, Edited by L.C.W. Dixon and
G.P. Szego, North—Holland, Amsterdam, Holland, Vol. 2, pp. 151-163,
1978.

HArDY, J.W., An Implemented Extension of Branin’s Method, Towards
Global Optimisation, Edited by L.C.W. Dixon and G.P. Szeg6, North—
Holland, Amsterdam, Holland, Vol. 1, pp. 117-139, 1975.

ORTEGA, J.M., and RHEINBOLDT, W.C., [terative Solution of Non-
linear Equations in Several Variables, Academic Press, New York, New

York, 1970.

DREXLER, A., Zur Numerik eines erweiterten kontinuierlichen
Newton—Verfahrens, Universitat Gottingen, Diplomarbeit, 1988.

DixonN, L.C.W., and SZzEGO, G.P., The Global Optimization Problem:
An Introduction, Towards Global Optimisation, Edited by L.C.W. Dixon
and G.P. Szego, North—Holland, Amsterdam, Holland, Vol. 2, pp. 1-15,
1978.

24

[10]

[11]

[12]

ALLGOWER, E. L., and GEORG, K., Predictor—Corrector and Simpli-
cial Methods for Approximating Fixed Points and Zero Points of Non-
linear Mappings, Mathematical Programming, Edited by A. Bachem,
M. Grotschel and B. Korte, Springer—Verlag, Berlin, Germany, pp. 15—
56, 1983.

GEORG, K., Zur Numerischen Realisierung von Kontinuitdtsmethoden
mit Prddiktor—Korrektor- oder simplizialen Verfahren, Habilitations-
schrift, Bonn, Germany, 1982.

RinNoOoYy KAN, A.H.G., BOENDER, G.C.E., AND TIMMER, G.T.,
A Stochastic Approach to Global Optimization, Report No. 8429/0,
Erasmus University, Rotterdam, Holland, 1984.

25

List of Figures

1

Local control.
Quasi-bifurcation with hidden switch to another trajectory
component, recognizable by checking orientation.
Contour plot of the function f. with a Newton trajectory and
the touching hyperplanes.
Graph traced by the algorithm. The function is f, with n =
4,d =5 and p =1 in the region [—6,6]*.

List of Tables

[N

Results for the functions f. and f;.
Results for the function f..
Results for the functions f,.
Results for the functions f,.

26

Figure 3: Contour plot of the function f. with a Newton trajectory and the
touching hyperplanes.

27

crecrcrctsc ¢ TCTC tC EIEI

I\ VAN

¢ CCI Tt C ttC C
c

0 t

1% 18 1%
cC C

Figure 4: Graph traced by the algorithm. The function is f, withn =4,d =5

and p = 1 in the region [—6,6].

TTC TTc

28

