
Adaptive Greedy Algorithm for Solving LargeRBF Colloation ProblemsY.C. Hon, R. Shabak, and X. Zhou�AbstratThe solution of operator equations with radial basis funtions by ol-loation in sattered points leads to large linear systems whih oftenare non{sparse and ill{onditioned. But one an try to use only a sub-set of the data for the atual olloation, leaving the rest of the datapoints for error heking. This amounts to �nding \sparse" approxi-mate solutions of general linear systems arising from olloation. Thisontribution proposes an adaptive greedy method with proven (butslow) linear onvergene to the full solution of the olloation equa-tions. The olloation matrix need not be stored, and the progressof the method an be ontrolled by a variety of parameters. Somenumerial examples are given.1 IntrodutionConsider an abstrat operator equationLu = f; L : X ! Y; (1)for a linear mapping between Hilbert spaes X and Y , where f 2 Y isgiven. The operator L may be omposed of some di�erential equation onthe domain 
 and some boundary onditions on �
, but we do not arefor details here. The reader may think at this stage of a lassial Dirihletproblem, but should be aware that we put both a di�erential equation andboundary onditions into a single operator, whose domain X and range Ywill then onsist of artesian produts of ertain Sobolev spaes.�The work desribed in this paper was supported by a grant from the German AademiExhange Servie and the Researh Grants Counil of the Hong Kong Joint ResearhSheme (Projet No. G HK025/00) 1



Disretization of suh a problem an be done by piking a �nite number ofontinuous funtionals � on Y and replaing (1) by�j(Lu) = (�j Æ L)(u) = �j(f) =: fj; 1 � j � N: (2)Using �j := �j Æ L, we thus have a generalized interpolation problem�j(u) = fj; 1 � j � N; (3)but we have to keep in mind that the funtionals �j may be rather peuliar,omprising evaluation of a di�erential operator in the interior or of a bound-ary operator on the boundary of the domain 
. To avoid redundanies in thedisretization, we an assume that the funtionals �j := �j Æ L are linearlyindependent on X.A straightforward numerial tehnique for solving (3) would simply pik anN{dimensional linear subspae SN of X on whih the funtionals �j areontinuous and linearly independent. If evaluated on a basis of SN , thesystem (3) will lead to a nonsingular system of linear equations, if the aboveassumptions are satis�ed. But it is by no means trivial to assure linearindependene of the funtionals on the spae SN . In partiular, if SN is �xedbeforehand, the linear independene of more or less arbitrary funtionalsannot be expeted.A possible way out of this dilemma is to use the funtionals in the set � =f�1; : : : ; �Ng for a proper de�nition of the spae SN . This an be done bytaking a suÆiently smooth symmetri funtion � : 
�
 ! IR and settingSN := S� := span n�xj�(x; �) : 1 � j � No;where the supersript x at �xj stands for evaluation of the funtional �j withrespet to the variable x. The system (3) then takes the formNXk=1�k�xj�yk�(x; y) = fj; 1 � j � N (4)for a linear ombination s := NXk=1�k�yk�(�; y): (5)Note that (4) now has a symmetri oeÆient matrixA� := ��xj�yk�(x; y)�1�j;k�N (6)2



and we have to ask for funtions � whih make the matrix nonsingular oreven positive de�nite for any hoie of linearly independent funtionals onX. Fortunately, suh stritly positive de�nite funtions exist, and they areexpliitly available. They an even be found in radial form�(x; y) = �(kx� yk2); � : [0;1)! IRwith some salar funtion �, and the Gaussian �(r) = exp(�r2) is a promi-nent example. Surprisingly there are also radial ases where � is om-patly supported. A simple and useful example is Wendland's funtion�(r) = (1 � r)4+(1 + 4r) whih works in spae dimensions up to 3 and(roughly) for all funtionals that an be niely applied to both argumentsof �(x; y) = �(kx� yk2).This is the setting of symmetri olloation that we want to work in, butsome remarks seem appropriate at this point. It is by no means a trivialtask to pik the \right" funtion � for a given operator equation or a givenlass of linear funtionals, and is even less trivial to derive bounds for theerror u� s between an exat solution u of (1) and an approximate solutions of the form (5) to the disretized system (4). We refer the reader to theliterature on olloation with \radial" basis funtions [2, 4, 5, 7, 8, 9, 10℄. Inthis ontribution, we fous on the numerial tehniques to solve very largesystems like (4) eÆiently, making use of the bakground of \radial" basisfuntions. In addition, we onentrate on approximate solutions with onlyfew nonzero oeÆients �j. The reason is that the evaluation of a full sumin (5) on many points will be too ostly, if the sum ontains a term for eahdata value. In short, we try to approximate N data with K << N terms,and we want to keep the storage and omputational e�ort proportional toN . This implies that we try to avoid storage of the full matrix A�. In theontext of �nite element methods, the generation of oeÆient vetors withmany zeros would be undesirable, but for radial basis funtion tehniques theopposite is true. The user is free to plae the enters for the basis funtions,and just a subset of the atual data points may be fully suÆient to yield apresribed auray.2 Native Spae NormWe shall make use of a striking property of stritly positive de�nite funtions:they indue norms k:k� on funtionals and funtions. On funtionals, thisworks via the inner produt(�; �)� := �x�y�(x; y):3



Funtions s of the form (5) an be written as s� := �x�(x; �) with a �nitelysupported funtional �, and then one de�nes(s�; s�)� = (�; �)� = �x�y�(x; y) (7)on funtions. Naturally, these de�nitions generalize to inner produts inertain Hilbert spaes indued by �, but for details we refer the reader topapers on these \native" spaes. There are good reasons to view this norm askind of an energy. We remark in passing that onditionally positive de�nitefuntions would require a somewhat more ompliated treatment, but we donot want to overload this presentation with tehnial details.But there is another important feature to be exploited. A solution s�;u of theform (5) to the system (4) with data fj := �j(u) has minimal norm k:k� underall other interpolating funtions s� := �x�(x; �) with arbitrary funtionals �.By standard variational arguments this implies the orthogonality relation(s�;u; u� s�;u)� = 0for all u from the native spae. If this is satis�ed, the Pythagorean Theoremimplies kuk2� = ku� s�;uk2� + ks�;uk2�; (8)and we shall make frequent use of this equation.For the above argument to work we have to make sure that the operatorequation (1) has a solution u that lies in the native spae of the funtion �.In pratie, this requires � to be suÆiently \nonsmooth" with respet to thesmoothness of u indued by the regularity theory for the problem (1). Herelies a hidden obstale for appliations with solutions u of limited smoothness:there may be no nie and ontinuous � suh that u lies in the native spae for�. For instane, the radial funtion whose native spae is the Sobolev spaeW 12 (IR2) is the Bessel funtion K0(r) with a logarithmi singularity at zero.This, for instane, makes it hard to handle weak solutions u 2 W 12 (IR2) toellipti problems on domains with inoming orners. But this problem anvery probably be overome by future researh, beause the urrent theoryhas so far onentrated on at least ontinuous funtions.A related additional ondition is that the funtionals �j must be ontinuousand linearly independent on the native spae for �. This usually does notause any problems. But we want to point out that the disrete solution ofsystems like (4) will be possible in many ases where the above theoretialrequirements are not met, e.g. in situations where the operator equation (1)4



is ill{posed, has a singular solution or no solution at all. The tehnique justprodues a funtion satisfying the disretized equations and having minimalenergy norm under all suh funtions. In other words, symmetri olloationats like a regularization method, and naive users have to be aware of thisfat, sine the tehnique always produes some result, even if it belongs to aquestion that has no answers at all. On the other hand, if no other methodis appliable, setting up a system (4) with a suitably piked positive de�nite� will nearly always work somehow, even if results have to be interpretedwith great are.3 Greedy Iteration on ResidualsThe orthogonality relation (8) simply says that the energy of a funtion uan be split up into the energy of a generalized interpolant s�;u with respetto � = f�1; : : : ; �Ng plus the energy of the residual f � s�;u. We shall applythis split reursively by interpolating the residual. For pure interpolation, athorough analysis of suh tehniques was provided in [13℄. Here, we deal withthe ase of generalized interpolation and onentrate on iterative tehniquesto approximate s�;u by funtions of the form (5) that ontain only a smallnumber of nonzero terms. The basi idea is to use a sequene of generalizedinterpolants to just a single data funtional eah, ating on residuals of theprevious step. Sine the funtional with the largest residual is piked, thetehnique an be alled greedy.Algorithm 1 Assume data fj =: f 0j ; 1 � j � N and funtionals � =f�1; : : : ; �Ng to be given. Fix some  2 (0; 1℄ and iterate over an indexk = 0; 1; ::: as follows:� Find some index jk with 1 � jk � N suh thatjfkjk j � kfkk1 := max1�j�N jfkj j; (9)e.g. by taking the atual maximum.� Then overwrite all values fkj for 1 � jk � N byfk+1j := fkj � fkjk �xj�yjk�(x; y)�xjk�yjk�(x; y)and repeat the iteration for k + 1 instead of k.5



� During the iterations, sum the funtionssk := �yjk�(�; y)=�xjk�yjk�(x; y)by adding 1=�xjk�yjk�(x; y) to the oeÆient �jk in the representation(5) of the sum.This algorithm is very primitive, but it has (at least theoretially) an un-expetedly strong onvergene property that we prove in the rest of thissetion.Theorem 1 If the funtionals �j are linearly independent and ontinuouson the native spae of �, then the sum of the funtions sk of Algorithm 1onverges at least linearly to the solution s�;u of the full system (4). Thenorm kfkk1 of the residuals onverges linearly to zero.Proof: The hypothesis of Theorem 1 allows to onlude that the solutions�;u of the system (4) exists and is unique among all funtions s of the form(5). For later use we note that all suh funtions satisfy1ksk� � ksk�;1 := max1�j�N j�j(s)j � C1ksk� (10)with �xed onstants 0 < 1 � C1, beause we have equivalene of norms on�nite{dimensional vetor spaes. Now we see that Algorithm 1, when viewedas working on funtions in the native spae, usesu0 := s�;u; sk := s�jk ;uk ; uk+1 := uk � sk:Note that the funtions uk are all of the form (5), but the algorithm atu-ally does not work on the funtions, but rather on the data �j(uk) of thesefuntions. However, equation (8) implieskuk+1k2� = kukk2� � kskk2� � kukk2�:This proves that the numbers kukk2� deay weakly monotonially, but wewant linear onvergene to zero. >From (7) we getkskk2� = (fkjk)2�xjk�yjk�(x; y) = (fkjk)2k�jkk2� (11)and we want to bound this norm from below. Now we look at (9) and use(10) to get jfkjkj � kfkk1= kukk�;1� 1kukk�6



With 2 := max1�j�N k�jk�we then have kskk2� � 22122 kukk2�and get linear onvergene kukk� ! 0 fromkuk+1k2� � kukk2�  1� 22122 ! :The funtions gm := mXj=0 sj = u0 � um+1 = s�;u � um+1must then onverge linearly to s�;u. Sine everything happens in the linearspae of funtions (5), the hoie of norm for linear onvergene is irrelevant.2Sine 1=2 will often be an extremely small number, linear onvergene ishard to observe in pratie. A weaker onvergene behaviour aording toku0k2� � kum+1k2� = mXk=0 �kukk2� � kuk+1k2��= mXk=0 kskk2� (12)is muh more near to reality. In fat, the sum on the right{hand side on-verges to ks�;uk2� for m ! 1. It shows how the \energy" of s�;u graduallybuilds up, and it allows easy monitoring via (11). In view of (12) and (11),a omparison of the sum of squares of kskk� and kfkk1 reveals some infor-mation on the onstants in the error analysis.The algorithm is \greedy" in the sense that it tries to improve on the largestavailable residual, and it is adaptive in the sense that it automatially onen-trates on regions where the residuals are still large. For variations of greedyalgorithms in similar ontexts, see [1, 14℄ and for adaptive use of radial basisfuntions, see [6, 11, 13℄.Convergene of the algorithm is rather slow, but its merits for extremelylarge problems rely on another property:7



It brings in one oeÆient at a time, and, at least for very largeproblems, it never works on approximations that have the fullnumber of nonzero oeÆients.Let us do a very rough analysis of its performane, based on the weakeronvergene behaviour like 1=k. After k steps the order of magnitude of theresiduals will be brought down by a fator of 1=k, and this is ahieved byusing only k approximating funtions. One an possibly expet 1% aurayafter 100 steps, using just 100 oeÆients.This strategy does not make sense if one wants an exat solution of a sys-tem of, say, 100,000 data points. But it often does not make sense to useall 100,000 degrees of freedom to solve suh a system exatly, oming upwith a \solution" with 100,000 oeÆients, whose sheer size limits its useful-ness. It seems to be muh more reasonable to get away with 1000 nonzeroparameters that �t the data to an auray of 0.1%. The above algorithmadaptively piks data funtionals (and orresponding oeÆients) that arethe best andidates for further treatment, and it turns out to be extendableto an algorithm that is the �rst to use radial basis funtions of di�erent salesadaptively. We shall address this in the next setion.4 Adaptive SalingWe now want to look at a modi�ation of Algorithm 1 that uses saled radialbasis funtions �(x; y) := �(kx�yk2=2). In partiular, we aim at funtions� that have support in [0; 1℄, suh that �(x; y) vanishes for kx� yk2 > .Algorithm 2 We �x a large starting sale  and real onstants 0 < �; � <1 < �. Furthermore, we need an iteration ount K � 1, a sale index i = 0,another integer m � 0, and a �xed number M of sales to try loally.Until the disrete norm kfkk1 of residuals falls below a presribed bound,an outer iteration tries to redue the disrete norm of residuals by a fatorof �. This situation is alled \suess" in what follows. A middle in�niteloop tries larger and larger numbers K;K�;K�2; : : : of iterations, and aninner �nite loop tries sales �i > �i+1 > : : : > �i+M�1 until suess isreahed. In ase of suess using sale �j and K�` iterations, we may (butnot need to) set i := max(0; j�m) and K := max(1; K�`�m) to avoid returnto extremely large sales and extremely small iteration ounts. After suess,we do another outer iteration. 8



Sine we know that at any �xed sale Algorithm 1 must bring the residualsto zero after suÆiently many iterations, the middle loop must terminate ateah of its �nitely many sales. It terminates using the sale that roughlytakes the fewest number of new points to reah suess. Sine the middle loopredues the residual norm by a ertain fator smaller than 1, any presribedauray an be reahed after suÆiently many outer iterations.Note that the algorithm tries �rst to get away with as few new interpolationfuntionals as possible, using the smallest possible iteration ount that leadsto a redution of the residuals. For eah iteration ount, it tests large sales�rst, but priority is given to the iteration ount over the sale. For ompatlysupported funtions, extremely small sales will have a very loal e�et andwill not lead to any reasonable redution in early stages of the algorithm.This means that the algorithm tends to prefer large sales over small salesat early stages.Test runs indiate that the built{in restrition to inreasing inner iterationounts and to dereasing sales helps to save omputation time, beause thisbehaviour an be observed in many ases when running without restritions(i.e. when starting eah iteration of the outer loop with  = �0 and K = 1,whih does not spoil the onvergene argument if the number of atuallytested sales remains �nite).If applied for ompatly supported radial basis funtions, the algorithm inits above form reahes smaller and smaller sales, until the alulations anbe loalized and parallelized. This has not yet been fully exploited in thenumerial examples following in the next setion. As soon as loalization setsin, it does not make any sense to insist on \few" nonzero oeÆients, beausethe oeÆients in use will then be tied to loal behaviour of the residuals.But we want to point out a further generalization. One an view the inneriteration just as a trial of M di�erent radial basis funtions, ignoring saleompletely. Sine the middle iteration inreases the number of iterationsfor eah funtion, it will automatially selet the radial basis funtion thatreahes suess using the fewest enters. The inner loop must be �nite, butafter eah suess one an ome up with a di�erent set of M andidatesfor radial basis funtions. It is easy to inorporate thin{plate splines ormultiquadris at early stages, and one an go over to ompatly supportedfuntions when it omes to resolving loal details.
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5 Numerial ResultsIn this setion, the adaptive greedy method is demonstrated by solving thePoisson problem �2u�x2 + �2u�y2 = f in 
u = g on �
 (13)where the solution domain 
 is ontained in the unit square [0; 1℄ � [0; 1℄,and where �
 is the boundary of 
. We disretized both the Laplaian dataprovided by f and the Dirihlet data provided by g. This was done by� desribing the domain via a parametrized periodi boundary urve plusan indiator funtion deiding whether a point (x; y) lies inside thedomain,� providing boundary data at equidistant parameters on the boundaryurve,� using these points on the boundary also for olloation of the Laplaianvalues,� superimposing the domain with a �ne regular grid of meshwidth h andkeeping only those grid points that fall inside the domain and do nothave distane less than h=4 from one of the boundary points.The regular grid in the �nal step an be replaed by any assignment ofdata points that avoid oinidene. Everything will work the same way forsattered data.This setup was �rst used for large h = h0 to get a starting olloation whih issolved by a linear equation system. To ensure enough points on the boundary,the distribution of points was suh that for h0 = 0:5 and the full domain[0; 1℄� [0; 1℄ one gets the standard regular 3�3 on�guration, where 8 pointsare for Dirihlet data on the boundary and all 9 points are for the Laplaandata. All the rest is done by standard saling.After the starting approximation is omputed, a muh smaller h1 is used inour examples to generate the atual data. We used Wendlands C6 funtion�(r) = (1� r)8+(1 + 3r + 18r2 + 35r3) and the valuesh1 = 1=128� = 0:95� = 2�1=6� = 2M = 1310



and set Knew = �k�1Kold if suess within �kKold steps ourred. This yieldsup to 16384 interior data points, but we want to get away with fewer nonzerooeÆients. In addition, we performed a restart with the starting value of when the residuals were redued to 25%. This helped to prevent the methodfrom dereasing  too quikly.Note that the method does not diretly aim at a solution of the PDE prob-lem. Instead, it is an iterative method to alulate an approximation to thesolution of a very large olloation problem, and one annot expet that thequality of approximation to the PDE solution is better that the reprodutionquality for the solution of the linear system. We thus annot hope that theroot{mean{square error with respet to the solution of the PDE tends tozero, espeially if the latter is not alulated on our data loations. Aord-ing to Theorem 1, the adequate way to provide supporting evidene for themethod is to demonstrate the deay of the maximum norms kfkk1 of thedisrete residuals during the steps of the method.These ome in two lasses, Dirihlet boundary residuals and Laplae residualsinside the domain. Very often these residuals di�er in orders of magnitude.We alulate their relative magnitude after the startup step and use this tointrodue a weighted maximum norm whih usually puts a larger weight onthe quality of the boundary values.The following simple example was done on the irle with enter (0:5; 0:5)and radius 0.5, using g = (x� 0:5)2 + (y � 0:5)2 + 1, whih also is the exatsolution, and f = 4 with a weight of 1520 in favour of the boundary data.The following plots show the behaviour of the adaptive method.
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InteriorBoundary

Maximum residual against number of enters100010010

1010.10.010.0010.00011e-05
Max. normRMSQ

Absolute error against number of enters100010010

0.10.010.0010.0001
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Points in domain

10.80.60.40.20

10.80.60.40.20Starting approximation with 8+9 points� boundary point, also ounted as \interior" point+ truly interior pointPoints in domain

10.80.60.40.20

10.80.60.40.20First 460 aepted enters
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Points in domain

10.80.60.40.20

10.80.60.40.20Final 1586 aepted entersWe present another example. Here, f = g = 1 on a smooth but irregulardomain with an unknown solution to the Poisson problem. The residualsbehaved like
InteriorBoundary

Maximum residual against number of enters100010010

1010.10.010.0010.00011e-05and the �nal 2649 enters were
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Points in domain

0.90.80.70.60.50.40.30.20.1

0.90.80.70.60.50.40.30.20.16 ConlusionsIn this preliminary form, the proposed adaptive method is not onsideredas a serious hallenge to existing methods. Its onvergene behaviour needsimprovement by preonditioning tehniques, and the ontrol of the variousparameters deserves further study. However, our goal was to present a newidea for attaking large{sale problems with nonstandard tehniques.
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