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Abstract

The solution of operator equations with radial basis functions by col-
location in scattered points leads to large linear systems which often
are non—sparse and ill-conditioned. But one can try to use only a sub-
set of the data for the actual collocation, leaving the rest of the data
points for error checking. This amounts to finding “sparse” approxi-
mate solutions of general linear systems arising from collocation. This
contribution proposes an adaptive greedy method with proven (but
slow) linear convergence to the full solution of the collocation equa-
tions. The collocation matrix need not be stored, and the progress
of the method can be controlled by a variety of parameters. Some
numerical examples are given.

1 Introduction
Consider an abstract operator equation
Lu=f, L : X =Y, (1)

for a linear mapping between Hilbert spaces X and Y, where f € Y is
given. The operator L may be composed of some differential equation on
the domain  and some boundary conditions on 02, but we do not care
for details here. The reader may think at this stage of a classical Dirichlet
problem, but should be aware that we put both a differential equation and
boundary conditions into a single operator, whose domain X and range Y
will then consist of cartesian products of certain Sobolev spaces.
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Discretization of such a problem can be done by picking a finite number of
continuous functionals g on Y and replacing (1) by

pj(Lu) = (pj o L)(u) = p;(f) =: f;, 1< j < N. (2)
Using A; := p; o L, we thus have a generalized interpolation problem
Aj(u) = f;, 1< j <N, (3)

but we have to keep in mind that the functionals \; may be rather peculiar,
comprising evaluation of a differential operator in the interior or of a bound-
ary operator on the boundary of the domain €2. To avoid redundancies in the
discretization, we can assume that the functionals A; := p; o L are linearly
independent on X.

A straightforward numerical technique for solving (3) would simply pick an
N-dimensional linear subspace Sy of X on which the functionals \; are
continuous and linearly independent. If evaluated on a basis of Sy, the
system (3) will lead to a nonsingular system of linear equations, if the above
assumptions are satisfied. But it is by no means trivial to assure linear
independence of the functionals on the space Sy. In particular, if Sy is fixed
beforehand, the linear independence of more or less arbitrary functionals
cannot be expected.

A possible way out of this dilemma is to use the functionals in the set A =
{A1,...,Ax} for a proper definition of the space Sy. This can be done by
taking a sufficiently smooth symmetric function ® : Q2 xQ — IR and setting

Sy := Sj := span {)\J"?@(x, ) 1<y < N},

where the superscript z at A] stands for evaluation of the functional A; with
respect to the variable x. The system (3) then takes the form

N
Zak)\‘”)\y@ r,y)=f;, 1<j<N (4)

for a linear combination

s:= > apAlP(-,y). (5)

k=1

Note that (4) now has a symmetric coefficient matrix

Ap = ()\;’-’)\%@(:L‘,y)) (6)

1<j,k<N

2



and we have to ask for functions ® which make the matrix nonsingular or
even positive definite for any choice of linearly independent functionals on
X. Fortunately, such strictly positive definite functions exist, and they are
explicitly available. They can even be found in radial form

@(z,y) = o(lx —yll2), ¢ : [0,00) = IR

with some scalar function ¢, and the Gaussian ¢(r) = exp(—r?) is a promi-
nent example. Surprisingly there are also radial cases where ¢ is com-
pactly supported. A simple and useful example is Wendland’s function
¢(r) = (1 —r)4(1 + 4r) which works in space dimensions up to 3 and
(roughly) for all functionals that can be nicely applied to both arguments

of ®(x,y) = ¢(||z — yll2).

This is the setting of symmetric collocation that we want to work in, but
some remarks seem appropriate at this point. It is by no means a trivial
task to pick the “right” function ® for a given operator equation or a given
class of linear functionals, and is even less trivial to derive bounds for the
error u — $ between an exact solution u of (1) and an approximate solution
s of the form (5) to the discretized system (4). We refer the reader to the
literature on collocation with “radial” basis functions [2, 4, 5, 7, 8, 9, 10]. In
this contribution, we focus on the numerical techniques to solve very large
systems like (4) efficiently, making use of the background of “radial” basis
functions. In addition, we concentrate on approximate solutions with only
few nonzero coefficients «;. The reason is that the evaluation of a full sum
in (5) on many points will be too costly, if the sum contains a term for each
data value. In short, we try to approximate N data with K << N terms,
and we want to keep the storage and computational effort proportional to
N. This implies that we try to avoid storage of the full matrix A,. In the
context of finite element methods, the generation of coefficient vectors with
many zeros would be undesirable, but for radial basis function techniques the
opposite is true. The user is free to place the centers for the basis functions,
and just a subset of the actual data points may be fully sufficient to yield a
prescribed accuracy.

2 Native Space Norm

We shall make use of a striking property of strictly positive definite functions:
they induce norms ||.||s on functionals and functions. On functionals, this
works via the inner product

()‘7 /JJ)‘I) = )‘xuyq)(xa y)
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Functions s of the form (5) can be written as s, := p"®(z,-) with a finitely
supported functional ;, and then one defines

(53 8u)e = (A, e = N @(z,y) (7)

on functions. Naturally, these definitions generalize to inner products in
certain Hilbert spaces induced by ®, but for details we refer the reader to
papers on these “native” spaces. There are good reasons to view this norm as
kind of an energy. We remark in passing that conditionally positive definite
functions would require a somewhat more complicated treatment, but we do
not want to overload this presentation with technical details.

But there is another important feature to be exploited. A solution sy, of the
form (5) to the system (4) with data f; := A;(u) has minimal norm ||.||¢ under
all other interpolating functions s, := p*®(z, -) with arbitrary functionals p.
By standard variational arguments this implies the orthogonality relation

(SA,u, u — SA’u)Q = 0

for all v from the native space. If this is satisfied, the Pythagorean Theorem
implies
lulls = [lu = saulle + lsaulls, (8)

and we shall make frequent use of this equation.

For the above argument to work we have to make sure that the operator
equation (1) has a solution u that lies in the native space of the function ®.
In practice, this requires ® to be sufficiently “nonsmooth” with respect to the
smoothness of u induced by the regularity theory for the problem (1). Here
lies a hidden obstacle for applications with solutions u of limited smoothness:
there may be no nice and continuous ® such that u lies in the native space for
®. For instance, the radial function whose native space is the Sobolev space
W, (IR?) is the Bessel function K;(r) with a logarithmic singularity at zero.
This, for instance, makes it hard to handle weak solutions u € W (IR?) to
elliptic problems on domains with incoming corners. But this problem can
very probably be overcome by future research, because the current theory
has so far concentrated on at least continuous functions.

A related additional condition is that the functionals A; must be continuous
and linearly independent on the native space for ®. This usually does not
cause any problems. But we want to point out that the discrete solution of
systems like (4) will be possible in many cases where the above theoretical
requirements are not met, e.g. in situations where the operator equation (1)
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is ill-posed, has a singular solution or no solution at all. The technique just
produces a function satisfying the discretized equations and having minimal
energy norm under all such functions. In other words, symmetric collocation
acts like a regularization method, and naive users have to be aware of this
fact, since the technique always produces some result, even if it belongs to a
question that has no answers at all. On the other hand, if no other method
is applicable, setting up a system (4) with a suitably picked positive definite
® will nearly always work somehow, even if results have to be interpreted
with great care.

3 Greedy Iteration on Residuals

The orthogonality relation (8) simply says that the energy of a function u
can be split up into the energy of a generalized interpolant sy, with respect
to A = {\i,..., Ay} plus the energy of the residual f — s, ,. We shall apply
this split recursively by interpolating the residual. For pure interpolation, a
thorough analysis of such techniques was provided in [13]. Here, we deal with
the case of generalized interpolation and concentrate on iterative techniques
to approximate s, , by functions of the form (5) that contain only a small
number of nonzero terms. The basic idea is to use a sequence of generalized
interpolants to just a single data functional each, acting on residuals of the
previous step. Since the functional with the largest residual is picked, the
technique can be called greedy.

Algorithm 1 Assume data f; =: ]Q, 1 < 5 < N and functionals A =
{A1,..., AN} to be given. Fix some v € (0,1] and iterate over an index
k=0,1,... as follows:

e Find some index j, with 1 < 5, < N such that

k k ._ k
512 A oo 1= max, 11, (9)

e.g. by taking the actual mazrimum.

e Then overwrite all values ff for1 <7, <N by

1" Ik

20 LB (2, y)

Ik Ik

k+1 k
[t =0

and repeat the iteration for k + 1 instead of k.



e During the iterations, sum the functions

by adding 1/ N] ®(x,y) to the coefficient aj, in the representation
(5) of the sum.

This algorithm is very primitive, but it has (at least theoretically) an un-
expectedly strong convergence property that we prove in the rest of this
section.

Theorem 1 If the functionals \; are linearly independent and continuous
on the native space of ®, then the sum of the functions s, of Algorithm 1
converges at least linearly to the solution sy, of the full system (4). The
norm ||f*||s of the residuals converges linearly to zero.

Proof: The hypothesis of Theorem 1 allows to conclude that the solution
sp Of the system (4) exists and is unique among all functions s of the form
(5). For later use we note that all such functions satisfy

crl[slle < lsllaco == max |A;(s)| < Ci[s]la (10)

1<j<N

with fixed constants 0 < ¢; < (', because we have equivalence of norms on
finite-dimensional vector spaces. Now we see that Algorithm 1, when viewed
as working on functions in the native space, uses

Uy = SAuy Sk -— S)\jk’uk,uk+1 = U — Sk-

Note that the functions wuy are all of the form (5), but the algorithm actu-
ally does not work on the functions, but rather on the data A;(uy) of these
functions. However, equation (8) implies

s lls = lluells = llslla < llux/ls.

This proves that the numbers ||uz||2 decay weakly monotonically, but we
want linear convergence to zero. ;From (7) we get

(fi)? (L)

Iselle = = (11)
TN 2y)

Tk Ik

and we want to bound this norm from below. Now we look at (9) and use
(10) to get

WA = W | P
= fuxl
> yerlluklle

A,00
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With

Cy 1= lfglgjivﬂ)\jﬂé

we then have -

oate
Isklls > —+lukll3
&)

and get linear convergence ||ug||l¢ — 0 from

92 9
v2c

Nugsills < [Juelld ( - C2l> :
5

The functions

m

gm ‘= Z Sj = Uy — Um+41 = SAu — Um41
J=0

must then converge linearly to sj,. Since everything happens in the linear
space of functions (5), the choice of norm for linear convergence is irrelevant.
|

Since ¢1/co will often be an extremely small number, linear convergence is
hard to observe in practice. A weaker convergence behaviour according to

m

luoll3 = il = (el — llursall3)
kn:10 (12)

= > lsella
k=0

is much more near to reality. In fact, the sum on the right—hand side con-
verges to |[sau||3 for m — oo. It shows how the “energy” of sy, gradually
builds up, and it allows easy monitoring via (11). In view of (12) and (11),
a comparison of the sum of squares of ||s||s and || f¥||o reveals some infor-
mation on the constants in the error analysis.

The algorithm is “greedy” in the sense that it tries to improve on the largest
available residual, and it is adaptive in the sense that it automatically concen-
trates on regions where the residuals are still large. For variations of greedy
algorithms in similar contexts, see [1, 14] and for adaptive use of radial basis
functions, see [6, 11, 13].

Convergence of the algorithm is rather slow, but its merits for extremely
large problems rely on another property:



It brings in one coefficient at a time, and, at least for very large
problems, it never works on approximations that have the full
number of nonzero coefficients.

Let us do a very rough analysis of its performance, based on the weaker
convergence behaviour like 1/k. After & steps the order of magnitude of the
residuals will be brought down by a factor of 1/k, and this is achieved by
using only & approximating functions. One can possibly expect 1% accuracy
after 100 steps, using just 100 coefficients.

This strategy does not make sense if one wants an exact solution of a sys-
tem of, say, 100,000 data points. But it often does not make sense to use
all 100,000 degrees of freedom to solve such a system exactly, coming up
with a “solution” with 100,000 coefficients, whose sheer size limits its useful-
ness. It seems to be much more reasonable to get away with 1000 nonzero
parameters that fit the data to an accuracy of 0.1%. The above algorithm
adaptively picks data functionals (and corresponding coefficients) that are
the best candidates for further treatment, and it turns out to be extendable
to an algorithm that is the first to use radial basis functions of different scales
adaptively. We shall address this in the next section.

4 Adaptive Scaling

We now want to look at a modification of Algorithm 1 that uses scaled radial
basis functions ®.(z,y) := ¢(||z — y||2/c?). In particular, we aim at functions
¢ that have support in [0, 1], such that ®.(z,y) vanishes for ||z — y||2 > c.

Algorithm 2 We fix a large starting scale ¢ and real constants 0 < a, 3 <
1 < p. Furthermore, we need an iteration count K > 1, a scale index 1 = 0,
another integer m > 0, and a fived number M of scales to try locally.

Until the discrete norm || f¥||s of residuals falls below a prescribed bound,
an outer iteration tries to reduce the discrete norm of residuals by a factor
of a. This situation is called “success” in what follows. A middle infinite
loop tries larger and larger numbers K, Kp, Kp?, ... of iterations, and an
inner finite loop tries scales ¢ > ¢ > ... > eBFM=1 until success is
reached. In case of success using scale c37 and Kp® iterations, we may (but
not need to) set i := max(0, j —m) and K := max(1, Kp*™) to avoid return
to extremely large scales and extremely small iteration counts. After success,
we do another outer iteration.



Since we know that at any fixed scale Algorithm 1 must bring the residuals
to zero after sufficiently many iterations, the middle loop must terminate at
each of its finitely many scales. It terminates using the scale that roughly
takes the fewest number of new points to reach success. Since the middle loop
reduces the residual norm by a certain factor smaller than 1, any prescribed
accuracy can be reached after sufficiently many outer iterations.

Note that the algorithm tries first to get away with as few new interpolation
functionals as possible, using the smallest possible iteration count that leads
to a reduction of the residuals. For each iteration count, it tests large scales
first, but priority is given to the iteration count over the scale. For compactly
supported functions, extremely small scales will have a very local effect and
will not lead to any reasonable reduction in early stages of the algorithm.
This means that the algorithm tends to prefer large scales over small scales
at early stages.

Test runs indicate that the built—in restriction to increasing inner iteration
counts and to decreasing scales helps to save computation time, because this
behaviour can be observed in many cases when running without restrictions
(i.e. when starting each iteration of the outer loop with ¢ = ¢p® and K =1,
which does not spoil the convergence argument if the number of actually
tested scales remains finite).

If applied for compactly supported radial basis functions, the algorithm in
its above form reaches smaller and smaller scales, until the calculations can
be localized and parallelized. This has not yet been fully exploited in the
numerical examples following in the next section. As soon as localization sets
in, it does not make any sense to insist on “few” nonzero coefficients, because
the coefficients in use will then be tied to local behaviour of the residuals.

But we want to point out a further generalization. One can view the inner
iteration just as a trial of M different radial basis functions, ignoring scale
completely. Since the middle iteration increases the number of iterations
for each function, it will automatically select the radial basis function that
reaches success using the fewest centers. The inner loop must be finite, but
after each success one can come up with a different set of M candidates
for radial basis functions. It is easy to incorporate thin—plate splines or
multiquadrics at early stages, and one can go over to compactly supported
functions when it comes to resolving local details.



5 Numerical Results

In this section, the adaptive greedy method is demonstrated by solving the
Poisson problem
2 2 .
% + ‘3—;; =f inQ

13
u=g¢g on Jf) (13)

where the solution domain 2 is contained in the unit square [0, 1] x [0, 1],
and where 0f2 is the boundary of 2. We discretized both the Laplacian data
provided by f and the Dirichlet data provided by ¢g. This was done by

e describing the domain via a parametrized periodic boundary curve plus
an indicator function deciding whether a point (z,y) lies inside the
domain,

e providing boundary data at equidistant parameters on the boundary
curve,

e using these points on the boundary also for collocation of the Laplacian
values,

e superimposing the domain with a fine regular grid of meshwidth h and
keeping only those grid points that fall inside the domain and do not
have distance less than h/4 from one of the boundary points.

The regular grid in the final step can be replaced by any assignment of
data points that avoid coincidence. Everything will work the same way for
scattered data.

This setup was first used for large h = hy to get a starting collocation which is
solved by a linear equation system. To ensure enough points on the boundary,
the distribution of points was such that for Ay = 0.5 and the full domain
[0,1] x [0, 1] one gets the standard regular 3 x 3 configuration, where 8 points
are for Dirichlet data on the boundary and all 9 points are for the Laplacan
data. All the rest is done by standard scaling.

After the starting approximation is computed, a much smaller h; is used in
our examples to generate the actual data. We used Wendlands C® function
P(r) = (1 —r)3 (1 + 3r + 182 + 35r*) and the values

= 1/128
0.95
271/6
2

= 13

S wo &
|
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and set Kpep = pF 1K g if success within p¥ K4 steps occurred. This yields
up to 16384 interior data points, but we want to get away with fewer nonzero
coefficients. In addition, we performed a restart with the starting value of ¢
when the residuals were reduced to 25%. This helped to prevent the method
from decreasing ¢ too quickly.

Note that the method does not directly aim at a solution of the PDE prob-
lem. Instead, it is an iterative method to calculate an approximation to the
solution of a very large collocation problem, and one cannot expect that the
quality of approximation to the PDE solution is better that the reproduction
quality for the solution of the linear system. We thus cannot hope that the
root-mean-square error with respect to the solution of the PDE tends to
zero, especially if the latter is not calculated on our data locations. Accord-
ing to Theorem 1, the adequate way to provide supporting evidence for the
method is to demonstrate the decay of the maximum norms ||f¥||. of the
discrete residuals during the steps of the method.

These come in two classes, Dirichlet boundary residuals and Laplace residuals
inside the domain. Very often these residuals differ in orders of magnitude.
We calculate their relative magnitude after the startup step and use this to
introduce a weighted maximum norm which usually puts a larger weight on
the quality of the boundary values.

The following simple example was done on the circle with center (0.5,0.5)
and radius 0.5, using g = (z — 0.5)> + (y — 0.5)?> + 1, which also is the exact
solution, and f = 4 with a weight of 1520 in favour of the boundary data.
The following plots show the behaviour of the adaptive method.
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Points in domain
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Points in domain
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Final 1586 accepted centers

We present another example. Here, f = g = 1 on a smooth but irregular
domain with an unknown solution to the Poisson problem. The residuals
behaved like
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and the final 2649 centers were
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Points in domain
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6 Conclusions

In this preliminary form, the proposed adaptive method is not considered
as a serious challenge to existing methods. Its convergence behaviour needs
improvement by preconditioning techniques, and the control of the various
parameters deserves further study. However, our goal was to present a new
idea for attacking large—scale problems with nonstandard techniques.
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