
Adaptive Greedy Algorithm for Solving LargeRBF Collo
ation ProblemsY.C. Hon, R. S
haba
k, and X. Zhou�Abstra
tThe solution of operator equations with radial basis fun
tions by 
ol-lo
ation in s
attered points leads to large linear systems whi
h oftenare non{sparse and ill{
onditioned. But one 
an try to use only a sub-set of the data for the a
tual 
ollo
ation, leaving the rest of the datapoints for error 
he
king. This amounts to �nding \sparse" approxi-mate solutions of general linear systems arising from 
ollo
ation. This
ontribution proposes an adaptive greedy method with proven (butslow) linear 
onvergen
e to the full solution of the 
ollo
ation equa-tions. The 
ollo
ation matrix need not be stored, and the progressof the method 
an be 
ontrolled by a variety of parameters. Somenumeri
al examples are given.1 Introdu
tionConsider an abstra
t operator equationLu = f; L : X ! Y; (1)for a linear mapping between Hilbert spa
es X and Y , where f 2 Y isgiven. The operator L may be 
omposed of some di�erential equation onthe domain 
 and some boundary 
onditions on �
, but we do not 
arefor details here. The reader may think at this stage of a 
lassi
al Diri
hletproblem, but should be aware that we put both a di�erential equation andboundary 
onditions into a single operator, whose domain X and range Ywill then 
onsist of 
artesian produ
ts of 
ertain Sobolev spa
es.�The work des
ribed in this paper was supported by a grant from the German A
ademi
Ex
hange Servi
e and the Resear
h Grants Coun
il of the Hong Kong Joint Resear
hS
heme (Proje
t No. G HK025/00) 1



Dis
retization of su
h a problem 
an be done by pi
king a �nite number of
ontinuous fun
tionals � on Y and repla
ing (1) by�j(Lu) = (�j Æ L)(u) = �j(f) =: fj; 1 � j � N: (2)Using �j := �j Æ L, we thus have a generalized interpolation problem�j(u) = fj; 1 � j � N; (3)but we have to keep in mind that the fun
tionals �j may be rather pe
uliar,
omprising evaluation of a di�erential operator in the interior or of a bound-ary operator on the boundary of the domain 
. To avoid redundan
ies in thedis
retization, we 
an assume that the fun
tionals �j := �j Æ L are linearlyindependent on X.A straightforward numeri
al te
hnique for solving (3) would simply pi
k anN{dimensional linear subspa
e SN of X on whi
h the fun
tionals �j are
ontinuous and linearly independent. If evaluated on a basis of SN , thesystem (3) will lead to a nonsingular system of linear equations, if the aboveassumptions are satis�ed. But it is by no means trivial to assure linearindependen
e of the fun
tionals on the spa
e SN . In parti
ular, if SN is �xedbeforehand, the linear independen
e of more or less arbitrary fun
tionals
annot be expe
ted.A possible way out of this dilemma is to use the fun
tionals in the set � =f�1; : : : ; �Ng for a proper de�nition of the spa
e SN . This 
an be done bytaking a suÆ
iently smooth symmetri
 fun
tion � : 
�
 ! IR and settingSN := S� := span n�xj�(x; �) : 1 � j � No;where the supers
ript x at �xj stands for evaluation of the fun
tional �j withrespe
t to the variable x. The system (3) then takes the formNXk=1�k�xj�yk�(x; y) = fj; 1 � j � N (4)for a linear 
ombination s := NXk=1�k�yk�(�; y): (5)Note that (4) now has a symmetri
 
oeÆ
ient matrixA� := ��xj�yk�(x; y)�1�j;k�N (6)2



and we have to ask for fun
tions � whi
h make the matrix nonsingular oreven positive de�nite for any 
hoi
e of linearly independent fun
tionals onX. Fortunately, su
h stri
tly positive de�nite fun
tions exist, and they areexpli
itly available. They 
an even be found in radial form�(x; y) = �(kx� yk2); � : [0;1)! IRwith some s
alar fun
tion �, and the Gaussian �(r) = exp(�r2) is a promi-nent example. Surprisingly there are also radial 
ases where � is 
om-pa
tly supported. A simple and useful example is Wendland's fun
tion�(r) = (1 � r)4+(1 + 4r) whi
h works in spa
e dimensions up to 3 and(roughly) for all fun
tionals that 
an be ni
ely applied to both argumentsof �(x; y) = �(kx� yk2).This is the setting of symmetri
 
ollo
ation that we want to work in, butsome remarks seem appropriate at this point. It is by no means a trivialtask to pi
k the \right" fun
tion � for a given operator equation or a given
lass of linear fun
tionals, and is even less trivial to derive bounds for theerror u� s between an exa
t solution u of (1) and an approximate solutions of the form (5) to the dis
retized system (4). We refer the reader to theliterature on 
ollo
ation with \radial" basis fun
tions [2, 4, 5, 7, 8, 9, 10℄. Inthis 
ontribution, we fo
us on the numeri
al te
hniques to solve very largesystems like (4) eÆ
iently, making use of the ba
kground of \radial" basisfun
tions. In addition, we 
on
entrate on approximate solutions with onlyfew nonzero 
oeÆ
ients �j. The reason is that the evaluation of a full sumin (5) on many points will be too 
ostly, if the sum 
ontains a term for ea
hdata value. In short, we try to approximate N data with K << N terms,and we want to keep the storage and 
omputational e�ort proportional toN . This implies that we try to avoid storage of the full matrix A�. In the
ontext of �nite element methods, the generation of 
oeÆ
ient ve
tors withmany zeros would be undesirable, but for radial basis fun
tion te
hniques theopposite is true. The user is free to pla
e the 
enters for the basis fun
tions,and just a subset of the a
tual data points may be fully suÆ
ient to yield apres
ribed a

ura
y.2 Native Spa
e NormWe shall make use of a striking property of stri
tly positive de�nite fun
tions:they indu
e norms k:k� on fun
tionals and fun
tions. On fun
tionals, thisworks via the inner produ
t(�; �)� := �x�y�(x; y):3



Fun
tions s of the form (5) 
an be written as s� := �x�(x; �) with a �nitelysupported fun
tional �, and then one de�nes(s�; s�)� = (�; �)� = �x�y�(x; y) (7)on fun
tions. Naturally, these de�nitions generalize to inner produ
ts in
ertain Hilbert spa
es indu
ed by �, but for details we refer the reader topapers on these \native" spa
es. There are good reasons to view this norm askind of an energy. We remark in passing that 
onditionally positive de�nitefun
tions would require a somewhat more 
ompli
ated treatment, but we donot want to overload this presentation with te
hni
al details.But there is another important feature to be exploited. A solution s�;u of theform (5) to the system (4) with data fj := �j(u) has minimal norm k:k� underall other interpolating fun
tions s� := �x�(x; �) with arbitrary fun
tionals �.By standard variational arguments this implies the orthogonality relation(s�;u; u� s�;u)� = 0for all u from the native spa
e. If this is satis�ed, the Pythagorean Theoremimplies kuk2� = ku� s�;uk2� + ks�;uk2�; (8)and we shall make frequent use of this equation.For the above argument to work we have to make sure that the operatorequation (1) has a solution u that lies in the native spa
e of the fun
tion �.In pra
ti
e, this requires � to be suÆ
iently \nonsmooth" with respe
t to thesmoothness of u indu
ed by the regularity theory for the problem (1). Herelies a hidden obsta
le for appli
ations with solutions u of limited smoothness:there may be no ni
e and 
ontinuous � su
h that u lies in the native spa
e for�. For instan
e, the radial fun
tion whose native spa
e is the Sobolev spa
eW 12 (IR2) is the Bessel fun
tion K0(r) with a logarithmi
 singularity at zero.This, for instan
e, makes it hard to handle weak solutions u 2 W 12 (IR2) toellipti
 problems on domains with in
oming 
orners. But this problem 
anvery probably be over
ome by future resear
h, be
ause the 
urrent theoryhas so far 
on
entrated on at least 
ontinuous fun
tions.A related additional 
ondition is that the fun
tionals �j must be 
ontinuousand linearly independent on the native spa
e for �. This usually does not
ause any problems. But we want to point out that the dis
rete solution ofsystems like (4) will be possible in many 
ases where the above theoreti
alrequirements are not met, e.g. in situations where the operator equation (1)4



is ill{posed, has a singular solution or no solution at all. The te
hnique justprodu
es a fun
tion satisfying the dis
retized equations and having minimalenergy norm under all su
h fun
tions. In other words, symmetri
 
ollo
ationa
ts like a regularization method, and naive users have to be aware of thisfa
t, sin
e the te
hnique always produ
es some result, even if it belongs to aquestion that has no answers at all. On the other hand, if no other methodis appli
able, setting up a system (4) with a suitably pi
ked positive de�nite� will nearly always work somehow, even if results have to be interpretedwith great 
are.3 Greedy Iteration on ResidualsThe orthogonality relation (8) simply says that the energy of a fun
tion u
an be split up into the energy of a generalized interpolant s�;u with respe
tto � = f�1; : : : ; �Ng plus the energy of the residual f � s�;u. We shall applythis split re
ursively by interpolating the residual. For pure interpolation, athorough analysis of su
h te
hniques was provided in [13℄. Here, we deal withthe 
ase of generalized interpolation and 
on
entrate on iterative te
hniquesto approximate s�;u by fun
tions of the form (5) that 
ontain only a smallnumber of nonzero terms. The basi
 idea is to use a sequen
e of generalizedinterpolants to just a single data fun
tional ea
h, a
ting on residuals of theprevious step. Sin
e the fun
tional with the largest residual is pi
ked, thete
hnique 
an be 
alled greedy.Algorithm 1 Assume data fj =: f 0j ; 1 � j � N and fun
tionals � =f�1; : : : ; �Ng to be given. Fix some 
 2 (0; 1℄ and iterate over an indexk = 0; 1; ::: as follows:� Find some index jk with 1 � jk � N su
h thatjfkjk j � 
kfkk1 := max1�j�N jfkj j; (9)e.g. by taking the a
tual maximum.� Then overwrite all values fkj for 1 � jk � N byfk+1j := fkj � fkjk �xj�yjk�(x; y)�xjk�yjk�(x; y)and repeat the iteration for k + 1 instead of k.5



� During the iterations, sum the fun
tionssk := �yjk�(�; y)=�xjk�yjk�(x; y)by adding 1=�xjk�yjk�(x; y) to the 
oeÆ
ient �jk in the representation(5) of the sum.This algorithm is very primitive, but it has (at least theoreti
ally) an un-expe
tedly strong 
onvergen
e property that we prove in the rest of thisse
tion.Theorem 1 If the fun
tionals �j are linearly independent and 
ontinuouson the native spa
e of �, then the sum of the fun
tions sk of Algorithm 1
onverges at least linearly to the solution s�;u of the full system (4). Thenorm kfkk1 of the residuals 
onverges linearly to zero.Proof: The hypothesis of Theorem 1 allows to 
on
lude that the solutions�;u of the system (4) exists and is unique among all fun
tions s of the form(5). For later use we note that all su
h fun
tions satisfy
1ksk� � ksk�;1 := max1�j�N j�j(s)j � C1ksk� (10)with �xed 
onstants 0 < 
1 � C1, be
ause we have equivalen
e of norms on�nite{dimensional ve
tor spa
es. Now we see that Algorithm 1, when viewedas working on fun
tions in the native spa
e, usesu0 := s�;u; sk := s�jk ;uk ; uk+1 := uk � sk:Note that the fun
tions uk are all of the form (5), but the algorithm a
tu-ally does not work on the fun
tions, but rather on the data �j(uk) of thesefun
tions. However, equation (8) implieskuk+1k2� = kukk2� � kskk2� � kukk2�:This proves that the numbers kukk2� de
ay weakly monotoni
ally, but wewant linear 
onvergen
e to zero. >From (7) we getkskk2� = (fkjk)2�xjk�yjk�(x; y) = (fkjk)2k�jkk2� (11)and we want to bound this norm from below. Now we look at (9) and use(10) to get jfkjkj � 
kfkk1= 
kukk�;1� 

1kukk�6



With 
2 := max1�j�N k�jk�we then have kskk2� � 
2
21
22 kukk2�and get linear 
onvergen
e kukk� ! 0 fromkuk+1k2� � kukk2�  1� 
2
21
22 ! :The fun
tions gm := mXj=0 sj = u0 � um+1 = s�;u � um+1must then 
onverge linearly to s�;u. Sin
e everything happens in the linearspa
e of fun
tions (5), the 
hoi
e of norm for linear 
onvergen
e is irrelevant.2Sin
e 
1=
2 will often be an extremely small number, linear 
onvergen
e ishard to observe in pra
ti
e. A weaker 
onvergen
e behaviour a

ording toku0k2� � kum+1k2� = mXk=0 �kukk2� � kuk+1k2��= mXk=0 kskk2� (12)is mu
h more near to reality. In fa
t, the sum on the right{hand side 
on-verges to ks�;uk2� for m ! 1. It shows how the \energy" of s�;u graduallybuilds up, and it allows easy monitoring via (11). In view of (12) and (11),a 
omparison of the sum of squares of kskk� and kfkk1 reveals some infor-mation on the 
onstants in the error analysis.The algorithm is \greedy" in the sense that it tries to improve on the largestavailable residual, and it is adaptive in the sense that it automati
ally 
on
en-trates on regions where the residuals are still large. For variations of greedyalgorithms in similar 
ontexts, see [1, 14℄ and for adaptive use of radial basisfun
tions, see [6, 11, 13℄.Convergen
e of the algorithm is rather slow, but its merits for extremelylarge problems rely on another property:7



It brings in one 
oeÆ
ient at a time, and, at least for very largeproblems, it never works on approximations that have the fullnumber of nonzero 
oeÆ
ients.Let us do a very rough analysis of its performan
e, based on the weaker
onvergen
e behaviour like 1=k. After k steps the order of magnitude of theresiduals will be brought down by a fa
tor of 1=k, and this is a
hieved byusing only k approximating fun
tions. One 
an possibly expe
t 1% a

ura
yafter 100 steps, using just 100 
oeÆ
ients.This strategy does not make sense if one wants an exa
t solution of a sys-tem of, say, 100,000 data points. But it often does not make sense to useall 100,000 degrees of freedom to solve su
h a system exa
tly, 
oming upwith a \solution" with 100,000 
oeÆ
ients, whose sheer size limits its useful-ness. It seems to be mu
h more reasonable to get away with 1000 nonzeroparameters that �t the data to an a

ura
y of 0.1%. The above algorithmadaptively pi
ks data fun
tionals (and 
orresponding 
oeÆ
ients) that arethe best 
andidates for further treatment, and it turns out to be extendableto an algorithm that is the �rst to use radial basis fun
tions of di�erent s
alesadaptively. We shall address this in the next se
tion.4 Adaptive S
alingWe now want to look at a modi�
ation of Algorithm 1 that uses s
aled radialbasis fun
tions �
(x; y) := �(kx�yk2=
2). In parti
ular, we aim at fun
tions� that have support in [0; 1℄, su
h that �
(x; y) vanishes for kx� yk2 > 
.Algorithm 2 We �x a large starting s
ale 
 and real 
onstants 0 < �; � <1 < �. Furthermore, we need an iteration 
ount K � 1, a s
ale index i = 0,another integer m � 0, and a �xed number M of s
ales to try lo
ally.Until the dis
rete norm kfkk1 of residuals falls below a pres
ribed bound,an outer iteration tries to redu
e the dis
rete norm of residuals by a fa
torof �. This situation is 
alled \su

ess" in what follows. A middle in�niteloop tries larger and larger numbers K;K�;K�2; : : : of iterations, and aninner �nite loop tries s
ales 
�i > 
�i+1 > : : : > 
�i+M�1 until su

ess isrea
hed. In 
ase of su

ess using s
ale 
�j and K�` iterations, we may (butnot need to) set i := max(0; j�m) and K := max(1; K�`�m) to avoid returnto extremely large s
ales and extremely small iteration 
ounts. After su

ess,we do another outer iteration. 8



Sin
e we know that at any �xed s
ale Algorithm 1 must bring the residualsto zero after suÆ
iently many iterations, the middle loop must terminate atea
h of its �nitely many s
ales. It terminates using the s
ale that roughlytakes the fewest number of new points to rea
h su

ess. Sin
e the middle loopredu
es the residual norm by a 
ertain fa
tor smaller than 1, any pres
ribeda

ura
y 
an be rea
hed after suÆ
iently many outer iterations.Note that the algorithm tries �rst to get away with as few new interpolationfun
tionals as possible, using the smallest possible iteration 
ount that leadsto a redu
tion of the residuals. For ea
h iteration 
ount, it tests large s
ales�rst, but priority is given to the iteration 
ount over the s
ale. For 
ompa
tlysupported fun
tions, extremely small s
ales will have a very lo
al e�e
t andwill not lead to any reasonable redu
tion in early stages of the algorithm.This means that the algorithm tends to prefer large s
ales over small s
alesat early stages.Test runs indi
ate that the built{in restri
tion to in
reasing inner iteration
ounts and to de
reasing s
ales helps to save 
omputation time, be
ause thisbehaviour 
an be observed in many 
ases when running without restri
tions(i.e. when starting ea
h iteration of the outer loop with 
 = 
�0 and K = 1,whi
h does not spoil the 
onvergen
e argument if the number of a
tuallytested s
ales remains �nite).If applied for 
ompa
tly supported radial basis fun
tions, the algorithm inits above form rea
hes smaller and smaller s
ales, until the 
al
ulations 
anbe lo
alized and parallelized. This has not yet been fully exploited in thenumeri
al examples following in the next se
tion. As soon as lo
alization setsin, it does not make any sense to insist on \few" nonzero 
oeÆ
ients, be
ausethe 
oeÆ
ients in use will then be tied to lo
al behaviour of the residuals.But we want to point out a further generalization. One 
an view the inneriteration just as a trial of M di�erent radial basis fun
tions, ignoring s
ale
ompletely. Sin
e the middle iteration in
reases the number of iterationsfor ea
h fun
tion, it will automati
ally sele
t the radial basis fun
tion thatrea
hes su

ess using the fewest 
enters. The inner loop must be �nite, butafter ea
h su

ess one 
an 
ome up with a di�erent set of M 
andidatesfor radial basis fun
tions. It is easy to in
orporate thin{plate splines ormultiquadri
s at early stages, and one 
an go over to 
ompa
tly supportedfun
tions when it 
omes to resolving lo
al details.
9



5 Numeri
al ResultsIn this se
tion, the adaptive greedy method is demonstrated by solving thePoisson problem �2u�x2 + �2u�y2 = f in 
u = g on �
 (13)where the solution domain 
 is 
ontained in the unit square [0; 1℄ � [0; 1℄,and where �
 is the boundary of 
. We dis
retized both the Lapla
ian dataprovided by f and the Diri
hlet data provided by g. This was done by� des
ribing the domain via a parametrized periodi
 boundary 
urve plusan indi
ator fun
tion de
iding whether a point (x; y) lies inside thedomain,� providing boundary data at equidistant parameters on the boundary
urve,� using these points on the boundary also for 
ollo
ation of the Lapla
ianvalues,� superimposing the domain with a �ne regular grid of meshwidth h andkeeping only those grid points that fall inside the domain and do nothave distan
e less than h=4 from one of the boundary points.The regular grid in the �nal step 
an be repla
ed by any assignment ofdata points that avoid 
oin
iden
e. Everything will work the same way fors
attered data.This setup was �rst used for large h = h0 to get a starting 
ollo
ation whi
h issolved by a linear equation system. To ensure enough points on the boundary,the distribution of points was su
h that for h0 = 0:5 and the full domain[0; 1℄� [0; 1℄ one gets the standard regular 3�3 
on�guration, where 8 pointsare for Diri
hlet data on the boundary and all 9 points are for the Lapla
andata. All the rest is done by standard s
aling.After the starting approximation is 
omputed, a mu
h smaller h1 is used inour examples to generate the a
tual data. We used Wendlands C6 fun
tion�(r) = (1� r)8+(1 + 3r + 18r2 + 35r3) and the valuesh1 = 1=128� = 0:95� = 2�1=6� = 2M = 1310



and set Knew = �k�1Kold if su

ess within �kKold steps o

urred. This yieldsup to 16384 interior data points, but we want to get away with fewer nonzero
oeÆ
ients. In addition, we performed a restart with the starting value of 
when the residuals were redu
ed to 25%. This helped to prevent the methodfrom de
reasing 
 too qui
kly.Note that the method does not dire
tly aim at a solution of the PDE prob-lem. Instead, it is an iterative method to 
al
ulate an approximation to thesolution of a very large 
ollo
ation problem, and one 
annot expe
t that thequality of approximation to the PDE solution is better that the reprodu
tionquality for the solution of the linear system. We thus 
annot hope that theroot{mean{square error with respe
t to the solution of the PDE tends tozero, espe
ially if the latter is not 
al
ulated on our data lo
ations. A

ord-ing to Theorem 1, the adequate way to provide supporting eviden
e for themethod is to demonstrate the de
ay of the maximum norms kfkk1 of thedis
rete residuals during the steps of the method.These 
ome in two 
lasses, Diri
hlet boundary residuals and Lapla
e residualsinside the domain. Very often these residuals di�er in orders of magnitude.We 
al
ulate their relative magnitude after the startup step and use this tointrodu
e a weighted maximum norm whi
h usually puts a larger weight onthe quality of the boundary values.The following simple example was done on the 
ir
le with 
enter (0:5; 0:5)and radius 0.5, using g = (x� 0:5)2 + (y � 0:5)2 + 1, whi
h also is the exa
tsolution, and f = 4 with a weight of 1520 in favour of the boundary data.The following plots show the behaviour of the adaptive method.
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InteriorBoundary

Maximum residual against number of 
enters100010010

1010.10.010.0010.00011e-05
Max. normRMSQ

Absolute error against number of 
enters100010010

0.10.010.0010.0001
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Points in domain

10.80.60.40.20

10.80.60.40.20Starting approximation with 8+9 points� boundary point, also 
ounted as \interior" point+ truly interior pointPoints in domain

10.80.60.40.20

10.80.60.40.20First 460 a

epted 
enters
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Points in domain

10.80.60.40.20

10.80.60.40.20Final 1586 a

epted 
entersWe present another example. Here, f = g = 1 on a smooth but irregulardomain with an unknown solution to the Poisson problem. The residualsbehaved like
InteriorBoundary

Maximum residual against number of 
enters100010010

1010.10.010.0010.00011e-05and the �nal 2649 
enters were
14



Points in domain

0.90.80.70.60.50.40.30.20.1

0.90.80.70.60.50.40.30.20.16 Con
lusionsIn this preliminary form, the proposed adaptive method is not 
onsideredas a serious 
hallenge to existing methods. Its 
onvergen
e behaviour needsimprovement by pre
onditioning te
hniques, and the 
ontrol of the variousparameters deserves further study. However, our goal was to present a newidea for atta
king large{s
ale problems with nonstandard te
hniques.
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