
Adaptive Greedy Te
hniques for ApproximateSolution of Large RBF SystemsRobert S
haba
k and Holger WendlandAbstra
tFor the solution of large sparse linear systems arising from interpo-lation problems using 
ompa
tly supported radial basis fun
tions, a
lass of eÆ
ient numeri
al algorithms is presented. They iterativelysele
t small subsets of the interpolation points and re�ne the 
urrentapproximative solution there. Convergen
e turns out to be linear, andthe te
hnique 
an be generalized to positive de�nite linear systems ingeneral. A major feature is that the approximations tend to have onlya small number of nonzero 
oeÆ
ients, and in this sense the te
hniqueis related to greedy algorithms and best n{term approximation.1 Introdu
tionLet 
 � IRd be a bounded domain, and let � : 
 � 
 ! IR be asymmetri
 positive de�nite fun
tion. This means that for any �nite setX = fx1; : : : ; xNg of N di�erent points in 
 the matrixAX := (�(xj; xk))1�j;k<�Nis symmetri
 and positive de�nite. In parti
ular, we think of � being a radialbasis fun
tion generated by a 
ompa
tly supported fun
tion � : [0; h0℄! IRvia �(x; y) := �(kx� yk2). In this 
ase, the matrix AX will be sparse for h0small enough.The re
onstru
tion of a fun
tion f : 
 ! IR from its dis
rete data fjX =(f(x1); : : : ; f(xN))T on X 
an be done by an interpolantsf;X := NXj=1�j(f;X)�(�; xj) (1)1



whose 
oeÆ
ients �(f;X) = (�1(f;X); : : : ; �N(f;X))T satisfy the systemAX�(f;X) = fjXThe main goal of this paper is to provide methods that eÆ
iently produ
eapproximate solutions of very large systems of the above form. In addition,we 
on
entrate on approximate solutions with only few nonzero 
oeÆ
ients�j(f;X). The reason is that the evaluation of a full sum in (1) on manypoints will be too 
ostly, if the sum 
ontains a term for ea
h data value. Inshort, we try to approximate N data with K << N terms, and we want tokeep the storage and 
omputational e�ort proportional to N . This impliesthat we try to avoid storage of the full matrix AX .2 Native Spa
e NormA 
ru
ial tool will be the norm k:k� de�ned via the inner produ
t(sf;X ; sg;Y )� = MXi=1 NXj=1�i(f;X)�j(g; Y )�(xi; yj):For the spe
ial 
ase �(x; y) = kx� yk2 log kx� yk2 in IR2 the value ksf;Xk2�des
ribes the bending energy of a thin plate des
ribed by the fun
tion sf;X .Thus one should view this norm as kind of an energy. The 
losure of allfun
tions of the form sf;X with respe
t to the above norm is a (\native")Hilbert spa
e N� of fun
tions in 
. We do not want to pursue this topi
 anyfurther (see e.g. [5℄ for a re
ent referen
e), but we need the orthogonalityrelation (sf;X ; f � sf;X)� = 0for all f from the native spa
e. It is a 
onsequen
e of the fa
t that sf;Xhas minimal norm under all fun
tions in N� that interpolate f on X. ThePythagorean Theorem then implieskfk2� = kf � sf;Xk2� + ksf;Xk2�; (2)and we shall make frequent use of this equation.3 Iteration on ResidualsThe orthogonality relation (2) simply says that the \energy" of a fun
tionf 
an be split up into the \energy" of an interpolant sf;X plus the \energy"of the residual f � sf;X . We shall apply this \energy split" re
ursively byinterpolating the residual. More pre
isely:2



Algorithm 1 Start with a given fun
tion f0 := f 2 N� and iterate over anindex k = 0; 1; ::: by interpolating fk on some set Xk � 
 by sk := sfk;Xk.The next iterate will then be fk+1 := fk � sk.Theorem 1 The fun
tions sk of Algorithm 1 satisfy the summability 
ondi-tion kf0k2� � kfm+1k2� = mXk=0 �kfkk2� � kfk+1k2��= mXk=0 kskk2�: (3)
Proof: Using Algorithm 1, equation (2) turns intokfkk2� = kfk � sfk;Xkk2� + ksfk;Xkk2�= kfk+1k2� + kskk2�and by summation we get (3). 2We now want to look for 
onditions that imply 
onvergen
e of the residualsfk to zero, be
ause then our a

umulated interpolantsgk := kXj=0 sj = f � fk+1 (4)
onverge to f for k ! 1. This needs some further assumptions, sin
e wehave so far not ex
luded trivial 
ases like Xk = X for all k.4 Convergen
e AnalysisFrom the energy viewpoint, we should require that sk pi
ks up at least a
ertain fra
tion of the energy of fk.Theorem 2 If there is some positive 
onstant 
 su
h thatkskk� � 
kfkk� for all k; (5)then the fun
tions fk and the a

umulated interpolants gk of (4) 
onvergelinearly to zero and f , respe
tively, in the native spa
e.

3



Proof: The assertion is implied bykfk+1k2� = kfkk2� � kskk2� � (1� 
2)kfkk2�:2But sin
e kfkk� is not easily a

essible in pra
ti
e, we prefer to use a weakerseminorm j:j�, i.e. jf j� � Ckfk� for all f 2 N�: (6)Theorem 3 If there is some positive 
onstant 
 su
h thatjskj� � 
jfkj� for all k; (7)then the seminorms jfkj� and jf � gkj� 
onverge to zero for k ! 1. Morepre
isely, they form square summable sequen
es.Proof: The assumptions (6) and (7) implykf0k2� � kfm+1k2� = mXk=0 �kfkk2� � kfk+1k2��= mXk=0 kskk2�� 
2C2 mXk=0 jfkj2� (8)
and summability of jfkj2� = jf � gk�1j2�. This is all we 
an hope for under ourweak hypotheses. 2But note that the seminorm j:j� 
an be a norm like k:k2 or k:k1 on 
. Thenwe would get 
onvergen
e in these norms, and the requirement (7) in ea
hstep still is manageable. We leave this interesting 
ase and its 
onsequen
esfor 
al
ulating native spa
e norms open for later work.5 Interpolation on subsetsAn important spe
ial 
ase arises from a dis
rete norm j:j� = k:kLp(X) on alarge subset X = fx1; : : : ; xNg � 
. By standard results on error boundsfor radial basis fun
tion interpolation, this is a bounded seminorm on thenative spa
e. We now 
on�ne everything to X and use the above argumentfor s(f;X) instead of f . 4



Algorithm 2 Start with data f0jX of some fun
tion f0 := f 2 N� anditerate over an index k = 0; 1; ::: by interpolating the data fk jX of fk on somesubset Xk � X = fx1; : : : ; xNg � 
 satisfyingjfkjLp(Xk) � 
jfkjLp(X): (9)by sk := sfk;Xk . The next iterate will then be fk+1 := fk � sk.Theorem 4 The fun
tions gk of (4) 
onverge linearly in N� to s(f;X).Furthermore, the norms jfkjLp(X) of residuals fk 
onverge linearly to zero.Proof: We �rst apply the results of Theorem 3 to s(f;X) instead of f , notingthat everything just works on the �nite set X. At ea
h step of Algorithm 2we need Xk � X and (7) in the formjskjLp(X) � 
jfkjLp(X) for all k; (10)whi
h is easily a
hievable, sin
e we make sk to 
oin
ide with fk on Xk � Xby interpolation. In fa
t, due tojskjLp(X) � jskjLp(Xk) = jfkjLp(Xk) � 
jfkjLp(X) (11)we only require Xk to satisfy (9).Then the a

umulated approximations gk 
onverge to s(f;X) on X. Butsin
e fun
tions of this form are bije
tively mapped to their values on X, wehave a 
onvergent iterative s
heme for solving large systems of the form (1).But this is not the end of the story. Sin
e we restri
t everything to Xand linear 
ombinations s of �(�; xj) for xj 2 X, there are 
onstants 
1 =
1(p;X;�) and C1 = C1(p;X;�) with
1jsjLp(X) � ksk� � C1jsjLp(X)for all su
h s. But nowkskk� � 
1jskjLp(X) � 
1
jfkjLp(X) � 
1
C1 kfkk� (12)implies linear 
onvergen
e by Theorem 2. 2For smooth radial basis fun
tions and densely distributed points in X, thequotient 
1=C1 
an be extremely small, making the linear 
onvergen
e state-ment a purely theoreti
al issue. The 
onvergen
e behavior of kskk� from (3)often shadows linear 
onvergen
e within the numeri
ally relevant range ofiterations. 5



6 Iterative interpolation on single pointsLet us look at the above argument for the 
ase where Xk 
onsists of a singlepoint xjk 2 X = fx1; : : : ; xNg. We get linear 
onvergen
e via (9) in Theorem4, if the 
ondition jfk(xjk)j � 
jfkjL1(X) (13)holds at ea
h step. This is 
lear for p = 1 in (11), and for the other 
aseswe havejfkjpLp(X) � jfkjpLp(Xk) � jfk(xjk)jp � 
pjfkjpL1(X) � 
pN jfkjpLp(X): (14)Pi
king the maximum absolute value of the residual at ea
h stage means
 = 1, and then we have a \greedy" method. Sin
e this extremely simplealgorithm turns out to be unexpe
tedly useful in 
ase of 
ompa
tly supportedradial basis fun
tions, let us write it down in some detail. Everything is doneon fun
tion or residual values on a large �nite set X = fx1; : : : ; xNg. Storageis needed for X and the values fjX = (f(x1); : : : ; f(xN))T , whi
h are lateroverwritten by residuals, i.e.the values of fk on X. Furthermore, a ve
torof length N a

umulates the 
oeÆ
ients �j of the fun
tions gk for later use.Storage requirements thus are N � (d+ 2) in d dimensions.Algorithm 3 For initialization, the values of f = f0 on X are generatedand stored. The N 
oeÆ
ients are set to zero. For the startup iterationindex k = 0 we further pi
k some dummy point xj0 2 X = fx1; : : : ; xNg andthe dummy 
oeÆ
ient �j0 = 0.The iteration at stage k then loops over all values of fk on X and does twothings on ea
h value: it repla
es fk(xi) by the residualfk+1(xi) := fk(xi)� �jk�(xi; xjk)and it keeps tra
k of the maximum absolute value of the updated results. Afterthis loop over N elements, there is some point xjk+1 2 X = fx1; : : : ; xNgwhere jfk+1(xjk+1)j = jfk+1jL1;X, and the interpolant to this value on xjk+1 isthe fun
tion sk := �(�; xjk+1) fk+1(xjk+1)�(xjk+1; xjk+1) :Thus we set �jk+1 := fk+1(xjk+1)�(xjk+1; xjk+1)and add this value to the 
urrent value of �jk+1 to update the total approxi-mation. Then we repeat the iteration for k + 1 instead of k.6



Due to Theorems 1 and 4, the values jfkjL1;X generated by Algorithm 3 aresquare summable and 
onverge linearly to zero. This proves linear 
onver-gen
e of the algorithm, measured in the native spa
e norm or any dis
retenorm on X.For 
uriosity, one 
an form the energykskk2� = fk+1(xjk+1)2�(xjk+1 ; xjk+1)and monitor the monotonely 
onvergent sum over these values a

ordingto (3). The values jfkjL1;X are also numeri
ally available, and they must
onverge linearly (but not ne
essarily monotonely) to zero. Furthermore,their squares are summable, and they must 
onverge to zero at least like1=k. Though being inferior to linear 
onvergen
e, this 
onvergen
e behaviouris the one that 
an be numeri
ally observed in early stages of the iteration.These values 
an be used as a stopping 
riterion, but one 
an also 
hoose anydis
rete norm jfkjLp;X for this purpose. In view of (3) and (8), a 
omparisonof the sum of squares of kskk� and jfkjLp;X reveals some information on the
onstants in the error analysis.Convergen
e of the algorithm is rather slow, but its merits for extremelylarge problems rely on other properties:� It brings in one 
oeÆ
ient at a time, and it produ
es approximationsthat have less than the full number of nonzero 
oeÆ
ients.� It does not form any matrix{ve
tor multipli
ations, and it does noteven store the 
oeÆ
ient matrix.� Compared to the 
onvergen
e analysis in [3℄, its 
onvergen
e (in theory)is linear with respe
t to the index k only, and does not require N su
hsteps to form a su

essful iteration.Let us do a very rough analysis of its performan
e, based on the weaker
onvergen
e behaviour like 1=k. After k steps the order of magnitude of theresiduals will be brought down by a fa
tor of 1=k, and this is a
hieved byusing only k approximating fun
tions. One 
an possibly expe
t 1% a

ura
yafter 100 steps, using just 100 
oeÆ
ients.This strategy is not useful if one wants an exa
t solution of a system of, say,100.000 data points. But it often does not make sense to use all 100.000 de-grees of freedom to solve su
h a system exa
tly, 
oming up with a \solution"7



with 100.000 
oeÆ
ients, whose sheer size limits its usefulness. It seems tobe mu
h more reasonable to get away with 1000 nonzero parameters that�t the data to an a

ura
y of 0.1%. The above algorithm adaptively pi
kspoints (and 
orresponding 
oeÆ
ients) that are the best 
andidates for fur-ther treatment, and it turns out to be extendable to an algorithm that isthe �rst to use radial basis fun
tions of di�erent s
ales adaptively. We shalladdress this in the next se
tion.Some 
omments towards other te
hniques seem appropriate at this point.� The Faul-Powell [3℄ method will usually work on a full 
oeÆ
ient ve
tor.Convergen
e of the latter is proven via steps that need a full sweepover a set of N dire
tions, and thus ea
h step 
ontains a full 
oeÆ
ientve
tor. If just a part of the �rst sweep is 
onsidered, the te
hnique gets
omparable to ours, be
ause it then does not work on a full 
oeÆ
ientve
tor. Linear 
onvergen
e is not proven.� Conjugate gradients have linear 
onvergen
e like our te
hnique, andin 
ases where its 
onvergen
e rate is numeri
ally reasonable, it out-performs our method. But it uses matrix{ve
tor multipli
ations, andthese (and the 
onvergen
e rate) limit its appli
ability. For large andbadly 
onditioned problems our te
hnique will already produ
e somereasonable approximation before the 
onjugate gradient method haseven �nished its �rst step.� The above te
hnique is a spe
ial 
ase of a greedy algorithm as des
ribedin [1℄, [4℄,[2℄, [6℄, and [7℄. We use it here for solving a large linear sys-tem, but the analysis in se
tion 3 shows that the notion of a di
tionaryis appli
able here. Furthermore, it extends to 
ases with multiple in-stan
es of fun
tions �, or with radial basis fun
tions of varying s
ale.We shall exploit these possibilities later, without using results of the
ited literature on greedy algorithms.7 General Linear SystemsWe now look at the above greedy algorithm in 
ase of a general linear systemAx = b with a symmetri
 and positive de�nite N � N 
oeÆ
ient matrix A.As usual in the theory of the 
onjugate gradient method, we de�nekxk2A := xTAx for all x 2 IRN :8



Algorithm 4 For j := 0 start with xj := 0 2 IRN ; rj := �b 2 IRN . Theniterate for j = 0; 1; 2; : : : as follows:stop if krjk1 is small enough, else:jrjkj j := krjk1�kj := �rjkj=akj ;kjxj+1 := xj + �kjekjrj+1 := rj + �kjAekj (in pra
ti
e)= Axj+1 � b (by indu
tion)Note that the method introdu
es only the numeri
ally relevant unknownsdue to its pivoting strategy based on the right{hand side. Thus the te
h-nique is fundamentally di�erent from the method of Gauss{Seidel or Ja
obi.Furthermore, the method does not form any matrix{ve
tor produ
ts. It paysfor this by a low 
onvergen
e rate.Theorem 5 The iterates xj of Algorithm 4 
onverge linearly to the solutionx� 2 IRN with Ax� = b. The 
onvergen
e rate 
an be bounded above viakx� � xj+1k2A � kx� � xjk2A  1� �min(A)N maxk akk!Proof: By a standard variational argument, the algorithm solves the mini-mization problem kx� � xj+1kA = min� kx� � xj � �ekjkA:By Pythagoras' theorem we then getkx� � xjk2A = kx� � xj+1k2A + �2kjkekjk2A:From kekjk2A = akj ;kj and j�kj j = krjk1=akj ;kj we 
on
ludekx� � xj+1k2A = kx� � xjk2A � krjk21=akj ;kj :We are done if we showkrjk21 � �min(A)N kx� � xjk2A:But this follows fromkx� � xjk2A = (x� � xj)TA(x� � xj) = (x� � xj)T rj � krjk1kx� � xjk19



and �min(A)kx� � xjk21 � N�min(A)kx� � xjk22� N(x� � xj)TA(x� � xj)= Nkx� � xjk2A: 2The above algorithm 
annot be suggested as a general{purpose solver forsymmetri
 positive de�nite linear systems. It makes sense only for 
aseswhere the appli
ation expe
ts to get away with an approximative solutionthat has many zero 
oeÆ
ients. This, however, is the 
ase as soon as baseswith some hierar
hi
al stru
ture or a lot of built{in redundan
y are 
onsid-ered. Sin
e pre
onditioning 
an be seen as an appropriate 
hange of basis, itmakes sense to investigate how this algorithm behaves under some additionalpre
onditioning. But we leave su
h things open here.8 Adaptive S
alingWe now want to look at a modi�
ation of Algorithm 2 that uses s
aled radialbasis fun
tions �
(x; y) := �(kx�yk2=
2). In parti
ular, we aim at fun
tions� that have support in [0; 1℄, su
h that �
(x; y) vanishes for kx� yk2 > 
.Algorithm 5 We �x real 
onstants�; � > 0 < 
 < � < 1 < �:Furthermore, we use some dis
rete norm for residuals on a large data set X,and we need an iteration 
ount K � 1 and a large starting s
ale 
. In whatfollows, a su

essful try is de�ned by a run of K steps of Algorithm 3 at a�xed s
ale 
 su
h that the dis
rete norm of residuals is redu
ed at least by afa
tor of �.� The outermost loop runs over su

essful tries until the dis
rete norm ofresiduals falls below a pres
ribed bound �. At ea
h iteration, it uses theother loops to �nd a su

essful try by suitable variation of the values ofK and 
:� A middle loop tries larger and larger numbers K;K�;K�2; : : : ofiterations, and an inner loop� tries s
ales 
; 
�; 
�2 > : : : > 

until a su

essful try is found. 10



Sin
e we know that at any �xed s
ale Algorithm 3 must bring the residualsto zero after suÆ
iently many iterations, the middle loop must terminate atea
h of the �nitely many s
ales allowed in the inner loop. It terminates usingthe s
ale that roughly takes the fewest number of new points to rea
h su

ess.Sin
e the middle loop redu
es the residual norm by a 
ertain fa
tor smallerthan 1, any pres
ribed a

ura
y 
an be rea
hed after suÆ
iently many outeriterations.Note that the algorithm tries �rst to get away with as few new points aspossible, using the smallest possible iteration 
ount that leads to a redu
tionof the residuals. For ea
h iteration 
ount, it tests large s
ales �rst, butpriority is given to the iteration 
ount over the s
ale.Setting K = 1, using a large 
 and extremely small values of Æ; 1��; ��1 willlead to a very time{
onsuming optimization, trying hard to re
onstru
t thedata with as few 
enters as possible. We shall 
all su
h a 
ase an \optimizing"run of the algorithm in our examples. But there are some e
onomizationsthat should be pointed out.First, extremely small s
ales will have a very lo
al e�e
t and will not lead toany reasonable redu
tion in early stages of the algorithm. This means thatthe algorithm tends to prefer large s
ales over small s
ales at early stages,and extremely small values of Æ need not be 
onsidered. We found Æ = 0:5or Æ = 0:25 quite suÆ
ient.Se
ond, if the s
ales 
 for su

essful 
ases are inspe
ted, they tend to bede
reasing steadily (but not monotoni
ally). It therefore makes sense to usean update formula like 
new := � � 
su

esswith some fa
tor � � 1 after ea
h su

ess.Third, the ne
essary iterations to rea
h su

ess have the tenden
y to in
rease.This suggests an update formulaKnew := � �Ksu

esswith some fa
tor � � 1 after ea
h su

ess. The two values above are de-termined after a su

essful outer iterations, and used for starting the inneriterations.A parti
ularly eÆ
ient situation is given by � = � = 1, for
ing su

essfuliterations to have weakly monotone in
reasing or de
reasing values of K and
, respe
tively. We shall 
all su
h a run of Algorithm 5 a \monotoni
" run.11



If applied for 
ompa
tly supported radial basis fun
tions, the algorithm inits above form rea
hes smaller and smaller s
ales, until the 
al
ulations 
anbe lo
alized and parallelized. This has not yet been fully exploited in thenumeri
al examples following in the next se
tion.But we want to point out a further generalization. One 
an view the inneriteration just as a trial of M di�erent radial basis fun
tions, ignoring s
ale
ompletely. Sin
e the middle iteration in
reases the number of iterationsfor ea
h fun
tion, it will automati
ally sele
t the radial basis fun
tion thatrea
hes su

ess using the fewest 
enters. The inner loop must be �nite, butafter ea
h su

ess of the outer iteration one 
an 
ome up with a di�erentset of �nitely many 
andidates for radial basis fun
tions. It is easy to in-
orporate thin{plate splines or multiquadri
s at early stages, and one 
ango over to 
ompa
tly supported fun
tions when it 
omes to resolving lo
aldetails. Numeri
al experiments in this dire
tion are still to be 
arried out.The notion of a di
tionary with respe
t to a greedy algorithm in the sense of[1℄, [4℄,[2℄, [6℄, and [7℄ applies here, and it is an interesting resear
h area topursue this 
onne
tion further.9 Numeri
al ExperimentsWe start with a reprodu
tion of the following Franke{type fun
tion:f(x) = 3Xj=0 aj exp(�bjkx� xjk22)with the values j aj bj xj0 1.0 -0.1 ( 0.0, 0.0)1 1.0 -5.0 ( 0.5, 0.5)2 1.0 -15.0 (-0.2,-0.4)3 1.0 -9.0 (-0.8, 0.8)To make it less smooth, we introdu
ed a singularity of lower-order derivativesalong the line � � � = �1:0 by taking f(�; �) � (� � � + 1:0)� instead off(�; �) for �� � < �1:0. The fun
tion plot is given in Figure 1, and one 
an
learly see the modi�
ation in the front right 
orner. We then pi
ked 40000random 
enters on [�1;+1℄2 and 
onstru
ted approximate solutions of the
orresponding interpolation problem, 
onsisting of up to 500 
enters. In allexamples to follow, we 
on
entrate on three 
ases that redu
e the maximum12



21.510.50-0.5 10.50-0.5-110.50-0.5-1
Figure 1: Franke{type fun
tionabsolute value of the residuals to 10%, 5%, and 1%, respe
tively. Furtherredu
tion should be done by lo
al te
hniques provided by a forth
omingpaper. The following table shows how many of the 40000 data lo
ations arene
essary to rea
h the pres
ribed a

ura
y:% monotone optimized10% 41 275% 61 451% 125 143These two runs were made with � = � = 0:9; 
 = 0:5; � = 2, and the startings
ale was 
 = 10. A more detailed plot of the error as a fun
tion of the used
enters is in Figure 2, while the 
orresponding s
ales are in Figure 3. Notehow 
lose the monotone run is to the optimized run in both 
ases, in parti
u-lar for large numbers of 
enters. The error for the monotone run does not leadto a monotone de
reasing error 
urve, be
ause monotoni
ity is only attainedfor the outer iteration. Sin
e later iterations use large values of K, there are
learly visible non{monotoni
 se
tions in the 
urve for the monotoni
 run inFigure 2. The de
rease of the optimized s
ale in Figure 3 
learly shows thatthe optimizing algorithm has a strong tenden
y to \lo
alize" automati
ally.Both �gures strongly support our suggestion to prefer the monotoni
 run overthe optimizing run, if one just wants a qui
k approximation of 1% a

ura
y.13



"optimal""monotone"Max. error versus number of data used

1000100101

1010.10.010.001 Figure 2: Error behaviorIn parti
ular, the 
al
ulation time for up to 500 a
tually used 
enters outof 40000 on a notebook with a 350MHz AMD{K6 under Linux was about 1hour for the full optimization, as opposed to 100 se
onds for the monotonerun. If just the 1% a

urate solution based on 125 points is needed, themonotone run needs 30 se
onds.Figure 4 shows how our adaptive te
hnique automati
ally sele
ts 
ru
ialpoints near the dis
ontinuity line, if we let the monotone run extend upto 500 
enters. The 1% a

urate approximations from the table above donot yet dis
over the dis
ontinuity pre
isely.The mbay.dat data from R. Franke's webpage are rather diÆ
ult to handle,though they have only 1669 data points. The main problem is their in�nitevariation in relative s
ale. In the NE area of Figure 5 there is an area havingdata values exa
tly zero, and near the origin there is a single sharp positivepeak. Both of these are de�ned by rather few data values, but there aremany and dense data with small positive values des
ribing a \shallow" areawith small positive data values. The problem is to avoid negative valuesof the re
onstru
tion in the zero area, and to avoid errors from the �ttingof the peak to propagate into the shallow area. An exa
t solution with
 = 1:0 is given in Figure 6. Note that there are areas with negative fun
tionvalues (the solid 
ontour line des
ribes the zero level), and there is somevisible undulation near the NE 
orner. The 
oarse approximations with our14



"optimal""monotone"Support radii versus number of data used

1000100101

1010.10.01 Figure 3: S
ale behavioralgorithm, starting with 
 = 0:3, yielded the following numbers of 
enters fora pres
ribed relative a

ura
y:% monotone optimized10% 48 285% 109 551% 430 335Even the optimized approximation of Figure 7 is 
al
ulated rather qui
kly(48 se
onds on the aforementioned notebook 
omputer) 
ompared to an exa
tsolution of a full system with 1669 equations.In all 
ases one 
an observe how the residuals and the s
ales go down pro-portionally to 1=k, when k 
enters are introdu
ed. The summability of thesquares of the residuals supports this behaviour, but asymptoti
 linear 
on-vergen
e is not visible at this distan
e from the full solution.All examples will be provided and do
umented on the Internet via URLhttp://www.num.math.uni-goettingen.de/s
haba
k, in
luding some ray{tra
ed reprodu
tions showing more details.
15



Points

10.50-0.5-1

10.50-0.5-1 Figure 4: First 500 
enter lo
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Points

2.521.510.50

0.50.450.40.350.30.250.20.150.10.050 Figure 5: Data lo
ations for mbay.dat
1.210.80.60.40.20-0.2 0.50.450.40.350.30.250.20.150.10.0502.521.510.50

Figure 6: Exa
t solution with 
 = 1:017



1.210.80.60.40.20-0.2 0.50.450.40.350.30.250.20.150.10.0502.521.510.50
mbay solution

Figure 7: Optimized run with 335 
enters
1.210.80.60.40.20-0.2 0.50.450.40.350.30.250.20.150.10.0502.521.510.50

mbay solution

Figure 8: Monotoni
 run with 430 
enters18


