Adaptive Greedy Techniques for Approximate
Solution of Large RBF Systems

Robert Schaback and Holger Wendland

Abstract

For the solution of large sparse linear systems arising from interpo-
lation problems using compactly supported radial basis functions, a
class of efficient numerical algorithms is presented. They iteratively
select small subsets of the interpolation points and refine the current
approximative solution there. Convergence turns out to be linear, and
the technique can be generalized to positive definite linear systems in
general. A major feature is that the approximations tend to have only
a small number of nonzero coefficients, and in this sense the technique
is related to greedy algorithms and best n—term approximation.

1 Introduction

Let Q@ C IR? be a bounded domain, and let ® : Q x Q — IR be a
symmetric positive definite function. This means that for any finite set
X ={xy,...,zy} of N different points in Q2 the matrix

Ax = (®(2), 7k) ) 1<jhe<n

is symmetric and positive definite. In particular, we think of ® being a radial
basis function generated by a compactly supported function ¢ : [0, hy] — IR
via ®(z,y) := ¢(||z — y||2). In this case, the matrix Ay will be sparse for hy
small enough.

The reconstruction of a function f : Q — IR from its discrete data f, =
(f(z1),.--, f(zn))" on X can be done by an interpolant

Sfx = ;aj(f,X)@(-,xj) (1)



whose coefficients a(f, X) = (a1 (f, X), ..., an(f, X))T satisfy the system
AXOé(f,X) - f‘X

The main goal of this paper is to provide methods that efficiently produce
approximate solutions of very large systems of the above form. In addition,
we concentrate on approximate solutions with only few nonzero coefficients
a;(f,X). The reason is that the evaluation of a full sum in (1) on many
points will be too costly, if the sum contains a term for each data value. In
short, we try to approximate N data with K << N terms, and we want to
keep the storage and computational effort proportional to N. This implies
that we try to avoid storage of the full matrix Ay.

2 Native Space Norm

A crucial tool will be the norm ||.||¢ defined via the inner product

(s5x>89v)e = D > 0oi(f, X)a(g, Y)®(24, ;).

i=1j=1

For the special case ®(x,y) = |l — y||2log ||z — yl|, in IR? the value ||s; x||3
describes the bending energy of a thin plate described by the function s¢ x.
Thus one should view this norm as kind of an energy. The closure of all
functions of the form sy x with respect to the above norm is a (“native”)
Hilbert space Ng of functions in 2. We do not want to pursue this topic any
further (see e.g. [5] for a recent reference), but we need the orthogonality
relation
(srx: f —srx)e =0

for all f from the native space. It is a consequence of the fact that sy x
has minimal norm under all functions in N that interpolate f on X. The
Pythagorean Theorem then implies

Il = 11f = srxlle + llsp.xlla, (2)

and we shall make frequent use of this equation.

3 Iteration on Residuals

The orthogonality relation (2) simply says that the “energy” of a function
f can be split up into the “energy” of an interpolant s x plus the “energy”
of the residual f — sy x. We shall apply this “energy split” recursively by
interpolating the residual. More precisely:



Algorithm 1 Start with a given function fo := f € Ng and iterate over an
index k = 0,1,... by interpolating fi on some set X, C Q by s 1= sy, x,-
The next iterate will then be fry1 := fr — Sk.

Theorem 1 The functions s of Algorithm 1 satisfy the summability condi-

tion
m

1foll3 = N fmarld =3 (I1Fel3 = 1 frsall3)
k;LO (3)

= > lsells-
k=0

Proof: Using Algorithm 1, equation (2) turns into

A R e
= fesalle+ el

and by summation we get (3). O

We now want to look for conditions that imply convergence of the residuals
fr to zero, because then our accumulated interpolants

K
gk =Y_8;=f— fun (4)
=0

converge to f for k — oo. This needs some further assumptions, since we
have so far not excluded trivial cases like X, = X for all k.

4 Convergence Analysis

From the energy viewpoint, we should require that s, picks up at least a
certain fraction of the energy of fy.

Theorem 2 If there is some positive constant v such that

Islle = V| elle for all k, (5)

then the functions fy, and the accumulated interpolants gr of (4) converge
linearly to zero and f, respectively, in the native space.



Proof: The assertion is implied by

1 fieille = 1Felle = selle < (1 =) felle-O0

But since || f¢||e is not easily accessible in practice, we prefer to use a weaker
seminorm |.|,, i.e.

[fle <C|flle forall f € No. (6)

Theorem 3 If there is some positive constant v such that

skl = Y[ fxl« for all k, (7)

then the seminorms |fi|« and |f — gx|+ converge to zero for k — oco. More
precisely, they form square summable sequences.

Proof: The assumptions (6) and (7) imply

m

1foll3 = I sl == (IFell3 = 1 fxsall3)

k=0
m

= S skl (8)
k:Om
TSl
k=0

v

and summability of | fx|> = |f — gr_1|?. This is all we can hope for under our
weak hypotheses. O

But note that the seminorm |.|, can be a norm like ||.||2 or ||.|| on €. Then
we would get convergence in these norms, and the requirement (7) in each
step still is manageable. We leave this interesting case and its consequences
for calculating native space norms open for later work.

5 Interpolation on subsets

An important special case arises from a discrete norm |.|, = [.||z,x) on a
large subset X = {z1,...,zx} C Q. By standard results on error bounds
for radial basis function interpolation, this is a bounded seminorm on the
native space. We now confine everything to X and use the above argument
for s(f, X) instead of f.



Algorithm 2 Start with data fo, of some function fo := [ € Ns and
iterate over an index k = 0,1,... by interpolating the data fg, of fx on some
subset X, C X ={xy,...,xy} C Q satisfying

| frelo,oxn) = Vel Lx0)- (9)
by s, = sy, x,- LThe next iterate will then be fry1 := fi, — si.

Theorem 4 The functions g, of (4) converge linearly in Ng to s(f, X).
Furthermore, the norms |fi|r,(x) of residuals fi, converge linearly to zero.

Proof: We first apply the results of Theorem 3 to s(f, X) instead of f, noting
that everything just works on the finite set X. At each step of Algorithm 2
we need X, C X and (7) in the form

|5k|L,(x) = VI felo,x) for all &, (10)

which is easily achievable, since we make s, to coincide with f; on X, C X
by interpolation. In fact, due to

|5kl L,0x) 2 IsklL,x0) = el 2 Vel x) (11)
we only require X}, to satisfy (9).

Then the accumulated approximations g, converge to s(f, X) on X. But
since functions of this form are bijectively mapped to their values on X, we
have a convergent iterative scheme for solving large systems of the form (1).

But this is not the end of the story. Since we restrict everything to X
and linear combinations s of ®(-,z;) for x; € X, there are constants ¢; =
c1(p, X, ®) and Cy = C4(p, X, ®) with

c1ls|,x) < lslle < Culslr,x)
for all such s. But now
Iselle > erlsil, o > el file,o0 > & 1 felle (12)
implies linear convergence by Theorem 2. ]

For smooth radial basis functions and densely distributed points in X, the
quotient ¢;/Cy can be extremely small, making the linear convergence state-
ment a purely theoretical issue. The convergence behavior of ||sg||e from (3)
often shadows linear convergence within the numerically relevant range of
iterations.



6 Iterative interpolation on single points

Let us look at the above argument for the case where X, consists of a single
point z;, € X = {z1,...,xn}. We get linear convergence via (9) in Theorem
4, if the condition

(@)1 = Ykl (x) (13)

holds at each step. This is clear for p = oo in (11), and for the other cases
we have

7p
Felr, 0y 2= 1l 0 = (@) = AP 1 fulf ) = N|fk|1£p(x)- (14)

Picking the maximum absolute value of the residual at each stage means
v = 1, and then we have a “greedy” method. Since this extremely simple
algorithm turns out to be unexpectedly useful in case of compactly supported
radial basis functions, let us write it down in some detail. Everything is done
on function or residual values on a large finite set X = {xy,...,xy}. Storage
is needed for X and the values fi, = (f(21),...,f(zn))*, which are later
overwritten by residuals, i.e.the values of f, on X. Furthermore, a vector
of length N accumulates the coefficients «; of the functions g for later use.
Storage requirements thus are N * (d + 2) in d dimensions.

Algorithm 3 For initialization, the values of f = fo on X are generated
and stored. The N coefficients are set to zero. For the startup iteration
index k = 0 we further pick some dummy point z;, € X = {z1,...,zn} and
the dummy coefficient 3, = 0.

The iteration at stage k then loops over all values of fr on X and does two
things on each value: it replaces fi(x;) by the residual

fk+1(xi) = fk(xl) - Bjkq)(xi’ xjk)

and it keeps track of the mazimum absolute value of the updated results. After
this loop over N elements, there is some point x;, . € X = {x1,...,2n}
where | fri1(2j,,,)| = | fet1|poo,x, and the interpolant to this value on x;, ., is
the function fo )
,_ k+1\ T
o CI)( 7x]k+l) @(xjk+l ) xjk+1) .
Thus we set
B' - fk+1(xjk+1)

e (b(xjk+17xjk+1)
and add this value to the current value of aj, , to update the total approxi-
mation. Then we repeat the iteration for k + 1 instead of k.

6



Due to Theorems 1 and 4, the values |fi|.. x generated by Algorithm 3 are
square summable and converge linearly to zero. This proves linear conver-
gence of the algorithm, measured in the native space norm or any discrete
norm on X.

For curiosity, one can form the energy

fk+1 (xjk+1 )2

lsells = g o
x]k+1 ) x]k-H)

and monitor the monotonely convergent sum over these values according
to (3). The values |fg|r., x are also numerically available, and they must
converge linearly (but not necessarily monotonely) to zero. Furthermore,
their squares are summable, and they must converge to zero at least like
1/k. Though being inferior to linear convergence, this convergence behaviour
is the one that can be numerically observed in early stages of the iteration.
These values can be used as a stopping criterion, but one can also choose any
discrete norm | f;|r,, x for this purpose. In view of (3) and (8), a comparison
of the sum of squares of ||s;||¢ and |fx|z, x reveals some information on the
constants in the error analysis.

Convergence of the algorithm is rather slow, but its merits for extremely
large problems rely on other properties:

e [t brings in one coefficient at a time, and it produces approximations
that have less than the full number of nonzero coefficients.

e It does not form any matrix—vector multiplications, and it does not
even store the coefficient matrix.

e Compared to the convergence analysis in [3], its convergence (in theory)
is linear with respect to the index & only, and does not require /N such
steps to form a successful iteration.

Let us do a very rough analysis of its performance, based on the weaker
convergence behaviour like 1/k. After & steps the order of magnitude of the
residuals will be brought down by a factor of 1/k, and this is achieved by
using only k& approximating functions. One can possibly expect 1% accuracy
after 100 steps, using just 100 coefficients.

This strategy is not useful if one wants an exact solution of a system of, say,
100.000 data points. But it often does not make sense to use all 100.000 de-
grees of freedom to solve such a system exactly, coming up with a “solution”



with 100.000 coefficients, whose sheer size limits its usefulness. It seems to
be much more reasonable to get away with 1000 nonzero parameters that
fit the data to an accuracy of 0.1%. The above algorithm adaptively picks
points (and corresponding coefficients) that are the best candidates for fur-
ther treatment, and it turns out to be extendable to an algorithm that is
the first to use radial basis functions of different scales adaptively. We shall
address this in the next section.

Some comments towards other techniques seem appropriate at this point.

7

e The Faul-Powell [3] method will usually work on a full coefficient vector.

Convergence of the latter is proven via steps that need a full sweep
over a set of NV directions, and thus each step contains a full coefficient
vector. If just a part of the first sweep is considered, the technique gets
comparable to ours, because it then does not work on a full coefficient
vector. Linear convergence is not proven.

Conjugate gradients have linear convergence like our technique, and
in cases where its convergence rate is numerically reasonable, it out-
performs our method. But it uses matrix—vector multiplications, and
these (and the convergence rate) limit its applicability. For large and
badly conditioned problems our technique will already produce some
reasonable approximation before the conjugate gradient method has
even finished its first step.

The above technique is a special case of a greedy algorithm as described
in [1], [4],[2], [6], and [7]. We use it here for solving a large linear sys-
tem, but the analysis in section 3 shows that the notion of a dictionary
is applicable here. Furthermore, it extends to cases with multiple in-
stances of functions ®, or with radial basis functions of varying scale.
We shall exploit these possibilities later, without using results of the
cited literature on greedy algorithms.

General Linear Systems

We now look at the above greedy algorithm in case of a general linear system
Az = b with a symmetric and positive definite N x N coefficient matrix A.
As usual in the theory of the conjugate gradient method, we define

|z||4 := 2”7 Az for all z € IRN.



Algorithm 4 For j := 0 start with 27 := 0 € IRN, 1/ :== —b € IRN. Then
iterate for j =0,1,2,... as follows:

stopif |17 is small enough, else:

il = I oo
e, = =Tk [k
2t = 2l 4oy
ritt =l oy Aey,  (in practice)

= A2z’ —b  (by induction)

Note that the method introduces only the numerically relevant unknowns
due to its pivoting strategy based on the right—hand side. Thus the tech-
nique is fundamentally different from the method of Gauss—Seidel or Jacobi.
Furthermore, the method does not form any matrix—vector products. It pays
for this by a low convergence rate.

Theorem 5 The iterates x7 of Algorithm 4 converge linearly to the solution
x* € IRN with Ax* = b. The convergence rate can be bounded above via

Amin (A) )

*_ o d 12 < *_j21—
|lz* — 275 < ||o 5U||A< N maxy, ag

Proof: By a standard variational argument, the algorithm solves the mini-
mization problem

|z* — 27" 4 = min ||z* — 27 — aey, || 4.

«

By Pythagoras’ theorem we then get

" = 2115 = [la* = 275 + of llex, |14
From ||ex, || = ak,x, and |ag,| = ||17]|oo/ @k, k, We conclude

lo* = &% = et = 27|15 = 1715/ an, ;-

We are done if we show

iz >
I, > Amin

" — 27|

But this follows from

|z — 2|3 = (z° — ) A(x* — 27) = (2" — )T < [|17]|oo||2* — 27|,



and

Amin (A) |27 = 27])] < NApin (A) |27 — 27[5
N(z* —a27) ' A(x* — 27)

Nl — 27|

(IINVARVAN

|

The above algorithm cannot be suggested as a general-purpose solver for
symmetric positive definite linear systems. It makes sense only for cases
where the application expects to get away with an approximative solution
that has many zero coefficients. This, however, is the case as soon as bases
with some hierarchical structure or a lot of built—in redundancy are consid-
ered. Since preconditioning can be seen as an appropriate change of basis, it
makes sense to investigate how this algorithm behaves under some additional
preconditioning. But we leave such things open here.

8 Adaptive Scaling

We now want to look at a modification of Algorithm 2 that uses scaled radial
basis functions @.(z,y) := ¢(||z — y||2/c?). In particular, we aim at functions
¢ that have support in [0, 1], such that ®.(x,y) vanishes for ||z — y||» > ¢

Algorithm 5 We fiz real constants
a,e>0<y<pf<l<o.

Furthermore, we use some discrete norm for residuals on a large data set X,
and we need an iteration count K > 1 and a large starting scale c. In what
follows, a successful try is defined by a run of K steps of Algorithm 3 at a
fized scale ¢ such that the discrete norm of residuals is reduced at least by a
factor of a.

e The outermost loop runs over successful tries until the discrete norm of
residuals falls below a prescribed bound €. At each iteration, it uses the
other loops to find a successful try by suitable variation of the values of
K and c:

o A middle loop tries larger and larger numbers K, Ko, Ko?,... of
iterations, and an inner loop

o tries scales c,cf3,¢3% > ... > ¢y

until a successful try is found.

10



Since we know that at any fixed scale Algorithm 3 must bring the residuals
to zero after sufficiently many iterations, the middle loop must terminate at
each of the finitely many scales allowed in the inner loop. It terminates using
the scale that roughly takes the fewest number of new points to reach success.
Since the middle loop reduces the residual norm by a certain factor smaller
than 1, any prescribed accuracy can be reached after sufficiently many outer
iterations.

Note that the algorithm tries first to get away with as few new points as
possible, using the smallest possible iteration count that leads to a reduction
of the residuals. For each iteration count, it tests large scales first, but
priority is given to the iteration count over the scale.

Setting K = 1, using a large ¢ and extremely small values of 0,1 — /3,0 —1 will
lead to a very time—consuming optimization, trying hard to reconstruct the
data with as few centers as possible. We shall call such a case an “optimizing”
run of the algorithm in our examples. But there are some economizations
that should be pointed out.

First, extremely small scales will have a very local effect and will not lead to
any reasonable reduction in early stages of the algorithm. This means that
the algorithm tends to prefer large scales over small scales at early stages,
and extremely small values of § need not be considered. We found § = 0.5
or 0 = 0.25 quite sufficient.

Second, if the scales ¢ for successful cases are inspected, they tend to be
decreasing steadily (but not monotonically). It therefore makes sense to use
an update formula like

Cnew = P * Csuccess

with some factor p > 1 after each success.

Third, the necessary iterations to reach success have the tendency to increase.
This suggests an update formula

Knew =T Ksuccess

with some factor 7 > 1 after each success. The two values above are de-
termined after a successful outer iterations, and used for starting the inner
iterations.

A particularly efficient situation is given by p = 7 = 1, forcing successful
iterations to have weakly monotone increasing or decreasing values of K and
¢, respectively. We shall call such a run of Algorithm 5 a “monotonic” run.

11



If applied for compactly supported radial basis functions, the algorithm in
its above form reaches smaller and smaller scales, until the calculations can
be localized and parallelized. This has not yet been fully exploited in the
numerical examples following in the next section.

But we want to point out a further generalization. One can view the inner
iteration just as a trial of M different radial basis functions, ignoring scale
completely. Since the middle iteration increases the number of iterations
for each function, it will automatically select the radial basis function that
reaches success using the fewest centers. The inner loop must be finite, but
after each success of the outer iteration one can come up with a different
set of finitely many candidates for radial basis functions. It is easy to in-
corporate thin—plate splines or multiquadrics at early stages, and one can
go over to compactly supported functions when it comes to resolving local
details. Numerical experiments in this direction are still to be carried out.
The notion of a dictionary with respect to a greedy algorithm in the sense of
[1], [4],[2], [6], and [7] applies here, and it is an interesting research area to
pursue this connection further.

9 Numerical Experiments

We start with a reproduction of the following Franke-type function:
3
2
fz) =D ajexp(=bjllz — z;13)
j=0

with the values

J | ay b Ly

0(1.0 =-0.1 (0.0, 0.0)
1]11.0 -5.0 (0.5, 0.5)
2(1.0 -15.0 (-0.2,-0.4)
3]11.0 -9.0 (-0.8, 0.8)

To make it less smooth, we introduced a singularity of lower-order derivatives
along the line n — & = —1.0 by taking f(§,n7) — (n — £ + 1.0)n instead of
f(&,n) for n — & < —1.0. The function plot is given in Figure 1, and one can
clearly see the modification in the front right corner. We then picked 40000
random centers on [—1,+1]* and constructed approximate solutions of the
corresponding interpolation problem, consisting of up to 500 centers. In all
examples to follow, we concentrate on three cases that reduce the maximum

12



. @ =
IO DU U1

Figure 1: Franke—type function

absolute value of the residuals to 10%, 5%, and 1%, respectively. Further
reduction should be done by local techniques provided by a forthcoming
paper. The following table shows how many of the 40000 data locations are
necessary to reach the prescribed accuracy:

h

monotone optimized

10% 41 27
5% 61 45
1% 125 143

These two runs were made with o = 8 = 0.9,y = 0.5,0 = 2, and the starting
scale was ¢ = 10. A more detailed plot of the error as a function of the used
centers is in Figure 2, while the corresponding scales are in Figure 3. Note
how close the monotone run is to the optimized run in both cases, in particu-
lar for large numbers of centers. The error for the monotone run does not lead
to a monotone decreasing error curve, because monotonicity is only attained
for the outer iteration. Since later iterations use large values of K, there are
clearly visible non—monotonic sections in the curve for the monotonic run in
Figure 2. The decrease of the optimized scale in Figure 3 clearly shows that
the optimizing algorithm has a strong tendency to “localize” automatically.

Both figures strongly support our suggestion to prefer the monotonic run over
the optimizing run, if one just wants a quick approximation of 1% accuracy.

13



Max. error versus number of data used

]_O T T T rrrr] T T T rrrr] T T T T T T rr

"monotone] ——
optimal” -----

0.1

0.01

Figure 2: Error behavior

In particular, the calculation time for up to 500 actually used centers out
of 40000 on a notebook with a 350MHz AMD-K6 under Linux was about 1
hour for the full optimization, as opposed to 100 seconds for the monotone
run. If just the 1% accurate solution based on 125 points is needed, the
monotone run needs 30 seconds.

Figure 4 shows how our adaptive technique automatically selects crucial
points near the discontinuity line, if we let the monotone run extend up
to 500 centers. The 1% accurate approximations from the table above do
not yet discover the discontinuity precisely.

The mbay.dat data from R. Franke’s webpage are rather difficult to handle,
though they have only 1669 data points. The main problem is their infinite
variation in relative scale. In the NE area of Figure 5 there is an area having
data values exactly zero, and near the origin there is a single sharp positive
peak. Both of these are defined by rather few data values, but there are
many and dense data with small positive values describing a “shallow” area
with small positive data values. The problem is to avoid negative values
of the reconstruction in the zero area, and to avoid errors from the fitting
of the peak to propagate into the shallow area. An exact solution with
¢ = 1.0 is given in Figure 6. Note that there are areas with negative function
values (the solid contour line describes the zero level), and there is some
visible undulation near the NE corner. The coarse approximations with our

14



Support radii versus number of data used

]_O T | T T rrrr T T LN LR | T T T T 111

C ”monotone” — 3

- \ "optimal” ----- .

- ~<-"\ -

1 E E

- | .

0.1 ¢ ! 3

001 1 1 L1 1 111 | 1 1 L1 1 1.1 || 1 1 L1 1 1.1
1 10 100 1000

Figure 3: Scale behavior

algorithm, starting with ¢ = 0.3, yielded the following numbers of centers for
a prescribed relative accuracy:

[

monotone optimized

10% 48 28
5% 109 55
1% 430 335

Even the optimized approximation of Figure 7 is calculated rather quickly
(48 seconds on the aforementioned notebook computer) compared to an exact
solution of a full system with 1669 equations.

In all cases one can observe how the residuals and the scales go down pro-
portionally to 1/k, when k centers are introduced. The summability of the
squares of the residuals supports this behaviour, but asymptotic linear con-
vergence is not visible at this distance from the full solution.

All examples will be provided and documented on the Internet via URL
http://www.num.math.uni-goettingen.de/schaback, including some ray—
traced reproductions showing more details.

15



Points
1-:_"-:.’-|~ I IR

05F ~ S

05 e

Figure 4: First 500 center locations

References

[1] Davis, G., S. Mallat, and M. Avallaneda, Adaptive greedy approxima-
tions, Constr. Approx. 13 (1997) 737-785

[2] DeVore, R.A., and V.N. Temlyakov, Some remarks on greedy algorithms,
Adv. in Comp. Math. 5 (1996) 173-187

[3] Faul, A., and M.J.D. Powell, Proof of convergence of an iterative tech-

nique for thin—plate spline interpolation in two dimensions, Preprint
DAMTP 1998/NA08

[4] Jones, L. A simple lemma on greedy approximation in Hilbert space and
convergence rates for projection pursuit regression and neural network
training, Ann. Statist. 20 (1992) 608-613

[5] Schaback, R., Native Spaces of Radial Basis Functions I, to appear in
the proceedings of IDoMat98.

[6] Temlyakov, V.N., The best m—term approximation and greedy algoriths,
Adv. in Comp. Math. 8 (1998) 249-265

[7] Temlyakov, V.N., Greedy Algorithms and M—Term Approximation with
Regard to Redundant Dictionaries, J. of Approx. Th. 98 (1999) 117-145

16



0.5 T T I |

045 F. ..o .
T |
035F - -
0.25F -
015 = .
0.0 F " e =
0.05 i i

Figure 5: Data locations for mbay.dat

Figure 6: Exact solution with ¢ = 1.0

17



mbay solution

Figure 7: Optimized run with 335 centers

mbay solution

Figure 8: Monotonic run with 430 centers

18



