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Abstract

We show how to provide safe a–posteriori error bounds for numerical solutions
of well-posed operator equations using kernel–based meshless trial spaces. The
presentation is kept as simple as possible in order to address a larger community
working on applications in Science and Engineering.

1 Operator Equations

Most contributions within application–oriented conferences only present numerical
results without rigorous arguments concerning error bounds. Since a–priori error
bounds are hard to find and to apply, we focus here on a–posteriori error bounds
which are obtainable after a solution candidate is found.

In order to cover a fairly general range of partial differential equation (PDE)
problems arising in Science and Technology, we do not want to confine ourselves
here to elliptic problems. The crucial property replacing ellipticity is well-posedness

of the problem, or continuous dependence of the solution on the data. In the context
of a linear boundary–value problem

Lu = fΩ in Ω ⊂ IRd

Bu = fΓ in Γ ⊂ ∂Ω
(1)

on a domain Ω with a linear differential operator L and some linear boundary
operator B, continuous dependence means existence of constants CΩ, CΓ such that

‖u‖U ≤ CΩ‖Lu‖F + CΓ‖Bu‖G for all u ∈ U (2)

where we use suitable norms in the spaces U, F, G between which the differential
operator L and the boundary operator B are defined:

L : U → F,
B : U → G.

(3)

This easily generalizes to multiple differential or boundary operators. Note that
the choice of spaces U, F, G usually is a mathematically hazardous problem in
itself, even for fixed standard operators like L = −∆. A whole scale of trace

spaces connected to trace theorems is possible, depending on the smoothness of
the expected solution. For instance, a Poisson problem with Dirichlet data on a
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reasonable domain Ω ∈ IRd allows either a scale of Hölder spaces [1] or a scale of
Sobolev spaces [2]

U = Wm
2 (Ω), F = Wm−2

2 (Ω), F = W
m−1/2
2 (Γ)

for arbitrary m ∈ ZZ. Another well–posed case arises whenever a maximum princi-
ple for homogeneous boundary value problems with Dirichlet data holds. In such
a case we have

‖u‖∞,Ω ≤ ‖Bu‖∞,Γ,

but still the proper choice of spaces U and F must be done with care.
We do not describe details here, but we remind the application-oriented reader

that the problem should have the property that small perturbations of the data lead
only to small perturbations of the solution. Any uncontrolled blow-up effect will
spoil continuous dependence. Note further that this is independent of numerical
methods.

2 Residual Minimization

If continuous dependence holds in the sense of (2), a standard technique is to use
the chosen space of trial functions to find an approximation ũ for the exact solution
u∗ such that the residuals can be bounded a–posteriori by

‖u∗ − ũ‖U ≤ CΩ‖L(u∗ − ũ)‖F + CΓ‖B(u∗ − ũ)‖G

= CΩ‖fΩ − Lũ‖F + CΓ‖fΓ − Bũ‖G.
(4)

Many authors in application–oriented journals implicitly argue that way. The stan-
dard punchline is:

If the differential equation and the boundary conditions are satisfied up to
some “satisfactory” accuracy, the problem is solved to “satisfactory” accu-
racy.

Without additional information, the above statement is worthless. It makes sense
only if there is continuous dependence in the above form, with known constants,
and if residuals are small in the specific norms required there. Both facts are rarely
checked correctly, and the literature does not supply handy references for continuous
dependence inequalities as (2). Finally, when calculating residuals, authors usually
only evaluate function values on fine discrete sets, but this does not guarantee
small Sobolev norms of residuals as full functions. A graphic inspection of the full
residuals at a fine resolution may convince the user at first sight, but since Sobolev
norms blow up at hardly visible points where higher derivatives are singular, this
is no reliable indication of a small error in the final solution.

However, the above approach via residual minimization is quite useful in theory
and practice, because it is fairly general and since we shall show that the aforemen-
tioned problems can be overcome. But it cannot easily be used with trial functions
of limited smoothness, e.g. for linear finite elements and differential operators of
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order two or more. However, for trial spaces generated by translates of smooth
kernels like Gaussians or multiquadrics, and for problems with smooth solutions
u∗, we can use standard high–order approximation error bounds [6] of the form

‖u∗ − ũ‖U ≤ ǫ

to guarantee small residuals via

‖u∗ − ũ‖U ≤ CΩ‖fΩ − Lũ‖F + CΓ‖fΓ − Bũ‖G

≤ CΩ‖L‖‖u
∗ − ũ‖U + CΓ‖B‖‖u∗ũ‖G

≤ CΩ‖L‖ǫ + CΓ‖B‖ǫ.

This requires that the approximations are smooth enough to allow the operators
L and B to act on them, but there are plenty of sufficiently smooth kernels. The
same conclusion works for meshless trial spaces generated by moving least squares
(MLS), but the operators will be less easy to apply.

However, the above argument is purely theoretic at this point, because it only
proves that there are very useful meshless trial spaces which generate approximate
solutions with arbitrarily small residuals. It does not indicate how to calculate
them and how to evaluate the actual norms of the residuals.

3 Particular and Fundamental Solutions

The estimate (4) allows an easy analysis of the DRM, the MFS and the MPS.
Assume first that there are trial functions uj which provide particular solutions to
the differential operator L via

fj := Luj.

This is easy to do if the uj are sufficiently smooth, and if the fj are calculated from
the uj , not the other way round. Then, in order to solve

Lu = fΩ

without regard of boundary values, one would approximate fΩ by a linear combi-
nation f̃Ω of the fj up to a small error ǫΩ := ‖fΩ− f̃Ω‖F . This sounds easy, but for
a rigid theoretical analysis and an efficient numerical procedure one needs to have
good approximation properties of the fj . However, this can be done in all cases
where the uj have good approximation properties with respect to the real solution
u∗ and sufficient smoothness. In fact, if there is a good approximation ũ to u∗ with
‖u∗ − ũ‖U ≤ ǫU , then there is a good approximation f̃Ω = Lũ to fΩ = Lu∗ with

‖fΩ − f̃Ω‖F = ‖L(u∗ − ũ)‖F ≤ ‖L‖‖u∗ − ũ‖U ≤ ‖L‖ǫU .

If a suitable optimization routine is used to minimize residuals on Ω, it will in such
cases be possible to have a small residual error ‖fΩ − f̃Ω‖F .

Again, we see that trial spaces of smooth functions with good approximation prop-
erties are of central importance. There is absolutely no need to link trial spaces to
finely granulated space discretizations.
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The next step in the DRM is to use the Method of Fundamental Solutions or a
boundary integral method to solve the problem

Lv = 0
Bv = fΓ − Bũ

by some good candidate ṽ with Lṽ = 0 and to use ũ + ṽ as the final candidate for
an approximate solution of the full problem. Then (4) is a sum

‖u∗ − (ũ + ṽ)‖U ≤ CΩ‖fΩ − L(ũ + ṽ)‖F + CΓ‖fΓ − B(ũ + ṽ)‖G

≤ CΩ‖fΩ − f̃Ω‖F + CΓ‖fΓ − Bũ − Bṽ‖G

of the two residuals of the MPS and the MFS, respectively. This simple and well-
known argument yields a solid foundation for the DRM/MPS/MFS provided that
the problem is well–posed and the residual norms are small. But it will be a problem
to evaluate the norms involved here. We shall address this question now.

4 Residual Evaluation

In this paper, we do not want to go into the details of specific weak or strong testing
strategies in the context of convergence analysis [4, 5]. Instead, we focus on safe
ways of a–posteriori evaluation of residuals. Remember that we ended up at this
question when looking at the error of the DRM/MPS/MFS. But we shall stay more
general.

Assume that some method or other has produced a sufficiently smooth trial
function ũ which the user wants to insert into the inequality (4) in order to conclude
that the problem is safely solved. The main problem is to get safe bounds of
the norms ‖fΩ − Lũ‖F and ‖fΓ − Bũ‖G where the norms can be quite exotic
and numerically unavailable. Users will evaluate the residuals on sufficiently many
points, find small absolute values there and be satisfied.

However, this is mathematically incorrect. If a function is small on a large
but still finite point set, it is not necessarily small everywhere and in particular
its derivatives may still be quite large. Typical examples are high–frequency sine
and cosine functions as models of a “small” residual at many points. Weak testing
will not overcome this problem, because highly oscillating residuals will have small
integrals against plenty of test functions while not being small themselves.

Thus we need a good argument for concluding that a function is small in some
norm provided that it is small on a large discrete set. There is a basic requirement
for this: some higher derivative must be bounded.

Let us explain why. The simplest univariate case can be handled easily by
Taylor’s theorem. If u is continuously differentiable with ‖u′‖∞ ≤ C and if u takes
values |u(x)| ≤ ǫ on a discrete point set X ⊂ Ω := [a, b] ⊂ IR with fill distance

h = h(X, Ω) := sup
y∈Ω

min
x∈X

‖x − y‖2,
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one can bound ‖u‖∞,[a,b] via

|u(y)| = |u(y) − u(x) + u(x)| ≤

∣

∣

∣

∣

∫ y

x

u′(t)dt

∣

∣

∣

∣

+ ǫ ≤ Ch + ǫ

where y is arbitrary and x is the point of X closest to y.
Models of such theorems holding in Sobolev spaces are sampling inequalities

derived in [7, 3]. They roughly take the form [7]

‖u‖W m
2

(Ω) ≤ C
(

hM−m‖u‖W M
2

(Ω) + h−m‖u‖X,∞

)

for all u ∈ WM
2 (Ω), 0 ≤ m < M − d/2 or [3]

‖u‖L2(Ω) ≤ C
(

hM‖u‖W M
2

(Ω) + hd/2‖u‖X,2

)

for all u ∈ WM
2 (Ω), d/2 < M .

These tools would perfectly serve our purpose, if we had a grip on a high–
level Sobolev norm like ‖u‖W M

2
(Ω) when applied to a residual. Such norms usually

involve integrals over derivatives, and there is no known efficient way to evaluate
or bound them in general.

But trial spaces made of meshless translates of positive definite kernels allow
to evaluate bounds on high–level Sobolev norms efficiently and without any inte-
gration. The key fact is that they are reproducing kernels of Hilbert spaces H of
smooth functions. If Φ is a positive definite kernel on IRd and if a linear combination

u(y) :=
∑

xj∈X

αjΦ(xj , y) (5)

of generalized “translates” of Φ is given, its Hilbert space norm is available via the
quadratic form

‖u‖2
H =

∑

xj∈X

∑

xk∈X

αjαkΦ(xj , xk).

If the kernel is smooth enough, the above norm will be an upper bound for certain
Sobolev norms, and it is easily available through the coefficients of the represen-
tation. We show some cases in Table 1, where we give the maximal order M of a
Sobolev space WM

2 (Ω) on Ω ⊂ IRd such that an inequality

‖u‖W M
2

(Ω) ≤ C(M, H, Ω)‖u‖H

holds for all u ∈ H , in particular those of the form (5). The case of conditionally
positive definite kernels can be treated very similarly, but there is an additional
condition on the coefficients of (5).

However, within the Method of Fundamental Solutions for second–order differ-
ential equations, things are not as simple. Fundamental solutions then are repro-
ducing kernels of Sobolev spaces of rather low regularity, in particular without a
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φ(r) M

exp(−r2) ∞

(−1)⌈β/2⌉(c2 + r2)β β ∈ IR \ IN0 ∞

(−1)⌈β/2⌉rβ β > 0, β /∈ 2IN d+β
2

(−1)k+1r2k log r k ∈ IN k + d
2

φd,k(r) (Wendland[6]) d ≥ 1, k ≥ 0 k + d+1

2

Table 1: Maximal Sobolev Orders M

stable point evaluation. For instance, the fundamental solutions log r and 1/r of
the Laplacian in IR2 and IR3, respectively, only reproduce W 1

2 spaces. In such cases
users have to go back to the primitive and coarse technique to bound a linear com-
bination via the triangle inequality, provided that the norms of each trial function
can be evaluated.

Finally, note that the MFS also has problems with the approximation argument
at the end of section 2, because there still is no sufficiently general theory for the
approximation of given functions on domain boundaries by fundamental solutions
from source points on an outside fictitious boundary. Using a single domain–based
trial space for simultaneous minimization of both domain and boundary residuals
avoids this problem.
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