
A Parallel Multistage Method

for Surface{Surface Intersection

Heiko B�urger and Robert Schaback

Abstract: A global divide{and{conquer method and a local marching method are combined

into a massively parallel algorithm for surface/surface intersection. Special attention is given

to the comparison of bounding boxes and to the safe and e�cient calculation of all components

of the intersection. The computational complexity of the algorithm is analyzed, and a series of

examples is provided for illustration of the theoretical results.

AMS classi�cations: 65D17, 65Y05, 65Y25, 68U05, 68U07

Keywords: Marching algorithms, Divide{and{conquer methods, bounding boxes, uniqueness.

1 Introduction

Let two smooth and regular surfaces

F : 


F

! IR

3

; G : 


G

! IR

3

(1:1)

on polygonal domains 


F

;


G

in IR

2

be given. The intersection S := F (


F

) \ G(


G

) may be

empty or a set with a rather complicated structure. As outlined already in an early overview

article [Pratt/Geisow '86], the calculation of S requires to solve two di�erent subproblems:

� Determine all connected components of S and make sure that no part of S is overlooked;

� Calculate each connected component of S e�ciently and accurately.

The �rst subproblem is of global nature, while the second is local. Consequently, there are two

di�erent kinds of approaches to solve these problems:

� The global problem is typically solved by \divide{and{conquer" strategies making use of

successive subdivision and bounding boxes ([Houghton et.al. '85], [Dokken et.al. '85]).

� The local problem is solved by \marching" algorithms that use predictor{corrector strate-

gies of Newton{Raphson type to follow intersection curves (see e.g.: [Barnhill et.al. '87],

[Barnhill/Kersey '90], [M�ullenheim '90]).

For both approaches there still is a number of questions to be answered. We pick out a few:

� Which type of bounding box is preferable (and why)?

0

File: /usr/nam/rschaba/tex/fertig/cut/paper.tex. Date of T

E

X run : September 15, 1992.

Status : Ready for submission.

1



� Which types of algorithms are more e�ective than others?

� Can marching methods be made safer without excess computational cost?

� What is the optimal combination of global divide{and{conquer methods with local march-

ing algorithms?

� How far can surface{surface intersection (SSI) algorithms be parallelized?

This paper, based on [Schaback '89b] and [B�urger '92], gives partial answers to these questions

via an analysis of a multi{stage method that combines a general divide{and conquer algorithm

with a safeguarded marching algorithm in such a way that

� the tradeo� between safety and speed can be controlled by the user and

� a maximum degree of parallelism is introduced, without introducing too much synchro-

nization or communication overhead.

2 Divide{and{Conquer Algorithm

This section describes a global algorithm of divide{and conquer type that allows to handle SSI

problems for surface pairs (1.1). For all surface patches F : 


F

! IR

3

considered here, we

assume that there is a set B(F ), called a \bounding box", with

F (


F

) � B(F );

and that pairs of such boxes are easy to test for being disjoint or not. Furthermore we assume

each surface to allow subdivision into smaller surfaces and corresponding bounding boxes as




F

=

m

[

i=1




F

i

; F

i

: 


F

i

! IR

3

;

F

i

= F

�

�




F

i

; F

i

(


F

i

) � B(F

i

)

for 1 � i � m = m(F ). If subdivision is applied repeatedly, we require it to take only a �nite

number of steps to let all subsurfaces (\patches") F

i

satisfy the criterion

diam B(F

i

) < "

for any prescribed " > 0. For each type of surface patch the user wants to allow, we thus need

subroutines for the following tasks:

� Generation of a bounding box B(F ) for F

� Calculation of its diameter

� A su�cient criterion for two bounding boxes B(F ) and B(G) to be disjoint

� A subdivision algorithm.

2



For e�ciency reasons we do not require a necessary and su�cient criterion for boxes B(F )

and B(G) to be disjoint, but for safety reasons we cannot do without a test that safely implies

B(F )\B(G) = ;. Whenever such a test gives no a�rmative answer, we write B(F )\B(G) 6� ;

in the sequel.

The following algorithm uses the data structure of a \bag" or \bucket" without any implied

order of storage or access. The only operations are

� test for emptiness of the bag

� taking an element out of a nonempty bag

� putting an element into a bag,

and these operations should be safely executable by parallel processes without any further

synchronization or communication.

Algorithm 2.1. (divide{and{conquer)

Let L

1

;L

2

and R be bags of patch pairs (F;G) with B(F )\B(G) 6� ;, and let " > 0 be given.

Start:

L

1

:= f(F;G)g for the given surfaces F and G, while R := L

2

:= ;.

Loop:

While L

1

6= ;

let any number of parallel processes do:

Take a pair (F;G) from L

1

.

if diam B(F ) � " and diam B(G) � "

then put (F;G) into R and repeat loop.

if diam B(F ) > "

then subdivide F into F

1

; . . . ; F

m

.

if diam B(G) > "

then subdivide G into G

1

; . . . ; G

n

.

For all pairs (F

i

; G

j

) of generated subpatches do:

if B(F

i

) \B(G

j

) = ;

then discard (F

i

; G

j

)

else

if there is a marching algorithm working on L

2

,

and if points x 2 


F

; y 2 


G

with

kF (x)�G(y)k < " can be found,

then put (F

i

; G

j

) into L

2

else put (F

i

; G

j

) into L

1

:

In this form, the algorithmus clearly is �nite under the above hypotheses on the subdivision

strategy and the bounding boxes. It gradually subdivides all the patch pairs in L

1

and passes

them on to R or L

2

if they cannot be discarded.

3



The link to the local marching algorithm to be described later is an additional routine that

tries to �nd an approximation of an intersection point of two surface patches F

i

and G

j

. This

routine need not be sophisticated or fail{safe, because it just hands the pair (F

i

; G

j

) and

the candidate for an intersection point over to the marching algorithm via the bag L

2

. The

marching algorithm may pass the pair (F

i

; G

j

) back to the divide{and conquer{algorithm via

L

1

if it cannot properly proceed from the suggested approximate intersection point, and the

divide{and{conquer method will have another try after subdivision. Details of this will be given

in the context of the multistage algorithm following later.

3 Bounding boxes

Constructing bounding boxes B(F ) for a surface F : 


F

! IR

3

is easy if a representation

F (u) =

X

i2I

b

i

�

i

(u); u 2 


F

of F (


F

) via a control net fb

i

g

i2I

� IR

3

and a partition of unity

�

i

: 


F

! IR; i 2 I

�

i

(u) � 0; i 2 I; u 2 


F

P

i2I

�

i

(u) = 1; u 2 


F

is used, because F (


F

) will always be in the convex hull of the control net, irrespective of the

explicit form of the partition of unity (see e.g.: [Farin '90], [Hoschek/Lasser '89]).

Coordinate boxes B(F ) will then be de�ned as the smallest L

1

ball that contains the control

net. These boxes are easy to calculate by taking minima/maxima of coordinates of control

points. However, when applying subdivision, they do not adjust 
exibly to the shape of the

surface. If h is the maximum sidelength of a coordinate box, the enclosed surface patch will be

approximated up to no more than O(h).

Oriented parallelepiped boxes are de�ned as

B(F ) = fx 2 IR

3

�

�

�

�

j

� x

T

�

j

� �

+

j

; 1 � j � 3g

for three linearly independent vectors �

j

and three pairs of scalars �

�

j

< �

+

j

; 1 � j � 3.

The vectors �

j

can be normalized to k�

j

k

2

= 1 and will then be the surface normals of the

parallelepiped. For a variety of surface patch types one can make use of the 
exibility of these

boxes to yield better approximations of the surface. In general, one chooses �

1

and �

2

to

be roughly tangential to the surface patch, while �

3

is approximately normal. Then the real

numbers �

�

j

; �

+

j

can be calculated as

�

�

j

= min

i2I

b

T

i

�

j

; �

+

j

= max

i2I

b

T

i

�

j

; 1 � j � 3

to make sure that the control net fb

i

g

i2I

of F and the image F (


F

) of the surface are both

contained in B(F ). Since subdivision converges quadratically for a wide class of surface patch

4



types (see [Schaback '89a] and [Schaback '92] for short proofs of this fact using polar forms),

we will have

�

+

3

� �

�

3

= O(h

2

)

for

h := max(�

+

1

� �

�

1

; �

+

2

� �

�

2

)

tending to zero during successive subdivision. This allows a comparison of boxing strategies:

Theorem 3.1 1) If the given smooth and regular surfaces F and G have a distance

dist (F;G) = inf

u2


F

v2


G

kF (u)�G(v)k = � > 0

and if oriented parallelepiped boxes are used, the divide{and{conquer algorithm requires

work O(�

�2

) for � ! 0 in the worst case, while coordinate boxes require O(�

�4

).

2) If F and G have a nonempty intersection S, then the algorithm (with L

2

ignored) calcu-

lates a covering of S by bounding boxes of diameter at most ".

3) Regular pieces of transversal intersection curves are approximated with precision O("

2

)

for " ! 0 if oriented parallelepiped boxes are used, while coordinate boxes provide an

approximation of precision O(").

Proof: The second assertion is obvious. To prove the �rst, we assume both F and G to be

subdivided into patches F

i

, 1 � i �M and G

j

, 1 � j � N such that B(F

i

)\B(G

j

) = ; for all

pairs (F

i

; G

j

). If h is the maximum diameter of the bounding boxes, their numbers M and N

are bounded by

c �M � h

2

� area (


F

)

c �N � h

2

� area (


G

)

with a constant c, and these worst{case inequalities cannot be improved. The overall amount of

work is proportional to the number of patch pairs to be handled, which is in turn proportional

to M �N and may reach O(h

�4

) in the worst situation (consider two parallel planes at distance

�, represented as Bernstein{B�ezier tensor products).

So far there is no di�erence between the boxing strategies. But for a given surface distance

� > 0 the coordinate bounding boxes require h � � to become disjoint, while oriented paral-

lelepiped boxed only need h

2

� �. This proves the �rst assertion. The algorithm stops when all

diameters of remaining bounding boxes are not larger than ". But then the coordinate boxes

approximate the intersection only with precision ", while oriented parallelepiped boxes provide

precision "

2

in the direction of the surface normals. If local surface normals are not parallel,

this will approximate the intersection along regular transversal curves up to precision "

2

, while

degenerations still are handled with precision ". Here, a transversal point z = F (x) = G(y) of

the intersection set S of surfaces F anf G is understood as a point where the normals �

F

(x)

and �

G

(y) to F and G exist and are not parallel. Each transversal point of S is an interior

point of a piece of a regular transversal intersection curve. Degenerations of S can only occur

in non-transversal points. 2

The above analysis is independent of the work W required for testing a single box pair for

disjointness, because W will only enter as a �xed factor. For small values of " and � it may be

5



Example 1 Coordinate boxes Parallelepipeds

Iterations/Routines
L

1

R disjoint L

1

R disjoint

0
Subdivision and Boxing 24 { 112 23 { 143

1
Subdivision and Boxing 24 { 360 20 { 348

Test of box diameter 24 0 { 20 0 {

2
Subdivision and Boxing 48 { 336 29 { 291

Test of box diameter 48 0 { 29 0 {

3
Subdivision and Boxing 71 { 697 30 { 434

Test of box diameter 71 0 { 30 0 {

4
Subdivision and Boxing 187 { 949 43 { 437

Test of box diameter 187 0 { 43 0 {

5
Subdivision and Boxing 384 { 2608 39 { 649

Test of box diameter 384 0 { 39 0 {

6
Subdivision and Boxing 757 { 5387 15 { 609

Test of box diameter 757 0 { 15 0 {

7
Subdivision and Boxing 1420 { 10692 0 { 240

Test of box diameter 1420 0 { 0 0 {

8
Subdivision and Boxing 2573 { 20147

Test of box diameter 2573 0 {

9
Subdivision and Boxing 4597 { 36571

Test of box diameter 4597 0 {

10
Subdivision and Boxing 6807 { 66745

Test of box diameter 6642 165 {

11
Subdivision and Boxing 3435 { 102837

Test of box diameter 1743 1857 {

12
Subdivision and Boxing 0 { 27888

Test of box diameter 0 0 {

Table 1 Numbers of patch pairs treated by the divide{and{conquer method

better to use coordinate bounding boxes, but for increased precision requirements the oriented

parallelepiped boxes will always pay o�.

Table 1 shows an example with " = 0:0001 and two disjoint surfaces with distance � =

0:000932 � 10", which were given in tensor product Bernstein{B�ezier representation. Since

there was no parallel machine available, we implemented the loop in the algorithm iteratively,

performing a complete sweep over the bag L

1

for each iteration and generating a new instance

of L

1

as input for the next iteration. Iteration zero consisted of two subdivision steps without

any testing. The column L

1

lists the number of elements in the bag L

1

after termination of

each iteration cycle. Similarly, the column R lists the number of elements in the bag R, while

the column labeled \disjoint" contains the number of discarded patch pairs due to the su�cient

test for disjointness. The results show how the number of non-discarded oriented parallelepiped

boxes stays far below the number of coordinate boxes. In all examples that we considered, the

number of coordinate boxes always was larger than the square of the number of oriented paral-

6



lelepiped boxes (see the proof of Theorem 3.1). Some of the coordinate box pairs even get too

small and are moved into R before they are safely regarded as disjoint. This e�ect, however,

would disappear for smaller values of " in this example, but it will appear again for cases of

disjoint surfaces with � � 10".

4 Marching algorithm

This section describes a curve{following algorithm for surface{surface intersection which is

developed from a method in [Diener/Schaback '90] for tracing trajectories in high{dimensional

spaces. The basic idea is to use a single parameter � serving as an adaptive stepsize, while

the algorithm stays within a �xed tolerance � near the actual curve. Furthermore, we monitor

existence and uniqueness of the curve to be followed, and we keep the algorithm e�cient,

passing all possible degenerations back to the global divide{and{conquer strategy.

Our analysis will be con�ned to a single pair F;G of surface patches (1.1) and we ignore patch

boundaries for a while. Assume two points F (u

0

) and G(v

0

) to be known where (u

0

; v

0

) 2




F

�


G

and

kF (u

0

)�G(v

0

)k < ":

Here " is chosen so small that we can consider

z

0

=

1

2

(F (u

0

) +G(v

0

)) (4:1)

to be a su�ciently good approximation for a point of the intersection of F and G. Recall that

these data will in our approach be provided by the global divide{and{conquer algorithm, which

does a very early search for an intersection point by a quick{and{dirty method to be explained

later. We shall now perform a marching step from (u

0

; v

0

) to some (u

�

; v

�

) with

kF (u

�

)�G(v

�

)k < ";

and if this step is actually possible, we will know that there indeed is a unique nondegenerate

curve piece of F (


F

) \ G(


G

) that approximately connects z

0

and z

�

= (F (u

�

) +G(v

�

))=2.

We �rst form (4.1) and the vector

r = �

F

(u

0

)� �

G

(v

0

)

from the two surface normals �

F

(u

0

) and �

G

(u

0

). If the norm of �

F

(u

0

) � �

G

(v

0

) is smaller

than a certain small tolerance � > 0, we do not proceed further. We now formulate Newton's

method for calculating an intersection point of the two curves that lies in the subset

F (


F

) \G(


G

) \ E(z

0

; r; �)

of the a�ne hyperplane

E(z

0

; r; �) = z

0

+ �r + (span(r))

?

which is the space (span(r))

?

moved along the ray z

0

+�r by a �xed stepsize parameter � (see

�gure 1). This yields the 4� 4 system

H(u

0

; v

0

; r; �;u; v) =

�

F (u)�G(v)

1

2

r

T

(F (u) +G(v))� �� r

T

z

0

�

= 0 (4:2)

7



F

G

E(z

0

; r; �)

t

t

z

0

z

�

� � r

Figure 1 A step of the marching method

for (u; v) 2 


F

� 


G

with the Jacobian

H

0

(r; u; v) =

�

rF (u) rG(v)

1

2

r

T

rF (u)

1

2

r

T

rG(v)

�

being independent of z

0

and �. At the starting point (u

0

; v

0

) we �nd

detH

0

(r; u

0

; v

0

) = k�

F

(u

0

)� �

G

(v

0

)k � � > 0 (4:3)

after some calculation. Solving the system

H

0

(r; u

0

; v

0

)

�

x

y

�

=

�

0

1

�

for x; y 2 IR

2

yields nonzero solutions x and y of

r = rF (u

0

)x = rG(v

0

)y (4:4)

which we use to de�ne starting points

u

�

= u

0

+ �x; v

�

= v

0

+ �y

for Newton's method along the ray (u

0

; v

0

) + �(x; y). From (4.2) and (4.4) we get

H(u

0

; v

0

; r; �;u

�

; v

�

) = H(u

0

; v

0

; r; 0;u

0

; v

0

) +O(�

2

)

8



for �! 0, and we assume

kH(u

0

; v

0

; r; �;u

�

; v

�

)�H(u

0

; v

0

; r; 0;u

0

; v

0

)k � 


S

� �

2

(4:5)

for all � from some interval [�

�

; �

+

] with �

�

� 0 � �

+

determined by domain boundaries such

that (u

�

; v

�

) 2 


F

� 


G

. Here 


S

is a bound on the second derivative of H(u

0

; v

0

; r; �;u

�

; v

�

)

with respect to � on [�

�

; �

+

]. Now assume

kH

0

(r;u

�

; v

�

)k

�1

� � for all � 2 [�

�

; �

+

]

and

kH

0

(r;u; v)�H

0

(r; ~u; ~v)k � 


N

k(u; v)� (~u; ~v)k

for all (u; v); (~u; ~v) 2 


F

� 


G

. Then, by Kantorovich's theorem [Ortega/Rheinboldt '70],

Newton's method when started in (u

�

; v

�

) will converge for

(kH(u

0

; v

0

; r; �; 0;u

0

v

0

k+ 


S

�

2

)�

2




N

�

1

2

: (4:6)

If

"

0

�

2




N

�

1

4

(4:7)

is satis�ed for

"

0

:= kH(u

0

; v

0

; r; 0;u

0

; v

0

)k;

we can employ a stepsize �

1

2 [�

�

; �

+

] with

�

2

1

�

1

4�

2




S




N

�

1




S

�

1

2�

2




N

� "

0

�

;

the sign � of �

1

determining the search direction. Thus we choose �

1

such that

�

1

=

8

>

>

>

<

>

>

>

:

min

�

�

+

;

1

2�

p




S




N

�

; if � > 0

�max

�

j�

�

j;

1

2�

p




S




N

�

; if � < 0

9

>

>

>

=

>

>

>

;

(4:8)

and for all � between 0 and �

1

there will be a unique solution (u

�

�

; v

�

�

) of (4.2). The intersection

curve � 7! (F (u

�

�

); G(v

�

�

)) can be stably calculated for � between 0 and �

1

, but it su�ces to

store an iterate (~u

�

1

; ~v

�

1

) with

kF (~u

�

1

)�G(~v

�

1

)k =: "

1

�

1

4�

2




N

as the result of the marching step from (u

0

; v

0

) using stepsize �

1

. The curve is unique in the

balls around (u

�

; v

�

) with radius

k(u

�

; v

�

)� (u; v)k �

1

�


N

(1 +

p

1 � 2�

�

) �

1

�


N

(4:9)

where

�

�

= 


N

� �

2

� kH(u

0

; v

0

; r; �;u

�

; v

�

)k

� 


N

� �

2

� ("

0

+ �

2




S

) �

1

2

;

9



by (4.6), and the curve satis�es

k(u

�

; v

�

) � (u

�

�

; v

�

�

)k �

1

�


N

(1�

p

1 � 2�

�

)

�

1

�


N

(1�

p

1 � 2


N

�

2

("

0

+ �

2




S

))

for all � between 0 and �

1

.

In this form the algorithm performs a marching step only if it is sure that it follows a regular

curve piece that is at some distance from any other part of the intersection set. Note that we

treat uniqueness in the domain 


F

�


G

, thus avoiding problems with multiple intersections at

di�erent parameters. So far our approach is theoretically sound, but in practice the constants




N

; 


S

and � are not available. We just use local estimates of

kH

0

(r;u; v)

�1

k for �

and

2

kH(. . . ; ~u; ~v)�H(. . . ;u; v)�H

0

(. . . ;u; v)((~u; ~v)� (u; v))k

k(~u; ~v)� (u; v)k

2

for 


N

within Newton's iteration. The constant 


S

is estimated right after stepping from (u

0

; v

0

) to

(u

�

; v

�

), using (4.5) appropriately.

When applying these local estimates we tacitly assume that they are valid in a su�ciently

large neighbourhood of our current points, after being multiplied by 5 for safety. Smaller

factors proved to be too risky.

Furthermore, we double our estimate of 


N

whenever Newton's method fails to produce a

\solution" within �ve iterations. After a �nite number of these updates, our 


N

value must be

realistic, because there is a �xed upper bound on 


N

whenever F and G are in C

2

. Of course,

raising 


N

may cause the algorithm to stop because (4.7) fails, but this case is considered as

a degeneration and is left to the global divide{and{conquer strategy. Similarly, we refuse to

proceed if �; 


N

or 


S

exceed certain large a{priori bounds, which are dependent on the machine

precision and the accuracy of the linear equation solver.

Theorem 4.1 If the constants �; 


N

, and 


S

of the marching method are estimated realistically,

the method will follow a nondegenerate intersection curve of length L with accuracy " by a

computational e�ort of order Lj log j log "j j for large L and small ". This compares favorably

with the work of order L"

�1=2

required by the divide{and{conquer method. Finally, the marching

algorithm makes sure that there is no other solution branch within a known distance to the

calculated solution.

Proof: The stepsize � of the method cannot go to zero since �; 


N

and 


S

are bounded

from above. Thus the number of curve{following steps is at most proportional to L, while the

number of Newton steps is proportional to j log j log "j j due to quadratic convergence. This

proves the complexity statement. The constant in this O(L � j log j log "j j) bound depends on

the constants �; �; 


S

, and 


N

controlling the non{degeneracy of the intersection curve. The

second assertion is obvious from the Newton{Kantorovich theorem.

10



To yield an inclusion of an intersection curve of length L with precision " the divide{and{

conquer method �nally needs at least N patches of maximum diameter h, where N �h � L and

h

2

� ". Thus N ' L � "

�1=2

patches are necessary for a curve on a single surface. If disjoint

patch pairs are disposed immediately, there will be approximately const: �N � L � "

�1=2

patch

pairs along a nondegenerate curve of length L, and the �nal step of the divide{and{conquer

method will be of complexity at least O(L � "

�1=2

) for large L and small ". 2

Theorem 4.1 con�rms the observation that curve{following methods are much more e�ective

than divide{and{conquer methods.

The marching method will automatically stop in the vicinity of degenerations like bifurcation

points. When applied in the interior of patches, a criterion for prevention of loops is required

which can easily be implemented by stopping whenever r

T

new

r

old

� 0 (see [Sederberg/Meyers '88]

for more sophisticated criteria). Since we normally start the algorithm on (u; v) where u or v

is on a patch boundary, choosing the proper sign � in (4.8), we only require to stop it at patch

boundaries, which is easy. Our marching method cannot cycle within a patch when coming in

from the boundary, because it must then necessarily run into a degeneration and stop.

The output consists of a sequence of points (u

i

; v

i

) 2 


F

� 


G

, 1 � i � k, where the �rst

and last pair have at least one component on a domain boundary. Furthermore, we save

the local uniqueness radii

1

�


N

from (4.9) for later use; note that these do not depend on "

and get larger if � or 


N

gets smaller. Since 


N

is dependent on the second derivatives of

patches, it will be small when patches are \
at" in the sense of a \
atness test", e.g. after

a large number of subdivision steps. Thus 
at patches will lead to large stepsizes and large

uniqueness radii, improving the performance of the marching method. To illustrate the behav-

ior of the marching algorithm we picked a hazardous case with two intersection curves that

come very close. Figure 2 shows the sequence of L

1

uniqueness balls derived from (4.9) in




F

= [0; 1]

2

, centered around the points calculated by the marching algorithm. Note how

the algorithm 
exibly adjusts the stepsize and the uniqueness radius (4.9) and how it avoids

overshooting to the other curve. For cases which are less risky, the uniqueness radius at-

tains reasonably large values (see Figure 3). This will signi�cantly reduce the amount of

work necessary to exclude the existence of additional solution branches, as will be seen below.

Figures 2 and 3 Uniqueness boxes along intersection curve in 


F

.

11



5 Multistage algorithm

We now combine the divide{and{conquer algorithm of section 2 with the marching method of

the previous section. Recall that the divide{and{conquer algorithm, when linked to a local

method, will test each non{discarded patch pair very early for a possible intersection point.

We implemented this in a very primitive way by trying to solve F (u) = G(v) on each patch

boundary curve via Newton's method started in the corners of the patch. We stopped Newton's

method when it left the patch boundary or when it ran into numerical di�culties. Furthermore,

we simply neglected the possibility of interior intersection points and of all kinds of singularities,

because we could rely on later subdivision steps and the overall safety of the pure divide{and{

conquer method. See [M�ullenheim '91] for a much more re�ned approach to the construction

of starting points.

Algorithm 5.1.(Local part of the multistage algorithm)

Data: Bags L

1

;L

2

, and R as in the divide{and{conquer method.

Another bag P for results.

Loop: While L

2

6= ; let any number of parallel processes do:

Take (F;G) from L

2

.

if diam B(F ) � " and diam B(G) � "

then transfer pair to R and repeat loop.

Subdivide F and/or G into subpatches F

i

; G

j

as in the divide{and{conquer algorithm.

For all pairs (F

i

; G

j

) of subpatches do :

if B(F

i

) \B(G

j

) = ;

then discard (F

i

; G

j

)

else

if no traceable curve is found in (F

i

; G

j

);

then put (F

i

; G

j

) into L

1

else output curve data to P and

if neither B(F

i

) nor B(G

j

) lies

in a uniqueness box for this curve,

then put (F

i

; G

j

) into L

2

else discard (F

i

; G

j

).

The overall data 
ow of the complete multistage algorithm is visualized in Figure 4, where

one can imagine any number of parallel processes executing the global and the local part.

Synchronization is only required at the access to the bags, and there are many possibilities to

handle this, depending on the storage and network model of the parallel architecture.

Post{processing the resulting curve pieces is easy, because we store lists of intersection points

starting and ending at domain boundaries plus the radii of the uniqueness balls in the domains

at these points. This information allows to assemble the curves from their pieces in a very

reliable way. Much more di�cult is the treatment of singularities; we are confronted with a

nonempty bag R of possibly non{disjoint, but rather small patch pairs that do not contain

12


