Adaptive Rational Splines
Robert Schaback

Abstract. The classical interpolation problems for cubic and rational splines are merged
to get an “adaptive” rational interpolating spline which automatically uses cubic pieces to
model unavoidable inflection points and retains convexity/concavity elsewhere. An existence
proof, a numerical method, and a series of examples are presented. Furthermore, the two-
dimensional case is discussed.
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1 Introduction

For a partition
a=0< 11 <...<Tpy1 =0, n>0 (1)

of a real interval [a, b] into subintervals [; = [x;,2j41], 0 < j < n, we want to construct a
twice differentiable function f on [a, b] that is either a cubic polynomial or a rational function

of the form
a; + bjr + cj:zjz

Filw) = =71 e
on I; and which satisfies the interpolation conditions
flaj)=y; 0<j<n

for given data values yo, ..., y, at zg, ..., z,. In addition, we impose a boundary condition of
the type

o) fa) =y ot
6) f//(x) — y//

on each of the endpoints xg = @, 2,41 = b. Note that the parameters d; are allowed to vary

(2)

freely. This distinguishes our approach to rational splines from others (see e.g. [3]).

Due to the special form of (2), f”(x) can have zeros only on intervals I; where f(x) = f;(x) is
a cubic polynomial. We call such intervals cubic, the others rational. To avoid unnecessary
inflection points, we make the number of cubic intervals as small as possible and place them
where inflection points are necessarily induced by the data.

Mixed type nonlinear spline interpolation problems were treated by [3], but an existence
proof was given there only for the case of sufficiently large n, using convergence of rational
splines to cubic splines. This paper gives a general proof and a series of numerical examples.
Approximation by rational splines is treated in [1], [4], and [7].



2 Basic equations

Following [2] and [3] we write the interpolation problem as a system of equations in terms of
the second derivatives M; := f”(x;), 0 < j <n+ 1, at the knots, involving the given data

hi = i —x; (0<)<n)
Al = s (—y) (0<j<n)
D; = A} — A}_l (1 <j<n).

The quantities D;, 0 < j < n 4 1, are positive multiples of . Therefore we use them to
determine the type of the local interpolant from properties of the data alone:

Definition 2.1 A subinterval I; = [z}, x;41] is called rational iff
D]‘ . Dj-l-l >0

and cubic otherwise. A knot x; is called rational if it is the boundary point of at least one
rational subinterval. Furthermore, let

R:={x; |0<j5<n+1, x;is rational }
denote the set of rational knots; the other knots will be called cubic.

We require the interpolant to be rational in rational subintervals and cubic in cubic subinter-
vals. Strict convexity or concavity of the interpolant will thus be conserved as far as possible;
inflection points will occur only in cubic intervals which will be placed near to points where
the second derivative necessarily must have a zero for any C? interpolant of the data.

We now express first-order derivatives f/(x;), fi(z;41) by the data and the unknowns M; :=
f ()

a) For rational intervals [; = [z}, x;41] we get

filey) = A =L pMP Ml

2

(3)

—

Filai) = A+ LM M2

1o

using (2) as a representation of f; in [; and after elimination of the parameters a;, b;, c;,

and d; in favor of the data and M;, M, (see e.g. [2]).
b) For cubic intervals we get

filz;) = A} — %%Mm - %thj (1)
filejm) = AL + g hiM; 4+ 5 hiMjy,

if f; is written as a cubic polynomial in /;.



Reference [3] contains a general treatment of interpolating C'* spline functions composed of
pieces from certain 4-parameter nonlinear families. Equations (3) and (4) are special cases
of a general formula given in [3].

We have to enforce continuity of the first derivative on the boundary point x; between
intervals [;_y = [xj_1, 2], [; = [2j,2j41], 1 < j < n. Combining two equations of the form
(3) or (4) we get the following equations for the unknowns M, := f"(x;) :
Case 1 [;_q, I; rational

J+1

1 1/3 2/3 1 1/3 2/3
5 by MM 4 S MM = D, (5)

Case 2 [;_; cubic, I; rational (or vice versa, analogously)

1 1 1

6 hj_1M;_4 + 3 hj_+M; + 3 h]‘M;ﬁM;/S =D, (6)
Case 3 [;_q, I; cubic

1 1 1

g himiMimu & 3 (hjmy + )M+ < hiMjey = D; (7)

Boundary conditions are treated as follows:

a) fi(xo) =y, implies an equation

1 1
6 h0M1—|—§ hoMOZDO = A% —y6

for Iy cubic and

1
5 hoMng = DO = A% — y6

for Iy rational. These can easily be incorporated by setting h_; := 0 and neglecting
the corresponding terms in an additional equation at © = xy. Obviously, the resulting
equation has one of the above forms.

B) fi(xo) = yi = My simply fixes My but leaves the rest as it was. We formally define
Dy == M; in this case.

In each case the form of the equations is not changed.

3 Cubic sections

For the proof of the main existence theorem in the next section we have to impose an
additional restriction on “cubic sections”; i.e., maximal sequences of adjoining cubic intervals

[xivxi-l-l]? [xi-l-lvxi-l-?]v ey [l’]‘_l,l']‘], 0<:< ] —1<n. (8)



On such a cubic section C' := [x;, x;] the inequalities
Di- Dy <0 (i<k<j—1) (9)

hold, and the “local boundary points” x; € dC are either boundary points of the original
problem (i.e., ¢ = k = 0 or j = k = n 4 1) or rational points (i.e., boundary points to a
neighbouring rational interval, x; € 9C' N R).

Definition 3.1 Let sy be a cubic spline on a cubic section C of the form (8) satisfying
1osy(xg) =gk, 1 < k< g,
2. standard boundary conditions on non—rational boundary points of C,

3. boundary conditions sy;(xr) = My on rational boundary points xy, of C, using a bound-
ary deriwative value My with sgn My = sgn Dy.

A cubic section C of the form (8) is called nondegenerate if for any spline sy defined as
above the inequalities

0 if ;€ 9CNR
0 if J}]‘EacmR

M; sgn 83(4(1?2'4-1) (10)
M;sgn sy (1)
hold.

This makes sure that the second derivative actually changes sign when going from a rational
boundary point to a cubic neighbor. A sufficient criterion for nondegeneracy is given by

Theorem 3.1 [f the data in a cubic section (8) satisfy
(=) DyD; >0 for i <k <j (11)

(i.e., weak alternation of Dy), the cubic section is nondegenerate.

Proof: We consider the Gauss—Seidel iteration on the standard system of equations (7) for

the cubic spline in terms of second derivatives. If started with My = Dy, it will satisty
(=) MpM; >0 for i <k<j

for all iterates, if (11) holds. m

Sign distributions of D;, ..., D; like (4,0,0,+) are not covered by Theorem 3.1. They have
to be removed by slight changes of the data in order to make our theory applicable, although
they do not seem to cause problems in practical computations.

We shall need the following bound of the second derivatives of the solution at the knots in
cubic sections:



Theorem 3.2 There is a constant Cy = Cy(D;, ..., D;) such that

1 m=1orj,
|shy(xp)] < Cy + 5 max M| | @ a rational ) < k <y,
boundary point

for the cubic interpolant sy from Definition 3.1.

Proof: Let sy = gp 4+ gy, where gp interpolates for homogeneous boundary values
on rational boundary points and inhomogeneous data values D, ..., D;, while g interpo-
lates for inhomogeneous boundary values and homogeneous data values. Then for ) :=
maxi<p<; |9p ()| we have

sty (zr)| < Cr+ gy ()] (1 <k<y).

From the equations (see (7))

1

1 1
G hr—1gyr(Te—1) + 3 (hr—1 + he)gyr(e) + G hrgnr(Te41) =0

at interior points z; we get

hy 1, hy—1 1,

- / -
= het + hy 2 9M($k+1) + gM(fL'k—l)

—gr(zr)
hi—1 + hy 2

and this convex combination implies

max(|gyr (1)l lgns(zr-1)])-

(NN

lgar(zr)| <

Extending this inequality recursively to the local boundary yields the assertion. m

4 Existence of adaptive rational splines

The main result of this paper is

Theorem 4.1 There exists a unique interpolating twice differentiable adaptive rational s-
pline, if all cubic sections determined by the data via D; are nondegenerate.

Proof: We solve the equation at x; for M; and thus get a nonlinear Gauss—Seidel iteration
scheme as a mapping 7' : K — K which will be proven to satisfy the hypothesis of Brouwer’s
fixed point theorem on a suitable compact convex domain K. To define the latter we need
some notation and a series of a—priori estimates.

The iteration will ensure that

sgn s"(z;) = sgn M; = sgn D; #0



on rational points; i.e., for § € R. Using constants satisfying

0<d<|Dj|<D forall j€R
0O<h< hj <H 0<j<n,
h<6D

we set 2 D2y

4 4 2 6
S ey ) T W)
EY)Y7E a o n? oy, }

choosing the constant C'; appearing in Theorem 3 large enough for all cubic sections.

C:max{

Now let K be the compact convex set containing all vectors M = (My, ..., M, 1)T with
c<|M;| <C forj€eR,
sgn M; = sgn D; forj € R,
|Mj|§01—|—%0 for j ¢ R.

The iteration mapping 7' : K — K to be defined will combine a Gauss—Seidel iteration of
M; on rational points with the standard solution method on cubic sections using second
derivative local boundary values on the rational boundary points:

Case a) Let x; be a rational point between two rational intervals or on the boundary (in
case of a boundary condition of type «). Then we set in accordance with (5)

Ty (M) = 2D;(h; ML} + hj—y M3

sgn T;(M):= sgnDj.

Case b) Let [¢;_1, ;] be a cubic, [z}, x,41] be a rational interval, respectively. Then we use
(6) to define T;(M) as the (unique) sign—correct solution of

1 1 Ly
6 hj_aM;_4 + g h]'_1T]'(M) + 3 thj_l/_lTj(M)Z/S =D;

(for details see below).

Case ¢) On non-rational points x of cubic sections we define Ty (M) := s"(xy) for the cubic
spline interpolating the given data and the values M; on rational boundary points
x; of the section.

In case a) the sign of T;(M) will be correct since D;, M;_1, M;41 are all of the same sign.
The nondegeneracy condition for cubic sections guarantees that in case b) we have

D]‘M]‘_l S 0, sgn D]‘ = sgn Mj-l-l 7£ 0.



Then (T;(M))'/? solves an equation of the form

1
1’3 + 621’2 == bo == D] - 8 h]‘_lM]‘_l 7£ 0 (12)

with sgn by = sgn by and should have the sign
sgn T;(M) = sgn D; = sgn by = sgn bs.

Since box +boby intersects b2 /x? in exactly one point x with sgn # = sgn by, the cubic equation
(12) has precisely one (simple) sign—correct solution depending smoothly on the data. At
this point the effect of nondegeneracy of cubic sections is clearly visible: if D; — é hj_1M;_q
has the wrong sign, T;(M) will get the wrong sign, too.

Now T is well-defined and continuous on K’; we still have to prove that T(K) C K holds.
In case a) we have
—1,4—=1/3 4 2/3 3 -137-1/3 -1,_-1/3
dH™C STy (M) <2 Djh M. <2 Dh™ /7,

where we allowed a possible boundary point and assumed j < n without loss of generality.
Then
C=dH?PCT <T;(M)?<8D’h?c! = (7

as required. Case c) implies
1
via Theorem (3.2) and we are left with case b). To get upper bounds we rewrite T;(M) as

3 1 ,
=D -4 M

T;(M) = -
/3
3h, My
I+ a5 <TJ<A+4>>

and get

3 1
LD < 7 D+ 5 [Mja] < C.

If j—1¢ R, then

3 1 1
, < = - .
|T;(M)| < A D+ 5 (Cl + 5 C)

1 1
<-D+-Ci+-C<LCC
= ‘|’2 l‘l’4 = ”

while for j — 1 € R we conclude



To estimate |T;(M )| from below we can assume |T;(M)| < 1 and write the equation as

h]‘_l hj—l
3 2

h,
T+ 5 | M M| >d

Y

uwmmzh—

taking the sign distribution into account. Then

H H
d < T+ T (0

< (445 em)man,

-1 -1
T,(M)¥? > dH™ L + Lo > dH-'O~3 L + L
3 2 2 3
> dH_IC_l/S,
and finally
Tf(M) >dPHPC = A
Uniqueness follows from a simple argument counting the zeros of the difference of two solu-

tions (see [3]). =

Remark. Under the hypothesis (11) of Theorem 3.1 a pure Gauss—Seidel iteration can be
employed. This will streamline the proof of Theorem 4.1. However, the following example
will show that (11) is not necessary for nondegeneracy.

Example. Consider a symmetric problem with n =9, z; =¢—-5, 0 < < 10, and
data given in condensed form as Dgy, Dy,0, D3,0, D5, 0, D7 = D3,0, Dg = Dy, Do = Dy with
sgn Do = sgn Dy = 1. If a solution exists, it is unique (see [3]) and therefore it must be
symmetric. The data for the cubic section [y, xg] satisfy (11) in case D3 > 0, D5 > 0, but
not if D3 < 0, Ds > 0. Direct elimination of unknowns M; = s"(x;) yields the equation

and nongeneracy occurs if and only if
42D5 4+ 3D5 > 0,

because then any choice of M; > 0 implies My < 0. This shows that the condition (11) is
not necessary for nondegeneracy.

Furthermore, nondegeneracy is not necessary for solvability of the interpolation problem,
because the final equation for M, is

168 42 3
"M, +3(2D) Y/ M, = 6D, + —Ds+ —D
o7 4+ ( 0) 4 1-|-97 3-|-97 5,

having a positive solution, iff

382D, +42D5 +3D5 > 0.



5 Numerical methods

The iteration defined in the previous section can be used to calculate the solution numerically,
but we propose to use a stabilized Newton—Raphson method for reasons of computational
efficiency. Since results of [3] yield uniqueness of the interpolating adaptive spline, the
nonlinear system to be solved does not have other solutions in the domain K. We have used
Newton’s method with a simple stepsize control assuring that

e iterates stay in A and
o ||F(M)|3 decreases, if the equations are written as F'(M) = 0.

The computational cost of solving the adaptive rational spline interpolation problem was
observed to stay proportional to n. Thus it does not exceed the computational cost of cubic
spline interpolation by more than a constant factor.

Each Newton step involves a tridiagonal system of linear equations. For single precision and
the starting values

2
hj1+h;

normally 5 — 6 Newton iterations are sufficient. Stabilization is required for small n and near—

M; = D; = s"(&) ~ s"(x;)

singular problems, but even in those cases 15 iterations are rarely exceeded. The values of a
cubic spline solution can not be used to start the Newton iteration, because they may have
wrong signs due to the fact that cubic splines do not preserve convexity.

6 Numerical examples

Figures 1, 2, and 3 show plots of interpolating adaptive rational splines (dashed lines) to
certain functions (dotted lines) over the interval [0, 1]. The cubic interpolating splines (and
the cubic pieces within adaptive rational splines) are represented by solid lines.

The convexity preserving feature of the adaptive rational spline cuts off the parasitic wiggles
of the cubic spline near singularities or at the foot of sharp peaks. For large numbers of
knots it shows the same asymptotics as cubic splines (see [3] and [6] for the convergence
of rational splines to cubic splines), but it is inferior to the cubic spline by a certain factor
(about 10 in most examples). The adaptive rational spline is superior to the cubic spline for
small numbers of knots and if the problem has nearby singularities or sharp bends.

7 Two—dimensional rational splines

On a rectangular grid defined by the partitions (1) and

c=z0< < ..< 2y =d m >0



we construct a function s € C*([a, b] X [¢, d]) which interpolates the tensor product data

vij = flxi, ), 0<:<n+1, 0<j7<m+1,
v =2 (2i,z;), i=0,i=n+1, 0<j<m+1,

o= (2,2), 0<i<n+l, j=0,j=m+]l,

)

52 . . . )
?J%:Wgz(%%‘)a t=0,2=n+1, 7=0,7=m+1.

Though the formalism of tensor product interpolation fails here due to the nonlinearity, we

want to use the one-dimensional rational interpolation process wherever possible.

A straighforward method to do this is the following:

1)

Interpolate data y;; at (@;,2;), 0 < j < m+ 1, for each fixed value z;, 0 <t <n+1,
using the one—dimensional process.

Interpolate derivatives ¥, ¥ios Yis -+ s Y mi1s Yimar for 2 =0 and 7 = m + 1 using the
one—dimensional process.

For each of these interpolations, take z—derivatives at grid points and store these only.

Then for a fixed z € [z;,z;11] C [¢,d] the values w; at (x;,z) for interpolation along
the line z = const can be calculated easily from the stored Hermite data of step 1 at
(2;,2;) and (x;,z;41). This Hermite interpolation is possible by solving equations of

the form (3) for M; and M, 4.

The same local Hermite interpolation is applied for aa—lfvalues at (x;,z) for ¢ = 0 and
¢t =m + 1, but using the derivative data of step 2.

Application of the one-dimensional process to the data generated by steps 4 and 5 for
fixed z yields a C'* function s.(x) which interpolates at (x;,2) for 0 < <n + 1.

Repeat steps 4 — 6 for the required number of z—values to evaluate the function
s(x,z) := s,(x) wherever needed. Each z—value requires the solution of a nonlinear
one—dimensional interpolation problem in step 6. Therefore it is highly recommended
to proceed along the lines with z = const.

This process leads to an interpolant s(x, z) with the following properties:

If all one-dimensional interpolants are purely rational, the solution s.(z) € C?[a, b]
depends smoothly on the data which vary twice continuously differentiable with z.

Then we have s(z,z) € C*([a,b] X [¢,d]).

If all one-dimensional interpolants are purely rational, s(x,z) = s.(x) is a purely
concave/convex function of x for each z.

10



o If adaptive rational splines are used for local one-dimensional interpolation, there
will be small jumps in the solution where the type of the interpolant changes. These
are eliminated when the type of interpolation does not vary for successive applications
of step 6. This means that the local type of interpolation with respect to x for fixed
values of z must be independent of z.

e So far no local representation of s(x, z) is known.
e Consequently, it is an open question whether s reproduces convexity/concavity.

The main difference to tensor product interpolation with bicubic splines is that here the
tensor product structure is confined to the data and not shared by the interpolating family
of functions. Consequently, successive rational interpolation processes along = and z grid
lines do not commute and there is no linear local superposition of the one-dimensional
interpolation processes, allowing one to construct values of the interpolant s together with
%, %, d % at each grid point for a subsequent local Hermite—type interpolation on
each subrectangle. When interpolation is carried out along z first, the construction of the
two-dimensional rational interpolant at a certain point requires calculation of a non-local
interpolant along a complete x—line. If the interpolant has to be evaluated successively along
complete x— or z-lines, the nonlinear scheme is not much inferior to the linear bicubic tensor

product scheme.

Figure 4 shows the rational interpolant to the major part of a half-sphere over [0,1]? on a
5 x 5—grid, while the nonconvex cubic interpolant appears in Figure 5. Furthermore, a sharp
(Runge—type rational) peak is interpolated by an adaptive rational spline on an 11 x 11-grid
(see Fig. 6), and Fig. 7 shows the corresponding bicubic solution. No precautions to ensure
C? differentiability were taken for Fig. 6.
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Fig. 1. f(x) = arctan(1002 — 50), 8 knots.

Fig. 2. f(z) = (1002% — 1002 + 26)~*, 6 knots.

Fig. 3. f(z) = —0.0001 + 1/0.50012 — (z — 0.5)2, 11 knots.
Fig. 4. Purely rational bivariate spline interpolant, 5 x 5—grid.
Fig. 5. Bicubic spline interpolant, same data as Fig. 4.
Fig. 6. Adaptive rational spline interpolant, 11 x 11-grid.
Fig. 7. Bicubic spline interpolant, same data as Fig. 6.
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