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Summary

Though the unsymmetric meshless collocation technique introduced by E. J. Kansa
[5],[6] for solving PDE boundary value problems in strong form is very successful in engi-
neering applications, there are no proven results about it so far. A greedy variation of this
technique is provided here, allowing a fully adaptive data–dependent meshless selection of
separated test and trial spaces.

Introduction

The general idea for solving PDE problems in strong or weak form by kernel–based
meshless methods was outlined in [9]. It writes the PDE problem as an uncountably infinite
number of simultaneous scalar equations

λ(u) = fλ ∈ IR, for all λ ∈ Λ. (1)

The set Λ consists of infinitely many linear real–valued functionals λ that usually take the
form of point evaluations of functions or derivatives at points inside a domain or on some
boundary or interface layer. If several differential or boundary operators are involved, we
simply put everything into a single set Λ of functionals of various types. We call (1) a
generalized interpolation problem. Discretization just consists in replacing the infinite set
Λ by some finite unstructured subset {λ1, . . . ,λN}. The space spanned by these functionals
can be called the test space. The trial space consists of a meshless space U of functions
spanned by a basis {u1, . . . ,uM}, and then the discretized problem reads as

λi(u) =
M

∑
j=1

α jλi(u j) = fλi
, 1 ≤ i ≤ N with u := ∑α ju j ∈U (2)

when written as linear equations for a function u of the trial space U .

For problems in strong formulation, the connection between test functionals and test
functions is to be established differently. To get a truly meshless technique, and to allow
very general problems, let Ω ⊆ IRd be a domain, Φ : IRd × IRd → IR be a symmetric positive
definite kernel on IRd and associate to each functional λ a function vλ(x) := λyΦ(x,y) where
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λy means action of λ with respect to the variable y. The standard trial space for Kansa’s
unsymmetric collocation method is the span of functions

u j(x) = vδx j
(x) = Φ(x,x j), 1 ≤ j ≤ M, (3)

for a set X := {x1, . . . ,xM} ⊂ IRd of suitably placed trial centers or nodes. Usually, these
centers are irregularly placed within Ω. Since the scattered points determine the trial func-
tions, we can call them trial centers. This leads to the unsymmetric collocation technique
started by E. Kansa ([5],[6]) for the multiquadric kernel and used by many authors after-
wards (see an overview in [2]).

The resulting unsymmetric collocation matrix has the entries λi(u j) = λy
i Φ(y,x j) and

can be singular in exceptional cases [3]. Consequently, there are no mathematical results
on this technique, though it gives very good results in plenty of applications in science
and engineering. To overcome these problems partially, one has to modify the setting.
We propose a greedy method that generates a sequence of nonsingular problems whose
solutions hopefully converge to the true solution.

Asymptotic Nonsingularity

We assume the kernel Φ has an associated native [8] Hilbert space NΦ of functions
on Ω, i.e. the kernel Φ acts as a reproducing kernel in NΦ [1]. Note that conditionally
positive definite kernels like the multiquadrics can be modified [8] to turn into positive
definite kernels by subtracting certain low–order polynomials. The given discretized strong
collocation problem consists in finding a function in U such that the equations (2) are
satisfied for a set Λ := {λ1, . . . ,λN} of linearly independent continuous linear functionals on
U and prescribed real values f1, . . . , fN . Usually, the functionals are of different types, e.g.
for the Poisson problem they consist of function evaluations at the boundary and Laplacian
evaluation in the interior of the domain. However, we keep the situation as general as
possible, allowing quite arbitrary functionals. The linear system (2) then contains the (in
general unsymmetric) N ×M matrix

AΛ,X := (λx
i Φ(x,x j))1≤i≤N, 1≤ j≤M ,

where λx means evaluation of λ with respect to the variable x and where i is the row index.

While the original Kansa’s method (M = N and X ⊆ Ω) cannot be proven to be fail-
safe in general, the following theorem [7] shows the asymptotic feasibility for a generalized
variant using separated trial and test spaces.

Theorem 1 Let a continuous symmetric positive definite kernel Φ on IRd with its native
space NΦ be given. Furthermore, let a problem of the type (1) on a bounded domain
Ω ⊂ IRd be discretized by N linearly independent functionals λ1, . . . ,λN ∈ NΦ

∗. If the trial
functions are generated by (3) for a sufficiently dense subset X of points in Ω, the matrix
AΛ,X with entries λy

jΦ(y,xk) has full rank N.



To make use of Theorem 1 in practice, one should fix the set Λ := {λ1, . . . ,λN} of N
test functionals first and then work on a trial space U spanned via a very large set X of
M>>N trial centers [7]. The method should automatically pick N out of these M centers to
guarantee nonsingularity of the resulting N by N collocation matrix.

Greedy Method

The previous section showed how to deal with a fixed set of test functionals by picking
suitable subsets of trial centers in a meshless and data–dependent way. But in view of the
infinite problem (1) one should also pick suitable test functionals in a meshless and data–
dependent way, leaving the choice of trial centers to a later stage. We shall do this here,
picking test functionals “greedily”.

Given a large (possibly infinite) set Λ ⊆ NΦ
∗ of functionals. We want to reconstruct a

function u ∈ NΦ from its data Λ(u) = {λ(u) : λ ∈ Λ}. Assume that a solution to Kansa’s
method for functionals λ1, . . . ,λn and suitably placed trial centers Xn := {x1, . . . ,xn} ⊂ IRd

is known such that the corresponding matrix is nonsingular. We write this as the system

AΛn,Xnαn = (λ1(u), . . . ,λN(u))T

and denote the solution function by sn.

Now pick from Λ a functional λn+1 such that λn+1(sn − u) is large in absolute value,
possibly maximal among all other such functionals. If we find none with a nonzero value,
we stop. Otherwise we conclude that λn+1 must be linearly independent from the other
functionals. Now add λn+1 to the functionals considered so far, and add another point xn+1

which we still consider as a free variable. The determinant of AΛn+1,Xn+1 is then a function
vn+1 of x = xn+1, in fact up to a sign

vn+1(x) =
n+1

∑
j=1

(−1) jλy
jΦ(y,x)det(AΛn+1\{λ j},Xn) =:

n+1

∑
j=1

β jλy
jΦ(y,x).

Now pick a fixed xn+1 in Ω where this function is maximal in absolute value. If the function
is zero everywhere, the functionals λ1, . . . ,λn+1 are linearly dependent, which is impossi-
ble. Now repeat the iteration for n+1 instead of n.

Numerical Results

Out of many possible test cases programmed in MATLAB, we take the reconstruction
of a parabola at the origin from a Poisson problem with Dirichlet data on a cardioid r =
0.4(1+ cosϕ) using the multiquadrics kernel

ΦMQ(y,x) :=
√

‖y− x‖2 + c2, for all x,y ∈ IRd
,

and various RBF-scales c. We allow the greedy method to pick from 487 test functionals
and allow 8724 regularly distributed trial centers in [−4,4].

In Figure 1(a) and Figure 1(b), we graphically displayed the final trial centers distri-
bution for RBF-scales c = 1.25 and c = 6.25, respectively. The trial centers picked by the
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(a) Final 69 accepted centers for c = 1.25
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(b) Final 30 accepted centers for c = 6.25

Figure 1: Trial centers distributions for two different RBF-scales.

greedy method lie partially outside the domain. For large RBF-scales, moreover, the greedy
method prefers exterior centers. This behaviour can be observed in Figure 1 and in many
other cases. Detailed results are reported below:

Boundary Laplacian Solution CPU
RBF-scale error error error time DOF
c = 1.25 9E-8 9E-8 4E-8 6.93 sec 69
c = 6.25 2E-8 3E-6 3E-8 4.23 sec 30

All root-mean-square (RMS) errors are taken as rough bounds that we suppress due to
space limitations. The Dirichlet boundary residuals and the Laplace residuals inside the
domain often differ in orders of magnitude, as seen in the case of c = 6.25. The final
column denotes the actual degrees of freedom (DOF) used in the solution. Test runs also
indicate that using large RBF-scales helps to save computation time, because the greedy
method terminates after DOF number of iterations. The solution error for c = 6.25 is
smaller even though its DOF is smaller. To further investigate the proposed method, Fig-
ure 2 shows the RMS errors (denoted by squares) and the degrees of freedom (denoted by
circles) as a function of increasing RBF-scales. An exponential curve (denoted by a solid
line) is fitted to the RMS errors. The greedy method is capable of solving problems with
very large RBF-scales (up to c = 12.5 in this example) and is not severely influenced by
the bad condition of the underlying matrix AΛ,X .

In Figure 3 we present another example. The Poisson problem is solved on a smooth
but irregular star-shaped domain r = 0.3(1.5+cos(5ϕ)) with Dirichlet boundary condition.



The solution is chosen to be the fundamental solution at (2,2), and we use the Gaussian
kernel

ΦGA(y,x) := exp

(

‖y− x‖
c

)2

, for all x,y ∈ IRd
,

with RBF-scales that is 5 times the relative stepsize. The exponential fit reveals the conver-
gence behaviour. As the relative step size reduces, the number of test functionals available
to the greedy method increases from 51 to 2739, and the number of trial centers increases
from 641 to 52719. The greedy method is capable of solving large-scale problems that
cannot be handled by the original method.

Conclusion

In this preliminary form, the proposed adaptive method already demonstrates its im-
provement over the symmetric version [4] in terms of efficiency and accuracy. The greedy
method can be run either on large discrete sets of test functionals and trial centers or on
infinite sets thereof. In both cases, there is quite some chance to prove convergence to the
true solution of the full problem, using the techniques of [9]. We leave this to a forthcoming
paper.
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Figure 2: RMS and DOF against RBF-scale.
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Figure 3: RMS and DOF against relative stepsize.


