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Abstract: Interpolation by translates of \radial" basis functions � is optimal in the sensethat it minimizes the pointwise error functional among all comparable quasi{interpolants ona certain \native" space of functions F�. Since these spaces are rather small for cases where� is smooth, we study the behavior of interpolants on larger spaces of the form F�0 forless smooth functions �0. It turns out that interpolation by translates of � to molli�cationsof functions f from F�0 yields approximations to f that attain the same asymptotic errorbounds as (optimal) interpolation of f by translates of �0 on F�0 .AMS Classi�cation:41A15, 41A25, 41A30, 41A63, 65D10Keywords: Radial Basis Functions, Multivariate Approximation, Approximation Order1 IntroductionGiven a continuous real{valued function � on IRd and a nonnegative integer m, we considerapproximations by �nitely many translates �(� � xj); 1 � j � N , of � together withpolynomials from the space IP dm of d{variate polynomials of degree less than m. This de�nesthe approximants, but we delay the de�nition of the functions f that are to be approximated.To comply with the theory of \radial" basis functions (see e.g. review articles by M.J.D.Powell [7], N. Dyn [2] and M. Buhmann [1]), we write the approximants asp+ g� := p+ NXj=1 �j�(� � xj); p 2 IP dm; � 2 IRN ; (1:1)for N pairwise distinct \centers" x1; . . . ; xN 2 IRd and with the requirementNXj=1 �jp(xj) = 0 for all p 2 IP dm (1:2)for the vector � 2 IRN . Our main concern here is to keep m and � �xed and to studythe approximation power of functions (1.1) when the number N of centers is large. Anotherinteresting issue is the dependence of the approximation power on the location of the centers,but we do not pursue this question here.Each function � that we shall treat here will implicitly introduce a \native" function spaceF with a seminorm j : j. But we shall use one function �0 to de�ne the space F0 of functionsto be approximated, while the approximants are formed by (1.1) with another, possiblydi�erent function �1. The corresponding seminorms will be j j0 and j j1. Error bounds areknown so far only for interpolants with �0 = �1, and for �0 6= �1 there are some interestingnumerical observations (see [8]):� For F0 � F1 the �1{interpolants seem to have more or less the same error on thelarger space F0 as the optimal �0{interpolants (quasi{optimality).� For F0 � F1 the �1{interpolants seem to behave better on F0 than on F1 (supercon-vergence). 1



The results of this paper serve to support the �rst statement in case of approximation insteadof interpolation.Bounds for the interpolation error in case �0 = �1 are usually of the formjf(x)� sf;X(x)j � jf j0 � P �0;X(x) (1:3)for all x 2 IRd; f 2 F0, and all X = fx1; . . . ; xNg with the nondegeneracy propertyp(X) = f0g; p 2 IP dm implies p � 0: (1:4)Here sf;X is an interpolant to f on X of the form (1.1), and P �0;X (x) is the power functionthat evaluates the norm of the error functional:P �0;X (x) = supf2F0jf j0 6=0 jf(x)� sf;X(x)jjf j0 :Of course, the error bound (1.3) is large when x is far away from the centers. Therefore thereare results that bound P �0;X (x) nicely from above whenever x is surrounded by su�cientlymany points from X. This is quanti�ed by the \�{density"h�;X(x) := supky�xk2��minz2X ky � zk2 (1:5)of X around x. If X and x satisfy h�;X(x) � h0 (1:6)for a constant h0 depending only on d; � and �, then error bounds of the formP �0;X (x) � c � (h�;X(x))kP �0;X (x) � c � exp�� c(h�;X(x))k� (1:7)(see Madych/Nelson [6], [5] and Wu/Schaback [10]) are provided. Here and in the sequel weshall denote generic constants by c.For approximation one should take x from a compact set 
 � IRd and then consider all �nitesets X such that (1.4) and h�;X(x) � h � h0 for all x 2 
 (1:8)hold. Thus h serves as a scaling parameter to control the approximation quality in termsof the density of points of X with respect to 
. Note that this requires X to extend atleast by a distance � out of 
. But a closer look at the proof technique of [6], [5], and [10]reveals that this is not necessary, provided that the boundary of 
 satis�es a uniform interiorcone condition, i.e. there must be a �xed positive angle � such that from each point of theboundary of 
 there is a cone of angle not less than � extending locally into the interior of
. The sup in (1.5) is then restricted to the cone instead of a ball. This has independentlybeen observed by W. Light (private communication). In view of (1.7) we should look forbounds like kf � af;Xk1;
 � c � hk orkf � af;Xk1;
 � c � exp�� chk � (1:9)2



for all X satisfying (1.8), where the approximant af;X is of the form (1.1). In this sense wecan compare error orders for interpolation and approximation.In all interesting cases we shall get that approximation of functions from F0 by functions(1.1) with �1 attains the (optimal) orders of interpolation by �0 on F0, provided thatF0 � F1. This will be done by showing (1.9) for right{hand sides that are comparable to(1.7).2 Basic assumptionsWe assume � to be symmetric in the sense �(�) = �(��) and to be of at most polynomialgrowth at in�nity. Then � has a generalized Fourier transform in the sense of tempereddistributions, and we require this (possibly singular) distribution to coincide on IRd n f0gwith a positive continuous function ' in the sense of Jones [3]. The possible polynomialgrowth at 1 then corresponds to a singularity of ' at the origin, and we assume'(!) � c � kwk�d�s0 ! 2 U0 (2:1)for a �xed and minimal s0 2 IR in a neighborhood U0 of zero. Then m and s0 are related bythe crucial requirement 2m > s0; (2:2)and to make the Fourier transform correspondence between ' and � analytically sound, weneed ' 2 L1(U1) for a neighborhood U1 of in�nity. Details of this can be found in [4] and[9].3 Native function spacesEach pair �; ' as de�ned above will give rise to a \native" function space F�. One way ofintroducing F� proceeds by taking generalized Fourier transforms of functions (1.1), resultingin tempered distributions that coincide with functions S� � ' on IRd n f0g, whereS�(!) := NXj=1 �jei!T xjis kind of a symbol function that satis�esjS�(!)j � c � k!km2 ; c = c(�; x1; . . . ; xN ;m;N) (3:1)due to (1.2). Then the integral(2�)�d ZIRd jS�(!) � '(!)j2'(!) d! = (2�)�d ZIRd '(!)jS�(!)j2d! = jg� � pj2� = jg�j2�will exist due to (2.1) and (3.1) and will de�ne a seminorm on the approximants from (1.1).The \native" function space for � will now be the largest space to which this seminormcan be properly extended. This will in general be a space of distributions, but for sake3



of simplicity we restrict ourselves here to the space F� of functions f in C(IRd) with ageneralized Fourier transform f̂ in the weighted L2 space�g : ZIRd jg(!)j2'(!) d! <1� (3:2)such that the Fourier inversion formulaf(x) = (2�)�d ZIRd f̂(!)ei!Txd! (3:3)holds for all x 2 IRd. The seminorm in F0 = F�0 then isjf j20 := jf j2�0 := (2�)�d ZIRd jf̂ (!)j2'0(!) d!;when '0 is the function that coincides with the generalized Fourier transform of �0 onIRd n f0g. One of the most important spaces is Sobolew space W k2 (IRd) of all functionsf 2 L2(IRd) having distributional derivatives up to order k that coincide with functions inL2(IRd). For k > d=2 this is the native space corresponding to s0 = �d; m = 0 and'(!) = (1 + k!k22)�k�(x) = c � kxkk�d=22 �Kk�d=2(2�kxk2) (3:4)with the Macdonald or modi�ed spherical Bessel function K� . Due to this observation weshall restrict ourselves to the approximation of functions f from a space F0 correspondingto a pair �0; '0. But our approximants (1.1) will use a di�erent pair �1; '1.4 Basic resultsIf f is from a \native" space F0 := F�0 with F0 larger than F1 := F�1 , we �rst approximatef by a regularization fM 2 F1 obtained via truncation of the Fourier transform, i.e.:f̂M := f̂ � �M ;�M being the characteristic function of the Euclidean ball around zero with radius M > 0.Then fM can be de�ned via (3.3), and there is an easy uniform error bound:Lemma 4.1 For each function f 2 F0 we havejf(x)� fM (x)j � jf j0 � c0(M); (4:1)uniformly in x 2 IRd, where j:j0 is the seminorm in F0 andc20(M) := (2�)�d Zk!k2�M '0(!)d!: (4:2)Proof: Use (3.3) to getjf(x)� fM (x)j � (2�)�dZk!k2�M jf̂(!)jd!� �(2�)�d Zk!k2�M jf̂(!)j2'0(!) � 1=2 ��(2�)�d Zk!k2�M '0(!) � d!� 1=24



via Cauchy{Schwarz. 2Note that the above proof could allow for an additional o(1) factor in the bound (4.1) forM !1, the precise o(1) behavior being dependent on f .Lemma 4.2 If '0='1 is bounded in a neighborhood of zero, then for all M > 0 and allf 2 F0 the function fM lies in F1 with seminormjfM j1 � jf j0 �C01(M);where C201(M) := supk!k2�M '0(!)'1(!) : (4:3)Proof: Just evaluate jfM j21 = (2�)�dZk!k2�M jf̂ (!)j2'1(!) '0(!)'0(!) d!� jf j20 � supk!k2�M '0(!)'1(!) : 2Note that for M !1 the function c0(M) decreases to zero while C01(M) does not decrease.ThusLemma 4.3 There is a positive constant c depending only on d; '0, and '1, such that forall 0 < " � c we have an M(") withC01(M(")) � " � c0(M(")); (4:4)and M(")!1 for "! 0. 2From the literature (see e.g. [8]) we citeLemma 4.4 Given �1 with '1 and m1, there is an error bound of the formjf(x)� sf;X(x)j � jf j1 � P �1;X(x)for all functions in the native space F1 and interpolants sf;X to f by functions (1.1) on setsX = fx1; . . . ; xNg � IRd with (1.4). The power function P �1;X(x) is the norm of the errorfunctional, i.e.: P �1;X(x) = supjf j1 6=0 jf(x)� sf;X(x)jjf j1and it is the minimum of all such norms, if quasi{interpolantsqf;X(x) := NXj=1 uj(x)f(xj)with p(x) = NXj=1 uj(x)p(xj) for all p 2 IP dmare allowed instead of sf;X. 5



Theorem 4.5 Given two radial basis functions �0;�1 with associated functions '0; '1 suchthat '0='1 is bounded around zero, there is a positive constant c, depending only on d; '0,and '1, such that for all points x 2 IRd and all sets X of centers satisfying (1.4) andP �1;X(x) � c there is for all functions f 2 F0 an approximant af;X of the form (1.1) with� = �1, satisfying jf(x)� af;X(x)j � 2jf j0 � c0(M(P �1;X(x)));the function M taken from (4.4).Proof: We pick " = P �1;X(x) and M(") with (4.4). With this M and a given f 2 F0 weapply Lemmas 4.1, 4.2, and 4.4 for af;X = sfM ;X. Then the assertion follows from (4.4) andjf(x)� af;X(x)j � jf(x)� fM(x)j+ jfM(x)� sfM ;X(x)j� jf j0 � c0(M) + jfM j1 � P �1;X(x)� jf j0 � (c0(M) + C01(M) � "): 2Remarks: Under the hypotheses of the theorem, the approximant af;X can be chosenindependent of x, provided that X and x satisfy a uniform boundP �1;X(x) � " � c:The error bound then is jf(x)� af;X(x)j � 2jf j0 � c0(M(")):In all practical cases there is an error boundP �1;X(x) � F1(h�;X(x))for all x and X satisfying h�;X(x) � h0; F1(h�;X(x)) � cwith a monotonic function F1 : IR>0 ! IR>0 satisfying F (0) = 0 (see [9] for details). Thenfor any h with h � h0 and F1(h) � c, for all compact sets 
 � IRd and all functions f 2 F0we have for all X with h�;X(x) � h for all x 2 
an error bound jf(x)� af;X(x)j � 2jf j0 � c0(M(F1(h))) (4:5)uniformly for x 2 
. Applications of Theorem 4.5 and (4.5) proceed as follows: First, �x �0and '0 to determine c0 of (4.2). Then, for any other �1 and '1, calculate C01 of (4.3) andcompare with c0 to �nd the function M that optimally satis�es (4.4). Then Theorem 4.5 or(4.5) can be applied. The following two sections will proceed along these lines.6



5 Approximation in Sobolew spacesWe now �x F0 = W k2 (IRd) with 2k > d and study approximations of the form (1.1) withdi�erent functions �. Due to (3.4) we havec20(M) = (2�)�dZk!k2�M (1 + k!k22)�kd!= c(d)Z 1M (1 + r2)�k � rd�1dr= c(d; k)(Md�2k + o(Md�2k)) for M !1;while C01(M) will depend on the \radial" basis function �1 that controls the approximation.Thin{plate splines �1(x) = kxk� or kxk� log kxk for � > 0; � =2 2IN or � 2 2IN will have'1(!) = c(�; d)k!k�d��and '0='1 is bounded near zero. Furthermore, for 2k < d+ � we haveC201(M) = c(�; d; k) �Md+��2k(1 + o(1)) for M !1and (4.4) is satis�ed forM(") = c(�; d; k) � "�2=�(1 + o(1)) for "! 0and we have c0(M(")) = c(�; d; k) � "(2k�d)=�(1 + o(1)) for "! 0:Convergence results for optimal interpolants on native spaces guarantee the existence ofconstants such that for all X and x with h�;X(x) � h0 the boundP �1;X(x) � c � h�=2�;X(x) � c � h�=2 (5:1)holds whenever X and x satisfy h�;X(x) � h. For such X and x, we can set " = h�=2 andapply (4.5) to get jf(x)� af;X(x)j � 2 � jf j0 � c � hk�d=2:The exponent of h thus is the same as in the optimal error boundP �0;X(x) � c � hk�d=2�;X (x) � c � hk�d=2that is attainable on the native space F0 itself (see the technique of Wu/Schaback [10]).We now turn to multiquadrics �1(x) = (1 + kxk22)�=2for � =2 2ZZ, where'1(!) � c(d; �) �( k!k�d�� ! near 0e�k!kk!k� d+�+12 ! near in�nity )7



for 
 �xed, and where the exponent � in '1 is best possible. Then, up to constants and forM !1, we have C01(M) = M�keM=2M (d+�+1)=4 (1 + o(1));and '0='1 is bounded near zero. Furthermore, M(") has to satisfy" �M�kMk�d=2eM=2M (d+�+1)=4 = constwhich can be done by solving the equation12 M(") = const� log "+ �d4 � �4 � 14 � logM(")for su�ciently small " and large M("). Now the optimal error bound on F1 isP �1;X(x) � c � e� �h�;X (x) � c � e� �h =: " (5:2)for some � > 0 due to Madych/Nelson [6], and we get log " � � �h and12 M(")(1 + o(1)) = �h ;c0(M(")) � c(d; k; �; �)hk�d=2;for h! 0 such that (4.5) again equalizes the rate of optimal interpolation in Sobolew spaceW k2 (IRd).For Gaussians �1(x) = exp(��kxk22)we �nd '1(!) = c � exp(�k!k22=4�)and '0='1 will always be bounded. ClearlyC01(M) = M�ke+M2=8� (1 + o(1))for M !1 and M(") has to satisfy" �M�kMk�d=2e+M2=8� = const;or M2(")8� = const� log "+ d2 logM(")for "! 0 and M !1. Due to Madych/Nelson [6] the optimal error bound isP �1;X(x) � c � e� �h2�;X (x) � c � e� �h2 ; (5:3)and again log " = (1 + o(1))�� �h2 � yields the optimal order viac0(M(")) � c � hk�d=2:8



6 Approximation by Gaussians in spaces de�ned bymultiquadricsFinally, let us consider approximations of functions from the native space F0 for multi-quadrics �0(x) = (12 + kxk22)�=2 by Gaussians �1(x) = e��kxk2. Thenc20(M) � Z 1M e�rrd�1dr�(d+�+1)=2 = c � e�MM (d���3)=2 � (1 + o(1))for M !1 andC201(M) � c �M�d��eM2=4�(1 + o(1));� log " = const+ M2(")8� + M(")2 � �d� 12 + d + �2 � logM(")= �h2 (1 + o(1)) (see (5.3)):for h; "! 0. This yields0 < �h2 � �h � M2(")2� � �h2 for a suitable � > 0and c0(M) � �p2��h �d�1 exp �r2�� �h2 � �h �! ; (6:4)which is still an exponential bound, but not of the form (5.2).7 Final remarksUnfortunately, the above cases had to be handled individually as special cases of the resultsof section 4. There would be a fairly general theorem stating quasi{optimality of \radial"basis function approximants on larger spaces, if some additional things, as suggested by theprevious section, would hold true. If the interpolation error for �i on its own native space isP �i;X(x) � Fi(h�;X(x))for i = 0; 1, then we can observe that bounds likec0 � ch � � c � F0(h)C01� ch � � F1(h) � c � F0(h) (7:5)hold for 0 < h � h0 in all of the above cases. The technique in Wu/Schaback [10] ties theinterpolation error to the behaviour of the Fourier transform around in�nity, as requiredfor such bounds as (7.5), but the bounds do not follow from there. There is a gap by afactor of h1�d between (6.4) and (5.2), but the constant � of (5.2) is not necessarily optimal.The precise form of optimal exponential error bounds for multiquadrics and Gaussians still isunknown: the results of [9] suggest that there might well be a factor of the form hk occurringin the optimal bounds. 9



References[1] M.D. Buhmann. New developments in the theory of radial basis function interpolation.In Multivariate Approximations: From CAGD to Wavelets, pages 35{75. K. Jetter andF.I. Utreras, editors; World Scienti�c, London, 1993.[2] N. Dyn. Interpolation and approximation by radial and related functions. In C.K. Chui,L.L. Schumaker, and J.D. Ward, editors, Approximation Theory VI. Academic Press,Boston, 1989.[3] D.S. Jones. The Theory of Generalized Functions. Cambridge University Press, 1982.[4] W.R. Madych and S.A. Nelson. Multivariate interpolation: a variational theory.Manuscript, 1983.[5] W.R. Madych and S.A. Nelson. Multivariate interpolation and conditionally positivede�nite functions II. Math. Comp., 54:211{230, 1990.[6] W.R. Madych and S.A. Nelson. Bounds on multivariate polynomials and exponentialerror estimates for multiquadric interpolation. Journal of Approximation Theory, 70:94{114, 1992.[7] M.J.D. Powell. Univariate multiquadric interpolation: Some recent results. In P.J.Laurent, A. Le M�ehaut�e, and L.L. Schumaker, editors, Curves and Surfaces, pages371{382. Academic Press, 1991.[8] R. Schaback. Comparison of radial basis function interpolants. InMultivariate Approxi-mation. From CAGD to Wavelets, pages 293{305. K. Jetter and F. Utreras, editors;World Scienti�c, London, 1993.[9] R. Schaback. Error estimates and condition numbers for radial basis function interpo-lation. To appear in Advances in Computational Mathematics, 1994.[10] Z. Wu and R. Schaback. Local error estimates for radial basis function interpolation ofscattered data. IMA Journal of Numerical Analysis, 13:13{27, 1993.
10


