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Abstract: Interpolation by translates of “radial” basis functions ® is optimal in the sense
that it minimizes the pointwise error functional among all comparable quasi-interpolants on
a certain “native” space of functions Fg. Since these spaces are rather small for cases where
® is smooth, we study the behavior of interpolants on larger spaces of the form Fg, for
less smooth functions ®q. It turns out that interpolation by translates of ® to mollifications
of functions f from Fg, yields approximations to f that attain the same asymptotic error
bounds as (optimal) interpolation of f by translates of ® on Fag,.
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1 Introduction

Given a continuous real-valued function ® on /R? and a nonnegative integer m, we consider
approximations by finitely many translates ®(- — z;), 1 < 7 < N, of & together with
polynomials from the space IP% of d-variate polynomials of degree less than m. This defines
the approximants, but we delay the definition of the functions f that are to be approximated.
To comply with the theory of “radial” basis functions (see e.g. review articles by M.J.D.
Powell [7], N. Dyn [2] and M. Buhmann [1]), we write the approximants as

N
Pt gui=p+ Y o;®-—z), peP acRk" (1.1)
7=1
for N pairwise distinct “centers” xq,...,zy € IR? and with the requirement
N
Zosz(xj) =0 for all p € IP? (1.2)
7=1

for the vector o € IRN. Our main concern here is to keep m and ® fixed and to study
the approximation power of functions (1.1) when the number N of centers is large. Another
interesting issue is the dependence of the approximation power on the location of the centers,
but we do not pursue this question here.

Each function ® that we shall treat here will implicitly introduce a “native” function space
F with a seminorm | . |. But we shall use one function @4 to define the space Fy of functions
to be approximated, while the approximants are formed by (1.1) with another, possibly
different function ®;. The corresponding seminorms will be | |¢ and | |;. Error bounds are
known so far only for interpolants with ®, = @1, and for ®g # ®; there are some interesting
numerical observations (see [8]):

e For 7y O F; the ®;-interpolants seem to have more or less the same error on the
larger space Fy as the optimal ®o—interpolants (quasi-optimality).

e For Fy C F; the ®;-interpolants seem to behave better on Fy than on F; (supercon-
vergence).



The results of this paper serve to support the first statement in case of approximation instead
of interpolation.

Bounds for the interpolation error in case ®; = ®; are usually of the form
[f(z) = ssx(@)] < [flo- Fox(2) (1.3)
for all # € IR?, f € Fo, and all X = {z1,...,zy} with the nondegeneracy property
p(X) = {0}, p € P! implies p = 0. (1.4)

Here s x is an interpolant to f on X of the form (1.1), and Pj y () is the power function
that evaluates the norm of the error functional:

. _ |f(z) = spx(x)]
Qx(w)——fgg 7o :
| flo#0

Of course, the error bound (1.3) is large when x is far away from the centers. Therefore there
are results that bound Pf y () nicely from above whenever x is surrounded by sufficiently
many points from X. This is quantified by the “p—density”

hyx(x):= sup minl|y— 2 (1.5)
lly—zll><p €X

of X around x. If X and z satisfy
hp,X(x) S hO (16)

for a constant hy depending only on d, p and ®, then error bounds of the form
ox(@) < e (hpx (@)

(1.7)
ox(z) < crexp <_W>

(see Madych/Nelson [6], [5] and Wu/Schaback [10]) are provided. Here and in the sequel we

shall denote generic constants by c.

For approximation one should take x from a compact set Q C IR? and then consider all finite

sets X such that (1.4) and
hyx(x) < h < hg for all z € Q (1.8)

hold. Thus h serves as a scaling parameter to control the approximation quality in terms
of the density of points of X with respect to 2. Note that this requires X to extend at
least by a distance p out of 2. But a closer look at the proof technique of [6], [5], and [10]
reveals that this is not necessary, provided that the boundary of € satisfies a uniform interior
cone condition, i.e. there must be a fixed positive angle « such that from each point of the
boundary of () there is a cone of angle not less than « extending locally into the interior of
Q). The sup in (1.5) is then restricted to the cone instead of a ball. This has independently
been observed by W. Light (private communication). In view of (1.7) we should look for
bounds like
If —asxllen < e b or

(1.9)
If = apxllocn < erexp (=5 )



for all X satisfying (1.8), where the approximant as x is of the form (1.1). In this sense we
can compare error orders for interpolation and approximation.

In all interesting cases we shall get that approximation of functions from Fy by functions
(1.1) with ®; attains the (optimal) orders of interpolation by ®¢ on Fy, provided that
Fo 2 Fy. This will be done by showing (1.9) for right-hand sides that are comparable to
(1.7).

2 Basic assumptions

We assume ¢ to be symmetric in the sense ®(-) = ®(—-) and to be of at most polynomial
growth at infinity. Then ® has a generalized Fourier transform in the sense of tempered
distributions, and we require this (possibly singular) distribution to coincide on IR? \ {0}
with a positive continuous function ¢ in the sense of Jones [3]. The possible polynomial
growth at oo then corresponds to a singularity of ¢ at the origin, and we assume

plw) e flwl| ™7 we l (2.1)

for a fixed and minimal sq € IR in a neighborhood Uy of zero. Then m and sq are related by

the crucial requirement
2m > so, (2.2)

and to make the Fourier transform correspondence between ¢ and ¢ analytically sound, we
need ¢ € L1(U) for a neighborhood U, of infinity. Details of this can be found in [4] and

[9].
3 Native function spaces

Each pair @, ¢ as defined above will give rise to a “native” function space Fg. One way of
introducing Fg proceeds by taking generalized Fourier transforms of functions (1.1), resulting
in tempered distributions that coincide with functions S, - ¢ on IR?\ {0}, where

N
Sal(w) = Zozje“”%ﬂ
7=1

is kind of a symbol function that satisfies
Sul)] < e Jollgs e = e, o m, N) (3.1)

due to (1.2). Then the integral

[ 1al) o) g, _ - o et o
) [ BAD L g omyt [ oS e = lg, -l = ol

will exist due to (2.1) and (3.1) and will define a seminorm on the approximants from (1.1).
The “native” function space for ® will now be the largest space to which this seminorm
can be properly extended. This will in general be a space of distributions, but for sake



of simplicity we restrict ourselves here to the space Fg of functions f in C'(IR?) with a
generalized Fourier transform f in the weighted L, space

{g:/ﬂ%d%dw<oo} (3.2)

such that the Fourier inversion formula
f@) = @0t [ fo)e e (33)
Rd

holds for all # € IR?. The seminorm in Fo = Fg, then is
£ 2
2._ |12 .= (9 —d/ |f(w)] d
|f|0 |f|<1>0 ( 77) o 990(@) W,

when g is the function that coincides with the generalized Fourier transform of ®, on
IR\ {0}. One of the most important spaces is Sobolew space Wi (IR?) of all functions
f € Ly(IR?) having distributional derivatives up to order k that coincide with functions in

Ly(IRY). For k > d/2 this is the native space corresponding to so = —d, m = 0 and
plw) = (1+][wl2)"
a4y (3.4)
O(z) = c-flafly 7 Kioapa(27(z]]2)

with the Macdonald or modified spherical Bessel function K,. Due to this observation we
shall restrict ourselves to the approximation of functions f from a space Fy corresponding
to a pair ®g, @o. But our approximants (1.1) will use a different pair ®4, ¢1.

4 Basic results

If fis from a “native” space Fy := Fg, with Fy larger than Fy := Fg,, we first approximate
f by a regularization fy; € F; obtained via truncation of the Fourier transform, i.e.:

far = xur,

Y being the characteristic function of the Fuclidean ball around zero with radius M > 0.
Then fa can be defined via (3.3), and there is an easy uniform error bound:

Lemma 4.1 For each function f € Fy we have
|f(@) = far(@)] < [ flo - co(M), (4.1)

uniformly in x € IR, where |.|o is the seminorm in Fy and

ca(M) = (271')_51/ wo(w)dw. (4.2)

llwll2>M
Proof: Use (3.3) to get

() = fu(@)] < (20)7 /| ()]

< ((zﬂ—d A . o ) . (W_d AWHQZM o) dw) y




via Cauchy—Schwarz. O
Note that the above proof could allow for an additional o(1) factor in the bound (4.1) for
M — oo, the precise o(1) behavior being dependent on f.

Lemma 4.2 [f ©g/¢1 is bounded in a neighborhood of zero, then for all M > 0 and all
[ € Fq the function fyr lies in Fy with seminorm

|farli <\ flo- Cor(M),

where

S

2 . o(w)
Co(M) = stntng or() (4.3)

Proof: Just evaluate

Il = (2m) A | e,

wo(w)

< f2- sup —¢0(w).
Tl sup o)

a

Note that for M — oo the function ¢o( M) decreases to zero while Co1 (M) does not decrease.

Thus

Lemma 4.3 There is a positive constant ¢ depending only on d, o, and @1, such that for
all 0 < e < ¢ we have an M(e) with

Cor(M(e)) - e < co(M(e)), (4.4)
and M(g) — oo fore — 0. O
From the literature (see e.g. [8]) we cite
Lemma 4.4 Given &1 with ¢1 and mq, there is an error bound of the form
[f(@) = spx(@)] < [flr- Prx(e)

for all functions in the native space Fy1 and interpolants ssx to f by functions (1.1) on sets
X = {x1,...,zn} C IR? with (1.4). The power function Py x(x) is the norm of the error

functional, i.e.:
* |f($)—8fx($)|
Pl y(x)= su :
l’X( ) |f|1£0 |f|1

and it is the minimum of all such norms, if quasi—interpolants

qrx(w) = uj(w)f ()

N
i=1

with

p(z) = Zuy‘(l‘)p(%) for allp € I,

J=1

are allowed instead of sy x.



Theorem 4.5 Given two radial basis functions ®y, ®1 with associated functions g, 1 such
that vo/@1 is bounded around zero, there is a positive constant ¢, depending only on d, o,
and @1, such that for all points * € IR and all sets X of centers satisfying (1.4) and
Py x(x) < ¢ there is for all functions f € Fo an approximant ayx of the form (1.1) with
b = &, satisfying

F(2) = agxl@)] < 201l - eol M(Px ()

the function M taken from (4.4).

Proof: We pick ¢ = Py y(x) and M(e) with (4.4). With this M and a given f € Fy we
apply Lemmas 4.1, 4.2, and 4.4 for as x = sy, x. Then the assertion follows from (4.4) and

[f(x) —apx(x)] < [f(2) = far(@)| + [far(2) = 550 x(2)]
< |flo - co(M) + | farly - Py x(z)
< |flo - (co(M) + Cor(M) - €).

a

Remarks: Under the hypotheses of the theorem, the approximant a;x can be chosen
independent of x, provided that X and x satisfy a uniform bound

Pix(r)<e<ec
The error bound then is

|f (@) = azx(2)] < 2|flo- co(M(e)).
In all practical cases there is an error bound
Prx(x) < Fi(h,x(2))
for all z and X satisfying
hox(z) < hoy  Filhy,x(z)) <c

with a monotonic function Fy : Rsg — IRso satisfying F(0) = 0 (see [9] for details). Then
for any h with A < hg and Fy(h) < ¢, for all compact sets Q C IR? and all functions f € Fy
we have for all X with

hyx(x)<h for all z € Q

an error bound
|f(z) — agx(2)] < 2|flo - co(M(Fi(h))) (4.5)

uniformly for = € Q. Applications of Theorem 4.5 and (4.5) proceed as follows: First, fix ®q
and g to determine ¢q of (4.2). Then, for any other ®; and 1, calculate Co; of (4.3) and
compare with ¢q to find the function M that optimally satisfies (4.4). Then Theorem 4.5 or
(4.5) can be applied. The following two sections will proceed along these lines.



5 Approximation in Sobolew spaces

We now fix Fo = WF(IR?) with 2k > d and study approximations of the form (1.1) with
different functions ®. Due to (3.4) we have

M) = (25) A RS R

= dd) /00(1 +r3) kil

M
= o(d, k)(M*= 4 o(M4=%)) for M — oo,

while Co1 (M) will depend on the “radial” basis function ®; that controls the approximation.
Thin-plate splines ®;(x) = ||z]|” or ||x]|®log||z| for 8 > 0,3 ¢ 2IN or 3 € 2IN will have

pi(w) = e(8,d)|jw]| "
and ©o/1 is bounded near zero. Furthermore, for 2k < d + 3 we have
CL(M) = c(8,d, k) - MTP=2(1 4 o(1)) for M — oo
and (4.4) is satisfied for
M(e) = ¢(B,d, k) - P(1 + o(1)) fore — 0

and we have

co(M(e)) = e(B,d, k) - E(Zk_d)/ﬁ(l +o(1)) fore — 0.

Convergence results for optimal interpolants on native spaces guarantee the existence of
constants such that for all X and x with h, x(2) < hg the bound

Pix(a) < e h(a) < hol? (5.1)

holds whenever X and z satisfy h, x(z) < h. For such X and x, we can set ¢ = h*/? and
apply (4.5) to get -
|f(z) —arx(2)] <2-|flo-c- R4/

The exponent of A thus is the same as in the optimal error bound
P&X(l') <ec- h];}w(x) < - pF?
that is attainable on the native space Fy itself (see the technique of Wu/Schaback [10]).

We now turn to multiquadrics

(2) = (1 + [l[13)"*
for B ¢ 27, where

||w||_d_ﬁ w near 0
S‘Ql(w) S C(d, 6) ) d+pA+1
e_HWHHwH_

2 w near infinity




for ~ fixed, and where the exponent 3 in ¢ is best possible. Then, up to constants and for
M — oo, we have

Cor(M) = M~FMPZAPEHFHDIA (1 4 o(1)),

and @o/p1 is bounded near zero. Furthermore, M(¢) has to satisfy
e MTRMEAZMP2 AR D]E — op st

which can be done by solving the equation

%M(e) = const — loge + <% —g —i)logM(e)

for sufficiently small ¢ and large M(g). Now the optimal error bound on F; is

s
Pry(z)<c-e mox®™ <coe”

>

=:¢ (5.2)

for some 6 > 0 due to Madych/Nelson [6], and we get log e ~ —% and

LME o) = &,
co(M(e)) < e(d,k,B3,8)h =2,

for h — 0 such that (4.5) again equalizes the rate of optimal interpolation in Sobolew space
Wr(IR).
For Gaussians
¢y (2) = exp(—p[|2)
we find
p1(w) = c - exp(—|w]3/45)

and ¢q/¢1 will always be bounded. Clearly

Con(M) = M+eHV2155 (14 (1)
for M — oo and M (e) has to satisfy

g M7FMHI-AR2eAMP IS0 — cop st
N M)

8p
for e — 0 and M — oo. Due to Madych/Nelson [6] the optimal error bound is

= const — loge + % log M (¢)

—th(l’) s

Prx(x)<c-e "ox  <c-ew, (5.3)

and again loge = (1 + o(1)) <—% > yields the optimal order via

co(M(e)) <c- pE=d/2,



6 Approximation by Gaussians in spaces defined by
multiquadrics

Finally, let us consider approximations of functions from the native space Fy for multi-
quadrics ®o(z) = (12 4 ||z||2)?/? by Gaussians &, (z) = eI’ Then

cg(M) A /M e~ pd=lgp=(d+6+1)/2 _ o =M pp(d=F-3)/2 (1+o0(1))

for M — oo and

Ca(M) < e M=1=PEM 0 (1 4 o(1)),

2
—loge = const-l-MISO(f) —|—M2(€) —<d_1 —I—d—2|_ﬂ>logM(5)

= & (140(1) (see (5.3)).

h
for h,e — 0. This yields
2
0< % —% < ]\420(;5) §h¥;2 for a suitable ¢ > 0

and

co( M) ~ (2#*5 )d_l exp (—\/2a (& - ¢ )) , (6.4)

which is still an exponential bound, but not of the form (5.2).

7 Final remarks

Unfortunately, the above cases had to be handled individually as special cases of the results
of section 4. There would be a fairly general theorem stating quasi—optimality of “radial”
basis function approximants on larger spaces, if some additional things, as suggested by the
previous section, would hold true. If the interpolation error for ®; on its own native space is

Bix(z) < Fi(hy x(2))

for e = 0,1, then we can observe that bounds like

co<%> < ¢ Fy(h)
(7.5)
Cot <%>-F1(h) < e Fy(h)

hold for 0 < h < hg in all of the above cases. The technique in Wu/Schaback [10] ties the
interpolation error to the behaviour of the Fourier transform around infinity, as required
for such bounds as (7.5), but the bounds do not follow from there. There is a gap by a
factor of A'=% between (6.4) and (5.2), but the constant & of (5.2) is not necessarily optimal.
The precise form of optimal exponential error bounds for multiquadrics and Gaussians still is
unknown: the results of [9] suggest that there might well be a factor of the form ~* occurring
in the optimal bounds.
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