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Abstract

The unsymmetric collocation method by E. Kansa has been very successfully
used in many applications, though there theoretically exist rare situations
in which it will fail. This contribution modifies the method somewhat and
then proves convergence and error bounds for the modified technique. The
results will be presented within a general framework for methods that solve
operator equations by minimizing residuals. Thus the modifications may
also help to put other methods on a solid foundation.

1 Linear Operator Equations
We consider a linear problem
D(u) = w (1)

which has a solution u that has to be recovered from data w = D(u) under a
linear mapping D. This setting covers many differential or integral equation
problems in weak or strong form. For convenience, we restrict ourselves here
to examples of problems in strong form. In case of a Poisson boundary value
problem
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the data w = D(u) for a strong problem formulation will be

w=(f,¢) = D(u) := (=4, Idsa) (u).

The data D(u) should depend linearly and continuously on the solution
u, which means that there is a bound of the form

ID)l[w < DI - llullu 3)

if U and W are suitably normed spaces.

Solving the operator equation (1) means inversion of D : U — W on its
range W. We assume further that the problem is well-posed, i.e. uniquely
and stably solvable. This means that the inverse D~! of D is a linear and
bounded map D~! : W — U. Then there is an analytic a-priori inequality

lullo < ID7H - 1D lw = D7 - [lwl]lw (4)

for the solutions u of problems D(u) = w of (1). Such bounds are derived in
the literature (see e.g. [3] and examples in [4]). We call | D~} the analytic
constant for convenience, because the constant is a matter of mathematical
analysis and independent of numerical techniques. It arises for every well—
posed linear problem, but it is only rarely known exactly. It bounds the
possible stability of any conceivable solution algorithm. In the following we
shall assume that we have an upper bound C, for the analytic constant,
being enough for our purposes. Furthermore, we weaken the above require-
ment somewhat by going into a larger space & O U into which U can be
continuously embedded via

lully < Cullully for all u € U.

In applications, the norm ||.||z; will just be the Ly or Lo, norm. Then we
use

lullee < Cull DHIID(w)]lw < CuCull D(w)llw = CuCa - [lwllw  (5)

instead of (4). We call a linear operator equation (1) well-posed and stably
solvable, if the assumptions made in this section are satisfied. So far we have
not mentioned any numerical algorithm, and we did not distinguish between
different problem formulations, e.g. strong and weak formulations of linear
PDE problems.



2 Minimizing Residuals

If some numerical method has produced an approximate solution @ to the
problem (1), one can calculate the data w = D(@) and get the a-posteriori
error bound

lu —aflu < CuCl-[[D(u) = D(@)lw = CuCa - [lw —wllw  (6)

for free, since the residual w — w is explicitly known. It means that errors
in the solution are bounded by the norm of the residuals, multiplied with
the analytic constant.
Theorem 1 Let a well-posed and stably solvable linear problem be given.
Any numerical technique that produces approximate solutions with small
residuals will automatically guarantee small errors in the solution, the blow—
up factor being the analytic constant.
O

We now look at techniques that construct approximate solutions #; from
some trial space Uy, C U C U. Note that this still includes plenty of methods,
with or without meshes, like finite elements, Petrov-Galerkin schemes, spec-
tral methods, and unsymmetric collocation. It is trivial that the choice of
the trial space should be such that the true solution v can be approximated
easily by functions from the trial space. In case of solutions with singu-
larities, like for Poisson problems on domains with incoming vertices, one
should make sure that the trial space should contain the expected singular
functions.

Since we know from (6) that small residuals will lead to small solution
errors, a straightforward choice of method would be to solve the residual
minimization problem

ap, = argmin{||w — D(up)||lw : up € Up}. (7)

Theorem 2 Residual minimization techniques guarantee asymptotically opti-
mal approximation orders for the selected trial spaces. This means that they
achieve the error of the best approrimation to the solution from the trial
space, up to a fixed multiplicative constant.

Proof: Let u; be the optimal approximation to the true solution u in the
trial space, i.e.

Gp = argmin{|ju — up||ly : un € Up}.



Then
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|u—anl|v + Callw = D(an) lw + Callw — D(@n)||w
|u —tnlly + 2Ca|lw — D(an)|lw
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The above proof never used that 4y, is in fact the optimal approximation.
Thus we also have
Theorem 3 If for each u € U there is some up, € U, with a small value of
||lu — Gp||u, then the residual minimization technique will have at most the
error
= anllo < (1 +2Ca DDl — inlor

This is independent of how Uy, is defined or constructed.
O

The above theorem allows to separate the operator equation (1) from
the technique that provides ap € U for each uw € U. The latter can be
some plain interpolation or approximation process, using data of u which
are quite different from the data D(u) necessary to solve (1).

We can get even more if we can approximate the data well on U:
Theorem 4 If for each u € U there is some U, € Uy, with an error bound of
the form

ID(u) = D(an)|lw < C(h)|lullu for all uw € U, (®)

then the residual minimization technique will have at most the error
[u =ty < CuCaC(h)l|ullu-

Proof: From (6), we directly get

lu—tnlly < CuCq|D(u)— D(un)|lw
< CuCul|D(u) — D(up)|lw
< CuColC(u)lullu.

O

This is again independent of how 1y, is defined or constructed. The error
bound (8), which only uses the data map of the operator equation (1), carries
over to the error of the approximate solution u; of the operator equation,
up to a fixed factor. Bounds of this type are available in the literature [7].



The methods described here will usually take the form of an optimization
on the finite-dimensional trial space Uy. The type of optimization depends
on the norm chosen for the residuals. If residuals are normed by ||.||c, the
problem turns into a semi-infinite linear programming problem. If the L,
norm is chosen for the residuals, the result is a least-squares optimization.
Details are in [4].

Note that we did not assume an analytical optimization problem here, as
is usually assumed for elliptic PDE problems, in which the solution mini-
mizes a certain quadratic form.

Error bounds providig information on the accuracy of first and second
order derivatives for linear systems can be obtained by specializing the
spaces U and U and their norms appropriately. For instance, trial spaces
generated from smooth radial basis functions will always imply error bounds
and convergence of higher derivatives. Typical error bounds are in [7].

3 Test Spaces

The counterpart of the trial space Uj of the previous section is a test space.
But we do not use a space of functions or solutions here. Neither do we follow
the lines of [6] to introduce test functionals, but we keep quite close to that
paper. We view the linear data map D of the first section as infinitely many
linear conditions D(u) = w which the solution u has to satisfy. A “test” is
defined by a subset of these conditions, and thus by a linear map D;, which
maps U onto a finite-dimensional space W}, called test space in this context.
The true solution w satisfies the linear equations described by Dpu =: wy,.
Thus wy, is a vector of known discrete data.

In the standard situation, discrete data get “dense” for h — 0. Thus we
postulate an error bound of the form

|v]ler < 6(h)||v|| for all v € U with Dy (v) = 0. 9)

New results [5] for functions with zeros in Sobolev spaces provide such
bounds. This is independent of the trial space, it just depends on the data
and the test space.

Many methods then construct a function @y € U, such that

Dy, = wy, = Dpu,

i.e. a function 4y, in the trial space U}, is constructed to satisfy only part of
the necessary conditions for the full solution. Such methods include colloca-
tion and Petrov-Galerkin techniques, with various possibilities for trial and



test spaces. To provide error bounds, one must then bound u — @y using
the equation Dy (u — @p) = 0. If no additional information is available, this
will fail, because there will usually be nonzero solutions v € U of the homo-
geneous equation Dy (v) = 0 which spoil the error bound, since there is no
way to prevent 4, being closer to e.g. u + 10'2 - v than to .

There are various possibilities for escape here. The previous section always
used the full data Dy = D and the well-posedness of the analytical problem.
Then there is no nonzero function v with Dy (v) = D(v) = 0. This comes at
the price of having to solve an optimization problem on the full data.

Another way out is to use (9) to get

[ = anll < 0(h)|lu —anllu

because of Dy, (u— ) = 0. This does not help, unless we impose additional
conditions which ensure a bound like

lanllv < Kllullo (10)
on the norm of all approximate solutions. Then we would arrive at
lu = nll < 6(R)(1 + K)ullu

which now provides a convergence rate which is determined by approxima-
tion properties of the test space. Note that Theorem 4 has a convergence
rate which depends on the trial space.

4 Kansa’s Method

Let us now use a trial space U spanned by translates of a radial basis
function ¢, where the centers xy,...,zy of translation lie in a bounded
domain Q C IR? such that we have a small fill distance

h:= i —zillo.
zgglggNlly 7|2

This is the trial space used by Kansa’s method [1, 2]. Then there always
are error bounds of the form (8), where U is the native Hilbert space for
¢ or a suitable Sobolev space, and where iy, is the interpolant to u on the
centers z1,...,zy using only the data u(z1),...,u(xn). The factor C(h)
will behave like a positive power of h or even like exp(—c/h), depending on
the smoothness of ¢. See details in the recent book [7].



This is independent of the operator equation (1) for which the trial space
may eventually be used. By Theorem 4, the error bound carries over to
the solution of every well-posed linear problem, if residual minimization
is applied as a numerical technique using the Kansa trial space. Two such
techniques, based on L., and Lo residual minimization, respectively, are
described in [4].

However, the original technique of Kansa does not minimize residuals. It
uses a finite discrete subset of the problem data D(u) and collocates on
U},. This means that it makes a finite subset of residuals equal to zero, not
caring for the rest of the residuals. It is a special instance of linear methods
that replace a set of infinitely many linear conditions by a finite subset.
Thus it falls into the class of methods of the previous section. The map Dy,
just takes a subset of the data, and we always have ||Dp(u)|loo < || D(w)]]co-

There, we suggested to use a second technique for proving convergence. It

requires to keep a bound of the form (10) on the Kansa-type solution @y,. An
easy way to have an a-posteriori check on convergence would be to monitor
the norm ||y, ||y while performing a series of calculations for decreasing h.
If the norm stays bounded, the considerations of the previous section will
guarantee convergence. Thus we can prove convergence of a “monitored”
Kansa technique:
Theorem 5 If the traditional Kansa technique is carried out without change,
and if it provides approximate solutions 4y, whose norms ||ty ||y are bounded
above independent of h if the collocation data get dense for h — 0, the
process will be convergent. O
If the norms get large, one has to modify the method. The linear equations
Dy (@) = Dp(u) = wy, should be posed in a larger Kansa-type trial space
U, with additional degrees of freedom that can be used to keep the norm of
the approximant in the larger space at bay. For instance, one could minimize
||iin||3 under linear restrictions

| Dn (i) — whlloo < K(R), (11)

arriving at a quadratic discrete optimization problem on Uy. If k(h) is not
too small, the unknown interpolant uj to the true solution u at the Kansa
centers will lie in this space. This follows from

[1Dn(un) = whllee = [[Dn(un) = Dn(u)]o
< 1D(un) = D(u)
< /\(h’D’ U)Huh_u”U
< &(h)



if K(h) > A(h, D,U)||up, — u||y. Error bounds of the required form
[D(un) = D(u)]loe < A(h, D, U)lJun — ully

which are similar to (8), are available in the literature on radial basis func-
tions [7]. Now, if the above assumption on x(h) is satisfied, the minimization
problem and the minimum-norm property of the standard interpolant imply

lanllE < lunllzy < llullz,

which is the required bound for ||ip||?.
Theorem 6 Assume that (9) can be generalized to

[vllee < 5(A)[[olly + AR Da () loo for all v € U. (12)

If the Kansa technique is modified into a quadratic optimization problem
along the lines described above, the method is convergent for h — 0. An
error bound is provided by

= tnllee < 6(h)|lu — tnllo + A(R)K(h).

Proof: We use the above inequality for v — @, to get

o=l < Sl —nllu + AR Da(s — @) oo
< O()lu — anllo + A(h)w(h).

O
The error bound (12) can be derived similarly to (9) following the lines
of [5]. This will be contained in a follow-up to the cited paper.
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