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1 Introduction
We will treat systems of linear equations, each of the form
Lu = f on Q, (1.1)

where Q is a domain in IR? and L is a linear operator, acting on complex valued
functions on Q. The function f is given (“data”) and each equation should have
a nonempty space of solutions.



2 1. Introduction

1.1 Collocation Method for Single Equations

Collocation is a well-known method to approximate the solution of equations
of the form (1.1). The idea is to approximate the requested solution u by a
function .
Sy = Z<I>j a; € span{®;}tj=1  n, (1.1.1)
J=1
where the ®; : Q — C are certain linearly independent basis functions. The
connection between u and s, shall be the pointwise equality

(Lsy)(z) = (Lu)(z) = f(a) forall z € Xq

or in short form

(Lsu)(Xa) = f(Xo) (1.1.2)

on a finite, ordered set Xq CQ of centers. Since Xq is ordered, f(Xgq) is a
vector.

The set (1.1.2) of generalized interpolation conditions leads to the linear
mterpolation system

(E2)®), ey jor, 7 = T8 (.13
using (1.1.1) for collocation. Now there are two main questions:
e Does the inverse of the interpolation matriz ((L<I>j)(x) ) 4 ex-
b z€Xq,1=1,....,n
1st!

e Are there any upper bounds for ||s, — u|| or ||Ls, — Lul| 7

Both questions will be answered here, with focus on the last one.

1.2 Extension to Systems of Linear Equations

Just a few modifications are necessary to treat a system of linear equations by
collocation. Let L, be a linear operator, acting on complex valued functions

defined on €2,. Let
N

Q, =Q (1.2.1)
v=1
be a decomposition of the closure Q of Q. Overlap is permitted. We suppose
the system
Lu=f on Q,v=1...,N (1.2.2)
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to have a solution for the given set {f,} of data functions. We shall see that
there is no essential difference between problems with N = 2 or N > 2. A
typical example of the first case is the boundary value problem

Lu = fg on Q = Q

Bu = fsq on Qy = 00 (1.2.3)

We mainly focus on systems of this form, comprising several operators of differ-
ent type. In general, we do not need to restrict the types of operators involved;
in particular we are not confined to elliptic boundary value problems.

Let X denote the collection of all ordered sets Xgq,, for v =1,...,N. We
subsequently can allow a point z to appear in several of the Xgq , such that
different collocation conditions L,u(z) = f,(x) can be imposed at a single point.
Now the interpolation system (1.1.3) takes the form of the N simultaneous
equation systems

((Lo®)(Xe,) )y o = fulXg,) forv=1,...,N. (1.2.4)

Several ideas exist to choose the basis functions ®;, j =1,...,n depending
on Xg and the operators L,, v =1,...,N. The theory of interpolation by
radial basis functions has good reasons to let every ®; depend on a center
z; € Xg. Kansa had numerical success using no dependence on the L, and
using multiquadrics for ®; (cf. [11]). But since the resulting matrix is not
symmetric, no one has been able to prove its nonsingularity so far. Several
authors (cf. [8, 19] and [4]) suggest the following method, which lets the basis
functions also depend on the operators. It yields a symmetric interpolation
matrix at the expense of a second application of the linear operators to the
basis functions. This method will be used here.

Let ®(x,y) be a feasible basis function (see the precise definition in sec-
tion 2). Then we define the set of basis functions via

O,(z) = 5§/joL_l,y<I>($,y) forzj e Xq,; v=1,...,N.

For a fixed z, ¢, denotes the linear functional mapping a function f to f(z).

For a given map T, the complex conjugate map T is defined by T(f) := T(f),
and the superscript y of T denotes the application of T' to ®(z, y) with respect
to the variable y.

To simplify the notation, and to connect the theory with Hermite-Birkhoff
mterpolation, we define the functionals

Aj 1= 0y 0L, forz;eXq,;v=1...,N,
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and denote the ordered set of all of these by

A= (dxq, 0 Ly) (1.2.5)

v=1,...,N )

Next we define the vector on the right hand side of the interpolation sys-
tem (1.2.4) to be z := ( f,(Xq,) )u=1,..N. Now this system takes the simple
form

AN ®(z,y) - a = 2. (1.2.6)

Since @ is semisymmetric, the interpolation matrix AxKy@(w, y) is Hermitian.
In [19], Theorem 3.1, it is shown to be positive definite under reasonable con-
ditions, and then it is invertible. We will reuse parts of the proof of the above-
mentioned theorem in an extended context. To express the dependence of the
approximating function s, on A and ®, we subsequently denote it by s, a,¢. It
takes the form

N
SuAd(2) = Z Z (5xjoL_l,)y<I>(x,y) a;
v=1 z;€Xq,

or short
suro(t) = A®(z,y)-a. (1.2.7)

Here, Ky@(x, y) is regarded as a 1 x n matrix of functions in z.

2 Error Analysis and Native Spaces

Let £ be a linear space of complex valued functionals, being defined for functions
on §2. For example

L = span ({59€OL}9&€QU{5$OB}1’EBQ)

is useful in the case of the boundary value problem (1.2.3).

Definition 2.1 (Feasible Basis Functions and Native Spaces) A feasible basis
function with respect to L is a function ® : Q1 x Q — C, being

e semisymmetric: ®(z,y) = ®(y,z) forallz,y €

e positive definite: for every finite, nonempty, linearly independent ordered
set AC L, A #0, the matriz A°N'®(z,y) is positive definite and

o sufficiently smooth to apply two functionals A\, u of L to each variable and
to let the functionals commute: AX*p¥ ®(z,y) = pyA* ®(2,y).



For any feasible basis function ®, the term

M)y = X7 ®(a,y) 2.1)
defines a scalar product on the dual native space
Fo = { A (AA)p <00} with LCF;. (2.2)

Subsequently 1t is assumed to be a Hilbert space. The dual Fg* of Fg is iden-
tified with the native space

Fo = { fi |flz <o} (2.3)

of (generalized) functions f which allow to be evaluated by all X € Fg. The
norm s defined by
A

rergazo [Algs

1l = (2.4)

Since Fg is a Hilbert space, so is Fg.

Remark 2.2 The term N @¥®(x,y) in equation (2.1) defines a scalar product,
since it 1s sesquilinear and ® is assumed to be positive definite. Methods for
proving the positive definiteness and examples are given in section 3.

Remark 2.3 We assumed Fg to be a Hilbert space, i.e. it has to be complete.
The construction of the maximal dual native space to a given class L of func-
tionals and a basis function having a Fourier transform is described in [10]. In
addition, conditionally positive definite basis functions are allowed there.

Remark 2.4 The approzimating function s, a ¢ is an element of Fg, since we
have p(sun0) = (1| A -T) g for every i € F.

Theorem 2.5 Let ® be a feasible basis function, A C Fg be linearly indepen-
dent and u € Fgp. Let s, p ¢ € span Ky<I>(-7 y) be the reconstruction of u, i.e.
A(syae) = A(u). Then the bound

(M) = Alsupne)l < Poa(A)-llu—suaellg, (2.5)

for the reconstruction error [A(u) — A(sy,a.0)| holds for every X € Fg, where
Popa(A) == inf A= pf z 2.6
on(A) = inf A=z (2.6)

is called the power function of A. Optimization theory yields

U — Sy, A, = inf U — S 2.7
” “ ”]:(I) s€span qu)(.’y) ” ||]:<1> 7 ( )

cf. [20], Theorem 1 and [13], Theorem 4.1.
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Proof. Since we have A(sya0) = A(u), we know p(u — sya,e) = 0 for all
w € span A. Therefore we can estimate

[A(w) = Asuae)| = [(A=p)(u=sure)l < A= plz-lu—surelg, -
|

The equations (2.5)—(2.7) show how the influences of a test functional A
and of the function u on the error are separable. This separation results in two
approximation errors: The power function is the error of approximation of A in
span A, while the second factor is the error concerning u and span Ky<I>(-7 v).
This factor is independent of A.

To adapt the previous theorem to systems of linear equations, we need
some information about the behaviour of the power function concerning ordered
subsets A’ of A, which contain functionals of the same type.

Theorem 2.6 (Splitting Theorem) The inclusion A' C A C Fg implies

Py A (N)

and Ju - sunolls,

Py par(A) for all X € Fg

<
< lu— 5u,A',<I>||fq> for allu € Fg .

Proof. A’ C A implies span A’ Cspan A. Therefore we find

inf A= pllg 2

A —
JiCsihn A7 [ H”f;

inf
pEspan A
for the infima. The second assertion is proved analogously, using equation (2.7).

The Splitting Theorem allows us to focus our attention on just one €2,
(denoted by € to save subscripts), its centers X := X, and its operator L :=
L,, as they are given in section 1.2.

Theorem 2.7 (Transformation Theorem) Let ®(x,y) be a feasible basis func-
tion. Let the linear functionals (5, o L)® and p¥ applied to L' ®(x,y) commute
forall z € Q and p € Fg. If

U (z,y) := (6,0L)"(6,0L)" ®(u,v) (2.8)

is also a feasible basis function, and Fy , Fy, and Py, s are defined for it
according to definition 2.1 and equation (2.6), then

Mgy, = XLl (2.9)



Jor all A € F§,, . The equation
Py a(A) = Ponor(Aol) (2.10)

holds for every finite ACFy, and A € Fy .
If the operator L : Fo — Fo has a norm |L|g < oo, and if all involved
functionals X and A are in Fg N Fy, , then

Py nor(AoL) < Poa(A)-|Llg - (2.11)

But note that in general, differential operators will not map the native space Fp
mto itself.

Proof. Since p¥ and (8, o L)* commute, the equations (2.8) and (2.1) yield for
all A, p € Fg,
Alihry = X (50 L) (5,0 T) B(u,0)

= (Ao L)“(mo L)’ ®(u,v)
= </\oL|,uoL>f$ .
Equation (2.9) follows immediately. Moreover, we see (A —p)o L € Fp for A €

Fy, and p € span A. Therefore Py, A ()) is well-defined. Using equation (2.6),
we calculate

Pooal) = Megngn A 1A - ’u”f&h
MeéganA H ° Ko ||f<1>
N MESp}inlanoL VoL —plz = Posor(Aol).

Inequality (2.11) is proved by

Py por, (Ao L) = inf A||/\oL—,uoL||f$

pEspan

IA

inf A — gl - [ Lllg -
N e PR
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In the important example (1.2.3), using A = §, and A = dx, the benefit of
this theorem is to reduce the unknown power function Ps 5, 0r1,(0;0L) according
to the basis function ® to the classical power function Py, s, (6,) of ¥r.

Now we compare two different approximations. First, there is the one we
have been dealing with, namely:

susyoLd(z) = L'®(2,X) -« satisfying Ls,syon.0(X) = Lu(X)
is a recovery of u from its data éx o Lu. Here, «v is given via
L“T'®(X,X)-a = Lu(X).
But on the other hand, we have the reconstruction of Lu with respect to ¥, by
Stusx Uy (7) = Up(z,X) o' satisfying spusy v, (X) = Lu(X).
The corresponding interpolation system is
U (X,X) o = Lu(X) .

Using the definition (2.8) of ¥y, we find o/ = «, and therefore we get the
following theorem:

Theorem 2.8 The identity
L SubyoL,d = SLusx v, (2.12)
holds for any u which allows the operation L.

To demonstrate the use of the theorems of this section, we give a typical
application. Regard & and A as given. The ordered subsets A, of A should
have the form of (1.2.5), i.e. A, = dx, o L, with X, := Xq, CQ, finite. Then
from Theorem 2.5 and the Splitting Theorem 2.6, we get the error bound

A (= sun0)l Py a(A) - llu—sunel g,

<
< (2.13)

A Pea () min Ju = suael iz,
for any A € Fg. Taking A := 0L, as test functionals at z € €2, we can use the
Transformation Theorem 2.7 to treat the first factor: Py s, (A) = Py, sy, (02)-
Using equation (2.11), they can also be bounded by Pp 5, (0z) [ Lyllg, which is
a multiple of the classical power function. We use the Primal Transformation
Theorem 3.5 below and Theorem 2.8 to rewrite the last factor of equation (2.13)
in the form

Luu - Lusu,éxyoLy,(I)‘ Ll/u — SLyudx,, Vg

u— s = =
H “’5XV°L”’(I)‘ Fs ‘ Fu, ‘

Fo,

The right hand side is the classical approximation error of L,u in Fy, .



3 Applications of Fourier Transforms

Subsequently, we assume the basis function ® not only to be feasible, but to be
translation invariant, i.e.

®(z,y) = (e —z,y—2) forallz,ye Qand z € RY .
This condition is equivalent to the existence of a function ®q with
®(z,y) = oz —y) forallz,yeQ. (3.1)

Moreover, we assume Py to be the inverse Fourier transform of some ¢:

t

Bo(z) = FT ' ()(a) = (27)¢ /Rd o(w) @ ds | (3.2)
Under certain circumstances one has to resort to the generalized distributional
Fourier transform, but we omit these technical details here. Further we will
assume that ¢ is nonnegative and positive almost everywhere. This ensures ®
to be positive definite with respect to d,-functionals, cf. [2]. To take advantage
of the representation of ® by (3.1) and (3.2), we have to restrict the dual native
space Fg to functionals commuting with the Fourier transform. That means,
we assume

g o ([xweea) = [x@wmea |} 63)

for x = ¢ and x = ¢ -sym,,, u € Fg arbitrary, where

symy(w) = A" (ei“’trx) (3.4)

is called the symbol function of the functional A. It may even be a generalized
function, defined by the equality in (3.3). In addition, we require any function
fin Fg to have a representation via the inverse Fourier transform:

For any f € Fg there is a function fsuch that f = FT~! (f) . (3.5)

Where necessary, we assume f: FT(f) that is: the Fourier transform is bijec-
tive on Fg. Apparently this is a lot of assumptions, but we know several kinds
of feasible basis functions which allow our construction.

Remark 3.1 It is also common to define the symbol function by A\¥ (e‘“’trw),

using the negative sign in the exponent. If A is a regular distribution, i.e. a
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functional of the form X\(g) = [l(w) g(w) dw with a representing function I,
the so defined symbol function coincides with the representer of the Fourier
transform

FTO(f) == M(FT(f) = /f(ac) N () do

of \; by the use of Fubini’s Theorem. Therefore, this definition of the symbol
function justifies to denote it by A\. But we will not use this notation, because
it requires A to be reqular or to use generalized Fourier transforms.

Assuming (3.3), we calculate the scalar product
— 7Y —d 1wt (z—y)
Auy = Mo~ [ olw)e de
= (2n)™ / (W) Ao et ety o (3.6)
R
= @n) [ ple) symy () sym, () de
Rd

and find
Mz = @07 [ o) lsymy @) do (3.7

To prove the feasibility of a given ® (in particular the positive definiteness,
which has been stated in definition 2.1), it suffices to show that the integrand
@(w) |sym,y (w)]? is nonnegative and positive almost everywhere (cf. a classical
result from [2]).

Theorem 3.2

o The equations (3.3) and (3.5) yield

M) = em) [ Fle) sy () do (3.8)
forall X € Fg and f € Fo.
o If the linear operator L is translation invariant, i.e.
L*(flx==2)) = (Lf)(z - 2) (3.9)
for all z € R and f in the domain of L, we have

symg o (W) = symg o7 (w) - <" forall v, w € R . (3.10)
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Proof. Ounly equation (3.10) requires a proof:

(L7 (7)) zo+2)
= (Lx (ei“’tr(x+z))) (x0) using (3.9)
_ (Lx (eiw“x . eiw“z)) ($0) _ (Lx (eiw“x)) ($0) . eiw“z

trZ

SymazOJ,ZoL(w)

= SyDls, oL (w) - ¢

Now we substitute z¢ by 0 and z by z.

We now want to represent native space norms via Fourier Transforms.

Lemma 3.3 Let F5 and Fo satisfy the equations (3.3) and (3.5), respectively.
Then for every f € Fg, the equation

fw) = p(w)-symy, ()
15 valid, where Ay € Fg is the Riesz representer of the function f.

Proof. Due to the Theorem of Riesz, for any given f € Fg, there is a unique

Ay € Fg satisfying A(f) = (M| Af) e forall A € Fg . Using the equations (3.6)
¢

and (3.8), we find

AETT(F)) = MH = M)A
= n [ el symy ) sy, (@) do
= A (FT! (psymy, ) )

for every A € Fj5. Thus FT! (f) = FT! (c,o W)

Theorem 3.4 Let ® be a feasible basis function which has a representation
via the equations (3.1) and (3.2). Let Fg and Fo satisfy the equations (3.3)
and (3.5), respectively. Then the equation

(Fl9)r, = @07 [ Fe) T/ elw) de (3.11)

holds for every f,g € Fo. Recall that ¢ can only vanish on a set of measure 0.
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Equation (3.11) is the analog of equation (3.6) for the scalar product in Fg.
More about this representation is found in [20], section 4.

Proof. Due to Lemma 3.3, we know sym, (w) = f (w)/¢(w) almost every-
where for any given function f, where Ay € Fg is the Riesz representer of f.
We use its property (Ag|Af) - = (f]g)zr, and equation (3.6) to calculate
L3
1905, = KolAdzy = @07 [ symy, (o) svmy, (@] - ple) do
= 0™ [0 flw)/ele) do
|

As we saw above, the symbol function is an essential tool for proving pos-
itive definiteness of the basis functions ® and ¥;. Moreover, we will use it to
establish a connection between the norms of their native spaces Fg and Fy,
and between their power functions, respectively. For this reason, we assume
the operator L to be translation invariant. Since & is translation invariant, so
is ¥y, and a function ¥ g with ¥ (z,y) = ¥ o(z — y) exists. If in addition
there is a function ¢y, with ¥y o = FT7!(4), we find with equation (3.3) for
almost every z,y in IR?

/¢L(w) ) gy = /99(w) - L* (eiwr”) -de ;

where
L (ei“’trx) = 0. L7 (ei“’trz) = symg_or(w)

denotes the symbol function for functionals of the form A = ¢, o L with a linear
operator L. Using equation (3.10), we calculate

I (eiw“x) LY (eiw“y) — |Sym5ooL(w)|2 et (@—y)
Therefore, the functions 1y, and ¢ are connected by

Prw) = pw)- |sym500L(w)|2 for a. e. w € R? . (3.12)
If |sym500L(w)|2 is positive almost everywhere like ¢, so is ¢7. Then Wy is

positive definite, and it is a feasible basis function. The following theorem is
the analog of the Transformation Theorem 2.7.
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Theorem 3.5 (Primal Transformation Theorem) Let L be translation invari-
ant and let it commute with the Fourier transform integral for f € Fg. Let ®
and ¥y, be feasible basis functions. Let Fy and Fg satisfy the equations (3.3)
and (3.5), respectively. Then the connection between ””]:‘I’L and || £, s

Ifl7y = WEflz,, forall feFe . (3.13)

This equation is the dual of equation (2.9). For A = éx o L we get the equation

inf lu=slg, = inf I(Lu) — sz . 3.14
s€span AV @ () Fe s€span 65Uy (-,y) ( ) Fuy ( )

The right hand term is the ‘classical” approzimation error of Lu. If Fo C Fy,
and L : Fy, — Fy, is bounded by | L]y, < oo, we find moreover

inf U—s < inf U—s L ) 315
s€span A ®(-,y) | HEP " s€span AY(-y) ” ||]:"I’L ” ”‘I’L ( )

Proof. With the equations (3.8) and (3.10), we calculate for f € Fg:
LPE) = @07 [ Fw) symgep ) 7 do
= FT (Fsymgyor) (@) -
The equations (3.11) and (3.12) yield

I, = o™ [

- en

= HFT_I (f'syméooL)

@)/ o) de

Flw) - symyop )] / b1 (w) do

|
Fup

The combination of these results prove (3.13). To prove the second assertion,
we use (3.13) to calculate

inf U—s = inf Lu— Ls
sespan A7 & (-y) ” ”]:q) s€span AY®(-,y) ” ||]:‘I’L

= inf Lu—+¢
s’EspanllrzloKy(I)(~,y) || “ SH]:‘I’L

= inf Lu—s .
sEspan 5g(qu('7y) || ||]:"I’L

The last assertion follows from the first line of this equation. -
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We give two simple, but typical examples for translation invariant linear
operators L:

Example 3.6 Let L := p(D) be a partial differential operator with constant
coefficients, i.e. p is a polynomial on i -R® and D := (0/0%})j=1,...a. Then we
find
Up(z,y) = p(D)qu)(w,y)
and
SYigop () = pliw) e (3.16)
for every x € Q. With equation (3.7), this implies

lyy = 1oLy = @07 [ Iplw)fp(w) do.
L R
Example 3.7 Let
Lf@) = [ Ko=) f)da = (K f)(a)
R

be an integral operator of convolution type. We calculate

Up(z,y) = /

) K(z —2) / ) Ky —vy') ®(',y) dy da’
R R

and
tr

symg,or(w) = FT(K)(w) e " (3.17)
for every x € Q. With equation (3.7), we get

I8y, = @0~ [ FTUE) @ o) do

Remark 3.8 The paper [6] shows a general technique to apply the above ab-
stract results to general problems involving partial differential equations. How-
ever, [6] does not produce explicit convergence orders, and thus we add a section
to demonstrate how the technique works for elliptic boundary value problems.

4 Application to Mixed Linear Problems

In the following example, we need the classical theory of partial differential
equations, which uses Sobolev spaces. There are two common versions of such
spaces, defined by

H(RY) = { A€ (S(Rd))’ : /Rd FTO) (@) (14 ||w||§)ldw < oo}
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and

WL(Q) = {f € L,(Q): D™f exists for all a € N&, |a| < l} .

Since we need domains 2 with sufficient smooth boundaries, for example
Lipschitz-boundaries, Theorem 5.3 of [18] implies W(Q) = H!(Q) for all 7 > 0.
We shall use the notation H'(Q2). (The sign 22 denotes norm isomorphy.)

We treat the problem

Liu == p(D)u = fi; on
Lou = K*xu = fy on (4.1)
Lyu = u = f3 on Q3=0W

as an example, where Q = Q; U Q, U Q3 C R? is bounded, p is a polynomial of
order m and K € LZ(IRd). In addition, we want the polynomial p to have no
zeros in 7 - R?, for example p(z) = —2"z 4 1. We assume there is a solution u
in the Sobolev space H?(IR?). Moreover, we need v € C™(IR?), since the first
condition of (4.1) shall be satisfied pointwise. Due to the Sobolev imbedding
theorems we have to assume p > m 4 d/2 to ensure H?(RY) C C™(RY), cf. [18],
Corollary 6.1. To satisfy equation (2.2), we need

L := span ({ 6z 0Ly }peq, U {ds0Lls }cq,U {6 }xeﬂ3) C Fp .

We first have to choose a feasible basis function ®(z,y) which allows the
application and commutation of any pair of the above functionals with respect
to & and y. The following theorem shows that it is possible to choose ¢ with
Fp = H7(RY), where ¢ < p. Since u € H?(RY), we then know u € Fg. To
ensure the above-mentioned commutation property, it suffices to increase ¢ as
needed.

Theorem 4.1 We assume 00 to be Lipschitz continuous. If a function &y €
L1 (RY) has a Fourier transform ¢ satisfying

a (14 wl) ™ < @) € @ +wl) ™ foralweR!  (42)

with certain constants 0 < ¢ < ¢ and 20 € N, ¢ > 2, its corresponding
function

Bz, y) = Bo(r —y) =FT 7' (¢)(x — y)
is a feasible basis function with respect to L5 := span{d,} cgpe. The native
space Fo is norm isomorphic to the Sobolev space H” (RY), i.e.: Fp = H7 (RY).
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This is a re-formulation of [16], Theorem 2.1, which is based on [20]. For
example, Wendland’s compactly supported radial basis functions satisfy equa-
tion (4.2), cf. [16], Theorem 3.6.

Now, we examine the Properties of Fy,, . Due to example 3.6, we know

that if &y € C?™(IR?) induces a feasible basis function with respect to L, then
U, (2,y) = L Ly ®(z,y) = Ur,0(z—y)

is feasible with respect to d,-functionals, too. Therefore ® is feasible with
respect to 0,- and 0, o Li-functionals. With the equations (3.12) and (3.16), we
find

er (14 [wly) ™27 (W) <t (@) < ea (14 wly) ™7 [p(iw)[?

for ¢y, = FT(¥, o) and for all w € RY. Since p is a polynomial of order
m and does not vanish anywhere, we get with new constants ¢; > ¢; > 0 the
inequalities

¢ (1+]wlly) 7207 < gy (w) < eo (T+||wll,) 7207 for allw € RY, (4.3)

which imply Fy, = H7=™(IR?) by use of equation (4.2). We need ¥y, ¢ €
C°(IRY), therefore we have to assume o > m + d/2.

Since K € Lz(IRd)7 we find Ly : Fo — Fo to be bounded by the norm
of K, ie. |Lafly < ||K||L2(Rd). We can set Fy,, = Fg, but we have to obey

equation (3.13), which says | fllz, = [Lz2fllz, . This Fp may not be the
Ly
maximal possible native space of ¥y, but we do not need the maximal space
here.
We choose finite sets X, C€2,, v =1,...,3 of centers and construct s, a.¢

according to the equations (1.2.6) and (1.2.7). The centers are to be distributed
nicely, i.e. there exists an hg > 0 with

hX7Q = ilég ;pelgl( ||$ — $/||2 < hy, (44)

and A from (1.2.5) has to be linearly independent.

To proceed towards error bounds, we have to use the uniform ellipticity
of the partial differential operator. The following theorem requires m = 2,
but there are similar and slightly more complicated theorems for differential
operators of higher orders, cf. [18], Theorem 12.12 and Theorem 13.1.

Theorem 4.2 (cf. [7], Theorem 3.7) Let the polynomial according to L1 have
the form p(z) = Z;{jzl a;jriv; + x4 ¢, where A := (a; ;)i j=1..4, b and
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¢ < 0 are real valued and constant. The operator Ly shall be elliptic in the

sense of A = A" and
vo2r < 2%Ax < M-2%2

for every © € RY with constants M > ~v > 0. The domain €y shall be bounded.
If the functions u € C?(Q) N CO(Qy) and f € CO(Qy) satisfy L1 = f on Q,
then

sup [i(z)] < sup [i(e)] + = sup (o) (4.5)
re €Y Y zey

holds, where the constant ¢ depends only on diam Q and |b], /.
We apply this theorem to % := u — sy.2,0 and fi= Li(%) to get

sup |u(z) — sune(®)] < sup [0p(u— sua0)l
xEQl xEQg (4 6)

T sup |6y 0 Li(u—syna)l -

Y e
We can use the theorem, since p > o > m+d/2, u € H?(RY) and s, 7 ¢ € Fp =
H7 (RY) implies & € H? (RY) C C?(IRY) and f € C°(RY). Due to Theorem 2.5,

we know

|5x(u — 5u,A,(I>)| < Pq>7A((Sx) . ||u — Su,A,(P”]:(I) for all z € Q3 ,
|0z 0 L1(u — syne)| < Poa(dyoLq)-|u— Su,A,(P”]:q) for all x € €,
00 0 Lo(u = sun0)| < Poa(dyoLs)-|u—surely, foralae.
(4.7)
Combining this with the Splitting Theorem 2.6, we find
02 (v = sunoe)|l < Pogy, (6)- Hu — S“’5X3’(I)H]: for all « € Q3 ,
* (4.8)

|5x o Lu(u - 5u,A,<I>)| < P(I>,5XDOLV (5x o Ll/) : Hu - Su,éxyoLy,(I)H

Fa

for all x € Q,, v = 1,2. The first line allows the application of the ‘classical’
theory of interpolation with radial basis function, while the second line still
needs some work. We use the Transformation Theorem 2.7 and see

Po sy or,(0z0L,) = Py, sx (6;) forallze€Q,; v=12. (4.9)

The Primal Transformation Theorem 3.5 yields

Fa - ‘ - Lusu,éxyoLy,(I)‘

Hu - Su76XDOLy,(I)‘ _7:\1;
Ly

forv=1,2,

Ly

(4.10)
Ll/u - SLVU,(sXD,‘IJLD

Fy
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where we know that its hypotheses (3.3) and (3.5) are satisfied, since u €
H”(IRd). The second equality is due to Theorem 2.8. It contains the approxi-
mation error of L, u instead of u’s. Note that L,u = f, on £2,.

Let us collect our error bounds now. We found

() = supa (@) < Posy, (5s) - [0 = susy o, (411)
for all 2 € Q3 from (4.8),
[u(z) = suno()l < sup Posy, (62) - [u = susy, o
€3 Fa
c
— sup P 0y) - — s
+ 7906!%)1 ‘1’L175X1( ) Hfl frox, .Y, Fay,
(4.12)

for all 2 € Q4 using (4.6), (4.8), (4.9) and (4.10), and finally we saw

Lo = sun@) ()] S Posyyona(8c 0 La) - [f2 = spi, s, | .
Lo

for all 2 € Qy from (4.8), and (4.10). Applying the equation (2.11), we can
bound the last item by

La(u = suna) @) < Posy, (0) 1L2lla- |fo = spin, e, (4.13)

]—'q,L2

for all 2 € Q5.

If A =4x, then a finer distribution X’ D X of centers implies a decrease of

Py A (8;) by means of the Splitting Theorem 2.6. This effect shall be used now

to establish convergence orders in terms of powers of i x o. We recall Theorem 5

of [20]. It says that for ® and o satisfying condition (4.2) there exist constants
ho7 C' > 0 with

Py sy (z) < CHY A (4.14)

for any distribution X C € of centers with hx o < ho and any z € .

Corollary 4.3 We recall Fy,, := Fo = H? (RY) and Fu, = Ho=™(R9). We
assumed u € HP(Q) with p > 0 > m+d/2. Below, C denotes a generic constant.
Using equation (4.11), we find

o—d/2
H"(]Rd) X3,03

(@) = suae (@) < C |u—susy, ol
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for all x € Q3. From equation ({.12) and using f; € H*=™(RY), we get

o—d/2
Ho(RY) X3k

u(@) = supo(@)] < C u—susyg ol

C
+ C; Hfl — Sf1,8x,,0p, NP s

for all x € Qq. Finally, we take equation (4.13) to calculate

La(u=suna) @] < C [fo =i 00, o o) - Mot

for all x € Q. Here, we assumed fy € H7 (Q).

Remark 4.4 The L. -norm can be replaced by the Ly-norm to gain an addi-
tional factor hi(/z, cf. [17], Theorem 5. Since every s;s5y w, 18 the result of a
minimization, the norms on the right hand side can be bounded by |uyo ga),

”fl”Hff—m(]Rd) and ||f2||Hf’(]Rd)f respectively.

5 Conclusion

The theory of finite element methods (FEM) yields the following bound of
approximation error.

Theorem 5.1 (cf. [9], Satz 4.2) Let the domain Q C IR have a polyhedral boun-
dary and a quasi-uniform decomposition T into finite elements, which are affine
mmages of a common reference element. Let the mazimal diameter of all finite
elements be 2h.

The order m of the given differential operator L shall be even. Let V' be a
subspace of H™/ 2(Q). Partial integration is used to define the continuous and
V-elliptical bilinear form a(u,v) = (Lu|v)y on VXV. Let f be a continuous
linear form on V. We assume there is a solution u € V NHP(Q) of the problem
a(u,v) = f(v) for all v € V with the higher regularity p = qrem + 1 > m/2.

Let the span Vi, CV of basis and test functions contain the space of on T
piecewise polynomial functions of degree at most qrgm.

Then the conforming finite element problem a(up,vy) = f(vp) for allvy, € Vj,
has a unique solution up which satisfies

lv = wnllymr) < C lulyog e (5.1)

Comparing the error bound (5.1) of the FEM with the error bounds of Corol-
lary 4.3 for collocation, we note several points:
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e The collocation method requires a very regular solution u € H?(2) with
p > m+ d/2. It constructs an approximation of smoothness order o >
m + d/2 and approximation order 0 — m — d/2. The FEM needs only
p > m/2. Its approximating function has smoothness order p—1 > m/2—1
and approximation order p — m/2.

But our method yields an Lo-error bound, while FEM yields a H™/2 one.
There is an additional h%? convergence factor, if our estimate is rewritten
to an Lg-norm.

The additional regularity required by our method clearly limits its direct
applicability. However, current research along the directions of e.g. [3]
shows that there are promising techniques to handle cases of low regu-
larity in such a way that the core solution method has to deal only with
the regular part of the solution. Combined with such techniques, the
regularity requirements are much less serious.

e Collocation as a meshless method needs no geometric information. Thus
the main impact of our approach will be towards high-dimensional prob-
lems with high regularity.

o We recall that Wendland’s functions produce sparse systems due to their
compact support. Therefore the complexity of the collocation method
can possibly be reduced to O(#centers), cf. [14]. However, the underly-
ing theory is difficult and still incomplete. In this direction, multilevel
techniques are currently under investigation, cf. [5, 12].

e The FEM can treat operators L which are not translation invariant. We
expect that the collocation method can be extended to such problems,
too.

e The smoothness of the boundary 92 does not influence our method, ex-
cept that we need the existence of a solution of sufficient high regularity.

Altogether we see: The collocation method is feasible for problems with very
regular solutions in high space dimensions or with many different operators.
This roughly complements the set of problems where the FEM has proven to
be an extremely effective tool.
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