
Chara
terization and 
onstru
tion of radialbasis fun
tionsRobert S
haba
k and Holger WendlandMar
h 17, 2000Abstra
tWe review 
hara
terizations of (
onditional) positive de�nitenessand show how they apply to the theory of radial basis fun
tions. Wethen give 
omplete proofs for the (
onditional) positive de�nitenessof all pra
ti
ally relevant basis fun
tions. Furthermore, we show howsome of these 
hara
terizations may lead to 
onstru
tion tools forpositive de�nite fun
tions. Finally, we give new 
onstru
tion te
h-niques based on dis
rete methods whi
h lead to non-radial, even non-translation invariant, lo
al basis fun
tions.1 Introdu
tionRadial basis fun
tions are an eÆ
ient tool for solving multivariate s
attereddata interpolation problems. To interpolate an unknown fun
tion f 2 C(
)whose values on a set X = fx1; : : : ; xNg � 
 � IRd are known, a fun
tion ofthe form sf;X(x) = NXj=1�j�(x; xj) + p(x) (1)is 
hosen, where p is a low degree polynomial and � : 
� 
! IR is a �xedfun
tion. The numeri
al treatment 
an be simpli�ed in the spe
ial situations1. �(x; y) = �(x� y) with � : IRd ! IR (translation invarian
e),2. �(x; y) = �(kx� yk2) with � : [0;1)! IR (radiality),and this is how the notion of radial basis fun
tions arose. The most prominentexamples of radial basis fun
tions are:�(r) = r�; � > 0; � 62 2IN;1



�(r) = r2k log(r); k 2 IN (thin-plate splines);�(r) = (
2 + r2)�; � < 0; (inverse multiquadri
s)�(r) = (
2 + r2)�; � > 0; � 62 IN (multiquadri
s)�(r) = e��r2 ; � > 0 (Gaussians);�(r) = (1� r)4+(1 + 4r):All of these basis fun
tions 
an be uniformly 
lassi�ed using the 
on
ept of(
onditionally) positive de�nite fun
tions:De�nition 1.1 A 
ontinuous fun
tion � : 
 � 
 ! C is said to be 
on-ditionally positive (semi{) de�nite of degree m on 
 if for all N 2 IN , alldistin
t x1; : : : ; xN 2 
, and all � 2 CN n f0g satisfyingNXj=1�jp(xj) = 0 (2)for all polynomials p of degree less than m the quadrati
 formNXj=1 NXk=1�j�k�(xj; xk) (3)is positive (nonnegative). The fun
tion � is positive de�nite if it is 
ondi-tionally positive de�nite of order m = 0.Note that in 
ase of a positive de�nite fun
tion the 
onditions (2) are emptyand hen
e (3) has to be positive for all � 2 CN n f0g. Finally, if � is asymmetri
 real-valued fun
tion, it is easy to see that it suÆ
es to test onlyreal �.The use of this 
on
ept in the 
ontext of multivariate interpolation problemsis explained in the next theorem, whi
h also shows the 
onne
tion betweenthe degree of the polynomial p in (1) and the order m of 
onditional positivede�niteness of the basis fun
tion �. We will denote the spa
e of d-variatepolynomials of degree at most m by �m(IRd).Theorem 1.2 Suppose � is 
onditionally positive de�nite of oder m on
 � IRd. Suppose further that the set of 
enters X = fx1; : : : ; xNg � 
is �m�1(IRd) unisolvent, i.e. the zero polynomial is the only polynomial from�m�1(IRd) that vanishes on X. Then for given f1; : : : ; fN there is exa
tlyone fun
tion sf;X of the form (1) with a polynomial p 2 �m�1(IRd) su
h thatsf;X(xj) = fj, 1 � j � N and PNj=1 �jq(xj) = 0 for all q 2 �m�1(IRd).It is the goal of this paper to give full proofs for the 
onditional positivede�niteness of all aforementioned radial basis fun
tions and to use the ideasbehind these proofs to 
onstru
t new ones. We only rely on 
ertain analyti
altools that are not dire
tly related to radial basis fun
tions.2



2 The S
hoenberg-Mi

helli Chara
terizationGiven a 
ontinuous univariate fun
tion � : [0;1) ! IR we 
an form thefun
tion �(x; y) := �(kx � yk2) on IRd � IRd for arbitrary spa
e dimensiond. Then we 
an say that � is 
onditionally positive de�nite of order m onIRd, i� � is 
onditionally positive de�nite of order m on IRd in the sense ofDe�nition 1.1.Taking this point of view, we are immediately led to the question ofwhether a univariate fun
tion � is 
onditionally positive de�nite of someorder m on IRd for all d � 1. This question was fully answered in the positivede�nite 
ase by S
hoenberg [16℄ in 1938 in terms of 
ompletely monotonefun
tions. In the 
ase of 
onditionally positive de�nite fun
tions Mi

helli[12℄ generalized the suÆ
ient part of S
hoenberg's result, suspe
ting that itwas also ne
essary. This was �nally proved by Guo, Hu and Sun [9℄.De�nition 2.1 A fun
tion � : (0;1) ! IR is said to be 
ompletely mono-tone on (0;1) if � 2 C1(0;1) and(�1)`�(`)(r) � 0; ` 2 IN0; r > 0: (4)A fun
tion � : [0;1)! IR is said to be 
ompletely monotone on [0;1) if itis 
ompletely monotone on (0;1) and 
ontinuous at zero.Theorem 2.2 (S
hoenberg) Suppose � : [0;1) ! IR is not the 
onstantfun
tion. Then � is positive de�nite on every IRd if and only if the fun
tiont 7! �(pt), t 2 [0;1) is 
ompletely monotone on [0;1).S
hoenberg's 
hara
terisation of positive de�nite fun
tions allows us to provepositive de�niteness of Gaussians and inverse multiquadri
s without diÆ-
ulty:Theorem 2.3 The Gaussians �(r) = e��r2 , � > 0, and the inverse multi-quadri
s �(r) = (
2 + r2)�, 
 > 0, � < 0, are positive de�nite on IRd for alld � 1.Proof: For the Gaussians note thatf(r) := �(pr) = e��rsatis�es (�1)`f (`)(r) = �`e��r > 0 for all ` 2 IN0 and �; r > 0. Similarly, forthe inverse multiquadri
s we �nd with f(r) := �(pr) = (
2 + r)�j�j that(�1)`f (`)(r) = (�1)2`j�j(j�j+ 1) � : : : � (j�j+ `� 1)(r + 
2)�j�j�` > 0:3



Sin
e in both 
ases � is not the 
onstant fun
tion, the Gaussians and inversemultiquadri
s are positive de�nite. 2There are several other 
hara
terizations of 
ompletely monotone fun
-tions (see [19℄), whi
h by S
hoenberg's theorem also apply to positive de�nitefun
tions. The most important is the following one by Bernstein (see Widder[19℄). It implies that the proper tool to handle positive de�nite fun
tions onIRd for all d � 1, is the Lapla
e transform.Theorem 2.4 (Bernstein) A fun
tion � is positive de�nite on IRd for alld � 1, if and only if there exists a nonzero, �nite, nonnegative Borel measure�, not supported in zero, su
h that � is of the form�(r) = Z 10 e�r2td�(t): (5)Note that the suÆ
ient part of Bernstein's theorem is easy to prove, if weknow that the Gaussians are positive de�nite. For every � 2 IRN n f0g andevery distin
t x1; : : : ; xN 2 IRd the quadrati
 form is given byNXj;k=1�j�k�(kxj � xkk2) = Z 10 ������ NXj=1�je�tkxj�xkk22 ������2 d�(t):Another 
onsequen
e of this theory is the following.Theorem 2.5 Suppose � : [0;1) ! IR is positive de�nite on IRd for alld � 1. Then � has no zero. In parti
ular, there exists no 
ompa
tly supportedunivariate fun
tion that is positive de�nite on IRd for all d � 1.Proof: Sin
e � is positive de�nite on IRd for all d � 1, there exists a �nite,nonzero, nonnegative Borel measure � on [0;1) su
h that (5) holds. If r0 isa zero of � this gives 0 = Z 10 e�r20td�(t):Sin
e the measure is non-negative and the weight fun
tion e�r20t is positivewe �nd that the measure must be the zero measure. 2Thus the 
ompa
tly supported fun
tion �(r) = (1�r)4+(1+4r) given in theintrodu
tion 
annot be positive de�nite on IRd for all d � 1, and it is a
tuallyonly positive de�nite on IRd, d � 3. If one is interested in 
onstru
ting basisfun
tions with 
ompa
t support, one has to take the above negative resultinto a

ount. We shall see in the next se
tion that the Fourier transform is4



the right tool to handle positive de�nite translation{invariant fun
tions onIRd with a pres
ribed d. But before that, let us have a look at 
onditionallypositive de�nite fun
tions. We will state only the suÆ
ient part as providedby Mi

helli [12℄.Theorem 2.6 (Mi

helli) Given a fun
tion � 2 C[0;1), de�ne f = �(p�).If there exists an m 2 IN0 su
h that (�1)mf (m) is well{de�ned and 
ompletelymonotone on (0;1), then � is 
onditionally positive semi-de�nite of orderm on IRd for all d � 1. Furthermore, if f is not a polynomial of degree atmost m, then � is 
onditionally positive de�nite.This theorem allows us to 
lassify all fun
tions from the introdu
tion,with the sole ex
eption of the 
ompa
tly supported one. However, to 
omplywith the notion of 
onditional positive de�niteness, we shall have to adjustthe signs properly. To do this we denote the smallest integer greater than orequal to x by dxe .Theorem 2.7 The multiquadri
s �(r) = (�1)d�e(
2+r2)�, 
; � > 0, � 62 IN ,are 
onditionally positive de�nite of order m � d�e on IRd for all d � 1.Proof: If we de�ne f�(r) = (�1)d�e(
2 + r)�, we �ndf (k)� (r) = (�1)d�e�(� � 1) � : : : � (� � k + 1)(
2 + r)��k;whi
h shows that (�1)d�ef (d�e)� (r) = �(�� 1) � : : : � (� �d�e+1)(
2+ r)��d�eis 
ompletely monotone, and that m = d�e is the smallest possible 
hoi
e ofm to make (�1)mf (m) 
ompletely monotone. 2Theorem 2.8 The fun
tions �(r) = (�1)d�=2er�, � > 0, � 62 2IN , are
onditionally positive de�nite of order m � d�=2e on IRd for all d � 1.Proof: De�ne f�(r) = (�1)d�2 er �2 to getf (k)� (r) = (�1)d�2 e�2 (�2 � 1) � � � (�2 � k + 1)r �2�k:This shows that (�1)d�2 ef (d�2 e)� (r) is 
ompletely monotone and m = d�2 e is thesmallest possible 
hoi
e. 2Theorem 2.9 The thin{plate or surfa
e splines �(r) = (�1)k+1r2k log(r)are 
onditionally positive de�nite of order m = k + 1 on every IRd.5



Proof: Sin
e 2�(r) = (�1)k+1r2k log(r2) we set fk(r) = (�1)k+1rk log(r).Then it is easy to see thatf (`)k (r) = (�1)k+1k(k � 1) � � � (k � `+ 1)rk�` log(r) + p`(r); 1 � ` � k;where p` is a polyonmial of degree k � `. This means in parti
ularf (k)k (r) = (�1)k+1k! log(r) + 
and �nally (�1)k+1f (k+1)k (r) = k!r�1 whi
h is obviously 
ompletely monotoneon (0;1). 23 Bo
hner's Chara
terizationWe saw in the last se
tion that the Lapla
e transform is the right tool foranalyzing positive de�niteness of radial fun
tions for all spa
e dimensionsd. However, we did not prove S
hoenberg's and Mi

helli's theorems. Wealso saw that the approa
h via Lapla
e transforms ex
ludes fun
tions with
ompa
t support, whi
h are desirable from a numeri
al point of view. Toover
ome this problem and to work around these theorems, we shall nowlook at translation{invariant positive de�nite fun
tions on IRd for some �xedd. We shall give the famous result of Bo
hner [2, 3℄, whi
h 
hara
terizestranslation{invariant positive de�nite fun
tions via Fourier transforms. Inthe next se
tion we generalize this result to handle also translation{invariant
onditionally positive de�nite fun
tions, following an approa
h of Mady
hand Nelson [11℄. Of 
ourse, we de�ne a 
ontinuous fun
tion � : IRd ! Cto be a translation{invariant 
onditionally positive (semi{) de�nite fun
tionof order m on IRd i� �0(x; y) := �(x � y) is 
onditionally positive (semi{)de�nite of order m on IRd.Theorem 3.1 (Bo
hner) A 
ontinuous fun
tion � : IRd ! C is a translation{invariant positive semi-de�nite fun
tion if and only if it is the inverse Fouriertransform of a �nite non-negative Borel measure � on IRd, i.e.,�(x) = �_(x) = (2�)�d=2 ZIRd eixT!d�(!); x 2 IRd: (6)Again, the suÆ
ient part is easy sin
eNXj;k=1�j�k�(xj � xk) = ZIRd ������ NXj=1�jeixTj !������2 d�(!); (7)6



and later we shall use this argument repeatedly to prove positive de�nitenessof 
ertain fun
tions without referring to Bo
hner's theorem. In the Fouriertransform setting it is not straightforward to separate positive de�nite frompositive semi-de�nite fun
tions as it was in S
hoenberg's 
hara
terization.But sin
e the exponentials are linear independent on every open supset ofIRd, we haveCorollary 3.2 Suppose that the 
arrier of the measure � of Theorem 3.1
ontains an open subset of IRd. Then � is a translation{invariant positivede�nite fun
tion.For a 
omplete 
lassi�
ation of positive de�nite fun
tions via Bo
hner'stheorem see [7, 8℄. Here, we want to 
ite a weaker formulation, whi
h weshall not use for proving positive de�niteness of spe
ial fun
tions. A proof
an be found in [18℄.Theorem 3.3 Suppose � 2 L1(IRd) is a 
ontinuous fun
tion. Then � isa translation{invariant positive de�nite fun
tion if and only if � is boundedand its Fourier transform is nonnegative and not identi
ally zero.Sin
e a non{identi
ally zero fun
tion 
annot have an identi
ally zeroFourier transform, we see that an integrable, bounded fun
tion that is notidenti
ally zero � is translation{invariant and positive de�nite if its Fouriertransform is nonnegative. This 
an be used to prove the positive de�nitenessof the Gaussian along the lines of the suÆ
ien
y argument for Theorem 3.1.Sin
e this is easily done via (7), we skip over the details and only remarkthat �(x) = e��kxk22has the Fourier transformb�(!) = (2�)�d=2 ZIRd �(x)e�ixT!dx = (2�)�d=2e�k!k22=(4�): (8)This allows us to 
ir
umvent S
hoenberg's and Bo
hner's theorem for a dire
tproof of the positive de�niteness of the Gaussians (see also Powell [13℄).Now let us have a 
loser look at the Fourier transform of the inversemultiquadri
s. To do this let us re
all the de�nition of the modi�ed Besselfun
tions. For z 2 C with jarg(z)j < �=2 they are given byK�(z) := Z 10 e�z 
osh t 
osh �tdt:7



Theorem 3.4 The fun
tion �(x) = (
2 + kxk22)�, x 2 IRd, with 
 > 0 and� < �d=2 is a translation{invariant positive de�nite fun
tion with Fouriertransform b�(!) = 21+��(��)  k!k2
 !��� d2 K d2+�(
k!k2):Proof: Sin
e � < �d=2 the fun
tion � is in L1(IRd). From the representationof the Gamma fun
tion for �� > 0 we see that�(��) = Z 10 t���1e�tdt= s�� Z 10 u���1e�suduby substituting t = su with s > 0. Setting s = 
2 + kxk22 this implies�(x) = 1�(��) Z 10 u���1e�
2ue�kxk22udu: (9)Inserting this into the Fourier transform and 
hanging the order of integra-tion, whi
h 
an be easily justi�ed, leads tob�(x) = (2�)�d=2 ZIRd �(!)e�ixT!d!= (2�)�d=2 1�(��) ZIRd Z 10 u���1e�
2ue�k!k22ue�ixT!dud!= (2�)�d=2 1�(��) Z 10 u���1e�
2u ZIRd e�k!k22ue�ixT!d!du= 1�(��) Z 10 u���1e�
2u(2u)�d=2e� kxk224u du= 12d=2�(��) Z 10 u��� d2�1e�
2ue� kxk224u du; (10)where we have used (8). On the other hand we 
an 
on
lude from the de�-nition of the modi�ed Bessel fun
tion that for every a > 0K�(r) = 12 Z 1�1 e�r 
osh te�tdt= 12 Z 1�1 e� r2 (et+e�t)e�tdt= a�� 12 Z 10 e� r2 ( sa+as )s��1ds8



by substituting s = aet. If we now set r = 
kxk2, a = kxk2=(2
), and� = �� � d=2 we deriveK��� d2 (
kxk2) = 12  kxk22
 ! d2+� Z 10 e�s
2e� kxk224s s��� d2�1ds= 2���1�(��) kxk2
 !d2+� b�(x);whi
h leads to the stated Fourier transform usingK�� = K� . Sin
e the modi-�ed Bessel fun
tion is non-negative and non-vanishing, the proof is 
omplete.2 Note that this result is somewhat weaker than the result given in Theorem2.3, sin
e we require � < �d=2 for integrability reasons. Furthermore, we
an read o� from (9) the representing measure for � in the sense of Theorem2.4.4 The Mady
h{Nelson approa
hSo far, we have seen that the S
hoenberg-Mi

helli approa
h is an elegantway to prove 
onditional positive de�niteness of basis fun
tions for all spa
edimensions. But these 
hara
terization theorems are rather abstra
t, hardto prove, and restri
ted to globally supported and radial basis fun
tions.On the other hand, Bo
hner's 
hara
terization provides dire
t proofs fortranslation{invariant and possibly nonradial fun
tions, but is not appli
ableto 
onditionally positive de�nite fun
tions.Thus in this se
tion we follow Mady
h and Nelson [11℄ to generalize theapproa
h of Bo
hner to the 
ase of 
onditionally positive de�nite translation{invariant fun
tions. It will turn out that the proof of the basi
 result isquite easy, but it will be te
hni
ally diÆ
ult to apply the general resultto spe
i�
 basis fun
tions. But our e�orts will pay o� by yielding expli
itrepresentations of generalized Fourier transforms of the 
lassi
al radial basisfun
tions, and these are important for further study of interpolation errorsand stability results.Re
all that the S
hwartz spa
e S 
onsists of all C1(IRd)-fun
tions thattogether with all their derivatives, de
ay faster than any polynomial.De�nition 4.1 For m 2 IN0 the set of all fun
tions 
 2 S whi
h satisfy
(!) = O(k!k2m2 ) for k!k2 ! 0 will be denoted by Sm.9



Re
all that a fun
tion � is 
alled slowly in
reasing if there exists aninteger ` 2 IN0 su
h that j�(!)j = O(k!k2̀) for k!k2 !1.De�nition 4.2 Suppose � : IRd ! C is 
ontinuous and slowly in
reasing.A 
ontinuous fun
tion b� : IRd nf0g ! C is said to be the generalized Fouriertransform of � if there exists an integer m 2 IN0 su
h thatZIRd �(x)b
(x)dx = ZIRd b�(!)
(!)d!is satis�ed for all 
 2 Sm. The smallest of su
h m is 
alled the order of b�.We omit the proof that the generalized Fourier transform is uniquely de�ned,but rather give a �rst nontrivial example:Proposition 4.3 Suppose � = p is a polynomial of degree less than 2m.Then for every test fun
tion 
 2 Sm we haveZIRd �(x)b
(x)dx = 0:Proof: Suppose � has the representation �(x) = Pj�j<2m 
�x�. ThenZIRd �(x)b
(x)dx = Xj�j<2m 
�i�j�j ZIRd(ix)�b
(x)dx= Xj�j<2m 
�i�j�j ZIRd  �j�j
�x� !^ dx= (2�)d=2 Xj�j<2m 
�i�j�j�j�j
�x� (0)= 0sin
e 
 2 Sm. 2Note that the above result implies that the \inverse" generalized Fouriertransform is not unique, be
ause one 
an add a polynomial of degree less than2m to a fun
tion � without 
hanging its generalized Fourier transform. Notefurther that there are other de�nitions of generalized Fourier transforms, e.g.in the 
ontext of tempered distributions.The next theorem shows that the order of the generalized Fourier trans-form, whi
h is nothing but the order of the singularity of the generalizedFourier transform at the origin, determines the minimal order of a 
ondition-ally positive de�nite fun
tion, provided that the fun
tion has a nonnegativeand nonzero generalized Fourier transform. We will state and prove only thesuÆ
ient part, but point out that the reverse dire
tion also holds. We needthe following auxiliary result: 10



Lemma 4.4 Suppose that distin
t x1; : : : ; xN 2 IRd and � 2 CN n f0g aregiven su
h that (2) is satis�ed for all p 2 �m�1(IRd). ThenNXj=1�jeixTj ! = O(k!km2 )holds for k!k2 ! 0.Proof: The expansion of the exponential fun
tion leads toNXj=1�jeixTj ! = 1Xk=0 ikk! NXj=1�j(xTj !)k:For �xed ! 2 IRd we have pk(x) := (xT!)k 2 �k(IRd). Thus (2) ensures thatthe �rst m� 1 terms vanish:NXj=1�jeixTj ! = 1Xk=m ikk! NXj=1�j(xTj !)k;whi
h yields the stated behaviour. 2Theorem 4.5 Suppose � : IRd ! C is 
ontinuous, slowly in
reasing, andpossesses a generalized Fourier transform b� of order m whi
h is non-negativeand non-vanishing. Then � is a translation{invariant 
onditionally positivede�nite fun
tion of order m.Proof: Suppose that distin
t x1; : : : ; xN 2 IRd and � 2 CN n f0g satisfy (2)for all p 2 �m�1(IRd). De�nef(x) := NXj;k=1�j�k�(x + (xj � xk))and 
`(x) = ������ NXj=1�jeixTxj ������2 bg`(x) = NXj;k=1�j�keixT (xj�xk)bg`(x);where g`(x) = (`=�)d=2e�`kxk22 . On a

ount of 
` 2 S and Lemma 4.4 we have
` 2 Sm. Furthermore,b
`(x) = (2�)�d=2 ZIRd NXj;k=1�j�kei!T (xj�xk)bg`(!)e�ixT!d!= NXj;k=1�j�k(2�)�d=2 ZIRd bg`(!)e�i!T (x�(xj�xk))d!= NXj;k=1�j�kg`(x� (xj � xk));11



sin
e bbg` = g`. Colle
ting these fa
ts gives together with De�nition 4.2ZIRd f(x)g`(x)dx = ZIRd �(x) NXj;k=1�j�kg`(x� (xj � xk))dx= ZIRd �(x)b
`(x)dx= ZIRd b�(!)
`(!)d!= ZIRd ������ NXj=1�jei!T xj ������2 bg`(!)b�(!)d!� 0:Sin
e � is only slowly in
reasing, we haveNXj;k=1�j�k�(xj � xk) = lim`!1 ZIRd f(x)g`(x)dx � 0by means of approximation by 
onvolution. Furthermore, the quantity������ NXj=1�jei!T xj ������2 bg`(!)b�(!)is non-de
reasing in ` and we already know that the limitlim`!1 ZIRd ������ NXj=1�jei!T xj ������2 bg`(!)b�(!)d!exists. Hen
e, the limit fun
tion (2�)�d=2 ���PNj=1 �jei!T xj ���2 b�(!) is integrabledue to the monotone 
onvergen
e theorem. Thus we have established theequality NXj;k=1�j�k�(xj � xk) = (2�)�d=2 ZIRd ������ NXj=1�jei!T xj ������2 b�(!)d!:This quadrati
 form 
annot vanish if b� is non-vanishing, sin
e the exponen-tials are linearly independent. 2
12



5 Classi
al Radial Basis Fun
tionsIn order to use this generalization of the Bo
hner approa
h we now 
omputethe generalized Fourier transforms of the most popular translation{invariantor radial basis fun
tions. Sin
e it will turn out that these generalized Fouriertransforms are non-negative and non-vanishing, we 
an read o� the orderof 
onditional positive de�niteness of the fun
tions from the order of thesingularity of their generalized Fourier transforms at the origin.We start with the positive de�nite inverse multiquadri
s as treated inTheorem 3.4 and use analyti
 
ontinuation to treat the 
ase of the 
ondition-ally positive de�nite (non{inverse) multiquadri
s. To do this we need tworesults on the modi�ed Bessel fun
tions.Lemma 5.1 The modi�ed Bessel fun
tion K�, � 2 C , has the uniform boundjK�(r)j � s2�r e�re j<(�)j22r ; r > 0 (11)des
ribing its behaviour for large r.Proof: With b = j<(�)j we havejK�(r)j � 12 Z 10 e�r 
osh tje�t + e��tjdt� 12 Z 10 e�r 
osh t(ebt + e�bt)dt= Kb(r)Furthermore, from et � 
osh t � 1 + t22 , t � 0, we 
an 
on
ludeKb(r) � Z 10 e�r(1+ t22 )ebtdt� e�re b22r 1pr Z 1�bpr e�s2=2ds� p2�e�re b22rs1r : 2Lemma 5.2 For � 2 C the modi�ed Bessel fun
tion K� satis�esjK�(r)j � ( 2j<(�)j�1�(j<(�)j)r�j<(�)j; <(�) 6= 0;1e � log r2 ; r < 2;<(�) = 0: (12)for r > 0, des
ribing its behaviour for small r.13



Proof: Let us �rst 
onsider the 
ase <(�) 6= 0. We set again b = j<(�)j andalready know that jK�(r)j � Kb(r), from the proof of the pre
eding lemma.Furthermore, from the proof of Theorem 3.4 we getKb(r) = 12 Z 10 e� r2 ( sa+as ) �sa�b dssfor every a > 0. By setting a = r=2 we see thatKb(r) = 2b�1r�b Z 10 e�se� r24s sb�1ds � 2b�1�(b)r�b:For <(�) = 0 we use 
osh t � et=2 to deriveK0(r) = Z 10 e�r 
osh tdt� Z 10 e� r2 etdt= Z 1r2 e�u 1udu� Z 11 e�udu+ Z 1r2 1udu= 1e � log r2 : 2We are now able to 
ompute the generalized Fourier transform of the generalmultiquadri
s. The basi
 idea of the proof goes ba
k to Mady
h and Nelson[11℄. It starts with the 
lassi
al Fourier transform of the inverse multiquadri
sas given in Theorem 3.4, and then uses analyti
 
ontinuation.Theorem 5.3 The fun
tion �(x) = (
2 + kxk22)�, x 2 IRd, with 
 > 0 and� 2 IR n IN0 possesses the (generalized) Fourier transformb�(!) = 21+��(��)  k!k2
 !��� d2 K d2+�(
k!k2); ! 6= 0; (13)of order m = max(0; d�e).Proof: De�ne G = f� 2 C : <(�) < mg and denote the right{hand side of(13) by '�(!). We are going to show by analyti
 
ontinuation thatZIRd ��(!)b
(!)d! = ZIRd '�(!)
(!)d!; 
 2 Sm; (14)14



is valid for all � 2 G, where ��(!) = (
2 + k!k22)�. First, note that (14) isvalid for � 2 G with � < �d=2 by Theorem 3.4, and in 
ase m > 0, also for� = 0; 1; : : : ; m� 1, by Proposition 4.3 and the fa
t that 1=�(��) is zero inthese 
ases. Analyti
 
ontinuation will lead us to our stated result, if we 
anshow that both sides of (14) exist and are analyti
 fun
tions in �. We willdo this only for the right{hand side, sin
e the left{hand side 
an be handledmore easily. Thus we de�nef(�) = ZIRd '�(!)
(!)d!and study this fun
tion of �. Suppose C is a 
losed 
urve in G. Sin
e '� isan analyti
 fun
tion in � 2 G it has the representation'�(!) = 12�i ZC 'z(!)z � � dzfor � 2 Int C. Now suppose that we have already shown that the integrandin the de�nition of f(�) 
an be bounded uniformly on C by an integrablefun
tion. This ensures that f(�) is well de�ned in G and by Fubini's theoremwe 
an 
on
lude f(�) = ZIRd '�(!)
(!)d!= 12�i ZIRd ZC 'z(!)z � � dz
(!)d!= 12�i ZC 1z � � ZIRd 'z(!)
(!)d!dz= 12�i ZC f(z)z � �dzfor � 2 Int C, whi
h means that f is analyti
 in G. Thus it remains to boundthe integrand uniformly.Let us �rst 
onsider the asymptoti
 behaviour in a neighbourhood of theorigin, say for k!k2 < 1=
. If we set b = <(�) we 
an use Lemma 5.2 and
 2 Sm to get in the 
ase b 6= �d=2:j'�(!)
(!)j � C
 2b+jb+d=2j�(jb + d=2j)j�(��)j 
b+d=2�jb+d=2jk!k�b�d=2�jb+d=2j+2m2 ;and in 
ase b = �d=2:j'�(!)
(!)j � C
 21�d=2j�(��)j  1e � log 
k!k22 ! k!k2m2 :15



Sin
e C is 
ompa
t and 1=� is analyti
, this gives for all � 2 Cj'�(!)
(!)j � C
;m;
;C  1 + k!k�d+2�2 � log 
k!k22 ! ; k!k2 � 1=
with � = m � b > 0. For large arguments, the integrand in the de�nition off(�) 
an be estimated via Lemma 5.1 byj'�(!)
(!)j � C
 21+bp2�j�(��)j 
b+ d�12 k!k�b� d+122 e�
k!k2e jb+ d2 j22
k!k2using that 
 2 S is bounded. Sin
e C is 
ompa
t, this 
an be boundedindependently of � 2 C byj'�(!)
(!)j � C
;C;m;
e�
k!k2=2;
ompleting the proof. 2Theorem 5.4 The fun
tion �(x) = kxk�2 , x 2 IRd, with � > 0, � 62 2IN hasthe generalized Fourier transformb�(!) = 2�+ d2�(d+�2 )�(��2 ) k!k���d2 ; ! 6= 0;of order m = d�=2e.Proof: Let us start with the fun
tion �
(x) = (
2 + kxk22)�2 , 
 > 0. Thisfun
tion possesses a generalized Fourier transform of order m = d�=2e givenby b�
(!) = '
(!) = 21+�=2�(��=2)k!k���d2 (
k!k2)�+d2 K�+d2 (
k!k2)due to Theorem 5.3. Here, we use the subs
ript 
 instead of �, sin
e � is�xed and we want to let 
 go to zero. Moreover, we 
an 
on
lude from theproof of Theorem 5.3 that for 
 2 Sm the produ
t 
an be bounded byj'
(!)
(!)j � C
 2�+d=2�(�+d2 )j�(��=2)j k!k2m���d2for k!k2 ! 0 and byj'
(!)
(!)j � C
 2�+d=2�(�+d2 )j�(��=2)j k!k���d216



for k!k2 !1 independently of 
 > 0. Sin
e j�
(!)b
(!)j 
an also be boundedindependently of 
 by an integrable fun
tion, we 
an use the 
onvergen
etheorem of Lebesgue twi
e to deriveZIRd kxk�2 b
(x)dx = lim
!0 ZIRd �
(x)b
(x)dx= lim
!0 ZIRd '
(!)
(!)dx= 21+�2�(��2 ) ZIRd k!k���d2 
(!) lim
!0(
k!k2)�+d2 K�+d2 (
k!k2)d!= 2�+d=2�(d+�2 )�(��=2) ZIRd k!k���d2 
(!)d!for 
 2 Sm. The last equality follows fromlimr!0 r�K�(r) = limr!0 2��1 Z 10 e�te� r24t t��1dt = 2��1�(�);see also the proof of Lemma 5.2. 2Theorem 5.5 The fun
tion �(x) = kxk2k2 log kxk2, x 2 IRd, k 2 IN , pos-sesses the generalized Fourier transformb�(!) = (�1)k+122k�1+ d2�(k + d2)k!k!k�d�2k2of order m = k + 1.Proof: For �xed r > 0 and � 2 (2k; 2k+ 1) we expand the fun
tion � 7! r�using Tayloris theorem tor� = r2k + (� � 2k)r2k log r + Z �2k (� � t)rt log rdt: (15)From Theorem 5.4 we know the generalized Fourier transform of the fun
tionx 7! kxk�2 of order m = d�=2e = k+1. From Proposition 4.3 we see that thegeneralized Fourier transform of order m of the fun
tion x 7! kxk2k2 equalszero. Thus we 
an 
on
lude from (15) for any test fun
tion 
 2 Sm thatZIRd kxk2k2 log kxk2b
(x)dx = 1� � 2k ZIRd �kxk�2 � kxk2k2 � b
(x)dx� 1� � 2k ZIRd Z �2k (� � t)kxkt2 log kxk2b
(x)dtdx= 2�+ d2�(d+�2 )(� � 2k)�(��2 ) ZIRd k!k���d2 
(!)d!+O(� � 2k)17



for � ! 2k. Furthermore, we know from the property �(z)�(1 � z) =�= sin(�z) that 1�(��2 )(� � 2k) = �sin(��2 )�(1 + �2 )�(� � 2k) :Be
ause lim�!2k sin(��2 )� � 2k = lim�!2k �2 
os(��2 )1 = �2 (�1)k;we see that lim�!2k 1�(��2 )(� � 2k) = (�1)k+1k!=2:Now we 
an apply the theorem of dominated 
onvergen
e to deriveZIRd kxk2k2 log kxk2b
(x)dx = 22k+d=2�(k + d=2)(�1)k+1k!2 ZIRd k!k�d�2k2 
(!)d!for all 
 2 Sm, whi
h gives the stated generalized Fourier transform. 2Now it is easy to de
ide whether the just investigated fun
tions are 
on-ditionally positive de�nite. As mentioned before, we state the minimal m.Corollary 5.6 The following fun
tions � : IRd ! IR are 
onditionally pos-itive de�nite of order m:� �(x) = (�1)d�e(
2 + kxk22)�, � > 0, � 62 2IN , m = d�e,� �(x) = (
2 + kxk22)�, � < 0, m = 0,� �(x) = (�1)d�=2ekxk�2 , � > 0, � 62 IN , m = d�=2e,� �(x) = (�1)k+1kxk2k2 log kxk2, k 2 IN , m = k + 1.6 Constru
tion via Dimension WalkSo far we have seen that radial fun
tions that work on IRd for all d � 1,are ni
ely 
hara
terized by the abstra
t results of S
hoenberg and Mi

helli,while translation invariant fun
tions for �xed dimensions are best handledvia Fourier transform, yielding expli
it results for further use.Here, we want to investigate radial fun
tions for a �xed spa
e dimension.Thus we have to take the Fourier transform, but we shall make use of radialitythroughout, relying on ideas of Wu and S
haba
k [20℄, [15℄. Our main goalwill be the 
onstru
tion of 
ompa
tly supported positive de�nite radial basisfun
tions for �xed spa
e dimensions.18



Theorem 6.1 Suppose � 2 L1(IRd)\C(IRd) is radial, i.e., �(x) = �(kxk2),x 2 IRd. Then its Fourier transform b� is also radial, i.e., b�(!) = Fd�(k!k2)with Fd�(r) = r� d�22 Z 10 �(t)t d2J d�22 (rt)dt;and � satis�es �(t)td�1 2 L1[0;1), in parti
ular �(t)! 0 for t!1.Proof: The 
ase d = 1 follows immediately fromJ�1=2(t) = � 2�t�1=2 
os t:In 
ase d � 2, splitting the Fourier integral, and using the representationZSd�1 eixT �dS(�) = (2�)d=2kxk� d�222 J d�22 (kxk2)of the 
lassi
al Bessel fun
tion J� via an integral over the sphere Sd�1 � IRdyield b�(x) = (2�)�d=2 ZIRd �(!)e�ixT!d!= (2�)�d=2 Z 10 td�1 ZSd�1 �(tk!k2)e�itxT!dS(!)dt= (2�)�d=2 Z 10 �(t)td�1 ZSd�1 e�itxT!dS(!)dt= r�(d�2)=2 Z 10 �(t)td=2J(d�2)=2(rt)dt:The se
ond assertion of the theorem follows from an inspe
tion of the 
on-dition � 2 L1(IRd), using the radiality of �. 2Theorem 6.1 gives us the opportunity to interpret the d{variate Fouriertransform of a radial fun
tion via Fd as an operator that maps univariatefun
tions to univariate fun
tions.Now let us have a 
loser look at this operator with respe
t to the spa
edimension. If we use ddzfz�J�(z)g = z�J��1(z) we get via integration byparts, for d � 3,Fd�(r) = r�d+2 Z 10 �(t)t (rt) d�22 J d�22 (rt)dt= r�d+2 �� Z 1t �(s)sds� (rt) d�22 J d�22 (rt)����t=1t=0+ r�d+2 Z 10 �Z 1t �(s)sds� r d2 t d�22 J d�42 (rt)dt= Fd�2 �Z 1� �(s)sds� (r)19



whenever the boundary terms vanish. Thus if we de�neI�(r) := Z 1r �(t)tdtD�(r) := �1r ddr�(r)we get the following result.Theorem 6.2 If � 2 C[0;1) satis�es t 7! �(t)td�1 2 L1[0;1) for somed � 3, then we have Fd(�) = Fd�2(I�). This means that � is positivede�nite on IRd if and only if I� is positive de�nite on IRd�2. On the otherhand, if � satis�es t 7! �(t)td�1 2 L1[0;1) for some d � 1 and if the evenextension of � to IR is in C2(IR), then Fd(�) = Fd+2(D�). In this situation,the fun
tion � is positive de�nite on IRd if and only if D� is positive de�niteon IRd+2.Sin
e both operators I and D are easily 
omputable and satisfy I =D�1 and D = I�1 wherever de�ned, this gives us a very powerful tool for
onstru
ting positive de�nite fun
tions. For example, we 
ould start with avery smooth 
ompa
tly supported fun
tion on IR1 and apply the operatorD n-times to get a positive de�nite and 
ompa
tly supported fun
tion onIR2n+1. Before we give an example, let us remark that it is possible togeneralize the operators Fd, I;D to step through the dimensions one by oneand not two by two [15℄.Theorem 6.3 De�ne �`(r) := (1� r)+̀ and �d;k by�d;k = Ik�bd=2
+k+1:Then �d;k is 
ompa
tly supported, a polynomial within its support, and posi-tive de�nite on IRd. In parti
ular, the fun
tion 20�3;1(r) = (1� r)4+(4r + 1)is positive de�nite on IR3.Proof: Sin
e the operator I respe
ts the polynomial stru
ture and 
ompa
tsupport, we only have to prove positive de�niteness. Due toFd�d;k = FdIk�bd=2
+k+1 = Fd+2k�b(d+2k)=2
+1it remains to show that Fd�bd=2
+1 is nonnegative for every spa
e dimensond. We will follow ideas of Askey [1℄ to do this. Let us start with an odddimension d = 2n + 1. Then the Fourier transform is given byr3n+2F2n+1�n+1(r) = Z r0 (r � s)n+1sn+ 12Jn� 12 (s)ds:20



De�ning the right-hand side of the last equation as g(r), we see that g is the
onvolution g(r) = R r0 g1(r � s)g2(s)ds of the fun
tions g1(s) := (s)n+1+ andg2(s) := sn+1=2Jn�1=2(s). Thus its Lapla
e transform Lg(r) = R10 g(t)e�rtdtis the produ
t of the Lapla
e transforms of g1 and g2. These transforms 
anbe 
omputed for r > 0 as Lg1(r) = (n+ 1)!rn+2and Lg2(r) n! 2n+1=2rp� (1 + r2)n+1 :This 
ombines intoLg(r) = 2n+1=2n!(n+ 1)!p� 1rn+1(1 + r2)n+1 :On the other hand, it is well known that the fun
tion 1�
os r has the Lapla
etransform 1r(1+r2) . Thus, if p denotes the n-fold 
onvolution of this fun
tionwith itself, we get Lp(r) = 1rn+1(1 + r2)n+1 :By the uniqueness of the Lapla
e transform this leads tog(r) = 2n+1=2n!(n+ 1)!p� p(r);whi
h is 
learly nonnegative and not identi
ally zero. For even spa
e dimen-sion d = 2n we need only to remark that �b 2n2 
+1 = �b 2n+12 
+1. Hen
e �b 2n2 
+1indu
es a positive de�nite fun
tion on IR2n+1 and therefore also on IR2n. Thefun
tion �(r) = (1 � r)4+(4r + 1) is nothing but 20�3;1, and hen
e positivede�nite on IR3. 2The parameter k in the last theorem 
ontrols the smoothness of the basisfun
tion. It 
an be shown [17℄ that �d;k possesses 2k 
ontinuous derivativesas a radial fun
tion on IRd and is of minimal degree under all pie
ewisepolynomial 
ompa
tly supported fun
tions that are positive de�nite on IRdand whose even extensions to IR are in C2k(IR). A di�erent te
hnique forgenerating 
ompa
tly supported radial basis fun
tions is due to Buhmann[4℄, [5℄, [6℄.
21



7 Constru
tion of general fun
tionsSo far, we have only dealt with translation{invariant (
onditionally) posi-tive de�nite fun
tions, and most of our work was even restri
ted to radialfun
tions. As a 
onsequen
e, we had to work with basis fun
tions that are(
onditionally) positive de�nite on all of IRd. In this se
tion we want to
hoose a more general approa
h whi
h allows us to 
onstru
t positive de�-nite fun
tions on lo
al domains 
. Consequently, we have to drop Fourierand Lapla
e transforms, repla
ing them by expansions into orthogonal sys-tems. As a byprodu
t, this te
hnique allows us to 
onstru
t positive de�nitefun
tions on manifolds, in parti
ular on the sphere.Theorem 7.1 Suppose 
 � IRd is measurable. Let '1; '2; : : : be an or-thonormal basis for L2(
) 
onsisting of 
ontinuous and bounded fun
tions.Suppose that the point evaluation fun
tionals are linearly independent on thespa
e span f'j : j 2 INg. Suppose �n is a sequen
e of positive numberssatisfying 1Xn=1 �nk'nk2L1(
) <1: (16)Then �(x; y) = 1Xn=1 �n'n(x)'n(y)is positive de�nite on 
.Proof: Property (16) ensures that � is well{de�ned and 
ontinuous. Fur-thermore, we have for � 2 CN and distin
t x1; : : : ; xN 2 
 thatNXj;k=1�j�k�(xj ; xk) = 1Xn=1 �n ������ NXj=1�j'n(xj)������2 � 0:Sin
e the point evaluation fun
tionals are linear independent on the spa
espan f'j : j 2 INg, the last expression 
an only vanish for � = 0. 2Note that the 
ondition on the point evaluation fun
tionals is somewhatunnatural for the spa
e L2(
). It would be more natural to de�ne � tobe positive de�nite, i� for every linear independent set � = f�1; : : : �Ng �L2(
)� and every � 2 CN n f0g the quadrati
 formNXj;k=1�j�k�xj�yk�(x; y)22



is positive. But we do not want to pursue this topi
 any further. Instead, wewant to use Theorem 7.1 to give an example of a positive de�nite fun
tionon a restri
ted domain.Our example deals with the spa
e L2[0; 2�℄2 whi
h has the bounded and
ontinuous orthogonal basis f�n;k(x1; x2) = ei(nx1+kx2) : n; k 2 ZZg offun
tions with a 2�{periodi
 extension. Thus 
ondition (16) is satis�ed ifthe positive 
oeÆ
ients �n;k have the property1Xn;k=�1 �n;k <1:In parti
ular, the bivariate fun
tions�1;`(x) = 1 + X(n;k)2ZZ2nf0g 1(n2 + k2)` ei(nx1+kx2)and�2;`(x) = 1 + 1Xn=�1n 6=0 1n2` einx1 + 1Xk=�1k 6=0 1k2` eikx2 + 1Xn=�1n 6=0 1Xk=�1k 6=0 1(nk)2` ei(nx1+kx2)generate positive de�nite 2�{periodi
 translation{invariant fun
tions �(x; y) =�(x � y) on [0; 2�℄2 for suÆ
iently large `. Be
ause of their tensor produ
tstru
ture, the latter 
an be 
omputed dire
tly (see [10℄). Some examples are:�2;1(x) = 2Yj=1 6� �26 + 12(xj � �)2!�2;2(x) = 2Yj=1 360� 7�4360 + �2(xj � �)212 � (xj � �)424 ! :For more examples see [10℄. Of 
ourse, this tensor produ
t approa
h gen-eralizes to arbitrary spa
e dimension, but the basi
 te
hnique is mu
h moregeneral. See [14℄ for the relation to positive integral operators.Referen
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