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Abstract

We review characterizations of (conditional) positive definiteness
and show how they apply to the theory of radial basis functions. We
then give complete proofs for the (conditional) positive definiteness
of all practically relevant basis functions. Furthermore, we show how
some of these characterizations may lead to construction tools for
positive definite functions. Finally, we give new construction tech-
niques based on discrete methods which lead to non-radial, even non-
translation invariant, local basis functions.

1 Introduction

Radial basis functions are an efficient tool for solving multivariate scattered
data interpolation problems. To interpolate an unknown function f € C(9)
whose values on a set X = {z1,...,2x5} C Q C IR? are known, a function of
the form

spx(z) = ;%“I’(%ffj) + p(x) (1)

is chosen, where p is a low degree polynomial and ® : 2 x 2 — IR is a fixed
function. The numerical treatment can be simplified in the special situations

1. &(z,y) = ¢(x — y) with ¢ : IRY — IR (translation invariance),
2. ®(z,y) = ¢(||z — yl||2) with ¢ : [0,00) — IR (radiality),

and this is how the notion of radial basis functions arose. The most prominent
examples of radial basis functions are:

o(r) = r°, >0, B¢2IN,



o(r) = r?*log(r), k€ IN (thin-plate splines),

o(r) = (2+r»)P, B<0, (inverse multiquadrics)
o(r) = (+r)? >0, B¢IN (multiquadrics)
o(r) = e, a>0 (Gaussians),

o(r) = (1—r)L(1+4r).

All of these basis functions can be uniformly classified using the concept of
(conditionally) positive definite functions:

Definition 1.1 A continuous function ® : Q x Q — C is said to be con-
ditionally positive (semi-) definite of degree m on  if for all N € IN, all
distinct x1,...,xn € Q, and all « € CN \ {0} satisfying

; a;p(zj) =0 (2)

for all polynomials p of degree less than m the quadratic form
N N

> > oar®(y, w) (3)
j=1k=1
is positive (nonnegative). The function ® is positive definite if it is condi-
tionally positive definite of order m = 0.
Note that in case of a positive definite function the conditions (2) are empty
and hence (3) has to be positive for all « € CV \ {0}. Finally, if ® is a
symmetric real-valued function, it is easy to see that it suffices to test only
real .

The use of this concept in the context of multivariate interpolation problems
is explained in the next theorem, which also shows the connection between
the degree of the polynomial p in (1) and the order m of conditional positive
definiteness of the basis function ®. We will denote the space of d-variate
polynomials of degree at most m by m,, (IR?).

Theorem 1.2 Suppose ® is conditionally positive definite of oder m on
Q) C IRY. Suppose further that the set of centers X = {x1,...,2n} C Q
is Tm_1(IRY) unisolvent, i.e. the zero polynomial is the only polynomial from
T 1(IRY) that vanishes on X. Then for given fi,..., fx there is exactly
one function s;x of the form (1) with a polynomial p € T,—1(IR) such that
spx(z;) = fj, 1< j <N and X01, ajq(z;) =0 for all g € mp_y (IR?).

It is the goal of this paper to give full proofs for the conditional positive
definiteness of all aforementioned radial basis functions and to use the ideas
behind these proofs to construct new ones. We only rely on certain analytical
tools that are not directly related to radial basis functions.



2 The Schoenberg-Micchelli Characterization

Given a continuous univariate function ¢ : [0,00) — IR we can form the
function ®(z,y) := ¢(||z — y|l2) on IR x IR for arbitrary space dimension
d. Then we can say that ¢ is conditionally positive definite of order m on
IR?, iff ® is conditionally positive definite of order m on IR? in the sense of
Definition 1.1.

Taking this point of view, we are immediately led to the question of
whether a univariate function ¢ is conditionally positive definite of some
order m on IR? for all d > 1. This question was fully answered in the positive
definite case by Schoenberg [16] in 1938 in terms of completely monotone
functions. In the case of conditionally positive definite functions Micchelli
[12] generalized the sufficient part of Schoenberg’s result, suspecting that it
was also necessary. This was finally proved by Guo, Hu and Sun [9].

Definition 2.1 A function ¢ : (0,00) — IR is said to be completely mono-
tone on (0,00) if ¢ € C*(0,00) and

(=D (r)y >0,  Le Ny, r>0. (4)

A function ¢ : [0,00) — IR is said to be completely monotone on [0,00) if it
is completely monotone on (0,00) and continuous at zero.

Theorem 2.2 (Schoenberg) Suppose ¢ : [0,00) — IR is not the constant
function. Then ¢ is positive definite on every IR if and only if the function
t = o(V/1), t €[0,00) is completely monotone on [0, 00).

Schoenberg’s characterisation of positive definite functions allows us to prove
positive definiteness of Gaussians and inverse multiquadrics without diffi-
culty:

Theorem 2.3 The Gaussians ¢(r) = e, a > 0, and the inverse multi-
quadrics ¢(r) = (2 +1%)P, ¢ > 0, 8 <0, are positive definite on IR for all
d>1.
Proof: For the Gaussians note that

F) 1= o) =

satisfies (—1)/fO(r) = afe=*" > 0 for all £ € INy and a,r > 0. Similarly, for
the inverse multiquadrics we find with f(r) := ¢(\/7) = (¢* + r)~1%! that

(=) FO@) = (=018 + 1) - .- (1Bl + L= D) (r + )P >0,
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Since in both cases ¢ is not the constant function, the Gaussians and inverse
multiquadrics are positive definite. O

There are several other characterizations of completely monotone func-
tions (see [19]), which by Schoenberg’s theorem also apply to positive definite
functions. The most important is the following one by Bernstein (see Widder
[19]). Tt implies that the proper tool to handle positive definite functions on
IR? for all d > 1, is the Laplace transform.

Theorem 2.4 (Bernstein) A function ¢ is positive definite on IR? for all
d > 1, if and only if there exists a nonzero, finite, nonnegative Borel measure
1, not supported in zero, such that ¢ is of the form

o) = [~ au(o). )

Note that the sufficient part of Bernstein’s theorem is easy to prove, if we
know that the Gaussians are positive definite. For every o € IRN \ {0} and
every distinct z1,..., 2y € IR? the quadratic form is given by

2

N 2

=1

N o0
> ajond(la; - ell2) = |

J,k=1

Another consequence of this theory is the following.

Theorem 2.5 Suppose ¢ : [0,00) — IR is positive definite on IR for all
d > 1. Then ¢ has no zero. In particular, there exists no compactly supported
univariate function that is positive definite on IR for all d > 1.

Proof: Since ¢ is positive definite on IR? for all d > 1, there exists a finite,
nonzero, nonnegative Borel measure p on [0, 00) such that (5) holds. If rq is
a zero of ¢ this gives

0= /Oo et dp(t).
0

Since the measure is non-negative and the weight function e™"" is positive
we find that the measure must be the zero measure. O

2
rot

Thus the compactly supported function ¢(r) = (1—r)3 (1+4r) given in the
introduction cannot be positive definite on IR for all d > 1, and it is actually
only positive definite on IRY, d < 3. If one is interested in constructing basis
functions with compact support, one has to take the above negative result
into account. We shall see in the next section that the Fourier transform is



the right tool to handle positive definite translation—invariant functions on
IR? with a prescribed d. But before that, let us have a look at conditionally
positive definite functions. We will state only the sufficient part as provided
by Micchelli [12].

Theorem 2.6 (Micchelli) Given a function ¢ € C[0,00), define f = ¢(\/+).
If there exists an m € INy such that (—1)™ f(™) is well-defined and completely
monotone on (0,00), then ¢ is conditionally positive semi-definite of order
m on IR® for all d > 1. Furthermore, if f is not a polynomial of degree at
most m, then ¢ is conditionally positive definite.

This theorem allows us to classify all functions from the introduction,
with the sole exception of the compactly supported one. However, to comply
with the notion of conditional positive definiteness, we shall have to adjust
the signs properly. To do this we denote the smallest integer greater than or
equal to x by [z] .

Theorem 2.7 The multiquadrics ¢(r) = (—1)81(c2+r?)#, ¢, 3> 0, 3 & IN,
are conditionally positive definite of order m > [3] on IR for all d > 1.

Proof: If we define f5(r) = (=1)[%1(c? + r)#, we find
1) = (DB = 1) - (B k4 1)( + 1),
which shows that (—1)[”] fém])(r) =B(B—1)...-(B—[B] +1)(c*+r)~1Fl

is completely monotone, and that m = [ /3] is the smallest possible choice of
m to make (—1)™f(™ completely monotone. O

Theorem 2.8 The functions ¢(r) = (—1)/#28, 3 > 0, B ¢ 2IN, are
conditionally positive definite of order m > [3/2] on IR? for all d > 1.

Proof: Define fz(r) = (—1)@17“% to get
700 = ()15

8
This shows that (—1)f§1fg21)(r) is completely monotone and m = [5] is the
smallest possible choice. O

Theorem 2.9 The thin-plate or surface splines ¢(r) = (—1)*1r2*log(r)
are conditionally positive definite of order m =k + 1 on every IR?.



Proof: Since 2¢(r) = (—1)¥1r#*log(r?) we set fy(r) = (—=1)* 1r*log(r).
Then it is easy to see that

FO0) = (1) k(k = 1) - (k — £+ 1)r*Clog(r) + p(r),  1<E<E,
where py is a polyonmial of degree k£ — ¢. This means in particular
A (r) = (=1 ktlog(r) + ¢

and finally (—1)5*+1 £V (1) = klr—1 which is obviously completely monotone
on (0, 00). O

3 Bochner’s Characterization

We saw in the last section that the Laplace transform is the right tool for
analyzing positive definiteness of radial functions for all space dimensions
d. However, we did not prove Schoenberg’s and Micchelli’s theorems. We
also saw that the approach via Laplace transforms excludes functions with
compact support, which are desirable from a numerical point of view. To
overcome this problem and to work around these theorems, we shall now
look at translation—invariant positive definite functions on IR? for some fized
d. We shall give the famous result of Bochner [2, 3], which characterizes
translation—invariant positive definite functions via Fourier transforms. In
the next section we generalize this result to handle also translation—invariant
conditionally positive definite functions, following an approach of Madych
and Nelson [11]. Of course, we define a continuous function @ : IR? — C
to be a translation—invariant conditionally positive (semi-) definite function
of order m on IR? iff ®y(x,y) := ®(z — y) is conditionally positive (semi-)
definite of order m on IR

Theorem 3.1 (Bochner) A continuous function ® : IR* — C' is a translation—
invariant positive semi-definite function if and only if it is the inverse Fourier
transform of a finite non-negative Borel measure u on IR?, i.e.,

O(r) = p" () = (2m) 2 /Bd o du(w),  xe IR (6)

Again, the sufficient part is easy since

i ;o ®(z; — xp) = /

J,k=1




and later we shall use this argument repeatedly to prove positive definiteness
of certain functions without referring to Bochner’s theorem. In the Fourier
transform setting it is not straightforward to separate positive definite from
positive semi-definite functions as it was in Schoenberg’s characterization.
But since the exponentials are linear independent on every open supset of
IR?, we have

Corollary 3.2 Suppose that the carrier of the measure p of Theorem 3.1
contains an open subset of IR*. Then ® is a translation—invariant positive
definite function.

For a complete classification of positive definite functions via Bochner’s
theorem see [7, 8]. Here, we want to cite a weaker formulation, which we
shall not use for proving positive definiteness of special functions. A proof
can be found in [18].

Theorem 3.3 Suppose ® € L(IR?) is a continuous function. Then ® is
a translation—invariant positive definite function if and only if ® is bounded
and its Fourier transform is nonnegative and not identically zero.

Since a non-identically zero function cannot have an identically zero
Fourier transform, we see that an integrable, bounded function that is not
identically zero ® is translation—invariant and positive definite if its Fourier
transform is nonnegative. This can be used to prove the positive definiteness
of the Gaussian along the lines of the sufficiency argument for Theorem 3.1.
Since this is easily done via (7), we skip over the details and only remark
that

®(z) = eolell3

has the Fourier transform

~

d(w) = (27r)fd/2 /de CI)(:c)e*i‘”T“’d:c _ (20[)—d/267\|w||§/(4a)_ (8)

This allows us to circumvent Schoenberg’s and Bochner’s theorem for a direct
proof of the positive definiteness of the Gaussians (see also Powell [13]).

Now let us have a closer look at the Fourier transform of the inverse
multiquadrics. To do this let us recall the definition of the modified Bessel
functions. For z € €' with |arg(z)| < m/2 they are given by

K,(2) ::/ e~ # Nt cosh widt.
0



Theorem 3.4 The function ®(z) = (¢ + ||z]|3)?, = € IRY, with ¢ > 0 and
B < —d/2 is a translation—invariant positive definite function with Fourier

transform
d
sy = 27 (el
3= (152) Ksuotellel)

Proof: Since 3 < —d/2 the function ® isin L; (IR?). From the representation
of the Gamma function for —3 > 0 we see that

I(-p) = /OOO t=P= e tdt

o 1
= 5_5/ u P e du
0

by substituting ¢ = su with s > 0. Setting s = ¢ + ||z||3 this implies
1
I'(=p)

Inserting this into the Fourier transform and changing the order of integra-
tion, which can be easily justified, leads to

O(z) = / u e CuelElzu gy, 9)
0

b(r) = (2m) 2 / O (w)e " dw

R4
1 00 2 2 . T
—6-1_—c*u _—||lw|5u ,—iz" w

r=5) /Rd/o U e e e dudw

1 00 2 2 . T
- —B-1_—c*u —|lw|3u ,—iz" w
F(—ﬁ)/o U e /Rde e dwdu
- /OO U‘B—le‘02“(2u)‘d/%‘qugdu

=8 b

1 o0 d 2, i3
_ —pB-%-1_—c’u —
= 2d/2F(—ﬁ)/o u P72 e e @ du, (10)

— (27T)_d/2

— (27T)_d/2

where we have used (8). On the other hand we can conclude from the defi-
nition of the modified Bessel function that for every a > 0

1 00
KV(’I“) — 5/700 e—rcoshteutdt

- %/OO e 3T gt
—00
,,,1 o0 —L(f4ay po1
= q 5/0 e 2\aTs)sY N ds

8



by substituting s = ae’. If we now set r = c||z|l2, a = ||z||2/(2¢), and

v=—3—d/2 we derive

1 (]l
Koy gtlel) = 5 (152)

_ yip(g) (“”'2)%%&)(@,

Cc

+8

IR

oo, el a4
/ I Tl it Rl
0

which leads to the stated Fourier transform using K_,, = K,,. Since the modi-
fied Bessel function is non-negative and non-vanishing, the proof is complete.
Ol

Note that this result is somewhat weaker than the result given in Theorem
2.3, since we require § < —d/2 for integrability reasons. Furthermore, we
can read off from (9) the representing measure for ® in the sense of Theorem
2.4.

4 The Madych—Nelson approach

So far, we have seen that the Schoenberg-Micchelli approach is an elegant
way to prove conditional positive definiteness of basis functions for all space
dimensions. But these characterization theorems are rather abstract, hard
to prove, and restricted to globally supported and radial basis functions.

On the other hand, Bochner’s characterization provides direct proofs for
translation—invariant and possibly nonradial functions, but is not applicable
to conditionally positive definite functions.

Thus in this section we follow Madych and Nelson [11] to generalize the
approach of Bochner to the case of conditionally positive definite translation—
invariant functions. It will turn out that the proof of the basic result is
quite easy, but it will be technically difficult to apply the general result
to specific basis functions. But our efforts will pay off by yielding explicit
representations of generalized Fourier transforms of the classical radial basis
functions, and these are important for further study of interpolation errors
and stability results.

Recall that the Schwartz space S consists of all C*(IR?)-functions that
together with all their derivatives, decay faster than any polynomial.

Definition 4.1 For m € IN, the set of all functions v € S which satisfy
Y(w) = O(||lwl||3™) for ||w||2 — 0 will be denoted by Sp,.



Recall that a function ® is called slowly increasing if there exists an
integer ¢ € INy such that |®(w)| = O(||w||5) for [|w]]z — oo.

Definition 4.2 SupposAe  : IRY — C is continuous and slowly increasing.
A continuous function ® : IR\ {0} — C' is said to be the generalized Fourier
transform of ® if there exists an integer m € INy such that

~

| o@i@)de = [ $w)rw)ds
R? R?
is satisfied for all v € S,,. The smallest of such m is called the order of 3.

We omit the proof that the generalized Fourier transform is uniquely defined,
but rather give a first nontrivial example:

Proposition 4.3 Suppose ® = p is a polynomial of degree less than 2m.
Then for every test function v € S,, we have

/Bd ®(2)7(2)dx = 0.

Proof: Suppose ® has the representation ®(z) = 3 |51<om cgz”. Then

/qu>(x)a(x)dx = Y i /Rd(m)%(x)dx

|8|<2m
o8I\ "
= > cgi P! (—g) dx
18<2m R\ Oz
BIE]
= @0 % Cﬁﬂm_V(o)
18 <2m 0z
=0
since v € S,,. O

Note that the above result implies that the “inverse” generalized Fourier
transform is not unique, because one can add a polynomial of degree less than
2m to a function ® without changing its generalized Fourier transform. Note
further that there are other definitions of generalized Fourier transforms, e.g.
in the context of tempered distributions.

The next theorem shows that the order of the generalized Fourier trans-
form, which is nothing but the order of the singularity of the generalized
Fourier transform at the origin, determines the minimal order of a condition-
ally positive definite function, provided that the function has a nonnegative
and nonzero generalized Fourier transform. We will state and prove only the
sufficient part, but point out that the reverse direction also holds. We need
the following auxiliary result:

10



Lemma 4.4 Suppose that distinct xy,...,xx € IR and o € CN \ {0} are
given such that (2) is satisfied for all p € T,_1(IR?). Then

N T
> e’ = O(||wll3)

7=1
holds for ||wll2 — 0.

Proof: The expansion of the exponential function leads to

ooZ'k:

N N
> =3 =3 ay(a]w),
j=1 k=0 * j=1

For fixed w € IR? we have py(z) := (2Tw)* € 7 (IR?). Thus (2) ensures that
the first m — 1 terms vanish:

N o 00 Z'k: N T o
i w

ST = 3 S 0l

j=1 k=m " j=1

which yields the stated behaviour. O

Theorem 4.5 Suppose ® : IR — C is continuous, slowly increasing, and
possesses a generalized Fourier transform P of order m which is non-negative
and non-vanishing. Then ® is a translation—invariant conditionally positive
definite function of order m.

Proof: Suppose that distinct zy,...,zx € IR and a € CV \ {0} satisfy (2)
for all p € m,,, 1 (IRY). Define

flx) =Y ajp®(z + (z; — )

Jrk=1
and
2
N T N T
'Yé(l‘) — Zajezx z; g\g(l’) — Z ajakezx (xj—xk)’gé(l,),
Jj=1 J:k=1

where go(x) = (¢/7)%?e~tI7l5. On account of v, € S and Lemma 4.4 we have
Ve € Sp,. Furthermore,

N
Ye(z) = (27T)7d/2/d Z ajmei“’T("”f*“)ﬁe(w)e*”%dw
J.k=1

O‘Jakgé($ - (fj — 7)),

11



since 5@ = gy. Collecting these facts gives together with Definition 4.2

/]Rd f(2)ge(z)dx = /de Z ajarge(r — (x; — 2x))dw

Jrk=1

v
o

Since ® is only slowly increasing, we have

N
> e ®(zy — xy) = éle f(x)ge(x)dz >0

d
jik=1 IR

by means of approximation by convolution. Furthermore, the quantity

is non-decreasing in ¢ and we already know that the limit

lim
l—o00 J Rd

Ge(w) (w)dw

N . T
E: iw!
o e

=1

2 ~
exists. Hence, the limit function (27)~4/2 ‘Z Y ;e % | ®(w) is integrable
due to the monotone convergence theorem. Thus we have established the
equality

N

N
Y ojap®(x; — o) = d/Z/

jk=1

This quadratic form cannot vanish if P is non-vanishing, since the exponen-
tials are linearly independent. O

12



5 Classical Radial Basis Functions

In order to use this generalization of the Bochner approach we now compute
the generalized Fourier transforms of the most popular translation-invariant
or radial basis functions. Since it will turn out that these generalized Fourier
transforms are non-negative and non-vanishing, we can read off the order
of conditional positive definiteness of the functions from the order of the
singularity of their generalized Fourier transforms at the origin.

We start with the positive definite inverse multiquadrics as treated in
Theorem 3.4 and use analytic continuation to treat the case of the condition-
ally positive definite (non—inverse) multiquadrics. To do this we need two
results on the modified Bessel functions.

Lemma 5.1 The modified Bessel function K,, v € C, has the uniform bound

2 )2
K, (r)] <[ Zere™5-, r>o0 (11)
T

describing its behaviour for large r.

Proof: With b = |R(v)| we have
1 00
|KV(7“)| S 5/ 6frcosht|eut + e*l/t|dt
0

1 00
S 5/ 6—rcosht(ebt+6—bt)dt
0
Ky (r)

Furthermore, from e! > cosht > 1 + %, t > 0, we can conclude
Ky(r) < /Oo e~ (+5) bty
0

7&1 © 5
< e Terr /bes/2ds
rJ==

7
o2 |1
< V2me e 4/ —.
r
d
Lemma 5.2 Forv € C the modified Bessel function K, satisfies
PROID(RO))r B, R(w) # 0
< ? ?
|KV(T)| N { %_log%a 7“<2,§R(U) =0. (12)

for r >0, describing its behaviour for small r.

13



Proof: Let us first consider the case R(v) # 0. We set again b = |R(v)| and
already know that | K, (r)| < Kj(r), from the proof of the preceding lemma.
Furthermore, from the proof of Theorem 3.4 we get

T )
e 5(

T2 s

for every a > 0. By setting a = /2 we see that
o 7‘2

Ky(r) = 2b_17“_b/ e~fe” w5t ds < 2271 (b)r?

0

For R(v) = 0 we use cosht > e'/2 to derive

Kg(’l“) — /0 6—rcoshtdt

o0 r ot
< / e 2%dt
0

|

We are now able to compute the generalized Fourier transform of the general
multiquadrics. The basic idea of the proof goes back to Madych and Nelson
[11]. Tt starts with the classical Fourier transform of the inverse multiquadrics
as given in Theorem 3.4, and then uses analytic continuation.

Theorem 5.3 The function ®(z) = (¢ + ||z]|3)?, » € IR, with ¢ > 0 and
B € IR\ INy possesses the (generalized) Fourier transform

~ 8 lwlly
"= 1y (2
]

)-

Proof: Define G = {\ € €' : R(\) < m} and denote the right-hand side of
(13) by pg(w). We are going to show by analytic continuation that

_5_%
) Kl w00y

of order m = max(0, [

/Rd Py (W)Y (w)dw = /Rd or(w)y(w)dw, v E S, (14)

14



is valid for all A € G, where ®)(w) = (¢? + ||w||2)*. First, note that (14) is
valid for A € G with A < —d/2 by Theorem 3.4, and in case m > 0, also for
A=0,1,...,m — 1, by Proposition 4.3 and the fact that 1/T'(—=\) is zero in
these cases. Analytic continuation will lead us to our stated result, if we can
show that both sides of (14) exist and are analytic functions in A. We will
do this only for the right—hand side, since the left—hand side can be handled
more easily. Thus we define

FO) = [ ea@)r(w)ds

and study this function of A\. Suppose C is a closed curve in G. Since @, is
an analytic function in A € GG it has the representation

1 0, (w)
Palw) = 2wt Je z — )\dz

for A € IntC. Now suppose that we have already shown that the integrand
in the definition of f(\) can be bounded uniformly on C by an integrable
function. This ensures that f()) is well defined in G' and by Fubini’s theorem
we can conclude

o = [ @)

_ ! /]R Mdzy(w)dw

2mi Jra Je 2 — )\
e () dod
N 2wt Je z — A Rd@zw’yw was
1
e,

2wt Je z — A

for A € Int C, which means that f is analytic in G. Thus it remains to bound
the integrand uniformly.

Let us first consider the asymptotic behaviour in a neighbourhood of the
origin, say for ||wlls < 1/c. If we set b = R(A) we can use Lemma 5.2 and
v € S to get in the case b # —d/2:

2b+|b+d/2\1’\ b+d/2 B T m
|80>\(w)7(w)| < ny |1—\(_(|)\)| / |)Cb+d/2 \b+d/2|||w||2b d/2—|b+d/2[+2

Y

and in case b = —d/2:

ol-d/2 [ cl|lwl|2
ox(w)v(w)] < - -1 wl||Z™.
| /\( )7( )| = C’Y|1—\( )\)| (6 0og 9 ) || ||2

15



Since C is compact and 1/T is analytic, this gives for all A € C

cljwlls

02 (@)7(@)] < Cymec (1 ol — tog A

). ele< e
with e = m — b > 0. For large arguments, the integrand in the definition of
f(A) can be estimated via Lemma 5.1 by

21+b 2 _ o d41 |b+ d|2
|80)\((.U)’Y(LL))| S C’yﬁcb+d_2l||w||2 b 2 6_0Hw||26—26”“-’”2

using that v € & is bounded. Since C is compact, this can be bounded
independently of A € C by

[oA(@)Y(@)] < Cyemee IR,

completing the proof. O

Theorem 5.4 The function ®(z) = ||z||5, = € IR, with 5 > 0, 3 & 2IN has
the generalized Fourier transform

- 26+5 (L8

b = 20 )

)2 lolla "™, w#0,

NJ|Q

of order m = [[3/2].

Proof: Let us start with the function ®.(z) = (¢ + ||z||2)%, ¢ > 0. This
function possesses a generalized Fourier transform of order m = [(3/2] given

by
21+6/2

Bo(u) = o) = F I elloll)F Kaga(ellol)

due to Theorem 5.3. Here, we use the subscript ¢ instead of (3, since 3 is
fixed and we want to let ¢ go to zero. Moreover, we can conclude from the
proof of Theorem 5.3 that for v € S, the product can be bounded by

o) £ 0, Tt CE oo

for ||w||2 — 0 and by

gpaar (85
T(=5/2)]
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for ||w||2 — oo independently of ¢ > 0. Since |®.(w)7(w)]| can also be bounded
independently of ¢ by an integrable function, we can use the convergence
theorem of Lebesgue twice to derive

[ alf3@)de = tim [ @, (@)7(x)de

c—0 JRd

c—0

= lim | oc(w)y(w)dz
R4

21+§ L . e
= F(_g) /Rd ||W||2B dV(W) (1:1_%(0||w||2) 2 K#(CHU}“Q)CZW

25+d/2f(#)

= T e )

for v € §,,,. The last equality follows from

o0 r2
limr” K, (r) = lim 2”*1/ e le wt" dt = 2V 1T (v),
r—0 0

r—0

see also the proof of Lemma 5.2. O

Theorem 5.5 The function ®(x) = ||z||3* log||z|ls, = € IRY, k € IN, pos-
sesses the generalized Fourier transform

~ d
P (w) = (1)L (k4 DRl
of order m =k + 1.

Proof: For fixed 7 > 0 and 8 € (2k, 2k + 1) we expand the function 3 ~ %
using Tayloris theorem to

B
rf = 4 (B — 2k)r** logr + / (B —t)rlogrdt. (15)
2%

From Theorem 5.4 we know the generalized Fourier transform of the function
2~ ||z|| of order m = [3/2] = k+ 1. From Proposition 4.3 we see that the
generalized Fourier transform of order m of the function z +— ||z||3* equals
zero. Thus we can conclude from (15) for any test function vy € S, that

- 1 -
I 0B i@ = = [ (Il = ) 3wt

1 i
_ 3 — 2k /Rd /% (8- t)||:c||§log |27 (2)dtda
9B+4 (8
T (B 2k)(F(2_)ﬁ) /]Rd lw[ly ™y (w)dw
2
+ OB — 2k)

17



for 3 — 2k. Furthermore, we know from the property T'(2)['(1 — z) =
7/ sin(mz) that

1 sin(Z2)I'(1 + &)
T(—9)(5 — 2k) (8 — 2k)
Because 5 5
sin(%7) scos(y) om "
oo T =
we see that

li 1
§-2k T(—2)(5 — 2k)

Now we can apply the theorem of dominated convergence to derive

= (=1)F1E1 2.

k!
[ Nl tog lallaA () = 249204 /)~ S [l () do
R 2 JRre
for all v € §,,,, which gives the stated generalized Fourier transform. O

Now it is easy to decide whether the just investigated functions are con-
ditionally positive definite. As mentioned before, we state the minimal m.

Corollary 5.6 The following functions ® : IR — IR are conditionally pos-
itive definite of order m:

o O(z) = (=) + [|2]3)%, B>0, B ¢ 2IN, m =[],

) = (¢ + [|z]3)7, B <0, m =0,

. 3(z) = (
e B(x) = (~)P1al)f, 5> 0, 8¢ IN, m=[5/2],
. 3(z) = (

— 1)k z|| % log ||z||2, k£ € IN, m =k + 1.

6 Construction via Dimension Walk

So far we have seen that radial functions that work on IR? for all d > 1,
are nicely characterized by the abstract results of Schoenberg and Micchelli,
while translation invariant functions for fixed dimensions are best handled
via Fourier transform, yielding explicit results for further use.

Here, we want to investigate radial functions for a fixed space dimension.
Thus we have to take the Fourier transform, but we shall make use of radiality
throughout, relying on ideas of Wu and Schaback [20], [15]. Our main goal
will be the construction of compactly supported positive definite radial basis
functions for fixed space dimensions.

18



Theorem 6.1 Suppose ® € Li(IR*)NC(IR?) is radial, i.e., ®(x) = ¢(||z|l2),
x € IR". Then its Fourier transform ® is also radial, i.e. <I>( ) = Fad(l|wl]2)
with

Fad(r) = 1% / T ()8 Tus (r)dt,
0 2
and ¢ satisfies ¢(t)t41 € L1[0,00), in particular ¢(t) — 0 for t — oo.

Proof: The case d = 1 follows immediately from

2 1/2
J_12(t) = (E) cost.

In case d > 2, splitting the Fourier integral, and using the representation
izT
[ e"easie) = em "l T Tuz (lalle)
d—1

of the classical Bessel function .J, via an integral over the sphere S; ; C IR?
yield

b(z) = (2m)? / B (w)e " dw
— (©n) d/2/ g 1/ (t|wlls)e U dS (w)dt
— (271') d/2/0 d)(t)td I/Sd 7ztz wdS( )d

= p(@-2)/2 /0 AtV T (a9 (rt)dt.

The second assertion of the theorem follows from an inspection of the con-
dition ® € L;(IR?), using the radiality of ®. O

Theorem 6.1 gives us the opportunity to interpret the d-variate Fourier
transform of a radial function via F,; as an operator that maps univariate
functions to univariate functions.

Now let us have a closer look at this operator with respect to the space
dimension. If we use £{2"J,(z)} = 2"J,_1(z) we get via integration by
parts, for d > 3,

d_

Fub(r) = ro? /0°°¢(t)t (rt) "7 Jus (rt)dt

2

d_2 t=00

= pdt? (— /too B(s)sds ) (rt) =z Jaz(rt)

2

t=0

N /oo (/OO d)(s)sds) retT Ja (rt)dt
o \Jt 2

= Fuo (/.OO qﬁ(s)sds) (r)
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whenever the boundary terms vanish. Thus if we define

16(r) = /Tood>(t)tdt

we get the following result.

Theorem 6.2 If ¢ € C[0,00) satisfies t — ¢(t)t4"! € L,[0,00) for some
d > 3, then we have Fy(p) = Fq o(Ip). This means that ¢ is positive
definite on IR if and only if I1¢ is positive definite on IR*2. On the other
hand, if ¢ satisfies t — ¢(t)t4 1 € L1]0,00) for some d > 1 and if the even
extension of ¢ to IR is in C*(IR), then Fi(¢) = Faro(D@). In this situation,
the function ¢ is positive definite on IR® if and only if D¢ is positive definite
on IR™2.

Since both operators I and D are easily computable and satisfy I =
D' and D = I! wherever defined, this gives us a very powerful tool for
constructing positive definite functions. For example, we could start with a
very smooth compactly supported function on IR' and apply the operator
D n-times to get a positive definite and compactly supported function on
IR*™+!. Before we give an example, let us remark that it is possible to
generalize the operators Fy, I, D to step through the dimensions one by one
and not two by two [15].

Theorem 6.3 Define ¢o(r) := (1 — 1)L and ¢qy, by

Gak = I"Gaj2)+ht1-

Then ¢qy, is compactly supported, a polynomial within its support, and posi-
tive definite on IR®. In particular, the function 20¢s;(r) = (1 —r)(4r + 1)
is positive definite on IR3.

Proof: Since the operator I respects the polynomial structure and compact
support, we only have to prove positive definiteness. Due to

Fabap = Fal*®as2) 1101 = Faron®|(aromy2)+1

it remains to show that F;¢|4/2)4+1 is nonnegative for every space dimenson
d. We will follow ideas of Askey [1] to do this. Let us start with an odd
dimension d = 2n 4+ 1. Then the Fourier transform is given by

2

P Foibuaa(r) = [ (= ), (s)ds.
0
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Defining the right-hand side of the last equation as ¢(r), we see that ¢ is the
convolution g(r) = [ g1(r — s)ga(s)ds of the functions gi(s) := (s)""' and
g2(8) := s""/2J, 1 5(s). Thus its Laplace transform Lg(r) = [;° g(t)e "dt
is the product of the Laplace transforms of ¢g; and go. These transforms can
be computed for r > 0 as

L) = U

and
n! 2n+1/2r

v (L 2t

Lga(r)
This combines into

22l (n + 1)! 1
Lyg(r) = NG P (1 2yt

On the other hand, it is well known that the function 1—cos r has the Laplace

transform m Thus, if p denotes the n-fold convolution of this function
with itself, we get
1
Lp(r) = rrHL (1 4 p2)ntl

By the uniqueness of the Laplace transform this leads to

22l (1)

g(?”) - \/7_1'

which is clearly nonnegative and not identically zero. For even space dimen-
sion d = 2n we need only to remark that ¢L2TnJ+1 = d’L%JH' Hence ¢L2TnJ+1

p(r),

induces a positive definite function on IR?***! and therefore also on IR?". The
function ¢(r) = (1 — r)4(4r + 1) is nothing but 2043, and hence positive
definite on IR3. O

The parameter &k in the last theorem controls the smoothness of the basis
function. It can be shown [17] that ¢4, possesses 2k continuous derivatives
as a radial function on IR? and is of minimal degree under all piecewise
polynomial compactly supported functions that are positive definite on IR?
and whose even extensions to IR are in C?*(IR). A different technique for
generating compactly supported radial basis functions is due to Buhmann

[4], [5], [6].
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7 Construction of general functions

So far, we have only dealt with translation-invariant (conditionally) posi-
tive definite functions, and most of our work was even restricted to radial
functions. As a consequence, we had to work with basis functions that are
(conditionally) positive definite on all of IR?. In this section we want to
choose a more general approach which allows us to construct positive defi-
nite functions on local domains €2. Consequently, we have to drop Fourier
and Laplace transforms, replacing them by expansions into orthogonal sys-
tems. As a byproduct, this technique allows us to construct positive definite
functions on manifolds, in particular on the sphere.

Theorem 7.1 Suppose @ C IR? is measurable. Let ¢, ¢s,... be an or-
thonormal basis for Ly(Q2) consisting of continuous and bounded functions.
Suppose that the point evaluation functionals are linearly independent on the

space span {p; : j € IN}. Suppose p, is a sequence of positive numbers
satisfying

o

> pallenllt o) < oo (16)

n=1
Then -

= Z pn@n(l‘)@n(y)
n=1

15 positive definite on Q.
Proof: Property (16) ensures that ® is well-defined and continuous. Fur-
thermore, we have for & € CV and distinct @1, ...,2x € Q that

2

Z agozké xg,xk Z Pn

7,k=1

Z jpn (25)

> 0.

Since the point evaluation functionals are linear independent on the space
span {¢; : j € IN}, the last expression can only vanish for a = 0. a

Note that the condition on the point evaluation functionals is somewhat
unnatural for the space Ly(€2). It would be more natural to define ® to
be positive definite, iff for every linear independent set A = {\y,... Ay} C
Ly(Q)* and every aw € OV \ {0} the quadratic form

N
Y @A X @ (x,y)

jk=1
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is positive. But we do not want to pursue this topic any further. Instead, we
want to use Theorem 7.1 to give an example of a positive definite function
on a restricted domain.

Our example deals with the space L,[0,27]? which has the bounded and
continuous orthogonal basis {¢, k(z1,22) = einaitkes) ko€ ZZ} of
functions with a 2r—periodic extension. Thus condition (16) is satisfied if
the positive coefficients p,,  have the property

oo
Z Pn < O0.

n,k=—00

In particular, the bivariate functions

Gre(r) =1+ Z ﬁ i(nx1+kes)
(n,k)€ Z2\{0} (n* + k?)
and
> 1
¢2 l( ) =14+ Z anl + Z k?é z (nz1+kzo)
nf;é” e Yo ki;éx’

generate positive definite 2r—periodic translation—invariant functions ®(z, y) =
é(x —y) on [0,27]* for sufficiently large £. Because of their tensor product
structure, the latter can be computed directly (see [10]). Some examples are:

Go(r) = f[ ( i ;(xj —7T)2>
boa(r) = li[<360 Tt +7r2(xj12— m)? (;cj2—47r)4>_

For more examples see [10]. Of course, this tensor product approach gen-
eralizes to arbitrary space dimension, but the basic technique is much more
general. See [14] for the relation to positive integral operators.
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