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Abstract:

A central problem of Numerical Analysis is the approximataleation of integrals
or derivatives of functions. In more generality, this is #ygproximate evaluation of
a linear functional defined on a space of functions. Useengfist have values of a
functionu at scattered points, ..., Xy in the domairQ of u, and then the valug (u)
of a linear functionah must be approximated vidirect approximation formulae

N

Alu) =~ Y aju(x),
J;J i

i.e. we approximatd by point evaluation functionald,;, : u+ u(xj). Suchdirect
discretizationdnclude classical cases like Newton—Cotes integratiomédas or di-
vided differences as approximations of derivatives. Threycantral for many methods
solving partial differential equations, and their erroalsis has a long—standing his-
tory going back to Peano and his kernel theorem. They alse &airong connection
to Approximation Theory.

Here, we apply certain optimizations to certain classesicol sliscretizations, and
we evaluate error norms in Beppo—Levi— and Sobolev spades.allows to compare
discretizations of very different types. including thobattare based on exactness on
polynomials and those which are by definition optimal onaiarfunction spaces but
lack sparsity. Special attention is given to discretizagithat are used within current
meshless methodsr solving partial differential equations.

Much of this work is based on recent collaboration with Oleyidov of the Uni-
versity of Strathclyde, Scotland, and Davoud Mirzaei oftthiversity of Isfahan, Iran.

1 Introduction and Overview

Meshless Method®rmulate PDE problems vittial functions parametrizedntirely
in terms of node§4]. Partial derivatives at points or local integrals agaitest func-
tions have to be expressed in terms of function values ahbeigring scattered points.
The resulting formulas are of finite—difference type, b@ytlare by no means unique.
Various optimization criteria can be applied to producetitopl” formulas, and this
contribution surveys some of these.

The most common idea is to ask for exactness of the formulatdtivariate poly-
nomials up to a certain order. Thimlynomial consistencgeeds some requirements
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on the scattered points to be satisfied, but if more than anmailmumber of local scat-
tered points is admitted, there are multiple solutions taditfor optimization under
the constraints of exactness on polynomials. This optitiimecan be carried out in
various ways, and we study some of these, summarizing jaink with Oleg Davy-
dov, Univ. of Strathclyde [6]. One can go for optimal spatsitr apply Moving Least
Squares techniques or optimize formulas with general vigighone way or another.
A general error analysis is carried out that indicates wiltidteria for optimization
are useful. In contrast to classical Moving Least Squarssréiizations of Meshless
Methods, we do not take derivatives of shape functions Héris. part is based on joint
work with Davoud Mirzaei, Univ. of Isfahan [11, 10,112].

Derivative formulas produced by taking exact derivativekasnel-based local in-
terpolants usually have no polynomial consistency, but tam be proven to compete
favourably with optimized polynomially consistent forras| since they are optimal
estimators of derivatives for all functions in the nativéldért space of the kernel. Fur-
thermore, all competing direct derivative formulas can tepared by explicitly cal-
culating the norms of their corresponding error functisral Sobolev or Beppo—Levi
spaces.

A final section uses the latter fact to provide results of esitee numerical experi-
ments comparing all of these methods. It turns out that gmtyially consistent formu-
las compete well with all the others as functionals on SoboteBeppo—Levi spaces,
though they are necessarily (but not too much) inferior ®odptimized kernel-based
formulas on these spaces. For kernel-based formulas, aneseamooth kernels with
no problems caused by excessive smoothness. But one shmilceesome form of
sparsity by careful point selection, and the selection @fr@st neighbours comes out
to be a very good choice.

2 Meshless Methods

By the pioneering survey articlel[4Meshless Method®rmulate PDE problems via
trial functionsparametrizedentirely in terms of nodes”LetX = {xg,...,xn} CQ C
RN be a set of nodes. Then each trial functioshould take the form

N

(¥) = > si(ulx;) (1)
u(x J;ijuxJ

where usually, but not necessarily, thleape functions;s. .., sy satisfy theLagrange
conditions

Sj(%) = Ok, 1< j,k<N.
A very popular way to get shape functions at scattered nedesdapply Moving Least
Squares, while another method uses translates of kern&sdial Basis Functions.
We consider both cases later.

If a linear PDE problem is given in the form

Lu = f inQ,
Bu = g inl:=0Q, (2)
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with a linear differential operatdr and a linear “boundary operatoB; it can be dis-
cretized in strong or weak form as

with linearfunctionals Then the problem is reformulated as a linear system
N
Am(U) = ZAm(Sj)U(Xj) =fm, 1<m<M (4)
=

in terms of values at nodes. This system may be overdetednimg it will be ap-
proximately solvable, if the original problem has a trueusoh u* that has a good
approximatioru from the meshless trial space. In fact,

= Am(u?)
~  Am(u)

N
Z Am(Sju(xj), L<m< M.
=1

fm

The functionals\, come in various forms. We explain part of them by considetiireg
standard elliptic problem

—0O0-(@ax)du(x)) = fa(x) InQ,
uy) = fpo(y), infpcl=20Q,
) = foly), infncCT,

Strong PDE formulations will useollocationvia functionals

Aj(u) = —O@C0UM)(x) = fj, x€Q
A(u) = u(yk) = fx, werlp,
A(u) = G(z) = f, zelycr

that evaluate differential operators at single poiréobal weakmethods rewrite the
main equation as

/ (@) 0u(x) Dv(x)dx = / fo()V(x)dx
Q Q

for test functions vanishing on the boundary. This leads to functionals
Aiw) = /g'z(a(x)mu(x))T Ov; (x)dx
for test functions/j, and the value$; for the equationd;(u) = fj need integrations
fj = /Q fa (X)vj(x)dx

against the same test functions.
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Localweak forms rewrite the differential equation on small subdmsQy, as

/ (a(x)0u(x))T Ov(x)dx— / U vdx= [ favxdx  (5)
o a9, 0n o

for test functionss that vanish not necessarily on the boundary. If the boundB,
hits the Neumann boundary, the fac# can be replaced bij there. This gives the
additional local functionals

Ae(u) = / au(x)vz(x)dx (6)

~ Jaqun(riry) 9n

and _
Aj(u) = '/Qh(a(x)Du(x))T Ovj (x)dx

for test functionsv; on Q. This arrangement of localized functionals is the main
variant MLPG1 of theMeshless Local Petrov Galerkinethod of S.N. Atluri and col-
laborators|[8].

A simplified case called MLPG5 arises when simply choosimgtést functions to be
constant. Then the main PDE discretization takes the form

3 au n 3
Ao (U) = — / M wdx = / f(x)d fo(x)d 7
o (W) Joapn(r\ry) dn(x) X aQnMTN NG9 X+.Qh a(x)dx )

and involves only boundary integrals likg (6) of the normadidative.

In all of these cases, it is necessary to have cheap evaisaifdhe functionals on the
trial space, and this is the main topic of this contributi®mnce numerical integration
is required in all weak formulations, it will pay off to havemicit formulas for exact
integration.

Time—dependent PDEs can in many cases be handled via nestddsods that follow
the above strategy in the spatial variables Q. The representatiohl(1) is replaced by

P

ux,t) =% sj(xu(x;j,t)
1

using the spatial shape functions.Ofis a linear differential operator with respect to
time, one can use

z

Du(x,t) =) sj(x)Du(x;,t)
1

to express everything in terms of time—dependent valuesd@s Together with the
other parts of the PDE, this connects vallagx;,t) with valuesu(x,t), and thus
leads to a system of ODEs that can be solved by the Method @fsLam by certain
time-stepping methods. There are plenty of papers thatyapfs to various types
of time—dependent PDEs. For details, we refer to the pa@injhich implements
discretizations that will be described below.
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3 Direct Discretizations

No matter which functionald come from the PDE problem along the lines of the
previous section, meshless methods usually apply theratdiunctions[[1) as

4

A(U) =% A(sju(x;).
=1

This requires evaluation of the functional on all shape fiomss;,...,sy. This can
be a serious problem if the shape functions are implicitiingel, like in all meshless
methods that use Moving Least Squares shape functions.

But it is by no means necessary to use shape functions atthllsgtoint. The above
formula is just one way of approximatirig'u) “in terms of values at nodes”. One can
generally go for

=z

A(u) =~ > aju(x) (8)
=1
with certain coefficients;. It should be emphasized that the coefficiemtin (8) are
considered agivenvalues that are determined by some specific numerical me¢hgd
by one of the choices of discretization schemes discussedtethe paper.

If this is done for all functionald, of (3) similarly, one gets the linear system

amju(Xj) = fm, L<mM<M 9

Mz

Am(u) =
]

1

instead of[(#). Here, the matrix entries are more genenacing the specific values
Am(sj) in @) that depended on shape functions. Being “entirelyeims of values at

nodes”, this still follows the philosophy of meshless mekhdout without using any
shape functions. Once the system is approximately sohatdesu(x;) are known and

can be used by any interpolation or approximation methodlzutate values at other
locations. We call[{8) alirect discretizatiorof the functionalt, and the rest of this

contribution will deal with these. We use the tedinect to emphasize the fact that
these approximations avoid shape functions.

In particular, if functionals contain derivatives, direliscretizations need not evaluate
derivatives of shape functions. The literature has the @iffase derivative§l3,[14]
for direct discretizations of derivative functionals. Wecly avoid the term “diffuse”
because there is nothing uncertain or diffuse there. ldstib& “diffuse” derivatives
are direct discretizations of derivatives. The papgersIP] prove that there is no loss
of accuracy to use direct discretizations replacing déviga of shape functions, and
they used the notiodirect derivativedor direct approximations of derivatives.

For Dirichlet data, it makes sen$e[10] to couple the knowdahwalueu(yy) at a point
Yk on the Dirichlet boundary to neighbouring unknown nodatieali(x;) at pointsx;
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inside the domain via an additional formula of the type
uy) ~ 3 aju(x;),
]

which is another direct discretization. In should be intetpd as a formula providing
extrapolation to the boundary, and it generates an equati@@) that connects given
Dirichlet datau(yy) to unknown nodal values(x;).

The following sections will deal with several techniques éalculating direct dis-
cretizations[(B) that determine useful coefficientdin (@).particular, we shall have
a close look at the error functional

N
Exai=A—Y ajd (10)
=1

and try to make it small in one way or another, and we want agghabrulation of the
discretization. We can focus on single functionals for fhispose. In the context of
classical theory for numerical solution of PDEs, this deelh consistencynly, not
with stability. Stability will depend on which and how many functionals ased for
the whole setup of equatiorid (9) in order to let the coefftaieatrix have raniN and a
stable pseudoinverse. However, readers should keep intimamthe notion of stability
of methods for solving time—dependent PDEs is different.

Note that in our setting{3) we always assume that the givéa\dduesf; are ex-
actly the valueg j(u) of the true solutiom of the problem. This is aoiseless situation
and allows us to interpret the approximation errofin (9) aalae of a continuous lin-
ear functional. If data are polluted by additive noise, €;g= A;(u) + 6; with nonzero
0j, this approach fails and requires a completely new errdyaisdeading to regular-
ization techniques. See e.d. [8] for regularized discatiins of derivatives that can
deal with noise.

4 Direct Discretizations via Polynomials

We start with methods fof]8) that use polynomials. This idlvk@own from the
univariate case. There, the standard technique is to exactnessf (8) for a fixed
given functional on a finite—dimensional space of polyndspiand error bounds are
obtained via Peano kernels. We shall come back to this inose€i3.

In multivariate meshless methods, polynomially exactrdizations usually come via
Moving Least Squares, but with evaluation of the functisrai the shape functions,
which in turn need pointwise calculation. If the functiomabntain some integration,
this means that one has to evaluate values or derivativebagfesfunctions on the
integration points. Here, we shall avoid the use of shapetioms, and we generalize
the setting of Moving Least Squares.

We assume a polynomial order (= total degree plus em&r which a formula[(B)
for a single functional should be exact, and we denote B, the space of these
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polynomials ind variables. Its dimensioﬁ“}}*d) will be abbreviated byQ, and we
choose a basipy, ..., pg. The set of (usually local) nodes will bé = {x1,...,xn}.

In what follows, we focus on a single functionalin the sense of({8), but we keep in
mind that this deals only with a row of the systdrh (9).

With theQ x N matrix P = P(X, m,d) with valuesp;(x;) and the vector

p:= (/\ (pl)a ce 7/\ (pQ))T € RQ’
exactness of{8) up to ordermeans solvability of the linear system

N
Pa=p, i.e. Z ajpi(xj) =A(pi), 1<i<Q. (11)
=1

This is satisfied if ranP) = Q < N, but this ‘unisolvency condition is not neces-
sary. For example, tak&(u) = Au(x) for some poinix € R? and the five—point star
discretization. It hadl = 5 points, is exact for all polynomials th= 2 variables up to
orderm= 4, and thus ha® = 10.

For what follows, we always assume solvability bfl(11), bug will often have ad-
ditional degrees of freedom that we can use for some kind tfndgation. We use
boldface notation as soon as we are in Linear Algebra, buheosvelse.

But we emphasize at this point that the systém (11) requings olynomials, no
shape functions, and the most expensive part will be theuatiah of A (p;) in case
of integrations of derivatives. But the integrands will haiéable in closed form, and
the integration error can be easily controlled, in particifl the domain has a regular
shape, e.g. a ball, a cube, or a polyhedron. In MLPG5, theme test function, and
then there is no additional error induced by numerical irgggn, and no “background
mesh” for integration.

4.1 Sparse Polynomial Discretizations

If the system[(Il1) is solvable, one can ask for a solution witinimal number of
nonzero coefficients. Papers on sparsity often work by miirg the number of
nonzero coefficients, called the zero—"norm”. This is a higfontrivial task, but it

is relatively easy to come up with solutions that have ddlgonzero components, if
N > Q. This can be done by the MATLAB backslash operator, for imsgg or byOr-
thogonal Matching Pursuin a simple implementation. In fact, one only has to project
the right-hand side of (I1) into the column space of the matixand find a linear
combination by linear independent columns. Details ard$j, [but there is a shortcut.

If a pivoted QR decomposition of the matrix of the linear syst

(5 ¢)(a)-(%)
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is performed that starts with the final column, there will Imeaautomatic column se-
lection by a greedy choice of the columns that reduce/sherror in an optimal way
[15].

However, none of these methods, including minimizing#heaorm of the coeffi-
cients, yields the sparsest solution in all cases. But,ldhalsimplified methods, the
£1 norm minimization often performs best with respect to sparsVe shall include it
into our numerical examples, together with the Orthogonatdfling Pursuit (OMP)
solution and the simple MATLAB backslash operataa P\p that also does a pivoted
QR decomposition, but not dependent on the right—hand side.

4.2 Moving Least Squares

Avery popular case within meshless methods is the appraadiaving Least Squares
that we describe now.

In the standard form of Moving Least Squares, there is no ection to direct dis-
cretizations. Fogivenvaluesu(xs),...,u(xy) at scattered points, ..., xy near a fixed
pointz, it tries to find a valuel(z) atz that matches the data well. It calculates a poly-
nomial p* € 24 that minimizes

% p* (X)) — u(xj)) WA (z,x;)

for weights coming from a weight functiow that is localized around some fixed
pointz. If p* is found, the valuep*(z) is taken asu(z). Numerically, this is the
minimization of || W(PTc — u)]|, for a coefficient vectoc € R?, given vectoray =
(u(x1),...,u(xn))" € RN for the data and putting the positive weightéz x;) into a
diagonal matriX,. Note that onlyW;, depends orz. The standard variational argu-
ment then shows that the solution veatde= (¢;(2), ... ,cg(z))T € RQ must satisfy the
Gaussian normal equatioRW2PTc; = PW2u. If P has rankQ, this is solvable, and

the resulting value atis
Q

P2 = i;CT(Z) Pi(2).
The vectorc; can formally be written as; = B u with aQ x N matrix
B, = (PWZPT) tPWZ.
Then the procedure yields
N Q
u(z bij (Z)u(x;)pi(z u(x bij (2)pi(2)
(2) ZZ ij (Z)U(x)) P ,Z J)i; ij (2)pi(
~————
=:5i(2)

which is of the form[{ll) with the shape functioss...,sy. These functions will not
necessarily be polynomials, unfortunately, unless thektsiare chosen independent
ofz
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Standard applications of this for meshless methods woul@hby A and proceed
to calculate the values(s;j). This will lead to an approximation of the forfl (8). If
integrations are involved, the integrations do not run @adynomials. Derivatives &
in the functional are usually handled by taking derivativEp* at z, but derivatives at
integration points need recalculation of the whole proced each integration point.
Diffusederivatives ignore the dependence ofthjeon zand just take derivatives of the
s;j via derivatives of the polynomialg;. This will also lead to an approximation of the
form (8), but without taking derivatives of shape functions

The connection to direct discretizations works as follows. calculate coefficients
¢’ by solvingPW?PTc* = PW2u, and we define our discretization dfby

Q
M~ AP) =3 A (p) = p'c' =p'Bu=p' (PW2PT)IPW2y

i=
which is of the required form. This allows arbitrary weightsit it involves a least—
squares approach that is not general enough. By some stiralaulations, the coef-
ficient vector

a=W?2PT(PW?PT) 1p
minimizes
a

1all2,1 w2 = Z— =
2,1/w £ WJZ JZlW(ZvXJ)Z

with the reciprocals of the Moving Least Squares weightdered about a poirt.
Then one can use the identity(p*) = u'a for calculating the direct discretization.
However, if one has to approximate several functionals fri@hues of functions at
the same nodes, it is better to calculate a polynomial iotar p* with a coefficient
vectorc* first and then take the exact value&*) as approximations.

4.3 General Weights

We now stick to [(B), make it exact a#?d via (IT), and use the additional degrees
of freedom to minimize some norm of the coefficient veaiar RN. For maximal
sparsity, one can use sectlon]4.1, or go for the naii.

If solvability of (I1) is assumed, each optimization of theights will be feasible,
and will yield a possibly useful solution. A comparison shithhe made within the error
analysis. There are at least two sufficiently general ambresto error bounds in the
literature. In[[12], results on stabilized polynomial restruction[[17] are used, while
[6] derives error bounds in terms of growth functiohs [5]. thVa certain simplified
shortcut, we explain these techniques by taking an arbipalynomialp ¢ 28 for
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bounding the error as

leaxa(U)] = |A(u)— 1aJU(Xj)
j

N
= Au-p) - Zlaj(U— p)(Xj)
=

IN

Au=pI+|S 2= pogw
p JZle P)(Xj)w;j

< A(u=p)[+allqamllu—pllrw

with 1/g+ 1/r = 1 and arbitrary positive weights, , ..., wn. There are several differ-
ent views on this bound, and all of them give a specific insight

First, assume that we restrict ourselves to a subséX pbints of X on which we
can perform interpolation as

Q
(x) = j(X)p(xj)
p(x J;pjxpxj

like in (@), and we interpolate on these points bp. Thenu = p, and the error consists
justofA (u— p). Exactness then implieg = A (p;j), 1 < j < Qand there is nothing to
minimize. This is the standard situation known from 1D, éog humerical quadrature
like Newton—Cotes formulae. The error of the discretizai®exactly the evaluation
of the functional on the error function of the interpolati@ven in 1D this can be fine
or disastrous, depending on the locations of the pointsh&\it oversampling, there
will always be at least a |0Q growth in case of nicely placed points, while there is an
exponential growth witlQ in case of regularly distributed data. To overcome this, the
techniques summarized in [17] use oversampling, and theyndkt bounded interpo-
lation processes that makdu — p) manageable. Consequently, by a logic similar to
the above one, and using Taylor polynomials like in the fouréw below, the authors
of [12] get useful error bounds for these interpolation-dokdiscretizations.

A second view would not takp as an interpolant, but rather argue with a best poly-
nomial approximanp to u. Then the first part of the error bound is again independent
of the discretization formula, but the second tells us thashould minimize|a||q 1w
under the constraif®a= p, no matter how good the best polynomial approximation to
u actually is. But this leaves open how to choose the weightde hat this approach
leads to “derivative—free” error bounds which were fashige quite a while ago.

The case = 2 of the above argument already points towards Moving Legisa s,
for general weights. More specifically, our third view is &ké p as the outcome of
Moving Least Squares, minimizing — p||2,w with MLS—specific weights. There are
good bounds on (u— p) in this casel[l, 17], and one is left with minimizifi@]|2 1 w
under the constrairfa= p, bringing us back to the previous approach. By the stan-
dard duality arguments of Moving Least Squares, the minsuohltion coefficients;
are exactlyA (sj) if sj are the shape functions of MLS. This gives a possible reason
why many applications of MLS within meshless methods woik tay, but note that
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here the weights are chosen in a special way and a specifingroigl is constructed
first. This is by no means mandatory.

A fourth approach[6] views the bound locally around a fixethpa and inserts a
Taylor expansiom, of u aroundz, but does not use oversampled and thus uniformly
bounded polynomial recovery like in[17] arid [12]. In additj this approach gives an
indication of which weights could be useful. FR#(x) := u(x) — pz(x), we have

[x=2)°]
Rl < 5 L2 gay0,
|al=m

on a local subdomai@; containingzandX. Then we have the two error terrs(R;)|
and

ajRe(x;)

|9%u Hc [[9%ulleiay

DG

<3

laf=m

z|1||

If no assumptions on the anisotropy wfand the point locations can be made, this
bound suggests to take the weighis.= ||x; — z||3' for minimization of||a]|1w.

We stop the argument here and refer[tb [6] for details, andaitiqular, for the
connection between this minimization problem agrdwth functions In section[6
we shall come back to error bounds. In our examples, we dehetdiscretizations
obtained by exactness of orderand minimization offal|1w with w; = ||x; — /|3’
optimal m—th order local polynomial discretizatioasd write||al|1 m for short.

5 Direct Kernel-based Discretizations

We now go back td {8) and view direct discretizations in theshgeneral way. Clearly,
they make sense only if the point evaluatiens: u(x;) and the functional evaluation
u+— A (u) are continuous operations. If we assume the functidngie in some Hilbert
spaces of functions onQ with continuous point evaluatior® : u— u(x), the Riesz
representers of the functionalsdefine akernel K : Q x Q — R with the properties

K(xy) = (&,0)n forallx,y e Q,
= (K(x-),K(y,"))r forallxyeQ,
fx) = (f, ( ) forallxe Q, f € 22,
A W) pe = )\XuyK(x y) forall A, u e 5%,

whereA* acts with respect to the variabte This is the setting oReproducing Kernel
Hilbert Spaced2, [9], and it provides a general and simple construction ifnaal
direct discretizations for functionals€ .77*. In fact,

[EaxaW] < llexxallzs[[l[ull (12)
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implies that optimal formulas should minimize

N 2

/\—Zajéxj

=1

leaxalls. =

%*
N

= NAYK(xy)— ZZaJ)\ Kxx,) ZajakK(xJ,xk)
j

with respect to the coefficient vectar There are no weights here, no polynomials, and
also no shape functions so far. Readers without a backgrioukelnel-based tech-
niques should consult17] for details behind the argumintkis and the following
section.

Equation [[IB) defines a positive semidefinite quadratic fand the necessary and
sufficient condition for a minimizer is the linear system

K (X, Xj) = A*K(x,%¢), 1< k< N. (14)

uMz

By Hilbert space projection arguments, this system is adngnfvable, and we get an
optimal kernel-basedirect discretization this way. If point evaluations foffdrent
points are always linearly independent, the form is pasitiefinite and the solution is
unique. On the downside, these optimal discretizationsisually non—sparse, and the
evaluation of the valued*K (x,xx) may be costly in case of weak functionals.

In the Hilbert space setting, these discretizations are dnstruction optimal, and
their error bound comes directly frorh (12) arid](13). Notet {f&) can be evalu-
ated explicitly, thus leaving onljju|| ,» open in the error bound. In sectibh 9 we shall
evaluate errors this way on Sobolev spaces, and then weswlhe abbreviation
Qs(@) = [|&x x al|%,- to stand for the “Sobolev” quadratic form. Note that Waittle—
Matérnkernel

K(xY) = [x—YII5" Y *Kin_a/2(|x—Yll2), xy € RY

is reproducing in Sobolev spa¢g"(RY) for m> d/2, whereK, denotes the modified
Bessel function of ordev, and the Sobolev quadratic form uses this kerndlih (13).

Clearly, these discretizations are exact on the span ofifursX(-,x;), 1 < j <N. It
is well-known [18] that generalized Hermite—Birkhoff inpelation of trial functions
u from this space is possible, i.e. one can find shape funcigns.,sy satisfying
Lagrange conditiond(sj) = djk, 1 < j,k < N. This implies that the coefficienss(s;)
also solve the optimality problem, and we get that this fofndiscretization can be
written as the exact evaluation of the functional on the shimctions. However,
the shape functions are not needed, but the quanhtiggx, xc), 1 < k < N have to
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be calculated. This can be a highly nontrivial taskAifinvolves integration and if
there are no integration formulas for functions of the fdffa,x). Solving PDEs in
strong form is still convenient, because the kernels arallyseiasy to evaluate, but for
weak problems it can be more efficient to go back to methodsdhas evaluation of
polynomials. This makes a comparison of these technique=ssary, but we postpone
a fully general efficiency analysis to future work. In seofbwe present a special case
for MLPGS5 [11].

We now show how to get sparsity in kernel-based discretizati The systeni (14)
implies that the calculation of an optimal discretizatiam & given functionall in
terms of values at a set of nodes is equivalent to an interpolation of the function
f) :==A"K(x,-) onX by kernel translatel$(-,x;), 1 < j <N. This can be done stepwise
by choosing nodes one by one, by a greedy method [16]thEem@ossibility for
working locally around a poirt is to order the nodes; with respect to their distance
to zand then work only for the@ < N nearest neighbors o We shall compare both
approaches in sectifm 9.

If users want discretizations on spaces of functions withesqibed spectral behav-
ior, one can usually invoke some kind of harmonic analyst @me out with a re-
producing kernel Hilbert space that produces optimal diszations. For instance, if
univariate functions are band-limited, the appropriate&kis a scaled sinc function.
In general,r*d/sz/z(r) is the inverse Fourier transform of the characteristic fiomc
on the unit ball inRY. Spaces with algebraic decay of frequencies towards ipfami
norm-equivalent to Sobolev spaces, and the appropriatelssare of Whittle—Matérn
or Wendland form. We shall provide examples in sedtion 9.

6 Direct Discretizations in Beppo—Levi Spaces

Having the above machinery at hand, we consider another Wwegaling with error
bounds for polynomially exact discretizations with gemevaights. In case of({8),
we can consider the error functiorgly , of (I0) on various spaces of functions. To
deal with exactness o8 via the standard Bramble—Hilbert technique, we should
define a linear differential operatby, : 7 — % such that%?] C kerLm C 27 and

A, 6,<j € 2*. The standard way to defirig, is

Lm(u) = (U, Ja| =m)T € Ly(Q)?=: &

arranged into a vector of functions that has ler@ttClearly,.# is a Hilbert space, and
we can define a semi—inner product.gfi by

(W) m
U, V)BLn(Q) = -
m ‘a‘:ma!

(u(a)vv(a))Lz(Q) = (Lm(u)’ Lm(v))LZ(Q)Q-
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This yields a Beppo-Levi spade [17, Definition 10.37] 6t if m> d/2. It will have
a conditionally positive semidefinifolyharmonicor thin—plate splingadial kernel
rd/2—m  .2m-d
22rT]’T(j/z(rTFl)!r m d odd

Kma(r) := (—1)m(d-2/2 o d
2 T2 (1) (m—d)2)] r logr deven

(15)

of orderm [17, (10.11)], and if the functional, x , is continuous on the Beppo—Levi
space (it must be zero a#g for that), it has an error bound

& x.a(W)] < QeL(@)|ul» = QeL(a)[LmulL,

with the quadratic form

Q%L(a) = Hg)\,X,a”ié”* = gj,X’aEX’x’aKm,d(xay)

on the Beppo-Levi space. The best way to optinaizeould then be the minimization
of the above quadratic form under the constraint of polyradexactness. If other co-
efficient vectorsa come via other minimizations, they can be compared to thienapbt
formula in the Beppo-Levi space if they are exact@#},. We just evaluat€g, (a)
for them. Then users can decide whether a computationdégtafe formula based
exclusively on polynomials is still competitive to the apél formula based on poly-
harmonic splines. We shall do this in sect{dn 9. But sincdathulas, not just the
polynomially exact ones, can be checked for their perforceaim the Sobolev space
WIN(RY) instead of the Beppo-Levi space of orderwe shall evaluat®s(a) as well,
in order to see the performance[n}12).

7 Approximation Orders

But before we turn to numerical examples, we should expldiatvihappens if direct
discretizations are used under scalng 0 in the standard way of looking at finer and
finer samplings. In case of polynomial exactnessZf) and the Beppo—Levi space
error bounds, we can use a scaling argument of Bramble—ititiyee for this purpose.

Assume that we work in a domain containing a ball around zerd we scale the st
into hX with someh € (0, 1]. For fixed functionai in the Beppo—Levi—space of order
m, we then consider the functiong(x) := u(hx) and assume the functionalto scale
as

A(up) = A ().

This works for differential operators of ordierand weighted integrals over them.
If we take a functioru on the full Beppo—Levi space of orderon Q ¢ RY, we get

UnlgL0) = IbmtnllE, g0
= PP, 01
h=m= ||Lmu|||_2(hQ)Q (16)
h2mfd|||_ U||2
ML Q)R

2m—d|, |2
h*™ Ul )

IN
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which does a poor job of localization that we shall commeniader.

The scaling of the weights for working d1X should beh—¥a and we get

N
l€x hxnka(W)| = ‘/\(U)—kz h~*au(hxc)
=1
N
— h%A _
(Un) k;akuh(xk) (17)

h7t|£}\,x,a(uh)|
h™*(|&x x.all 2+ [Un|BLm(Q)
hM=k=d72)l g5 x all 7+ UlBLm()

IANINA I

proving less than the expected approximation otde. All discretizations that are
exact on24 will have at least this asymptotic behavior, no matter ifythee based
on polynomials or not. Comparison of such formulae can beedda Q3 (a) =
€1 x al|%,- ON afixedscale.

Readers will expect an ordbf K in [@7). First, our numerical experiments in section
will show that||€, x al|%, actually behaves not better thar{h™*~9/2). Second,
the well-known arguments along local Taylor formulas shoat proofs of&’(h™ k)
convergence need a strongly localized norm of the functiobe discretized, or simply
a condition likeu € C™ in a neighborhood of. Looking at [I6) tells us that we should

have used
m!

I = 5 & [ (18)

which is bounded independentlofis soon as has bounded derivatives of ordero-
cally around zero. This proves that we would s&@™ ) convergence gy .y ko (U)]
forue C™Q). o

But we want to compare errors in Hilbert or Beppo—Levi spanesinC™(Q). There-
fore we look for a properly scaled and localized version #iatws the expected con-
vergence. The associated inner producttd (18) is

m r _
= /Q U@ (V@ () dx = h~4(U, VgL, na)

(U,V)m’h = Z

laf=m

which suggests that we have a scaled version of a Beppo—havesonQ;, here, and
we want to construct the reproducing kernel. Note that theofd? above seems to
care for the volume ofiQ.

We start from the polyharmonic kernig}, 4 for ordermon Q C RY. With a projector
Mm onto the polynomials oY we have

F(%) = (M) (9 = (f, Grma (- X))p(ey for all f € 7
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due to [17, Theorem 10.17, p. 144], where

Gm,d('vx) = Km,d('ax) - (H%Kmd(vy))(x)
We apply this forf := u(h-) to get
u(hx) = Mm(u(h-))(x) = (u(h-), G%d( 7X))BLm(Q)

— m

aZmaAu<“><hv>eazz.h<hmhx>dy

(U, Gm,d,h('a hx))m,h
= u(hx) — (Mmp(u))(hx)

if we have
h"GRy(v:%) = G n(hy; hx)

and define the projector
(Mmn(U)(y) := Mm(u(h-))(y/h).
Altogether, this is a localized reproduction equation
u(z) = (MmpW)(2) = (U, Gmdn(+2))mh
that we were looking for. To find the kernel, we start from

h"GLa(yx) = K3 (y,x) — hM(MEKTE(v.2) (%)

and define
Kman(¥,X) = W*Kma(y/h,x/h)
to get
Knan(:%) = h™KE3(y/h,x/h)
Ka¥n(hyhx) = h"KE¥(y,x)
hmGay(y, X) = K%Kh(hy,h) h™ (l'lzaKay(y, 2))(x),
= Kpgn(Ih — (Mhkng1h2) 0
= méh(hyahX) (M Kt (hys ) (hx)
ﬁh(hy,hx)

This means the we can take

Gman(y.X) = PP"Kma(y/h,x/h) — (M Kman(y,w)(x)

modulo a polynomial iry with coefficients inx. Looking back at[(15), we see that in
odd dimensions we just have to multiply the kernel with In even dimensions, the
kernelr?™9jogr is to be replaced bir?™9(logr — logh), which is a multiplication
with h? and an addition of a polynomial that cancels out whenever aleutate the
quadratic form. We could call this threzaledBeppo—Levi kernel, but as long as we
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compare quadratic forms, it just has a corredtédactor to guarantee the expected
convergence rate. This is why we can ignore this detour eftegy, knowing now that
this change of the norm would result in the expected appratian order.

For nonpolynomial discretizations without exactness odympamials, we can proceed
similarly and use their optimality. If we work dmX, we get optimal coefficien*(h)
that we can compare to & for any fixed2?4—exact discretization with coefficierds
for work on X, following

lexnxa e < &rnxnkall 5

— u v

- SA,hX,h*kég)\,hX,h*kéK(u’v)'
If the error bound[(17) is applied here, this quantity wilhage likeh®™ % times a
constant that depends &n provided that the kern& is smooth enough. This proves
that kernel-based optimal discretizations at least atitemaximal convergence order
that is possible on a sitfor polynomially exact formulae. They do this without being
exact on polynomials, but the price to be paid is that thelwgilially be based on the
whole setX, without sparsity, and they need evaluatiomobn the functions<(-, x;)
which can be expensive in case of weak functionals.

8 Sparsity First

For solving the systenii{9), sparsity of the coefficient mxatill be a highly important
issue. Thus we shall now focus on the problem how to get théessharror for a given
sparsity, i.e. for the numbét of point locations being small and the points themselves
properly selected. We first ignore the point selection proband assume that we take
the firstN points from a larger set of candidates, wiNtslowly increasing.

For polynomially exact formulas, it is reasonable to go fa tmaximal order of poly-
nomial exactness. If the points are in general position vapect to a fixed orden

in RY, there is only one polynomially exact discretization andhage no leeway for
further optimization of coefficients. If the number of pais increased somewhat, but
not enough to go for the next higher order of polynomial exess, there is a formula
with the minimal number of nonzero coefficients, namely the we get when ignoring
the additional points. We call this tiggeedy]|. ||o solution. But we can also minimize
|lal|1 or ||aj|y,m under the constraint of exactness of orderlf N is increased further,
these solutions will coincide as soon as the next higherraflexactness is reached.
In parallel, one can also calculate kernel-based disett@iizs at these points, and we
know that they will also lead to maximal orders of approxiimatbut without polyno-
mial exactness, provided that we use smooth kernels. Thvhyswe should look at
experiments with increasind, letting all possible candidates compete, while the poly-
nomially exact formulae always go for the maximal order cdi@xess. Comparisons
should be made by checking the norm of the error functional fixed —order Sobolev
space. We shall provide such examples in the next section.
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But we still have to discuss how to select points effectivéflyvorking locally around

a pointz, one can take neighbors afwith increasing distance. Though this may be
unstable if two points are very close to each other, it tutrismbe quite a good strategy
for all formulas in the competition so far.

There is a method [16] that chooses useful interpolationtpadaptively, and it can
be applied here becaugel14) shows that the discretizatidugm is just interpolation

of the functionA*K(x,-). We shall compare it to the nearest—neighbor choice, but it
performs worse since it tends to prefer points further awamiz.

9 Numerical Examples

For examples that show the gain in computational efficiencydplacing standard
Moving Least Squares discretizations by direct discrétna via polynomials, we
refer to [11[10].

From [11] we take an example for variation 5 of the Meshlessaldetrov—
Galerkin (MLPG5) method{7) in comparison to the DMLPG5 noethi.e. the stan-
dard versus the direct discretizations of normal deriegtialong edges of squares in
R?. The overall setting is a standard inhomogeneous Poissiigon on|0, 1]° with
Dirichlet boundary conditions and Franke’s function [7]kaswn smooth solution.
Discretization was done via Moving Least Squares in the MiRt&thod, while a di-
rect discretization with the same weights was used in DMLF&&%B 0< || x—X;||2 < 9,
the MLS used the truncated Gaussian weight function

exp( — ([[x—xj[l2/c)?) —exp(—(3/c)?)
1—exp(—(5/c)?)

wherec = ¢cph is a constant controlling the shape of the weight functioth @a= &h
is the size of the support domains. The parametets4, cg = 0.8 anddy = 2mwere
selected. With direct discretizations in DMLPGS5, a 2-pdB#ussian quadrature is
enough to get exact numerical integration. But for MLPG5 #redright hand sides we
used a 10-point Gaussian quadrature for every edge of tlaees)to ensure sufficiently
small integration errors. The results are depicted in T8lled Fig[l. DMLPG is more
accurate and approximately gives the full ordes 4 in this case. Note that we have
k =1 here, but we integrate over a line of lengthBesides, as is to be expected, the
computational cost of DMLPG is remarkably less than for MLPG

For the remaining examples, we focus on direct discretimatof the Laplacian
A (u) :=Au(0) in R2, Since the five—point discretization is exact@tf with dimension
Q =10, we choosen= 4. This leads to the Beppo—Levi space generated by the thin—
plate spline®logr and to Sobolev spad#’}(R?) with kernelr3Ks(r). We want some
additional degrees of freedom in case of scattered datacsakeN = 27 fixed points
in [—1,1]? that include the five—point discretization at stepsize 1 amdin FigurdD.
Clearly, the sparsest discretization which is exactépuses 5 points with coefficient
norm||al|1 = 8, but other discretizations will have betwe@r= 10 andN = 27 points.

W5(Xa XJ) =
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||€]] oo ||€]] oo CPUsec. CPU sec.

h MLPG5 rate DMLPG5 rate MLPG5 DMLPG5
0.2 010x 100 —  0.12x10%0 — 0.5 02
01 025x101 204 o017x101 287 27 0.2
0.05 078x102 166 012x102 3.75 192 0.9
0.025 Q79x103 330 075x10% 4.04 1422 47
0.0125 055x104 386 043x10° 412 26049 439

Table 1: Results for MLPG5 methods

D S ey N S —— [ —— B — ]
E —— DMLPGS5 |1

-~ MLPG5

2
10°F

el

4
107¢

,57
107

Figure 1:Comparison of MLPG5 and DMLPGS5 in terms of maximum errorsifoe 4.

The rows of TableE]2 arld 3 contain various discretizatiorhodt. They start with
the discretization OMP calculated by Orthogonal MatchingsRit along the lines of
sectiof 4.1, followed by what the backslash operator in MABLproduces. The next
columns are minimization ofal|; and ||al|1,m, respectively, followed by the gener-
alized Moving Least Squares (GMLS) solution of[12] with lghd Gaussian weights
exp(—3||x—xi||3). The next rows are based on minimizing quadratic for@s: on the
Beppo-Levi space fo@%—exact discretizations, whil@g__r for bandlimited functions
andQs for Sobolev space are minimized without any exactness.

The columns contain comparison criteria. The first columants the essentially
nonzero coefficients, and the others are self-explainihg.fihal column has no poly-
nomial exactness, and thus its evaluatio® is not supported by any theory, while
the methods of all other columns are competing for the opterrar in the final col-
umn.

Table[2 shows the results for= 4 and 27 points. Rows 2 and 3 pick the five—point
discretization. Minimizing the quadratic forms yields iop&l formulae in the asso-
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Points

1 o
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0.6
0.4r
0.2r
0 o o o
-0.2
-0.4
-0.6
-0.8
-1 o
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-1 -08 -06 -04 -0.2 0 02 04 06 08 1

Figure 2:27 points for discretization of Laplacian at zero

ciated spaces, but their coefficients get rather large amdbtimulae use all available
degrees of freedom. If two entries in one of the final two catsrdiffer by a factor of
four, the convergence like™ ¥ = h? implies that the same accuracy will be reached
when one of the methods ude& instead oh. In 2D this means that one method needs
four times as many unknowns as the other to get similar acguiino sophisticated
solvers are at hand, this means a serious increase in coiopatacomplexity.

Surprisingly, all formulae are reasonably good in Sobopeace, showing that one
can use formulae based on polynomial exactness and spaititjut much loss.

The maximal possible polynomial exactness order for theegaomts ism= 6, and
the corresponding results are in Table 3. This correspanttsetkernelslogr and
rSKs(r) for the Beppo—Levi and Sobolev spaces. The polynomial ftamlose their
sparsity advantage, and the weight norms of all discrétizatdo not differ dramati-
cally. Note that thér* convergence now implies that a method can equalize a fattor o
16 in the above numbers by going frdmto h/2. Again, the formulae with polyno-
mial exactness behave quite well in Sobolev and Beppo—lmdes. Since for weak
functionals they will be much cheaper to evaluate, it maymake much sense to go
for Hilbert or Beppo-Levi space optimality in that case. Bue latter will work fine
in strong discretizations, and in particular if users fix tluenber of neighboring nodes
to be considered. This will fix the bandwidth of the systend aach functional will
get an optimal discretization within the admitted bandWjdlisregarding exactness on
polynomials.

We now compare discretizations of the Laplacian at zero ai@ous kernels, but
without polynomial exactness. We take= 14 fixed points in/—1,1]? including the
five—point discretization points at stepsize- 1, and we take different discretizations
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lallo lal [lalasa QeL(a) Qs(a)
OMP | 10 9539 4516 10271 1.235
MATLAB 5 8000 4000 10.180 1.229

min [|al|1 5 8.000 4.000 10.180 1.229
min ||a][1.4 10 32658 1.681  6.162 0.801
GMLS | 27 18.183 2533  7.799 0.988

min QgL () 27 264.145 82249  3.083 0.435
min QgLr(a) 27 146112 40.997  3.582 0.506
min Qs(a) 27 271.955 84131 3131 0.431

Table 2: Results fom= 4 on 27 points

llallo lals  [lalia  QsL(d) Qs(a)
OMP | 21 101.452 25837 12.036 0.145
MATLAB 21 62579 11.886 10.493 0.131
min ||al|y 21  59.061 9.932 9515 0.120
min|all14 | 21 72.876 8.987  7.089 0.091
GMLS | 27 70.798 11.312  9.090 0.114
min Qg (a) 27 223.053 68.925 4202 0.056
min QpLr(a) 27 146.112 32.763  6.109 0.067
min Qs(a) 27 246.868 78.200 5720 0.047

Table 3: Results fom= 6 on 27 points

there, constructed witm = 4 in mind whenever it makes sense, and takingfor

h — 0. Then we measure errors U(R?) andW, (R?) to see how serious it is to
choose “wrong” kernels. All discretizations will be of orde in W2(R?) and of order

h in W} (IR?), except the optimal formula oi4'(R?) evaluated inV(RR?). Figures
and’4 show the behavior of these errorstior: 0, evaluated a§ie) px a-(n)ll- The
results are another example confirming that excess smasitoes no damage error—
wise, but it increases instability of calculation. The failas based on smooth kernels
always seem to reach the optimal order in a specific spacanofitins, but they never
show some superconvergence there. They just adapt nicéhe temoothness of the
functions in the underlying space, if the kernel is smootbugyh.

We finally present examples with increasiNg If we use nearest neighbors, work
for finally 27 points as in Figurel 2 and evaluate the errdr\@ we get Figuréh for
a single run and Figuild 6 for the means of 24 sample runs witta@dom points in
[—1,1]? each. Before taking means, we divided the errors by the nailémror obtain-
able by using all points, i.e. the level of the bottom line igie[3. One can clearly
see that the minimization dfa|| 1 m performs best among the polynomial methods. We
added the optimal kernel-based formulaé/\lﬁ for both the nearest neighbor choice
and the greedy choice df[l16] to see that the nearest neigthimace is fine folN > 5.
Note that the sparsity increases roughly linearly Withbecause even the greeflyo
solution needs 3, 6, 10, 15, and 21 points when steppingdfrorders 2,3,4, 5, and 6.

Acknowledgement: Special thanks go to Oleg Davydov and Davoud Mirzaei for some
helpful comments on an earlier version of this article, and teferee for a very thor-
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N Errors evaluated on Sobolev space for m=4
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Figure 3: Errors inV,}(IR?) as functions oh
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Figure 4: Errors inV9(RR?) as functions oh
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Sobolev error norm for m=6 and N=27
10 T T T T
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Figure 5: Errors inV$(IR?) as functions oN

Mean relative Sobolev error norms for m=6 and N=27 and 24 samples
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Figure 6: Errors inV9(IR?) as functions ofN



REFERENCES 24

ough and helpful report.
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