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Abstract

There are many ways to upsample functions from multivariate scattered data locally,

using only a few neighbouring data points of the evaluation point. The position and

number of the actually used data points is not trivial, and many cases like Moving

Least Squares require point selections that guarantee local recovery of polynomials up

to a specified order. This paper suggests a kernel-based greedy local algorithm for point

selection that has no such constraints. It realizes the optimal L∞ convergence rates in

Sobolev spaces using the minimal number of points necessary for that purpose. On the

downside, it does not care for smoothness, relying on fast L∞ convergence to a smooth

function. The algorithm ignores near-duplicate points automatically and works for

quite irregularly distributed point sets by proper selection of points. Its computational

complexity is constant for each evaluation point, being dependent only on the Sobolev

space parameters. Various numerical examples are provided. As a byproduct, it turns

out that the well-known instability of global kernel-based interpolation in the standard

basis of kernel translates arises already locally, independent of global kernel matrices

and small separation distances.
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1 Introduction

Throughout, we shall work on a bounded domain Ω ⊂ R
d and consider recoveries of

functions f on Ω using values f (xi) on scattered locations xi ∈ XN = {x1, . . . ,xN} ⊂
Ω ⊂ R

d . We focus on large point sets XN , but avoid working with the whole set. In-

stead, we calculate the recovery at each point z ∈ Ω separately, using only the points

from a set X(z)⊂ XN , and with a fixed computational complexity for each z. This strat-

egy is well-known from Moving Least Squares [21, 13, 4, 25, 39, 1, 15, 26], Shepard-

type [35, 19, 11] and Partition-of-Unity [2, 40, 20, 24, 6] techniques, but here we

ignore any tricks to ensure smoothness properties. We focus on optimal convergence
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rates and minimal point sets instead, and confine ourselves to recoveries in spaces H

like Sobolev spaces, using translates of the kernel K that is reproducing in H .

It is well-known that using the full set XN gives the least possible error, but how much

is lost when using only the points in X(z) for recovery of f (z)? Clearly, one loses

smoothness and has a larger error while gaining much better computational complex-

ity. This tradeoff is the basic question here. The proposed method shows optimal

convergence rates in L∞ at O(1) computational complexity at each evaluation point,

using the minimal possible number of points for such rates.

Our point selection strategy will not be based on geometry properties like guaranteeing

that sets are in general position with respect to polynomials. This is a criterion that

is unstable under variation of data points. Instead, we select points by minimizing a

continuous function connected to the error, aiming at error-minimal selections like in

[8].

The underlying theory is kernel-based interpolation, as covered by the books [5, 41,

14]. Section 2 provides the basic notations, including the Power Function, i.e. the

norm of the error functional in the kernel-based space considered. As a prerequisite

for our algorithm, Section 3 deals with the very useful Newton basis. The algorithm

follows in Section 4, as a stepwise adaptive greedy minimization of the Power Function

in terms of the Newton basis.

Then there are various numerical examples. Sections 5 and 6 focus on the error locally

and globally, while Section 7 recovers functions and shows the grades of discontinuity

of the recoveries. Then Section 8 demonstrates that the optimal convergence rates are

actually attained. The unexpected instabilities for large smoothness parameters m are

explained in Section 9, followed by conclusions and open problems in Section 10.

2 Recovery

For a very large set XN = {x1, . . . ,xN} and a point z /∈ XN we pick a set of n points

near z, renumbered as Xn = {x1, . . . ,xn}. Recovery of f (z) from values at points of

Xn = {x1, . . . ,xn} can be written as

s f ,Xn(z) =
n

∑
j=1

u j(z) f (x j), f ∈ H , z ∈ Ω

where the values u j(z) are just real numbers, because we do not vary z. Lagrange

conditions u j(xk) = δ jk, 1 ≤ j,k ≤ n are not required. The error functional is

εXn,z : f 7→ f (z)− s f ,Xn(z),

written in terms of point evaluation functionals as

εXn,z = δz −
n

∑
j=1

u j(z)δx j
.
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Its norm in H is known as the Power Function PXn(z). By the standard dual represen-

tation

K(x,y) = (δx,δy)H ∗ for all x,y ∈ Ω,

the squared norm is

‖εXn,z‖
2
H ∗ = P2

Xn
(z) = K(z,z)− 2

n

∑
j=1

u j(z)K(z,x j)+
n

∑
j,k=1

u j(z)uk(z)K(xk,x j).

This makes the Power Function computable. Due to the alternative definition

PXn(z) = sup{ f (z) : ‖ f‖H ≤ 1, f (Xn) = {0}},

the Power Function decreases at all z when the point set Xn is enlarged. Details are in

basic texts on kernels, e.g. [32, 5, 41, 14].

Using the Power Function, the error of the recovery of f (z) by s f ,Xn(z) at a point z has

the optimal bound

| f (z)− s f ,Xn(z)| ≤ PXn(z)‖ f‖H for all f ∈ H (1)

in H , but we want to get away with fewer points forming a subset X(z) ⊂ Xn. There-

fore, the goal is to find a subset X(z) of Xn ⊂ XN such that the difference between

PX(z)(z) and its lower bound PXn(z) is small. We tacitly assume that N is too large to let

the even lower bound PXN
(z) be computable.

Note that the error bound (1) is local or pointwise, and we shall use it after selection as

| f (z)− s f ,X(z)(z)| ≤ PX(z)(z)‖ f‖H for all f ∈ H . (2)

We shall always know the value of PX(z)(z), and therefore we have an error bound that

extends to an L∞ error bound when varying z, because P2
X(z)(z)≤ P2

/0 (z) = K(z,z). This

allows full control of the L∞ error up to the unknown factor ‖ f‖H . It is an old unsolved

problem to provide upper bounds on it.

We propose a greedy method to select the set X(z) ⊂ Xn for fixed z by stepwise min-

mization of the Power Function as a function of x1, x2, . . . ,xn. This is similar to, but

different from the P-greedy point selection in [10]. There, xn+1 is picked as the argmax

of P2
Xn
(z) as a function of z. The paper [30] showed that the P-greedy point selection

method is asymptotically optimal with respect to convergence rates.

Here, we proceed differently. The point z is fixed, and we select x1,x2, . . . sequen-

tially to produce smallest possible values of P2
{x1,...,x j}

(z) for increasing j until the error

is small enough. We can stop this at some bound on j or by a lower threshold on

P2
{x1,...,x j}

(z). At any time, we have the error bound (2) where PX(z)(z) is explicitly

known.
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Of course, the final recovery s f ,X(z)(z) will be a discontinuous function of z. But if

PX(z)(z) is small and controllable, s f ,X(z)(z)is close to f in the L∞ norm, and its devia-

tion from f in L∞ may be as small as ‖ f − s f ,XN
‖∞ if we can manage to let PX(z)(z) for

X(z)⊂ XN behave like ‖ f − s f ,XN
‖∞.

Here is an illustration for Sobolev spaces W m
2 (Rd) with m > d/2. If sets XN have fill

distances

h(XN ,Ω) = sup
z∈Ω

inf
x j∈XN

‖z− x j‖2

and separation distances

σ(XN) =
1

2
inf

x j 6=xk∈XN

‖xk − x j‖2

with asymptotic regularity

0 < c0σ(XN)≤ h(XN ,Ω)≤C0σ(XN),

then by e.g. [41]

‖ f − s f ,XN
‖∞ ≤ ‖PXn‖∞‖ f‖W m

2 (Rd) ≤C1hm−d/2(XN ,Ω)‖ f‖Wm
2 (Rd).

Therefore our goal must be to ensure

PX(z)(z)≤C2hm−d/2

for X(z)⊂ XN and all z ∈ Ω. This is possible for small X(z) 6= XN , and the examples in

later sections will show how. We shall not need asymptotic regularity for that, and we

can get away with the minimal number of selected points for getting L∞ convergence

like O(hm−d/2).

The Power Function value PXn(z) can be seen as a distance from z to the set Xn, and

therefore the above algorithm is a greedy method to find nearest neighbours in the ker-

nel metric. More explicitly, PXn(z) is the Euclidean distance of the point evaluation

functional δz to the space spanned by the functionals δx j
, 1 ≤ j ≤ n in the dual H

∗ of

the Hilbert space H . The problem then is to find a few functionals that already give a

small distance to the space spanned by them. This, in turn, is a case of n-term approxi-

mation [37, 38] that has good solutions by greedy methods and a connection to sparsity

techniques [7]. The Newton basis approach below will be a special implementation

adapted to kernel-based spaces.

3 Newton Basis

To study the variation of P2
{x1,...,x j}

(z) as a function of x j, we use the Newton basis

representation dating back to [28], written here via recursive kernels [27]. The kernel

recursion for points x1,x2, . . . is

K1(x,y) := K(x,y)

K j+1(x,y) := K j(x,y)−
K j(x,x j)K j(x j,y)

K j(x j,x j)
, j ≥ 1, x, y ∈ Ω.
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It is easy to show by induction that

K j+1(xk,y) = 0 = K j+1(x,xk)

holds for all x, y and all 1 ≤ k ≤ j. The Newton basis function N j then is

N j(x) =
K j(x,x j)

√

K j(x j,x j)
, j ≥ 1,

satisfying

N j(xk) = 0, 1 ≤ k < j and N j(x j) =
√

K j(x j ,x j), j ≥ 1.

Now the kernel recursion takes the form

K j+1(x,y) = K j(x,y)−N j(x)N j(y) = K(x,y)−
j

∑
m=1

Nm(x)Nm(y), j ≥ 1

cancelling the denominators, with the final residual

K j+1(x,y) = K(x,y)−
j

∑
m=1

Nm(x)Nm(y), x,y ∈ Ω, j ≥ 0.

Inserting points for x and y, we see that

K(xi,x j) =
min(i, j)

∑
m=1

Nm(xi)Nm(x j) 1 ≤ i, j ≤ n

is a Cholesky factorization of the positive definite symmetric kernel matrix. It is in the

background, but we prefer to work in terms of functions, not matrices. The Newton

basis recursion is

N j(x j)
2 = K j(x j,x j),

N j(x)N j(x j) = K(x,x j)−
j−1

∑
m=1

Nm(x)Nm(x j), j ≥ 1.
(3)

4 Greedy Point Selection Algorithm

We want an optimal point selection for recovery of f (z) from values f (x j), 1 ≤ j ≤ n

by minimizing the Power Function. The first chosen point x1 should minimize

P2
x1
(z) = K(z,z)−N2

1 (z) = K(z,z)−
K(z,x1)

2

K(x1,x1)
,

as a function of x1, via

x1 = arg max
x j∈Xn

K(z,x j)
2

K(x j,x j)
.

5



By positive semidefiniteness of kernel matrices,

K(z,x j)
2 ≤ K(z,z)K(x j ,x j)

holds and leads to the choice of x j if z = x j. Then the process can be stopped.

If x1, . . . ,x j−1 are determined and x j is still not selected, the Newton basis functions Nk

are determined for k < j, and we can assume vectors and matrices

z := (K j(z,xk), 1 ≤ k ≤ n) ∈ R
n,

d := (K j(xk,xk), 1 ≤ k ≤ n)) ∈ R
n,

N := (Ni(xk), 1 ≤ i < j, 1 ≤ k ≤ n).

The Power Function at z for varying x j is

P2
x1,...,x j

(z) = K(z,z)−
j−1

∑
k=1

Nk(z)
2 −N j(z)

2 = K(z,z)−
j−1

∑
k=1

Nk(z)
2 −

K j(z,x j)
2

K j(x j,x j)

and the next point should be

x j = arg max
xk∈Xn,k≥ j

K j(z,xk)
2

K j(xk,xk)
= arg max

j≤k≤n

z2
k

dk

. (4)

The maximum value is N2
j (z) and we can construct N j by the recursion (3) to get a new

column in N. For upgrading our vectors, we use

K j+1(z,xk) = K j(z,xk)−N j(z)N j(xk)
K j+1(xk,xk) = K j(xk,xk)−N2

j (xk)

P2
j+1(z) = P2

j (z)−N2
j (z)

in terms of the Newton basis. Here, we still need to fix the sign of N j(z) to match the

sign of K j(z,x j) = d j.

The Lagrange coefficients L j(z) must recover the Nk(z) exactly. They solve the trian-

gular system

Nm(z) =
j

∑
k=1

Lk(z)Nm(xk), 1 ≤ m ≤ j (5)

that is cheaply solvable. Then one can monitor the Lebesgue constants

j

∑
k=1

|L j(z)|

that control the L∞ evaluation stability [29] of the solution via

|s f ,X(z)(z)− sg,X(z)(z)| ≤
j

∑
k=1

|L j(z)|| f (x j)− g(x j)| ≤
j

∑
k=1

|L j(z)|‖ f − g‖∞.

If k steps are executed, storage grows like O(kn), while computational complexity is

O(k2n). The next section will show that one can keep k much smaller than n in most

cases. In the 2D examples below we get away with n = 5k, letting the complexity for a

single recovery be O(5k3). Matrix conditions arise here only for the triangular matrices

with entries Nm(xk) used in (5). This will be relevant for the stability arguments of

Section 9.
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5 Single Point Examples

As described in Section 2, we consider very large sets XN ⊂ R
d . For each fixed point

z ∈ R
d we have a subset Xn of XN depending on z, taking possibly nearest neighbours

of z, to start the local greedy point selection on Xn to end up with an even smaller set

X(z)⊆ Xn. Because everything is local, we can set z to be the origin and replace Xn by

Xn −{z}.

Here, for illustration, we work with n = 100 random points in [−1,+1]2 depicted in

the top left of Figure 1, and used in later cases as well. These are unduly many, but

the goal of this section is to compare selections of k << n points with selection of all

n points. An even larger set XN may be in the background, on a larger domain. The

greedy algorithm is run up to n points to show how the error behaves for small k when

compared to k = n. We want to find k such that selecting k points is not much different

from selecting n points.

Figure 1 shows results for the kernel generating Sobolev space W 3
2 (R

2). The decay of

the squared Power Function is plotted in the centre of the top row. Large n do not pay

off, error-wise, because the curve flattens dramatically. To compare with polynomial

exactness orders q= 1,2,3, . . . needing Q=
(

q−1+d
d

)

= 1,3,6,10, . . . points in R
2, these

cases are marked in red circles. The match between the optimal rate m−d/2 in Sobolev

space W m
2 (Rd) with polynomial exactness of order q is additionally marked here and

later with a red cross. Now m = 3 leads to order q = 2 and Q = 6 points. This is our

goal for m = 3.

In the plots of this section, the third plot in the first row shows the Lebesgue constants,

the cases for polynomial orders marked in red circles again. The blue circles are the

Lebesgue constants for using polynomials of the appropriate orders at the selected

points. It can be expected that selecting the Q best points is sufficient for getting

the optimal convergence rate. Taking more points does not decrease the local error

substantially, see the top centre plot.

The lower plots show the point selections for different numbers of points belonging to

different orders q. The central evaluation point z = (0,0) is marked with a red cross.

Note that the selection does not take all nearest points.

The low-regularity case m = 1.5 is in Figure 2, while m = 6 is in Figure 3. The first

case should not use more than 3 points. The last case is run at a scale of c = 0.1, taking

K(‖x− y‖2/c), and using 100 regular data locations. Here, taking 21 points is enough.

Polynomial Lebesgue constants run out of hand, because the selected points are not

in general position wrt. polynomials. Due to regularity of the point distribution, the

greedy technique has several choices at various steps, and therefore there are plenty of

equivalent point selections. For scale c= 1, the kernel matrix on 100 points exceeds the

condition limit of 1.e14. But if one stops when the squared Power Function is below

1.e-8, one gets away with 9 points, see Figure 4, without condition problems.
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If the point is in the corner (−1,+1), Figure 5 shows the results for m = 3 at scale 1.0,

like Figure 1. The achievable squared Power Function now is about 0.004, while the

central case had about 0.001. Using more than about 10 points does not help, while

roughly 4 were sufficient in the central situation.
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Figure 1: Local recovery in W 3
2 (R

2) at the origin using the greedy point selection

strategy.

If the Sobolev smoothness order m is fixed, users should aim at the optimal rate hm−d/2

in terms of the fill distance h, see the end of Section 2. In the polynomial situation, one

then needs reproduction of order q = ⌈m− d/2⌉ and at least Q =
(

q−1+d
d

)

points [9].

But in order to allow greedy point selection it is recommended to offer more points.

Since for corner points in R
2 three quadrants are missing, one should take at least 2d ·Q

points. For d = 2, we shall use n = 5 ·Q nearest neighbours in what follows, and all

2D examples work fine with this choice.
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Figure 2: Local recovery in W
3/2

2 (R2) at the origin using the greedy point selection

strategy. Three points are enough.
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Figure 3: Local recovery in W 6
2 (R

2) using the greedy point selection strategy at scale

c = 0.1 on 100 regular points. One should use 21 points.
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Figure 4: Local recovery in W 6
2 (R

2) at the origin using the greedy point selection

strategy at scale c = 1 up to P2 < 1.e−8 on irregular points. One should use 10 points

only.
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Figure 5: Local recovery in W 3
2 (R

2) at the top left corner using the greedy point selec-

tion strategy.
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6 Global Examples

We use the results of the previous section and the same scattered point set of n = 100

points offered for selection. But now we run the local greedy algorithm on each point

of a 51× 51 = 2601 evaluation grid to simulate an upsampling from rather irregular

input data locations to a regular grid. Readers should see these examples as zoom-ins

for much larger cases. We stick to a 51× 51 grid, because we want reasonable plots

and a comparison with the global interpolation on n points. The sequence of examples

matches the sequence of the previous section. In all cases, we take 5 ·Q points for

q = ⌈m− d/2⌉ and Q =
(

q−1+d
d

)

when we work with the Matérn kernel generating

W m
2 (Rd). This aims at optimal convergence rates hm−d/2 in Sobolev spaces.

The case m = 3 requires q = 2 and Q = 6 for getting the expected rate of h2. We offer

the 5 ·Q = 30 nearest points for each evaluation point z, and let the algorithm select

the 6 best ones to form the set X(z) of Section 2, following Figure 1. The results are in

Figure 6, plotted over all 2601 evaluation points. The top left plot shows the squared

Power Function when the full interpolation problem is solved on all n = 100 points.

The local case is top right, working on 6 selected points, and the values must be larger

than the first plot everywhere. The lower left plot shows the difference. It is only large

near the boundary, where the global case has 0.007 and the local case has 0.009. Also,

the Lebesgue constants only blow up near the corners. Note that we allowed 30 points

for a selection of 6. Offering more points does not help.

The case m = 1.5 is selecting Q = 3 points out of 5Q = 15 and produces Figure 7.

Working locally does not lose more than about 10%. The case m = 6 at scale 0.1 on

100 regular data points is in Figure 8. This runs as expected.

Then we present results for scale 1.0 that leads to a condition estimate of 7.9 · 1018

for the full problem. But we stop the greedy algorithm at a tolerance of 10−8 for the

squared Power Function. Here, the global Power Function values may be polluted due

to the bad condition of the full kernel matrix. The corresponding plots are omitted. But

the right-hand plot shows that the algorithm often gets away with less than 21 points

to reach the tolerance. We suggested 10 points for Figure 4, but there we worked at a

single point in the interior.
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Figure 6: Local recovery in W 3
2 (R

2) on 2601 points in [−1,+1]2 using the greedy point

selection strategy, with selection of 6 points out of 30.
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Figure 7: Local recovery in W
3/2
2 (R2) on 2601 points in [−1,+1]2 using the greedy

point selection strategy, with selection of 3 points out of 15.
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Figure 8: Local recovery in W 6
2 (R

2) on 2601 regular points in [−1,+1]2 at scale 0.1
using the greedy point selection strategy on 100 regular data points, with selection of

21 points out of 100.
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Figure 9: Local recovery in W 6
2 (R

2) on 2601 points in [−1,+1]2 using the greedy point

selection strategy, with selection of 21 points out of 100, and with a lower bound of

10−8 for the squared Power Function. .

7 Function Reproduction

We now repeat the above examples, but focus on recovery of a smooth function, here

the peaks function of MATLAB. The goal is to show the discontinuities induced by

working locally.

Again, we start with m = 3, and let Figure 10 show results for the situation of Figure

6. Note that the local version selects only 6 points out of the 30 nearest neighbours.

Similarly, Figure 10 presents the case of m = 3/2, selecting 3 out of 15 points.

To see the discontinuities in a close-up, we keep the 100 irregular data points in

[−1,+1]2, but now we place 2601 regular evaluation points into the interval [0,0.4]2

containing only 13 irregular data points. Note that we can re-evaluate the global inter-

polant on the 2601 local points to have a zoom effect, but the local interpolant has to

be recalculated, and it gets different and more exact. Figure 14 shows the case m = 3

again, to be compared to Figures 6 and 10. The top left plot shows the data points (red

circles) and the evaluation points (blue dots), filling [0,0.4] completely. The squared

Power Functions differ by a factor of about 2, but are now around 10−5 instead of 10−2

in Figure 6. The second row and the last plot show that the error of the function recov-

ery is about 0.1, while it is around 0.5 in Figure 10. The Lebesgue constants get better,

see the lower left plot.

Figure 15 is for comparison to Figures 9 and 13. Since the iteration stops at the 10−8

threshold for the squared Power Function, the top right plot is chaotic, while the centre

plot shows that using more points would go down to 10−11. The actual ploints used

are in the final plot, staying well below 21 proposed for m = 6. Due to the threshold,
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Figure 10: Local recovery of the peaks function in W 3
2 (R

2), on 2601 points in

[−1,+1]2 using the greedy point selection strategy, with selection of 6 points out of

30.
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Figure 11: Local recovery of the peaks function in W
3/2

2 (R2), on 2601 points in

[−1,+1]2 using the greedy point selection strategy, with selection of 3 points out of

15.
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Figure 12: Local recovery of the peaks function in W 6
2 (R

2) on 2601 regular points

in [−1,+1]2 at scale 0.1 using the greedy point selection strategy on 100 regular data

points, with selection of 21 points out of 100.
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Figure 13: Local recovery of the peaks function in W 6
2 (R

2) on 2601 regular points in

[−1,+1]2 at scale 1.0 using the greedy point selection strategy on 100 irregular data

points, with a threshold of 10−8 on the squared Power Function. The final plot shows

the number of points used locally.
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Figure 14: Local recovery of the peaks function in W 3
2 (R

2) on 2601 regular points

in [0,0.4]2 at scale 1.0 using the greedy point selection strategy on 100 irregular data

points in [−1,+1]2.
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the noise in the right centre plot is roughly constant everywhere, but still better than in

Figure 13.
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Figure 15: Local recovery of the peaks function in W 6
2 (R

2) on 2601 regular points

in [0,0.4]2 at scale 1.0 using the greedy point selection strategy on 100 irregular data

points in [−1,+1]2. The squared Power function tolerance is 10−8.

8 Convergence Rates

The previous sections tried to achieve O(hm−d/2) convergence in L∞ in Sobolev spaces

W m
2 (Rd) using well-selected sets of Q =

(

q−1+d
d

)

points for q = ⌈m−d/2⌉. This num-

ber of points is necessary to let the set be in general position for polynomials in ¶d
q , and

this is necessary for convergence like hq. These rates hold pointwise by construction,

and Figure 16 shows that they hold in the large.

A fixed evaluation grid of 441= 21×21 was used in all cases. Since the worst situation

should occur in corners or near boundaries, there are no serious changes when using
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a finer evaluation grid. The greedy point selection method was run on each z of the

evaluation grid, offering 5 ·Q data points of random sets XN with N up to 10.000. To

avoid additional randomness, the sets XN were nested for increasing N. The plots show

the maximum of the Power Function on the evaluation set. The expected rates are

attained well, see the dotted lines marking the expected convergence rate. In all cases,

the Power Function gets small enough for letting any function approximation be exact

within plot precision.

9 Stability Issues

The case m = 6 is unexpectedly unstable already for reasonable h, needing a closer

look. Inspecting the test runs, instabilities come up when the squared Power Function

reaches machine precision, making the decision (4) unsafe. This occurs even when

the local triangular Q×Q matrix of (5) is still within standard condition limits. The

squared Power Function behaves like h2m−d in L∞ by standard convergence theory, and

then fill distances of order

h < 10−
15

2m−d =: h2m−d

can be expected to fail in double precision. Of course, scaling and multipliers plays a

major part here, but the ratios

h2 : h5 : h10 like 0.0000000316 : 0.001 : 0.0316 ;

matching m = 1.5, 3, and 6 in R
2 indicate that large m will fail unexpectedly early.

Figure 16 goes down to 10.000 points with h = 0.02, illustrating the above argument.

It can be expected that the case m = 3/2 runs up to using approximately 60 million

points.

Note that this applies also to global interpolation, making small h for large m hazardous,

if not impossible. But the condition of the global kernel matrix does not enter here, in

contrast to the standard stability theory of kernel-based interpolation. The well-known

phenomena like rank loss or bad condition are local, not global. Like in [31], they are

connected to how well a kernel can be approximated by polynomials.

To circumvent the stability problems, the additional green line shows the results when

the threshold for the Power Function is set to 10−6.
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Figure 16: Power Functions as functions of h for m = 1.5 (magenta), 3 (blue), and 6

(red) based on minimal point sets. The dotted lines indicate the expected theoretical

rates hm−d/2.

10 Conclusions and Open Problems

The suggested selection algorithm for local point sets works as expected, leading to

optimal convergence rates in Sobolev spaces using the minimal possible number of

points for that purpose. Resulting functions are discontinuous, but since they converge

in L∞ to smooth functions, they can be called asymptotically smooth.

However, the method can run into instabilities for large data sets roughly at the limits of

stability of the global problem. Since the method does not produce scalable stencils in

the sense of [9], the instability problems may be overcome by going to scale-invariant

techniques. This needs further work, along with comparisons to Moving Least Squares

or Shepard-type techniques.

Furthermore, it is open whether the technique always produces sets that are in gen-

eral position with respect to polynomials, and how the Lebesgue constants behave.

In contrast to global techniques, the method can vary the kernel scale locally without

sacrificing local convergence rates. This needs further work as well.

The method can easily be extended to finding good point sets for local approxima-

tions of derivatives [43, 8, 9], and this will have some influence on meshless RBF-FD

methods [42, 17, 22, 3, 8, 16].

Also, the implications for the “flat limit” situation, see e.g. [12, 18, 23, 33, 34, 36, 14]

are worth investigating.

There are no conflicts of interest.
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