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Abstract. While direct theorems for interpolation with radial basis func-
tions are intensively investigated, little is known about inverse theorems so
far. This paper deals with both inverse and saturation theorems. As an
inverse theorem we especially show that a function that can be approxi-
mated sufficiently fast must belong to the native space of the basis function
in use. In case of thin plate spline interpolation we also give certain satu-
ration theorems.

1. Introduction

Direct and inverse theorems play an important role in classical approximation
theory. Examples can be found in [2, 8]. The main idea can be described as fol-
lows. Suppose the elements of a linear space (V|| -||) should be approximated by
elements of finite dimension subspaces V;, C V', where h serves as a discretisa-
tion index. Denote the approximation process by Sp, : V' — Vj. Then the direct
theorems conclude error estimates from additional information on the elements
to be approximated: If f is an element of a subspace G C V then the error can
be bounded by

(1.1) 1f = Shfll < eph®.

On the other hand the inverse theorems try to conclude information on f from
the way f can be approximated: If f € V satisfies (1.1) then f must belong to
a certain subspace G C V. The situation is optimal if the subspaces and the
approximation orders coincide in both the direct and the inverse theorems.

Finally, saturation theorems give upper bounds on the possible approximation
order: If f € G can be approximated by

If = Sufll < erh?,

where v is a certain number larger than p, then f must belong to a trivial
subspace N C V.

It is the aim of this paper to give both inverse and saturation theorems in
the context of radial basis function interpolation. In case of direct and inverse
theorems we shall take the native space G ¢, which we introduce in the third
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section, as the space G of smoother functions. We will look for the approximation
order we can achieve from this fact and for the order we need, to show that a
function belongs to the native space.

In case of saturation theorems we restrict ourselves to thin plate spline inter-
polation and show that functions that can be approximated with a high order
are necessarily polyharmonic functions.

2. Radial basis function approximation

The theory of interpolation by radial basis functions has become popular in the
last years to reconstruct multivariate functions from scattered data. The start-
ing point of the reconstruction process is the choice of a conditionally positive
definite function ¢ : RY — IR.

Definition 2.1. A continuous and even function @ : IR? — IR is said to be
conditionally positive definite of order m € Ny, iff for all N € IN, all sets
of pairwise distinct centers X = {z1,...,zxy} C R? and all a € R \ {0}
satisfying

N
Z a;p(z;) =0 for all p € P4
j=1
the quadratic form
N
Z ajopP(z; — xp)

j.k=1

is positive. Here, Pf\l/[ denotes the set of all d-variate polynomials with a total
degree less then m. We will denote the set of all conditionally positive definite
functions of order m by cpd(m).

Having a & € cpd(m) the interpolant sy x to a function fin X = {z1,...,zn}
is given by

N Q
(2.2) sgx(x) = Z a;P(x —x;) + Zﬂjpj(:c)
j=1 j=1
where p1,...,pg form a basis of P4. To cope with the additional degrees of
freedom, the interpolation conditions
(2.3) spx(z;) = flz;), 1<j<N,

are completed by the further conditions
N

(2.4) > ajpr(z;) =0,  1<k<Q.
j=1

We summarize some standard statements on the interpolation process in
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Lemma 2.2. The interpolating function sy x is well defined and unique, if X
contains a PY -unisolvent subset. In this case the operator that maps f to Spx
18 linear and reproduces polynomials up to degree m.

In this paper we only want to deal with conditionally positive definite functions
of order m that possess a generalized Fourier transform that coincides with a
continuous function ® on IR?\ {0}. We are mainly interested in cases, where this
Fourier transform decays only algebraically, i. e. there exist constants 0 < ¢; < ¢y
with

(2.5) erflwlly 0 < Blw) < ealwlly

for ||w|| — oo. The upper bound is important for the direct theorems, while
the lower bound is necessary for the inverse theorems. This decay condition
is, for instance, covered by the thin plate splines and the compactly supported
radial basis functions of minimal degree (cf. [13]). But we shall state the inverse
theorems also in case of exponentially decaying Fourier transforms which covers
Gaussian and (inverse) multiquadrics.

3. Direct theorems

There are several papers dealing with direct theorems, but only few have tried
to establish inverse theorems. We will briefly repeat direct theorems as far as we
need them for our further analysis.

To state error estimates two preparing steps have to be done. On the one hand
the function space has to be introduced for which the error bounds shall apply.
On the other hand a measure of the data density has to be given. We start with
the function space by introducing the native space.

Let 2 C IR? be given. Let us denote by

M
(PG = ax =D a6, : M € N,aj € R,zj € 2, x|PL =0}
j=1

the set of all point evaluation functionals of finite support in (2 vanishing on P¢,.
Every conditionally positive definite function @ of order m allows us to equip
(P&)$ with an inner product

Ao = A p¥d(z —y)

where A\ means the action of A with respect to the variable x.
Then we can follow [6, 7] to introduce the function space

Goo={f € C(R2) : N/)| < ¢sl|Nlla for all X € (P])5}-
We denote the smallest constant ¢y in the definition of G ¢ by ||f||s, i. €.

ax AT
Ae(P)5\{0} |[Alle

[ flle :=
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Then || - ||¢ is a semi-norm on Gg ¢ with null space P¢,. Thus
Fous = Gae/Pl

is a normed linear space which turns out to be complete. There are several
other possiblities to introduce the native space (cf. [10, 11, 14]) but the chosen
approach serves our purposes best.

Not only the space PZ is a subspace of Go.#, but also all interpolating func-
tions (2.2) are contained.

Lemma3.1. The map
F:(Py)a = F(Ph)g) CGae
Ao, x = A, xO(-—y)

is well defined and bijective. Furthermore, we have the relations

Ao, xle = [[F'(Aa,x) o

and
Ao, x (F(A3,y)) = (Aa,x:Asy)e = Agy (F(Aa,x))-

The proof is straightforward and will be omitted.
The first step in bounding the interpolation error is to define the power func-
tion as the norm of the pointwise error functional

PX@(J?) — sup |f($)_sf7X($)|
’ 1€Ga.0\PY, 1 flle
which leads immediately to
|f(z) = sf,x(@)] < Px,0(x)||flle

Then the power function has to be bounded in terms of the fill distance, defined
by

hx.o = hx = sup min ||z — z;||2
sup min [z — x|

which was done in [14], for instance.

Theorem 3.2. Let & € cpd(m) satisfy (2.5). Let 2 be a bounded and open
domain satisfying an interior cone condition. Then there exist constants hg, C,
such that for all sets of centers X with hx < hg and all x € (2 the power function
can be bounded by

(3.6) Pxs(z) < Ch%"”
yielding the error bound

(3.7) 1f = sr.xNpwi) < CR="| flle
for f€Gnas.
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Actually, in [14] the theorem is stated in a more localized version, but the proof
holds true in this situation. There are several other papers giving error bounds
of this form, some of them are [1, 3, 5, 12].

Next, we need a stability result on the interpolation process. Therefore, we
define the separation distance

1
4x = 5 minlla; = 2

and cite from [9]

Theorem 3.3. Let & € cpd(m) satisfy the decay condition (2.5). For X =
{z1,...,zn} C (2 denote by Ax ¢ the matriz

Axe = (P(zj — xk))1<j k<N

and by yx the smallest non vanishing eigenvalue of Ax ¢. Then the following
holds true:

1) (Stability) For all « € RN satisfying (2.4) we have
ol Axpa > yxllallz > cgi

and therefore
1(Ax,0[Vx) " 22 < cagx™

with Vx := {a: Aa,x € (P4)5} and a constant cg depending only on ®.
2) (Uncertainty Relation) For all x € {2\ X we have

(3.8) P% () > YxU(a}-

4. Inverse theorems concerning &

Principally, there are two possibilities to state inverse theorems for interpolation
by radial basis functions. The first one is based only on the basis function ¢ and
draws conclusions on the basis function from the fact that the power function
can be bounded like (3.6). This will be done in this section. The second is to
draw conclusions on f from estimates like (3.7) which will be subject of the sixth
section.

Theorem4.1. Let & € cpd(m) satisfy (2.5). Let 2 be bounded and open, sat-
isfying an interior cone condition. If there exist constants 3,c > 0 such that the
power function Px g can bounded by

(4.9) 1Px0llL(2) < ch3Y?
for all sets X C (2 with sufficiently small hx, then
S0 > B

must be satisfied.
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Proof. On account of the conditions on {2 there exists a 6 > 0 and quasi-
uniform sets X = {z1,...,zx} C 2 with respect to this § > 0. Here, we call
a set of pairwise distinct centers X = {z,...,zn} C 2 quasi-uniform with
respect to § > 0, iff

1) X\ {z;}is P&-regular for 1 < j < N,
2) ax Z 6hX

Then we have (cf. [9]) hx\({s;} < 2hx for hx sufficiently small. Therefore we
can use (2.5), (4.9) and the Uncertainty Relation (3.8) to derive

c2’8h’§( > ch’f(\{wj} > Pf(\{wj}(a:j) > yx > caq > cad’=hiE.

Choosing a sequence of such X with hx — 0, this leads to 8 < .

Theorem 4.1 shows that the decay (4.9) of the power function determines the
decay of the generalized Fourier transform of the basis function and therefore the
smoothness of the basis function itself. It also shows that there is no possibility
to improve error estimates of the form (3.7) based on upper bounds of the power
function.

5. Characterisation of the native space

Our next result characterises the functions f from the native space Go ¢ by
uniform boundedness of their interpolating functions with respect to the semi-
norm of the native space.

Theorem 5.1.  Denote by sy x the interpolant (2.2) to a function f € C(£2) on
X wusing a basis function & € cpd(m). Then f belongs to the native space G &
if and only if there exists a constant cy such that ||sf x||le < ¢y for all X C (2.

Proof. Assume f € G 4. Then sy x is the best approximation to f from
span{®(- —z) : * € X} + PZ. with respect to the || - ||¢-semi-norm. Thus we
have

1f = sr.xlla + llsr.xlla = 1f 112,

which gives the bound ||sf x||le < ||flle at once.
Now, let us assume ||sf x||l¢ < cf for all X C 2. For an arbitrary

N
Ao, X 1= Zaj(swj € (P15
j=1

we choose sy x to be the interpolant on X to f satisfying the interpolation
conditions (2.3) and (2.4). Then sy x belongs to G ¢ and we have

)\a7x(f - Sf7x) =0.
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Thus we can estimate

Ao, x (O] < Aax (f = 55,.x)] + [Xa,x (57,x)]
<HAaxlle llsyxle
< crllAa,x e

As this holds for all A\, x we have f € G 0.

6. Inverse theorems concerning f

Now we draw conclusions about a function from L.,-convergence orders of its
interpolants. To be more precise, we show that a function f € C(2) which
can be approximated sufficently fast by radial basis function interpolants in the
L,-norm must belong to the native space of the basis function.

Theorem 6.1. Let 2 C IR? be a bounded and open domain satisfying an in-
terior cone condition. The basis function ® € cpd(m) should satisfy the decay
condition (2.5). Suppose further that for some f € C({2) there exist constants
p >0 and ¢y > 0 such that ||f — sy x||p. (o) < cphly for all X C Q2 with hx
sufficiently small. If 210 > soo + d, then f must belong to the native space G ¢.

Proof. All sets of centers X that may appear in this proof shall be quasi-
uniform with respect to a fixed ¢ > 0.

Every interpolant s; x defines a linear functional from (P% )¢ which we shall
denote by A, x. From Theorem 3.3 and Lemma 3.1 we have

1s7,x 117 = Mo x1l2
= aTAX@a
=a’Axe(Axe|Vx) ' (Ax.e|Vx)a
<N Axa[Vx) "l IAxall7,(x)
(6.10) = [1(Ax,a|Vx) o2 lsr,x — pxll7,x)

Here, Vx denotes again the space {8 € R™!: A5 x € (P%)5}, and px denotes
the polynomial in the definition of sy x.

If we have two sets of centers X C Y and compare the two interpolating
functions sy y and sy x, we can interpret sy x as the interpolant to sy y and use
the polynomial reproduction property of Lemma 2.2 to get

|X| Y|
spx —spy =Y af B(-—x;) = Y af B(- —y;).
j=1

j=1

On the other hand the difference can be interpreted as the interpolating function
onY to syy — sy x. This leads us to
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sy = spxl3 < 1(Av,e[Vy) "oz llsry = spxl7,0)
1 .
<— > Ifw) —sr.x)?
iis yey

< cplay "IV IcEhY

In what follows ¢ will denote a generic constant. Now we consider a special family
of quasi-uniform sets of centers. We assume X,, to satisfy | X,| < ¢2"? and

127" <gx, <hx, <c27"

Such a choice is always possible because of the assumption made on (2. If we
take X = X}, CY = X,, with n > k we get

sf.x, = sp.x,llp < c2sntdn=2uk

— C2(d+soo)n72uk
— c22p(n—k) —20n

)

where ¢ > 0 is defined by d + s + 20 = 2u. Thus we can estimate the #-norm
of two succeeding interpolants by

||Sf7Xk+1 = SfXk ||4’ < 027,60-'

A telescoping sum argument leads to

K
s xuclle <D lsrxien — 53 lla + llsgxo0lle
k=0

o0
<ed 277+ lspxlle.
=0
c
ST+t s 7.x0lle-
Thus, the sequence ||sf x,||l¢ is bounded. But for n > k the interpolant s x,

is also the interpolant to sy x, and therefore a best approximant to sy x, from
S(Xg) :=span{®(- — x) : # € X3} + P%. This leads to

(6.11) lsgx, = srxills + llsrx e = llsr,x. I3

which shows that the sequence ||sy x, ||# is also increasing and therefore conver-
gent. Furthermore, (6.11) implies that sy x, is a Cauchy sequence in G ¢ with
a limit §, which is uniquely determined up to a polynomial of degree less than
m.
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Finally, we have to show that f coincides on 2 with § modulo PZ. Let us
choose a fixed PZ-unisolvent set = = {&,...,&o} C 2 and denote with u;(z) €
Pd 1< j < Q aLagrange basis with respect to =. Then the functional

Q
6@ =5, — Zuj(x)(ng
=1
lies in (P%)5 for every z € 2. Thus we have

16 (f = < 18(F = s7.x,)1 +16@ (s1.x, —3)

Q
<[18™a]15 = s7,x, e + |(f = 57,5, (@) + D wi(@)(f = 57,x,) (&)
j=1

<116 g 115 = sp.x, llo + chl .

Thus we can derive
8@ (f) = 6" (3)

for all z € 2 or in other words
N
fla) =5(@) + ) u(@)(5 - £)(&)-
j=1

This implies
Ao, x(f) = Aa,x(3) < s [[Aa,x]lo
for general A\, x € (PY)5, which completes the proof.

Note that there is a gap of d/2 between the necessary and sufficient approx-
imation order for functions in the native space Gp . A closer look shows that
the direct theorem 3.2 implies for f € G o:

(6.12) If = s7.xMDay < Cah®™"?|If — s7.x]le-

The h*</2 term comes from the estimate on the power function and is optimal
in the sense of Theorem 4.1. On the other hand

If = srx|Lwie < Cphse/? pi/2+e

is so far necessary for showing f € Gp ¢ via Theorem 6.1. Thus the gap could
be closed either by showing

If = spxlle < Cphd/2te,

or by improving our inverse theorem.
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Before we come to inverse theorems for Gaussian and multiquadrics, let us
remark that in case of an unconditionally positive definite function ¢ and a
quasi-uniform set X equation (6.10) can be rewritten as

(soutd)/2
Is.xlle < el *=T|ss xl1 ()

which can be seen as a kind of Bernstein inequality.
Now, let us assume for the rest of the section that the Fourier transform
satisfies

(6.13) B(w) > ce~ClIwlz

This leads to estimates of the form
(6.14) 1(Ax.0Vx) M2z < cex"

where we used the subspace Vx again and where c always denotes a generic
constant. In case of multiquadrics and Gaussians the constants «, ¢, and ¢; can
be found in [9].

Theorem 6.2. Let 2 C IR? be a bounded and open domain satisfying an in-
terior cone condition. The basis function ® € cpd(m) should satisfy the decay
condition (6.13). Suppose further that for some f € C({2) there exist constants
cz > ¢ and ¢y > 0 such that ||f — sz x||L(2) < cre=2"x for all X C 2 with
hx sufficiently small. Then f must belong to the native space G ¢.

Proof. The proof of Theorem 6.1 applies completely if we show that the native
space norm of the difference of two interpolants can be bounded in such a way
that the telescoping sum argument still works. But this is the case: for X C Y
we can derive

lIsgx = srylle < ece™™ " > |f(y) = spx (W)
yey

< cesha " |y |

with ¢z := c2 — ¢; > 0. Taking the same sequence of sets of centers X,, as in
Theorem 6.1 we see that the cardinality of Y is only polynomial in hy, which
means that we can bound two succeeding interpolants by

__Z.9(na)/2
||Sf7Xk+1 - sf7Xk||45 <ce Ca2 .

This ensures the convergence of the telescoping sum.
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7. Saturation for thin plate spline interpolation

In this section we concentrate on interpolation by thin plate or polyharmonic
splines. To be more precise we consider the functions @4, = @q (|| - ||2) with

ca,o r?td for odd d
eae r*~4logr for even d

(7.15) Gae(r) = {

with d < 2¢ where the constants
(-1t (4 —v)
Cdt = ~o3p—alorin
’ 22Zﬂ-d/2p(g)
(_1)(d—2)/2
220=1pd/2( — 1)! (( — g)!'

€d,¢

are determined by the fact that these functions should be the fundamental so-
lutions of the iterated Laplacian (see Lemma 7.2).
The functions @, are conditionally positive definite of order m with m =

£—1d/2] +1 on IR? and possess a generalized Fourier transform qu,g which is
|- 15 26 up to a constant factor. Thus interpolants come from the space

S(X) =span{®; (- —x):x € X} +PI
and Theorem 3.2 leads to the error bound

—42
(7.16) 1f = sr.xlleeie) < chy *lIfllaa.

For a restricted set of functions f, an improvement in [10] yields

(7.17) I1f = spxllpwio) < erh¥ "
In [1] the following improved error estimate is given:

Theorem7.1. Suppose 2 is a cube in RY and the set of centers X}, are given
by the grid points hZ°N . If f € Lip(2¢+ 1, £2), then the error can be bounded

by
(7.18) If = sr.xullo ) < cph®

for every compact subset K of the interior of {2 as h — 0.

See [1] for the exact definition of the space Lip(2¢+1, {2). Note that this estimate
is based on three additional assumptions:

— The function f is supposed to be smoother than f € Gg . This is a natural
assumption.

— The domain has to be a cube and the centers have to form a grid. This is a
consequence of the proof given in [1]. A generalization to arbitrary centers
would be useful.
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— The estimates are restricted to compact subsets of the interior of the cube.
This means that boundary effects are neglected.

Nonetheless, the result gives a hint on the possible local convergence order
and we shall show that this order is also the saturation order. But before we can
do that, we need two auxiliary results:

Lemma7.2. For every test function v € C’go(]Rd) and every y € R we have

/ i — y) Aly()do = 7(y).
]R,d

A proof can be found in [4].

Lemma7.3. Suppose X = {z1,...,zn} C (2 is given. Suppose further that
v € C§°(92) satisfies X N supp v = 0. Then for every s € S(X):

(Alsa V)Lz(()) =0.

Proof. Choose an arbitrary s(z) = Z;\Ll a;jPqi(z —x;) + plx) € S(X). As
AP? =0 we can use Lemma 7.2 to obtain

N
(A5 )iy = Y05 [ A @bale — a)de
Rd

j=1
N
= E ;v (x;)
j=1
=0.
Now we can give our saturation result.

Theorem 7.4. Let ¢4 be any of the thin plate splines defined in (7.15). Sup-
pose 2 C IRY to be open and bounded, satisfying an interior cone condition.
Suppose that for f € C?(£2) the interpolating functions sy x on X satisfy

1f = sf.x L (r) = 0(hX) as hx — 0
for every compact subset K of 2. Then f satisfies
Alf=0 on 2.
Proof. Fix xg € (2. Choose X C (2 to be quasi-uniform with respect to a fixed
0 > 0, such that mingcx || — zo||2 = cohx with ¢p independent of hx. Choose

a test function o ENC’(‘)’O(IRd) with suppyo = B1(0) = {= ENIRd lz]|2 < 1} and
[ yo(z)dz = 1. Set h = cohx /2 and vy, := h~ %y ((- — z9)/h). Then the support
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of vy, is given by Bj (x0) and satisfies Bj (x9) N X = 0. Thus we can use Lemma
7.3 to get

(A f o) L2y = (ANF =), W)La(0)
= (f_saAZ’}/h)Lz(Q)
I = sl La(B; (w0)) 1AYR] La(B; (20))

IN

7 d
<chz|f- 5||LDO(B,;(m0)) HA['}/h”Lz(B,;(zo))

with s = sy x. And because of

1Ay oy = 5720 [ A0 P

we can conclude

(A'f, Yh)Lo(2) < Cifﬂ”f = 8|2 (B; (20)) -

On account of the assumptions this leads to

lim (A* =0.
h_l)Ing( L) La) =0

On the other hand we have

lim (AL f) (o 4 ha)yo(x)de = AL f(xo)

At -
(A%, ) La(2) ey

lim
h—0+
which proves A¢f(zg) = 0.

Note that our proof also applies to the situation of classical splines. As in
the latter case, functions in the saturation class are already determined by their
values on the boundary of the domain:

Corollary 7.5.  Suppose in addition to the assumptions of the last theorgam that
2 has a C* boundary 852. Then f is already determined by the values of &7 f /&',
0 <j<{l—1, on the boundary 0f2. Here v denotes the outer unit normal vector.

This sheds some light on the influence of boundary conditions on the possi-
bilities to improve the approximation order ¢ — d/2 of (7.16) towards 2¢.

Finally, we want to draw the reader’s attention to the d/2-gap arising not only
in the discussion around (6.12), but also in (7.17) when compared to (7.18). If
(7.16) could be improved by h%?2, then (7.17) would by [10] improve to h?¢ and
coincide with (7.18). We consider closing the d/2-gap to be a challenging research
task.
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