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Abstract: This paper extends a talk at the Conference on Modern Kernel Methods
and Applications in Hong Kong Baptist University in January 2026. It first reviews
standard kernel constructions, but then goes over to recent extensions and presents
many starting points to construct future kernels. The goal of the paper is to encourage
readers to go into kernel engineering, in particular towards constructing C~ kernels
with compact support. The techniques presented here use series expansions, convolu-
tion, subdivision, componentwise products and radialization. Most cases are illustrated
by examples, but a deeper analysis is left for further research, together with applica-
tions.

1 Introduction

(SecIntro) The paper starts with the basics of kernels in Section @SecBas) , includ-
ing the close connection to random fields. Mercer- and Karhunen-Loéve expansions
are the background for Section [3(SecExp) , but in the rest of the paper the expansions
do not follow from the kernels. Instead, kernels are constructed from expansions into
infinite series of functions. This will later cover expansions into translates of mollifiers
and fundamental solutions of PDEs. Expansions into orthonormal systems in L, work
as well, though the associated kernels have no well-defined pointwise values. Applying
smoothing maps then allows to generate expansion kernels for a full scale of Sobolev
spaces.

In Section [3.T(SecExpRanFun) , expansions facilitate the approach to paths of random
fields, and then Section[3.2SecExpEqui) explains the equivalence of the deterministic
and the nondeterministic approaches to kernels.

The autocorrelation of general Fourier-transformable functions will have a nonnegative
Fourier transform and then be positive semidefinite. This is the subject of Section
H[SecConv) starting from B-splines and going to C* compactly supported functions
generated either by autocorrelation of standard mollifiers or by infinite convolution of
piecewise constants.



Another widely ignored kernel construction is by forming products of univariate ker-
nels in Section [5[SecProd) . Except for the Gaussian, these cannot be radial, but they
may come surprisingly close to radiality, as examples show.

All sections on kernel construction contain numerical examples and point out various
directions for further research. A final section summarizes them for the convenience of
readers.

2 Basics
(SecBas) We focus on kernels
K:QxQ—-R

on domains Q C RY, d > 1, ignoring complex-valued kernels and kernels on abstract
sets like those arising in kernel-based learning [39,/40]. In most cases on Q = R they
will be translation-invariant of stationary in the sense

K(x,y) = ®(x—y) for all x,y € R? with some ® : RY — R,
and in many cases they are additionally radial or isotropic, i.e.
K(x,y) = ®(x—y) = ¢(|lx —yl||2) for all x,y € RY with some ¢ : R — R.

Historically, ¢ is then called a radial basis function (RBF). Basic references are the
books [6,141,[18]], buhmann:2003-1, wendland:2005-1, fasshauer-mccourt:2015-1
and the survey [36], schaback-wendland:2006-1.

2.1 Kernel Properties

(SecBasKerPro) Kernels will always assumed to be symmetric and positive semidef-
inite. Then for all finite point sets X, = {x,...,x,} the associated kernel matrices
Kx, x, with entries K(x;,x;), 1 < j < n have to be positive semidefinite. If all such
matrices are nonsingular, we use the terms positive definiteness or strict positive defi-
niteness. Readers should be aware that old papers call a kernel positive definite when
all kernel matrices are positive semidefinite, a very debatable notion.

In Numerical Analysis, kernels provide frial functions via kernel translates K(x,-) :
Q — R, and then positive definiteness of the kernel implies uniqueness of interpolation
by kernel translates. On kernel translates, one can define an inner product by the kernel
itself via (egKKK)

K(xvy):(K(xv)aK(yv))}f(K) forallx,yEQ.. (D

By completion, this leads to a Hilbert space #°(K) called the native space of the kernel
since [34]. Conversely, each Hilbert space 7 of functions on Q with continuous point



evaluations generates a positive semidefinite kernel K () on Q x Q with (1} eqKKK)
and the reproduction property

f(x) = (f,K(x,")) (k) forallx € Q, f € .

Section [3.5[SecExpL2) will show how this extends to Hilbert spaces like L, where
point evaluations are not continuous.

In Spatial Statistics, kernels arise as covariance functions of random fields. This con-
nection will be in the focus of Section 3.2(SecExpEqui) , where both viewpoints are
shown to be equivalent in the sense that one follows from the other. In Machine Learn-
ing, there is a background set .#” of objects that have features coded into a feature map
® : ¥ — V with values ®(s), called feature vectors, in an inner-product space V.
Then the kernel is (eqKPhiKPhi)

K(s,t) := (P(s),D(t))y forall s,z € .. )

This looks similar to (1} egKKK), and therefore kernel translates K(x,-) are sometimes
called feature vectors. The similar notion of Fourier features will be touched in Section
[flSecFouFea) .

2.2 Kernels via Fourier Transforms

(SecClaKer)(SecKerFouTra) The main construction tool for standard translation-
invariant kernels on R? goes back to Bochner [3] and uses nonnegativity of the Fourier
transform, provided it exists. It can be applied to a very large number of cases, sur-
veyed extensively in [[L6] using hypergeometric functions. Here, we only list the most
popular radial kernels, without scaling by constants in the range and the domain:

Gaussian : exp(—r?/2)
Matérn : rYKy(r), v>0
Inverse multiquadrics : (1+72)"Y, v>0
Wendland C2 ;' (1—r)4(1+4r)

Here, Ky is the modified Bessel function of second kind. The last case is compactly
supported on the unit ball, but only positive definite in dimensions d < 3. Details and
plenty of other kernels can be found in [16]]. A list of nonstandard kernels was given in
[[14]], but this paper goes far beyond.

2.3 Scale Mixtures
(SecBasScaMix) Many kernels have additional parameters like a scaling in the sense
Ke(x,y) = ®((x—y)/c) = ¢(|lx—yll2/c) = exp(—[x—y|3/¢?) for all x,y € RY, ¢ > 0

for the Gaussian case. Then one can take linear combinations with positive coefficients
of kernels with different scales. Or perform an integration over ¢ with a positive weight
function. This technique is called scale mixture [1,120,137], andrews-mallows:1974-1,



gneiting:1997-1,schlather:2010-1. It uses the fact that linear combinations
of positive definite kernels stay positive definite if the coefficients are positive. But
one can also take derivatives [5], bozzini-et-al:2015-1 or finite differences [4],
bozzini-et-al:2013 with respect to scales. This is not covered by the above argu-
ment. However, scale mixtures are not in the focus here.

2.4 Expansions

(SecBasExp) On bounded domains, continuous kernels have a Mercer expansion [25]]
based on the eigenvalue problem for integral operator defined by the kernel. By suitable
normalization, it is orthonormal in .7°(K) and orthogonal in L(Q). In the nondeter-
ministic literature, it leads to the Karhunen-Loéve expansion of random fields that have
K as their covariance function.

Computationally much cheaper are orthonormal expansions into the Newton basis [26]].
These are based on a suitably selected infinite point set X., C  and have the property

Nj(xk):O, 1 <k<j<oo.

In both cases, there is a kernel expansion (egKNN)
K(x,y) = i Nj(x)N;(y) for all x,y € Q. 3)
j=1
A useful consequence is the series expansion (eqKxx)
K(x,x) = f"Nj(x)2 for all x € Q 4
j=1

of the kernel on the diagonal. For the Newton basis, it allows a simple representation
(eqPXnx)

n+1

Py, (x)* = Y Nj(x)* forallx € Q (5)

j=1
of the square of the Power Function on a set X,, = {x1,...,x,}. By [33], the latter is
defined as the norm of the error of interpolation of functions of native Hilbert space
on points of X,,. Since deterministic interpolation coincides with Kriging on the non-
deterministic side, the square of the Power Function is the variance of the error of the
Kriging operator, the best linear unbiased predictor (BLUP).

The partial sum kernel

m

Kn(x,y) = ZNj(x)Nj(y) for all x,y € Q

J=1

approximates the full kernel at the rate of convergence of [ eqKxx). If points are
chosen by the P-greedy method [15], DeMarchi-et-al:2005-1, the rate is asymptoti-
cally best possible under all m-term linear approximations [31], santin-haasdonk:2017-1.



As a side effect, using partial sum kernels of order m, kernel matrices based on very
large point sets X,, = {xy,...,x,} can be approximated by rank m matrices, and if the
Newton basis is used, the full kernel matrices factor into two m X n matrices via

Km(x,-,xk) = Nj(xi)Nj(xk) =~ K(xi,xk).

™=

1

J

Ths explains the phenomenon of rank loss [27] of large and badly conditioned kernel
matrices.

All of this can be turned upside down. If one starts from an arbitrary set {N;} jen of

functions with (eqNjL2)
Z Nj(x)2 < ooforall x € Q, 6)
j=1

one gets a positive semidefinite symmetric kernel by (3} eqKNN). This works also on all
of R?, in contrast to Mercer expansions, and one gets (4] egKxx) and (5, eqPXnx) for
free. We shall use this kernel construction technique in Section [3(SecExp) .

3 Kernel Construction by Expansions

(SecExp) Here we construct expansion kernels (3} eqKNN) under the assumption (6}
egNjL2). There are a few first examples in [14]], and from there we only mention the
kernel

o 1
K(x,y) = Z ETn(x)Tn(Y)
n=0"""
based on Chebyshev polynomials in Q = [—1,41]. It illustrates how expansion kernels

can be synthesized from well-known functions. By x = cos(¢), y = cos(y) it is equal
to the 27-periodic kernel

% (cos(sin(@ + y)) - exp(cos(@ + ) + cos(sin(¢ — y)) - exp(cos(¢ — y)))

and therefore infinitely differentiable.

3.1 Random Functions

(SecExpRanFun) An expansion kernel (3] eqKNN) with (6] egNjL2) allows an easy
calculation of random functions
fra(x) = ZNj(x)vj, xeQ
j=1

by randomizing the coefficients, taking V = {v;} jen as a sequence of realizations v;
from standardized distributions Z; over R. At each x € Q, this yields a random variable
Ry, (x) with realizations fy (x), and the covariance of this random field is the kernel
K, while the paths are the above random functions.



3.2 Equivalence

(SecExpEqui) The paper [28], porcu-schaback:2026-1 shows that this approach
covers the paths of practically all second-order random fields having the covariance
kernel K. Therefore there is a full equivalence of deterministic kernel theory and the
theory of random fields, their paths and covariances.

expand .
Kernel ———  Function System
take covariance randomize
. evaluate .
Random Field Random Function

In the above diagram, one can start anywhere and go around to come back to where
started. But there are ambiguities that should be explained. Each fixed kernel K can
have different expansions (3| eqKNN) into function systems {N;} jey, and the random-
izations can again be different, choosing different probability distributions {Z;} jen.
Then pointwise evaluation yields different random fields, but all of these have the orig-
inal kernel as a covariance. Starting from a fixed random field R on Q, one gets a
unique covariance kernel, and the latter can have various expansions into function sys-
tems. But [28]], porcu-schaback:2026-1 proves that there are distributions {Z; } jen
depending on the expansion chosen such that the randomization produces paths of R
whose pointwise evaluations are the random variables R(x) again.

The consequence for further research is that the nondeterministic literature on random
fields, their paths and covariances will always have implications for the deterministic
kernel theory, and vice versa. Readers from the deterministic community are strongly
advised to be familiar with nondeterministic literature on kernels. In particular, this
applies to kernel construction methods applied there.

3.3 Expansions of Mollifiers

(SecExpMol) Note that the functions N; in expansion kernels need not be positive
definite. Any set of functions with (6] eqNjL2) will work, and we are now interested
in compactly supported C* functions.

A natural starting point are mollifiers used in Real Analysis since [[19], friedrichs:1948-1.

The standard Friedrichs mollifier is the radial C* function (egmoll)
exp(—1/(1—r? O<r<l1
u(r) ::{ p(-1A1=r))  0<r } @)

compactly supported on the unit ball for = ||x||2. Translates of such functions can be
superimposed with various weights to form a kernel by (3} eqKNN). The result will not
be translation-invariant, but e.g.

Ker(x.y) iiz (= talla/(lly — talla /)



is a positive semidefinite C* kernel that vanishes for ||x — y||» > 2¢, for any choice of

point sets 7., = {;} jen and all weights that guarantee (@ eqNjL2). This is a first con-
structive step towards C* compactly supported kernels, see Figure[[[Figtestexpansionker)
, but it deserves to be extended by future research.

Mollfier expansion kernel Mollifier expansion kernel contours

Figure 1: Expansion kernel for 51 regular points #, in [—1,+1] superimpos-
ing translates ,(x) = exp(—1/(1 — (x —#,)?/c*)+), ¢ = 0.2 of standard mollifiers
(Figtestexpansionker)

3.4 Expansion Kernels of Fundamental Solutions

(SecExpFun) In the simplest version of the Method of Fundamental Solutions, see
the surveys [7, 18, 9, 23], the trial functions are known solutions # of a homogeneous
PDE Lu = 0 on a domain Q@ C R?. In the standard case, each function u(y) satisfies
Lu(,) = &, on a point x outside the domain. This the standard notion of “Fundamental-
losung” since [11]]. Picking points forming a set X.. = {x;} jeny on a “fictitious bound-
ary” outside the domain leads to solutions U(x;) that may need a normalization like
N; = Vill(x;), J € N to satisfy (6, eqNjL2) and to define a kernel that solves the PDE
in both variables. Such kernels define a Hilbert space in which the N; are orthonormal.
Analyzing such spaces seems to be a widely open problem, together with choosing the
normalization and proving error bounds on the approximation of boundary values.

As an example, we solve the Potential Equation Au = 0 on the unit disc in R?. The
fundamental solutions are of the form log(||x — y||2) where y should be outside the
domain and x inside. The top left plot of Figure 2[Figfundsoltest) shows 50 blue
points on the “true” boundary and 50 red points on the “fictitious” boundary at the
radius 1.3. The red star at y = (—1.5,—1 —5) marks the point where the true solution
log(||x — y||2) has a singularity. Fitting its values on the true boundary provides an
approximation to the true solution in the top right plot. It does not differ from the
true solution up to plot precision. In fact, the error in the lower left plot is smaller
than 5- 1077, but still showing the typical peaks induced by the close-by “fictitious’
points. So far, this is quite standard in the Method of Fundamental Solutions, but the
lower right plot shows the associated expansion kernel. Two of the four arguments



were fixed at (0, 1) to make the kernel plottable, and weights were taken to be one. The
figure thus shows

50
K(x,(0,1)) = ) log([lx = yjll2)log([|(0, 1) = j|2)-

Jj=1
The above approach will run into problems if the extension of the true solution outside

Chosen Paints Calculated approsimation

Ertor Kerel centred at (0,1)

Figure 2: (Figfundsoltest)

the domain has singularities between the true and the fictitious boundary. This is even
more serious if users take homogeneous solutions without singularities, e.g. harmonic
polynomials for solving the homogeneous Dirichlet problem for the Laplacian. But
there are other kernels that provide harmonic functions, see [35]] in 2D and [22] in 3D,
partially using expansion kernels.

3.5 Mollifying Expansion Kernels in L,

(SecExpL2) In spaces Ly(R?) or L,(Q) for Q C RY, point evaluations of functions
are discontinuous, and therefore there are no classical kernels, though the spaces are
Hilbert spaces. Anyway, [28] presents a constructive way to work with orthonor-
mal systems in L, e.g. Haar wavelets. In addition, there is a theory of weighted
Sobolev spaces based on orthonormal L, expansions that works quite like a Mer-
cer/Karhunen/Loe¢ve expansion of Matérn kernels.



On R4, there are plenty of “mollifying” operators, e.g. convolutions by smooth func-
tions decaying rapidly at infinity, or convolution with the Friedrichs mollifier of (7]
eqmoll). Our model case here is the transition from Ly (RY) to W3 (R?) for m > d. The
functions £ in the range have Fourier transforms with behaviour like (1+||@||3) /2 by
definition of the norm in the range, and they can be obtained from elements g € L (R¢)
by multiplying ¢(@) with (14 ||®||3)~"/2, which means convolution by a Matérn ker-
nel of order v = (m —d) /2. This “mollification” of L, functions is invertible because
the Fourier transform of Matérn kernels does not vanish.

Let M : L,(R?) — J# be an invertible linear Hilbert space valued operator generated
by convolution with a function ¥ in L, (R? ) with nonzero Fourier transform. Then an
orthonormal system U := {u;} jen in Lo(R?) goes over to a system {Mu;} jcy in 7,
and the range can be equipped by an inner product that makes the system {Mu;} jen
orthonormal and generates the expansion kernel

(Mu;)(x)(Mu;)(y) for all x,y € RY.

s

KU,M('xay> =

j=1

It satisfies @ eqNjL2) because of y € L, (RY). Positive semidefiniteness is not required
for the u; of the Mu;. The expansion form makes the kernel positive semidefinite.
This construction principle leads to a plethora of possible kernels, including compactly
supported and C* cases.

Random Haar Convolution Function for m=0 Random Haar Convolution Function for m=1

o 02 04 06 08 1 0 02 04 06 08 1

Random Haar Convolution Function for m=2

Random Haar Convolution Function for m=3

Figure 3: Random Functions based on Haar wavelets on [0, 1], smoothed for Sobolev
orderm=20,1,2,3.



4 Kernels by Convolution

(SecConv) If a Fourier-transformable function on R can be convolved with itself (au-
tocorrelation), the result is a positive semidefinite kernel, because the Fourier transform
is nonnegative. This is another construction technique for kernels.

4.1 Even-Order B-Splines

(SecConvBSpl) Starting from (egbeta0)

1 —1/2<x<1/2
0 . —
[3( >(x) = 1[1/2,+1/2]—{ 0 1/2 < |x| }7 (8)
the symmetric regular B-spline of order n is the n-fold convolution
B =BV 4B p>1

of B©). It is locally a polynomial of order (= degree+1) n, has support in [—n/2,+n/2)
and is differentiable of order n — 2 at its half-integer knots. The Fourier transform is

and nonnegative for even n. On RY, one can take componentwise products like in
Section[5{SecProd) , the result being a tensor product B-spline with quite some back-
ground literature [12} [13]]. Taking spherical means (this is called the method of furning
bands in the nondeterministic literature) turns these kernels into compactly supported
radial basis functions. The simplest case n = 2, d = 2 was called Euclid’s hat [32, 21]]
but the general case needs further research. Taking infinitely many convolutions of suit-
ably scaled characteristic functions leads to the C* compactly supported up-function in
Section[4.3(SecKerSubUp) .

As another example of a C* compactly supported kernel, we can convolve the standard
mollifier of (7] eqmo11) with itself, see Figure[d(FigtestprodkerConv) . It is another
case that needs further study. Applications may use pre-calculated approximations of
it.

4.2 Convolutions with Haar Wavelets

(SecConvHaar) These can produce smooth compactly supported trial functions that
can be superimposed to generate smooth expansion kernels. Here, we sketch a frame-
work for calculating, encouraging readers to provide various examples. The Haar
mother wavelet is
1 0<r<1/2
yi)=q -1 1/2<1<1
0 otherwise,

10



Figure 4:  Normalized autocorrelation in 1D of the standard mollifier
(FigtestprodkerConv)

and it defines the univariate L, orthonormal system

Vnk(t) = 2"y (2"t — k)

where 7 and k vary in Z for L, (R). We consider convolutions with a function f € L,(RR)
that either decays fast towards infinity or is compactly supported. Then the convolution

Cual) i= [ fle=n)yns(e)ar
shares similar properties and has the shift law

ka(x—&— 2—n)

LA+ 2 7 sl

= Rf(x_s)llln,kfl(s)ds
= Cur-1(x) =Crolx+k-27"), k€ Z.

The basic function is
Cuol) = [ fle=n)yno(e)dr

= 2"/x_27)l/2f(u)du—2"/X_27n f(u)du

—2-n/2
= 2(F(x)—2F(x—27"/2) + F(x—2"))

for the integral
B
F(B)—F(A) = /A F(w)du.

It is smoother than f and has compact support if f has. For instance, if f is a hat
function, all C, o will be compactly supported C' piecewise quadratics.

The partial expansion kernel

K, (x»y) = Z ka(x)cn,k(y) = Z CnA,O(x‘f' k- 27")Cn,0(y +k- 2,,[)
kel kel

11



satisfies
Ky(x+k27" y+k27") = K, (x,y) forallx,y e R, k € Z.

It is shift-invariant on the grid 27"7Z and all coarser dyadic grids. The final expansion

kernel could be
K(xv y) = Z Z W%_ykcn,k (X)Cn,k (y)
keZnel

for suitable weights, and then the functions w, C, x are orthonormal in the Hilbert
space connected to that kernel.

Figure [5(FigHaarSplineConv) shows an example. A hat function on [—0.1,+0.1]
was convolved with y . The partial kernel K, would be composed of the Z /4 shifts
of this function.

Haar-Spline Convolution Function
0.4 T '

0.3F
02
0.1

0

01F
0.2

03

U2 e 0 o1 02 03 o4 05

Figure 5: Piecewise quadratic function as convolution of a hat function with a Haar
wavelet (FigHaarSplineConv)

4.3 The Up- and Fabius Functions

(SecKerSubUp) We can convolve scaled versions of characteristic functions like (8]
egbeta0), e.g. all functions 1[727,%27"][1,11 > 1. In 1D, this leads to the up-function
of Rvachev [30], see also [2]]. It can be obtained by nonstationary subdivision [[10] and
has support in (0,2). While it is not explicitly known, it has a “refinement” equation

up'(x) =2-up(2x+1)—=2-up(2x—1), x e R.
Its Fourier transform is (equpFT)

— (€))

but it is an open problem to find explicit formulas for the function and the Fourier
transform. It can be used for C* trial functions and superimposed by eqgKNN) to

12



Rvachev up function Fabius up function
1 1

09 09
08 08
07 07
06 06
05 05
0.4 0.4
03 03
02 02
0.1 01

-2 15 - -05 0 05 1 15 2 0 05 1 15 2 25 3 35 4

Figure 6: Rvachev and Fabius up-functions on R (FigUp).

form a C*™ kernel that yields sparse kernel matrices. Since the Fourier transform is not
nonnegative, the Ryachev up-function is not positive semidefinite. But by convolu-
tion with itself we get a positive definite function that is an infinite convolution of the
hat function, the symmetric regular B-spline of order two. It is called the Fabius up-
function [17] and yields a C™ kernel on R with support in (0,4), see Figure [({FigUp)
. It is connected to the Fabius function [17], and its Fourier transform is the square of
(O equpFT). All of this deserves much more research.

5 Componentwise Products

(SecProd) It is well-known [38]] that products of positive semidefinite kernels are pos-
itive semidefinite again. This allows to use products of univariate kernels to generate
multivariate kernels. Unfortunately, this spoils radiality up to a single exception:

Theorem 1. (TheProdGau) The Gaussian is the only nontrivial radial kernel in com-
ponentwise product form using a single scalar kernel.

Proof: If

K(x1,...,xq) = Hk(xj) =o(||x]2), x € R?
J

d
=1
holds, with k(0) = 1 without loss of generality, then
K(x1,0,...,0) =k(x1) = @(|x1]), x1 €R.
Then k = ¢ on all positive real numbers, and we can define
f@0):=o(V1)=k(v1),1 >0

to get

d
[T1/63) = f(lIxl3), x € RY.

13



Now f(x})f(x3) = f(x? +x3) with £(0) = 1 is the functional equation solved only by
exponentials f(t) = exp(at), and then k() = @(t) = exp(at?). O

But the deviation from radiality may be small enough to be tolerated, because the

stronger deviation from radiality arises only for small values, see Figure[/(FigtestprodkerConvProd)
for the product of two univariate kernels from @{FigtestprodkerConv) . The radial-

ity of the product of Fabius up functions is similar, see Figure [B[FigFabiusUpProd)

. In both cases, contours were plotted for levels 27", n = 1,...,20, while the value ot

zero was normalized to one.

Molifier product kemel Contours of mollifier product kernel

Figure 7: Product kernel of normalized autocorrelation in 1D of the standard mollifier
(FigtestprodkerConvProd)

Fabius product kemel Contours of Fabius product kernel

Figure 8: Fabius up-function in product form in R? (FigFabiusUpProd).

We finally mention another tool for kernel construction. Taking spherical means turns
non-radial kernels into radial ones. This operation applies similarly to the Fourier trans-
form, and therefore it preserves positive definiteness in the Fourier-transformable and
translation-invariant case. It is called the turning bands method [24]], matheron:1973-1
used for simulation in Spatial Statistics, and it was used to construct Euclid’s hat in
[32]], schaback:1995-2.

14



6 Fourier Features Kernels

(SecFouFea) Since [29], rahimi-recht:2007-1, the Machine Learning community
uses random Fourier features. A Kernel-oriented approach is to take positive square-
summable real numbers ¢, k € N and vectorial frequencies @y € R? to form the
translation-invariant Fourier-transformable positive semidefinite kernel

K(x,y) =Y crcos(of (x—y)),x,y €R.
keN

As an expansion kernel, one can also take

K(x,y) = Z (ax cos(wka) + by sin(nka))(ak cos(a)kTy) + by sin(nkTy)), x,yeR
keN

for arbitrary square-summable coefficients. Such kernels may approximate other ker-
nels well, even when only few coefficients are used, and then large kernel matrices will
factorize, like in Section SecBasExp) . Like others, also this kernel construction
technique deserves much further study.

7 Summary and Outlook

(SecOut) Many construction techniques for kernels are presented here, including typ-
ical examples. But these are only starting points. The goal of the paper is to stimulate
research of readers towards constructing new kernels, preferably with C* smoothness

and compact support.

Furthermore, even for the examples there is no theoretical analysis yet of the capabili-
ties of the constructed kernels.

Finally, readers are encouraged to introduce new kernels in applications, wherever stan-
dard kernels are used now.
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