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Abstract

Interpolation by translates of a given radial basis function (RBF) has
become a well-recognized means of fitting functions sampled at scat-
tered sites in R?. A major drawback of these methods is their inability
to interpolate very large data sets in a numerically stable way while
maintaining a good fit. To circumvent this problem, a multilevel in-
terpolation (ML) method for scattered data was presented by Floater
and Iske. Their approach involves m levels of interpolation where at
the ;' level, the residual of the previous level is interpolated. On each
level, the RBF is scaled to match the data density. In this paper, we
provide some theoretical underpinnings to the ML method by estab-
lishing rates of approximation for a technique that deviates somewhat
from the Floater-Iske setting. The final goal of the ML method will
be to provide a numerically stable method for interpolating several
thousand points rapidly.



1 Introduction

1.1 Background

Interpolation by translates of a given radial basis function (RBF) has become
a well-recognized means of fitting functions sampled at scattered sites in R¢.
The initial theoretical groundwork was done by Duchon [2, 3] and later Mic-
chelli [10] and Madych/Nelson [8, 9]. In these papers, the basic interpolation
method by RBF’s was introduced, rates of approximation were given for a
class of smooth functions and the invertibility of the interpolation matrices
was established.

Nevertheless, there were primarily two drawbacks to these methods. First,
the RBF’s used were globally supported, so the interpolation matrices were
full and inversion was slow. For the most part, this problem has been over-
come with the advent of a class of “designer” RBF’s by Wu and Wendland
(19, 20]. This class consists of functions that are positive definite on a given
Euclidean space R¢ and that are compactly supported, easy to evaluate,
and belong to a prescribed smoothness class. Of course, the interpolation
matrices corresponding to this class of functions are sparse.

The second drawback was the inability of RBF’s to interpolate large data
sets (several thousand points) in a numerically stable way while maintaining
good reproduction of the original function. This problem is most easily
understood in terms of the “Uncertainty Principle” described in [16], which
establishes a trade-off between the smoothness of an RBF, which implies
better reproduction of a function and faster rates of approximation, and the
numerical stability of the interpolation matrices. In short, one has to sacrifice
good reproduction quality for good stability or vice versa.

In an effort to circumvent this problem, a multilevel interpolation method
for scattered data was presented by Floater and Iske in [5, 6]. A full descrip-
tion of this method will be presented in §2, but briefly this approach involves
m levels of interpolation where at the j* level, the residual of the previ-
ous level is interpolated. On each level, the radial basis function is scaled to
match the data density. Thus, at the lowest level, interpolation of coarse data
by a function of relatively large support is done to capture the broad details
of the given function. At the highest level, one interpolates very dense data
with a narrow peak function to insure numerical stability. Floater and Iske
[5] showed numerically that one could interpolate several thousand points in
this fashion. However, no theoretical estimates for rates of approximation



using this method were given, and an analysis of their method poses severe
problems. This may be due to the fact that they used radial basis functions
with the same smoothness at each level.

In this paper, we provide some theoretical underpinnings to the multi-
level interpolation method (ML) by establishing rates of approximation for
a technique that deviates somewhat from the original Floater-Iske setting in
the sense that it uses smoother functions on coarse data than on fine data.
The final goal of the ML method (using compactly supported RBF’s) will
be to provide a numerically stable method for interpolating several thousand
points with rapid approximation.

In the next section, the ML method is fully described and a motivating
example from spline theory is given. Then §3 provides a framework for
obtaining recursive Jackson bounds, while in §4 error bounds for multilevel
interpolation are obtained for the case of the torus, the circle, the sphere,
and compact sets in Euclidean space.

2 Multilevel Approximation

In this section, we will discuss the notion of multilevel approximation. The
method may be described as a process where one works on several levels,
each time treating the residuals of the previous level. Since the technique is
not confined to interpolation by radial basis functions, we describe it here
in full generality. At the same time, we present an overview of our proof
technique.

2.1 Formulation of the Multilevel Technique

For a normed linear space VW with a closed linear subspace W, the determi-
nation of a best approximation f* € W to a given f € W consists of solving
the minimization problem

Jf I —glw =17 = Fllw

for the norm || f — g|| of the residual function f — g. To assess the possible
quality of the result, one is interested in a-priori bounds for the optimal
error ||f — f*|lw. Since g = 0 is admissible, there always is the primitive
error bound

(2.1) 1f = Fllw < (1 flIw-
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Unfortunately, this bound is useless in practice, because it in no way involves
the space of approximants W. Moreover in most cases, without additional
information on f itself, it cannot be improved.

To obtain a useful error bound, one must restrict f to a proper subspace
W, of W, where W, carries a norm that provides one with information that
can be used to get improved error bounds. Such bounds have the general
form

(2.2) 1f = ¥ llw < KOV, Wo, W) by

with a constant K (W, W,, W) that is significantly smaller than 1 and de-
pends in a highly nontrivial way on the subspace W that furnishes the ad-
missible approximations to f. For historical reasons we shall call such an
error estimate a Jackson bound.

The multilevel approximation method can be motivated as follows. Sup-
pose that we want to work in the setting above, but are not satisfied with
the error predicted by (2.2), and futhermore, suppose that we do not want
to change W, W), f or W. There are of course many reasons for not wishing
to change these things; here we just list a few possibilities:

1. The subspace W cannot be enlarged without exceeding computational
limitations or because it would require new and unavailable data.

2. W cannot be made larger (or || - ||,y made less restrictive) due to the
inherent assumptions on the application problem (e.g. the required
smoothness of approximants or the required type of norm).

3. W, cannot be made smaller (or || - ||y, made more restrictive) because
there is saturation (no gain by picking smaller spaces W, as is the case,
for example, for univariate splines of fixed degree), or because there is
no suitable subspace of W, that contains f.

To escape this dilemma, one can employ multilevel approximation pro-
cesses. These use spaces intermediate between W and W, if all of the
conditions mentioned above apply. To describe the technique, let us assume
that there is a sequence of nested spaces

(2.3) WoCW1CW2"'CWm:W,

that connects the W and W, of (2.2). In each of the spaces W we pose an
approximation problem

it 1fe = glhw, = 1 = Filbw,
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to approximate an element f, € W, by elements from a closed subspace
Wy, C Wy. The function fi, however, will always be the residual of the
previous step, i.e.,

fk 2:fk_1—f;71€Wk_1, 2§k§m7f1 :f

The final approximation after step m to the first input f = f; will be
I =D s
k=1
and it will be from the space
Vm = Z Wk,
k=1

where the sum need not be direct or orthogonal. Note that the spaces V,,
are nested as in a multiresolution analysis, but the spaces W,, may not (and
probably won’t) be orthogonal.

Furthermore, some situations do not require intermediate spaces, but
rather an extension of the inclusion Wy, C W to the left or right. Extension
to the left, for instance, will always occur if the given function f can be
assumed to lie in a much smaller subspace that W,.

2.2 Error Bounds

The intermediate spaces of (2.3) should allow a sequence of recursive Jackson
bounds

(2.4) Ife = frllwe < Kell fellwi s 1<k<m

where we use the abbreviated notation
Kk = K(Wk, Wk—l; Wk)
If the subspaces W) are sufficiently large, each of these constants will be

significantly less than one. The error bounds (2.4) can be applied recursively
with the final result taking the form

(25) 1 = gl = i — hllw, < (n Kk) il
k=1

6



which replaces (2.2), and where all the single Jackson constants of (2.4) are
multiplied.

The multilevel error bound (2.5) usually involves a lot more information
than any single-level bound (2.4), and the method itself uses more degrees
of freedom for approximation. A fair comparison would thus contrast (2.5)
with the Jackson bound

(26) ||f1 - f;’l,*HWm < K(Wmawﬂa Vm)“fl“Wm

where f* is a best single-level approximation to f; from the space V,, in
the norm of W,,,. Note that this problem will have a solution that differs in
general from the solution of the multilevel method, since the intermediate
norms differ. Furthermore, the above problem may not be solvable at all
because of computational limitations. In such cases the multilevel method
would still be preferable, since it allows one to break an unwieldy large-scale
approximation problem into manageable chunks. As mentioned earlier, this
work originated from promising computational results of Floater and Iske
[5, 6] concerning reconstruction of multivariate functions from very large sets
of scattered data.

If we ignore the above motivation based on numerical stability, and con-
centrate on theoretical error bounds, the multistep method would only be an
improvement over the single step method if the relevant Jackson constants
satisfy

m

K(WmJWOJVm) > H K(Wkawk—hvk)'
k=1

In section §4.4 we shall discuss the validity of this inequality for the multilevel
method on the circle. But at least in situations where the single-step bound
(2.6) is weak due to saturation, while the bounds (2.4) avoid saturation, the
above inequality will hold and make the multilevel method superior. A simple
example will be given in the next subsection. On the downside, there will be
no improvement except for a possible savings in computational complexity,
if all norms stem from a single inner product and if the spaces W) form an
orthogonal decomposition of V,,,. But this case, which is typical of standard
wavelet or Fourier series expansions, is not covered by this paper, because
the norms involved in a Jackson bound will usually differ substantially.
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2.3 Example

We end this section with an example showing how the multilevel procedure
works and illustrating its potential advantages over the single-step method.
The example will model a case where we assume the final level (the level
utilizing all the interpolation points) is forced to use a simple and efficient
method due to computational restrictions. However the resulting error esti-
mates will then be weak. Thus we take, for illustration purposes, interpola-
tion of functions f on [0,1] by splines f7, of degree one on a mesh of width
h. The standard Jackson bound then is [1, p. 40]

h2
8

oo <

(2.7) If = fin 1" lloo,

and this is saturated in the sense that even for much smoother functions f
there will be no improvement over the O(h?) accuracy. A very similar situa-
tion occurs if one interpolates a very large set of multivariate scattered data.
The sheer size of the problem will require either a solution without solving
a system of equations, or at least a massively sparse system of equations. In
both cases one must be satisfied with a weak error bound, if sticking to a
single-step method.

Suppose, in the above example, we assume that f is much smoother than
C?. The Jackson bound (2.7) then suggests to prefix a first step that has a
Jackson bound on second derivatives by higher derivatives. If, for instance,
the function f is in C*[0,1] with f”(0) = f”(1) = 0, then cubic spline
interpolation will serve the purpose, the required bound being

17" = (f3n)"lloe < eh® | fY]|cc.

If one interpolates with cubic splines at the coarse level and then interpo-
lates the residual by piecewise linear splines at the fine level, the multistep
approach will now yield an explicit O(h*) bound

cK?
|oo < ?h4||f(4)||ooa

If = fsxn = (F = f3xn)in

even if the cubic spline is calculated on a very coarse mesh of width Kh.
This yields an improvement over (2.7) as soon as

KPR f Ploo < [1F" o0
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holds, e.g.for h sufficiently small.

For examples of the good performance of a variation of the multistep
method using compactly supported radial basis functions applied to large
multivariate problems we refer the reader to the papers by Floater and Iske
[5, 6]. This should suffice as a practical motivation for our work. Since a
theoretical basis for multilevel approximation is missing, we thus concentrate
on theoretical questions.

3 Radial and Related Basis Functions

We now discuss the spaces and classes of functions that we will deal with in
this paper. We confine ourselves to methods using (not necessarily radial)
basis functions, and we develop a notation for transforms that allows us to
deal with functions on Euclidean space, torus, and sphere in a unified way.

3.1 Transforms and Positive Definite Functions

Let M be a metric space. We say that a conjugate symmetric kernel k €
C(MxM) is positive definite [18], if the N x N selfadjoint matrix with entries
k(pj, pr) is positive semidefinite for any arbitrary finite subset {pi,...,pn}
of M with distinct points.

Three important choices for M are n-dimensional Euclidean space, R",
the n-torus, T, and the n-sphere, S”. On each of these we can define positive
definite kernels via positive definite functions; such functions were introduced
long ago by Bochner and Schoenberg (cf. [18]).

The first two choices are similar, because both allow a group of transla-
tions to act on M, making harmonic analysis by Fourier transforms possible.
Suppose that @ : R® — C is in C(R") N L'(R™). From Bochner’s Theorem,
we know that ® is positive definite if and only if its Fourier transform @({ )
is nonnegative. Similarly, if ® : T" — C is in C(T") N L'(T"), and if the
Fourier coefficients of ®, which we denote by ®(«), with o € Z" being a
multi-index, are nonnegative, then ® will be positive definite on T™. In both
cases, the positive semidefinite kernel associated with @ is k(p, ¢) :== ®(p—q).

The case of S™ is somewhat different, because now the orthogonal group
acts on M, replacing standard harmonic analysis by expansions into spher-
ical harmonics. Using ultraspherical polynomials, Schoenberg [17] gave a
representation for the continuous positive definite functions on S™. Because



the Legendre polynomials Py(n + 1;x) are somewhat easier to use than the
ultraspherical polynomials, and are, up to constant multiples, the same set,
we will use them to give Schoenberg’s representation theorem [17], eq. (1.5):

o0

(3.1) (cos(0)) = > B(£) Pe(n + 1;cos(0)),

where the ®(¢)’s are nonnegative and decay sufficiently fast for ®(cos(6)) to
be continuous. In this case, the positive semidefinite kernel associated with
® is k(p,q) = ®(p-q), where p-q is the usual Euclidean dot product in R"*!,
Note that points in S™ may be regarded as vectors of unit length in R"*?,
such that the angle 6 between two points p and ¢ satisfies p - ¢ = cosf. The
resulting functions of the form ®(cos(#)) = k(p, q) are called zonal.

It is useful to expand ®(p - ¢) in terms of the spherical harmonics Yf on
S™ (cf. [11, 12]). This we can do by employing the famous Addition Theorem
for spherical harmonics [11]:

G .
(3.2) Pn+1;p-q) = dn&) Z}l Y (p)Y] (q),

Here, d,(¢) is the dimension of the space of n + 1 dimensional harmonic
polynomials homogeneous of degree ¢ and w, is the volume of S™. This
results in the expansion

(3.3) fj Z( O(¢, )Y} (p)Y}(q), where (L, j) := D(¢)

3.2 Dual Pairs of Sobolev and Native Spaces

Positive definite functions may be used to define positive semi-definite Her-
mitian forms on distributions. We first describe this in the case of M = R™.
Recall that if u is a compactly supported distribution on R", then it has a
well-defined analytic Fourier transform 4 (§) such that the action of u on a
sufficiently smooth and absolutely integrable function f can be written as

ulf) = [ iw)f(w)dw

The same identity holds for pairs (u, f) of tempered distributions and func-
tions in the sense of L. Schwartz. In general, the above identity serves
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to define dual pairs of spaces depending on the behavior of the respective
Fourier transforms of v and f. This is done by introducing a nonnegative
weight function p(w) such that p(w) penalizes @(w) while (p(w))~! penalizes
f(w) The most popular case of this technique takes the weight function
p(w) = (1 + |w|?)* and leads to Sobolev spaces H (R"), where the inner
product

(3.4) [, v], := /R (1 W) a(w)F(w)dw

is used to define the dual pair of spaces

HyR") == {f: [f]s <oo}
H (R") = {u: [u] s <oo}
= ]_Is(]inyk

Upon completion, these form a pair of mutually dual Hilbert spaces.

We now bring positive definite functions ® into play and define an associ-
ated dual pair of “native” spaces. If ® is a continuous, even, and absolutely
integrable function such that d is nonnegative on R", then the function ®
and the associated kernel x(p,q) := ®(p — q) are positive definite and one
can use ® as a weight function to define a semidefinite inner product of two
finitely supported distributions v and v by

(3.5) [u, v]e = uPvi®(p — q) = uPvik(p,q) = / W(w)0(w) P (w)dw,
where u? means the action of u with respect to the variable p. The final
form of this expression and the correspondence to the Sobolev case lead us
to introduce a similar semidefinite inner product of two sufficiently smooth
and absolutely integrable functions f and ¢ by

~

(3.6) [£.9)e = [ F)3w) (8()) " dw.

Since we carefully distinguish between functions f,g,... and distributions
w,v,w,... (as functionals acting on functions), there will be no confusion
between these two inner products. Note that the above integral requires the
Fourier transforms of f and ¢ to vanish wherever the Fourier transform of
® vanishes, but a quick look at the classical Whittaker-Shannon sampling
theorem corresponding to the choice ®(z — y) = sinc(z — y) shows that this
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requirement is quite natural for recovery questions, restricting the recoverable
functions to those with the proper bandwidth. If the function ® is positive
almost everywhere in R", the above inner products are positive definite.
Upon Hilbert space completion, we then get the dual pair of “native” Hilbert
spaces

He = {f :[fle < o0}
Hy = {u :]ule <oo}.

As in the Sobolev case, it does not matter much from which (sufficiently rich)
starting point the completion is done; starting from tempered functions and
distributions is sufficient.

We now want to relate Sobolev spaces H (R") to the somewhat unwieldy
native spaces Hg. To this end, we define

(3.7) 1lls,00 := sup (1 + [w]%)*|(w)|

and easily calculate the following bound for the bilinear form (3.6)

Proposition 3.1 If ® is a continuous, positive definite function on R™ for
which ||®||s,« is finite, then the bilinear form (3.5) is continuous on H_4(R"™)
and satisfies the bound

(3.8) [[w; ole] < flull —s[[o]]-s[I1®]]s .00

for all w and v in H 3(R™). The associated spaces have continuous embed-
dings
(3.9) H ((R") C H;, He C Hy(R").

Note that for all of the well-known positive definite RBF’s there is some s
such that Proposition 3.1 holds. Gaussians and inverse multiquadrics will
allow any nonnegative s.

3.3 Generalization to the Torus and the Sphere

If w is a distribution on S™ or T", then u belongs to the Sobolev space H,(S™)
if
oo dn(L

lull§ =" Z (L+ £ +n—1))fa(t, j)

=0 j=1
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and to Hy(T") if

lully = >_ (1+[af*)|a(e)[*/(2m)" < oo.

aEZm

Here, (¢, 7) is the Fourier coefficient of u relative to the orthonormal basis
of spherical harmonics, and 4(«a) is the corresponding quantity relative to
{ei%} the usual orthogonal basis for L?(T").

The formulas above make use of eigenfunction transforms for the Laplace-
Beltrami operator associated with the underlying manifold [12]. Many of
the results that we state can be conveniently described by using common
notation for these eigenfunction transforms. To that end, we will denote the
appropriate index set by O , the index by w, the measure appropriate to O
(discrete or continuous, as needed) by dr(w), and we will let

138 w=¢, (R")
(3.10) AMw) =< |af? w=ua, (T")
l+n—-1) w=I((7), (S")

This allows us to write the Sobolev norms as
(3.11) Jul|? = /0(1 + Mw))*|a(w)[dv(w).

In addition to the Sobolev Hilbert space norms above, we need the corre-
sponding seminorms introduced by positive definite functions ®. These are
defined similarly to (3.5) and (3.6) with just a generalized notion of trans-
form:

()8 (w)dv ()
J(8() " d

[

[u,v]e = / i(w)

(3.12) i
[f,9le = / fl@)glw
We can then generalize (3.7) to
(3.13) 1lls 00 := sup(l + Aw))’|®(w)]

and get a straightforward generalization of Proposition 3.1 to the torus and
the sphere. We include it into the formulation of Proposition 3.2 below.
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3.4 Strictly Positive Definite Functions

The condition that ® be positive almost everywhere is very important for
solving recovery problems. It not only guarantees that the first of the Her-
mitian forms in (3.12) is actually an inner product on Hj and its subspaces
H ,CH ¢ C Hj forallt < s provided that (3.13) is finite, but it also allows
for the solution of generalized Hermite interpolation problems [4, 12, 13], the
interpolants being of the form

(3.14) Ko[v](p) := v're(p, q),

with v being a distribution acting on the second argument of ®. The following
result, which is proved for compact manifolds in [4], and which is well known
for R™ kernels, tells us which spaces are involved.

Proposition 3.2 Let ® be a positive definite function satisfying || @500 <
o0o. Then for all t < s the operator Ko maps H_ (M) boundedly into
Hys (M), with the norm being ||®||s 0. Furthermore, we have

(3.15) [ ola| < flull-cllvll /125,00

for all w and v in H (M), and the associated spaces have continuous em-
beddings

(3.16) H_(M) C H_((M) C Hg, Hy C Hy(M) C H(M).

Let ® be strictly positive and let s > ¢. For data generated by applying distri-
butions from Y = Span{u,,...,uxy} C H_;(M) to some unknown function
f, we can always find v* € U for which f* = Kg[v*] such that the generalized
interpolation conditions

(3.17) ui(f) =u(f), 1<j<N

hold, because the interpolation matrix is the N x N Gramian [u; u;], which
is of course positive definite and therefore invertible.

Positive definite functions ® for which @ is strictly positive will be termed
strictly positive definite. In the case of R"™, if ® is strictly positive definite
and depends only on |z|, @ is called a radial basis function (RBF). Strictly
positive definite functions for T” or S™ will be called periodic basis functions
(PBFs) or spherical basis functions (SBFs), respectively.
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The kernels induced by the ® in R"™ and T" are of convolution type.
This is also true for the case of the n-sphere, although there the convolution
involved is less familiar and requires group theory to adequately describe.
For our purposes, we need only note that if we formally define

*g_z

for two arbitrary functions (or distributions) f and g, then fixing p and using
equations (3.2) and (3.3), one gets

(3.18) v'®(p-q) = (P *v)(p).

For the rest of the paper, we shall use the convolution form of the kernel for
all three cases. In addition, we shall assume that ® > 0 and that ||®||,  is
finite.

g(e ])Y

T Mi

Remark 3.3 There are two observations that we want to make. First, if
®, and Py are strictly positive definite functions on M, then so is @1 * P,.
Second, if @1 < 6@2, with ¢ some positive constant, then Hy, C Hg,. Note
that the function W, with ¥,(w) = (14 A\(w))~* is positive definite, and thus
(3.9) is a special case of the second observation, where &; = &, &y = U,.

3.5 Standard Error Bounds

Let us return to the discussion of interpolation using functions constructed by
applying functionals from a finite dimensional subspace Y C H_4(M) C H}
to ®. If the function generating the data via application of the distributions
in U is in the space Hg, so that it has the form f = f, = Kg[v] = ® x v
for some v € H}, then we can adopt the terminology of (3.17) to write
the generalized interpolant as f* = Kg[v*] = ® *x v* for some v* € Hj.
Standard arguments then show that v — v* must be orthogonal to U/ in the
inner product [-, - ]¢. Thus v* is the orthogonal projection of v onto U and
is automatically a best approximation to v from Y. Moreover, if w is in Hj
and w in U, then this orthogonality implies that [v —v*, w] = [v —v*, w — u].
These observations lead to a simple (and standard) bound for the action of

won fi — fy:
|w(fv - fv*)

[v — v, w]e|
[v—v*, w— u]e|

|
(3.19) |
Jw —ule]v—v]e.

IA I
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Since v — v*|e = |fs — fo-llo and v* is the orthogonal projection of v onto
U, we have
I]U — ’U*I]@ = I]fv - f’u*l]@ == dis%(v,bl).

In addition, observe that the left side of (3.19) is independent of u, so that
we may choose u to be the orthogonal projection of w onto ¢. Taking this
into account, we arrive at the estimate

(3.20) [@(fo = for)

which is in terms of a product of two bounds for optimal approximation
problems, and which can be viewed as a generalization of the hypercircle
inequality [7, 4].

We remark that there is a useful connection between this bound and more
familiar bounds involving the notion of “power function”. If §, is the Dirac
functional at ¢ € M, the power function diste(d,,U) for ¢ € M arises in
many publications and there are various papers proving upper bounds for it;
see [15, 16]. If we take s > n/2 in our setting, then §, is in H_;(M) C Hj.
Consequently, we may set w = §, in (3.20). Using this in connection with
(3.20) then gives us the standard pointwise error bound

(321) |(fv - fv*)(q)| S diSt¢(5q=u)||fv - fv*
for all ¢ € M.

S diStq> (w, M)dis‘@(v, Z/{),

[}

3.6 Jackson Bounds

We know from §2 that we need to construct recursive Jackson bounds of
type (2.4). Their construction is one of the major goals of this paper. In
the M = R” case, the usual bounds are pointwise and in the form of (3.21)
without using Sobolev spaces. On the other hand, in the M = S" or M =T"
cases the available bounds involve Sobolev spaces and are not in the form
of (3.21). In both cases there are general techniques to arrive at recursive
Jackson bounds, and we choose the spaces Wy in (2.4) to be Hg, normed
by [.]e,. Generalized interpolation at level k involves @, while the error is
measured in terms of ®;_;. These two functions will be related by convolution

(322) (I)k,1 = (bk * (I)k

in this paper, but future developments may allow for different choices.
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Let us start with the cases M = S™ or M = T™. There the literature [4]
(also see §4.1 and §4.2 below) provides bounds of the form

(3.23) diste (v, U) = [|f = ["lle < vl

for f =v*® with v € H_; C Hj, where ¢, is a small constant depending
on M, U, s, and ®. To be recursive, such a bound must be extended to
the right by something containing || f||¢ for another strictly positive definite
function W. In particular, we have this result.

Proposition 3.4 Let f belong to Hy C He, and suppose that

~

2 V(w)
.24 C? :=su =
(3.24) C T o0 (11 A\(0))*d(w)?

is finite. If f = ® x v, where v € H_i (M), then
(3.25) o]l s < G| fllw -

Proof: We have that 9(w) = f(w)/®(w), and so

lv]iZ, = /O [6(w)*(1 + A(w))~"dv(w)

(1+ M) ®(w)?
c2f13.

IN

Taking square roots above yields (3.25). ®
Using the notation of (3.19) and putting both ingredients together implies
the required Jackson bound (2.4) in the form

(3.26) 1f = flle < eCsll fllw

for all f € Hy. Applications can now use any choice of ®, s, and ¥ that
satisfies (3.24) and ||®@||s 0 < 00, for instance ¥ := & « &. We will deal with
specific cases in §4.
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In case M = R" we convert the pointwise error estimate (3.21) into an
Ly bound by simply summing up over the bounded and measurable domain
2 C R" in which we do the interpolation. This yields

1fo = forllzac) < [ dista (0., U)o | fo = forlle-

To get a recursive Jackson bound, we proceed along the lines of [14] and
impose an additional “boundary condition”

(3.27) v € Ly(R2), suppv C 2

for the function f = f, = ® x v that generates the data. But since fv = -9,
we can conclude that (3.27) implies

(3.28) [l zome) = ([0l 2o2) = [ foll e

Then we apply the standard orthogonality argument to prove

||fv - fv*

— — 1 = —

é = /Rn(fv_fv*)g;(fv_fv*)
[ (T

Sl MU RED

= [ (o= Ty

[ (o= o)A

| (Fa = Frydn

< |fo = for I 1ol o)
- ||fv_fv*||L2(Q)||fv||<I>*<I>-
< |l diste (0, U)ol fo = forlla|| follosa-

Here, the final line used our previous bound, and cancelling a factor yields
the required recursive Jackson bound

(3.29) 1fo = for

o < || diste (8., U)| Lo || fol one

which is adapted to convolution (3.22) between different levels.
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4 Specific Examples

For M = T" or M = S™ there are bounds of the form (3.23), provided some
additional restrictions on U hold [4]. We now make these restrictions precise,
first in the case of the circle and second for the 2-sphere.

4.1 The Circle

We wish to discuss a multilevel interpolation problem for the case of the circle.
To do this, we will first need to give specific estimates on the constants ¢, and
Cs in equation (3.26). In particular, to get ¢, we need the following result
alluded to in §3.6.

Proposition 4.1 Let U be the span of the set {04, } 1", where the angles ¢;

are given by
27

where the €;’s are real numbers that satisfy

sup |e;| = L, 0< L <1/4,
J

and let s > 1. If v is in H_,(T") and ® is in Hys(T"), and if Ye(14+K2)®(k)
converges, then

1/2
diste (v, U) < ||v||—so(L, N) ( ; (1+ kQ)S@(k)) :
where Iy :=[—[N/2],[(N —1)/2]]NZ and
L, if L=0;
VIN/2 ese(§ —nL) if 0 < L <1/4.

Proof: See Theorem 5.3 in [4]. W

o(L,N) =1 +{

This result combined with equation (3.23) provides this bound on c¢;:

1/2
¢, < o(L,N) ( >+ k?)S@(m)

k¢Ty
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The choice of ¥ in Proposition 3.4 will of course determine C;. As we men-
tioned at the beginning of §3.6, we will choose ¥ = ® x . For the case of
the circle, this gives W(k) = ®(k)2. Inserting this in equation (3.24) gives
Cs = 1, since s is greater than 0 and A(k) = k? can take on the value 0.
When this result and the previous estimate on ¢, are inserted in equation
(3.26), we arrive at the Jackson bound that we will require here:

1/2
(4.1) If = flle < o(L,N) ( > (1+ kQ)s‘i’(k')) 1/ 1w,

k¢ Ty

with ¥ = & % ® and the other quantities as defined above in Proposition 4.1.

4.2 The 2-sphere

We now deal with the 2-sphere. The space U will be taken to be the span of
point evaluations at points p;;. To describe these points, we will adopt the
convention for spherical coordinates that is customary in physics and was
employed in [4]: the angle @ € [0, 7] is measured off the positive z-axis and
the angle ¢ € [0, 27) is measured off the z-axis in the z-y plane. In addition,
take A to be a fixed positive integer, then let

0, = g—%,jzo,...,QA—l,
¢ = T, k=0,...,2A -1,
(0;,0r) = coordinates of p; .

As in the case of the circle, we are faced with the problem of determining
the constants ¢, and C; in equation in (3.26).

Proposition 4.2 Take s > 1/2. Let v be in H_s, U be the span of {6y, }
and @ be a spherical basis function in Hy,(S?). If A is a power of 2, and if
the series 3000 Xk _ (14 £(€ +1))*®(¢,m) is convergent, then

diste (v, U) < (1 + ﬁ/\% log2(16A)) X

o0 V4 1/2
(Z > (L+(e+1)D(, m)) 1] -

{=A m=—¢

Proof: See Theorem 6.6 in [4]. W
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By this result it is clear that we have

1/2
Cs <+7Azlog2 16A>(Z > 1+M+1)<1>(£,m)) :

{=Am=—¢

If we again take U = ® %« ®, we have C; = 1 as in the case of the circle.
We want to use an SBF of the form (3.1), where from equation (3.3), with
do(0) = 20+ 1 and wy = 47, we see that

4 -~

sr 20 m=—l

(¢, m) =

Using this equation in the expression for ¢, and summing over m, we obtain

o0

1/2
=2 (V7 + A% log,(160)) (Z(l + 00+ 1))5@(@)) .

L=A

When this result and Cs = 1 are inserted in equation (3.26), we arrive at the
Jackson bound that we will require for the spherical case:

o0

1/2
(4.2) If=flle < 2 (V7 + A% log,(16A)) (Z(l + L0+ 1))3‘5(4)> £,

I=A

with U = ® %« ® and the other quantities as defined above in Proposition 4.2.

4.3 Radial Basis Functions in R"

The recursive evaluation of the Jackson bound (3.29) poses no further prob-
lems in case of standard Lagrange interpolation data on scattered locations,
because there are many sources (e.g. the discussion in [16]) for pointwise
bounds on the power function, thus yielding Ly bounds on compact domains
2 C R". In general, these bounds improve with the smoothness on ®; at
the current level £ and with decreasing sparsity

hy := sup min |p — ¢|
peQ €,

of the k-th level data set P, C €. Refined bounds using the boundary
conditions (3.27) are in [14].
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However, the boundary conditions (3.27) still pose a serious research prob-
lem, since they are (so far) required to hold on each level. Using residuals
between levels implies the recursions

fk+1 = fk - fI: =
Uk—l—l k q)k-}-l = (Uk — UZ) * (I)k =
(4.3) ;
Vg1 % Ppyp1 = (v — Uf) % Py * Ppyy
Vg1 = ('Uk - UZ) * Ppq,

and if v, and v} are supported in 2, the support of v;1; will in general not be
confined to ). Before we discuss a special case in which we partially overcome
the problem, it should be pointed out that the boundary conditions may
possibly be unnecessary if other proof techniques for the recursive Jackson
bounds are provided by future work. In fact, using the ||.||¢, norms is quite
restrictive, and weaker norms may not require boundary conditions. This
is motivated by looking at the cubic spline case, where boundary conditions
usually are necessary for convergence of second or higher derivatives, but not
for convergence in weaker norms.

In case of compactly supported functions @y, the recursive convolution
preserves compact supports and eliminates problems with Ly integrability, if
we start with fo = vy * @ satisfying the boundary conditions with respect to
some compact subdomain 2y of ). The latter is an awkwark hypothesis, but
our current technique cannot get away with a less restrictive assumption. If
the distributions v, and v} are supported in some compact subdomain 2
whose points have a distance of at least r; from the boundary of €2, and if
the functions ®; have a support radius of pp = pp2 %, then (4.3) implies
Ter1 > Tk — 2pg. If we start with ro > 4p,, induction yields

Trgr > 70 —2p0(1+ 274 . 4277 > rg —4py > 0

for all k. Thus the boundary conditions are satisfied at all levels.
We now apply the multilevel technique and start at the finest level m
with the bound (3.21)

|(fm = L) @] < P fn — frllon,

using the power function P, (¢) := diste(dy, U),m on points ¢ € €, and
involving ®,,. We can assume the L., norm of P, on {2, to be expressible
as a function of sparsity

hym := sup min |p — ¢

pEQm qEPm
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of the m-th level data set P, C €, C €2. Thus

[ = Fallisc@m) S N Pmlloc@m) [ fm = frullen

serves as a starting point for the recursion using

||fj+1||<1>j < ||‘Pj||L2(Qj)||fj||¢j—l

for j =k, k—1,...,1. Again, the crucial factor ||P;||z,;,) usually is bound-
able by a function of h; defined as above. Note that on the levels with coarser
data and smoother RBF’s with larger supports, the data ara allowed to stay
further away from the boundary. Now these bounds multiply neatly and end
up with

1o = Tl L@y < W folleoll Ponll oo @) TGt [ Pl 22009

as required.

4.4 Comparison

We finally contrast the multilevel method with the standard interpolation
error on a single level. Our general multilevel estimate starts with

(4.4) ‘ (f _ if) ()

where we can evaluate the last factor recursively. Since the use of smoother
functions than ®,, at the finest level m usually is numerically unfeasible,
we contrast (4.4) with the estimates obtained for the standard case using
the function ®,, at the maximal number of interpolation points (distribution
space U,,) directly to the given data. Again appealing to [4] this has the
bound

(4.5) (f — £29)(2)] < dista,, (55, Usp) dista, (T, Un),

where we are using the convolution representation of f as f = ®,, xv,,. Note
that v, and 9, are different, because v,, is subject to the recursion (4.3).

We wish to contrast the predicted errors in (4.4) and (4.5). A reason-
able method is to compare the ratio of the two error bounds, which, after
cancelling the common factor diste,, (0,, Uy, ), leads to the ratio

S diStQm (61;7 Mm) diStq>m (Um, Mm)

diStq>m (Um, Z/lm)
diSt(pm (77m7 Z/lm) ’

(4.6)
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We first discuss the quantity diste,, (v, Uy,). Upon recursion, it can be
bounded above by

m
[v1]leo TT K5
7j=1

where the constants K; are norms of residual operators on nested native

spaces, 1.e.
]
Ko sup Wi Sl
ficHq, ||fj||‘1)j—1

and where best approximations f; to f; are taken with respect to data
functionals in ;. On the other hand, the denominator has the bound
K ||om||e,,_, by the same reason. Again, we compare ratios of bounds rather
than the ratios themselves, and thus we cancel K,,. This leaves the other
factors K, which we can make small by using sufficiently many data func-
tionals in all of our scenarios. The finally remaining ratio ||v1|e,/||0m| ®,,_,
can be large, but is independent of the data. This shows that the bounds for
the multilevel method are superior to the bounds for the single-level method
on the last level, provided that there are sufficiently many data.

Acknowledgement

The second author thanks Texas A&M University for its hospitality during
two visits in January of 1996 and 1997, and gratefully acknowledges partial
financial support provided through the auspices of Professor Charkes K. Chui
and by the Mathematics Department of Texas A&M University

References

[1] C. de Boor. A Practical Guide to Splines. Springer-Verlag, New York,
1978. Applied mathematical Series 27.

[2] J. Duchon. Interpolation des fonctions de deux variables suivant le
principe de la flexion des plaques minces. Rev. Francaise Automat. In-
format. Rech. Opér. Anal. Numer., 10:5-12, 1976.

[3] J. Duchon. Splines minimizing rotation—invariate semi—norms in sobolev
spaces. In W. Schempp and K. Zeller, editors, Constructive The-
ory of Functions of Several Variables, pages 85-100. Springer, Berlin—
Heidelberg, 1979.

24



[4]

8]

9]

[10]

N. Dyn, F.J. Narcowich, and J.D. Ward. Variational principles and
Sobolev-type estimates for generalized interpolation on a Riemannian
manifold. Technical Report 371, Department of Mathematics, Texas A
& M University, 1996.

M.S. Floater and A. Iske. Multistep scattered data interpolation using
compactly supported radial basis functions. To appear in Journal of
Computational and Applied Mathematics, 1995.

M.S. Floater and A. Iske. Scattered data analysis and industrial applica-
tions. In F. Fontanella, K. Jetter, and P.-J. Laurent, editors, Advanced
Topics in Multivariate Approzimation, pages 1-10. World Scientific Pub-
lishing, 1996.

M. Golomb and H. F. Weinberger. Optimal approximation and error
bounds. In On Numerical Approzimation, pages 117-190. R. E. Langer,
editor; Madison, 1959, 1959.

W.R. Madych and S.A. Nelson. Multivariate interpolation: a variational
theory. Manuscript, 1983.

W.R. Madych and S.A. Nelson. Multivariate interpolation and condi-
tionally positive definite functions. Approximation Theory and its Ap-
plications, 4:77-89, 1988.

C.A. Micchelli. Interpolation of scattered data: distance matrices and

conditionally positive definite functions. Constructive Approzimation,
2:11-22, 1986.

C. Miiller. Spherical Harmonics. Springer-Verlag, Berlin, 1966.

F.J. Narcowich. Generalized Hermite interpolation positive definite ker-
nels on a Riemannian manifold. Journal of Mathematical Analysis and
Applications, 190:165-193, 1995.

F.J. Narcowich and J.D. Ward. Generalized Hermite interpolation via
matrix-valued conditionally positive definite functions. Mathematics of
Computation, 63:661-687, 1994.

R. Schaback. Improved error bounds for scattered data interpolation

by radial basis functions. Submitted to Mathematics of Computation,
1996.

25



[15]

[16]

[17]

18]

[19]

[20]

R. Schaback. Comparison of radial basis function interpolants. In Mul-
tivariate Approximation. From CAGD to Wavelets, pages 293-305. K.
Jetter and F. Utreras, editors; World Scientific, London, 1993.

R. Schaback. Error estimates and condition numbers for radial basis
function interpolation. Advances in Computational Mathematics, 3:251—
264, 1995.

I. J. Schoenberg. Positive definite functions on spheres. Duke Math. J.,
9:96-108, 1942.

J. Stewart. Positive definite functions and generalizations, an historical
survey. Rocky Mountain J. Math., 6:409-434, 1976.

H. Wendland. Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree. Advances in Computa-
tional Mathematics, 4:389-396, 1995.

Z. Wu. Multivariate compactly supported positive definite radial func-
tions. Advances in Computational Mathematics, 4:2833-292, 1995.

26



