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AbstractInterpolation by translates of a given radial basis function (RBF) hasbecome a well-recognized means of �tting functions sampled at scat-tered sites in Rd. A major drawback of these methods is their inabilityto interpolate very large data sets in a numerically stable way whilemaintaining a good �t. To circumvent this problem, a multilevel in-terpolation (ML) method for scattered data was presented by Floaterand Iske. Their approach involves m levels of interpolation where atthe jth level, the residual of the previous level is interpolated. On eachlevel, the RBF is scaled to match the data density. In this paper, weprovide some theoretical underpinnings to the ML method by estab-lishing rates of approximation for a technique that deviates somewhatfrom the Floater-Iske setting. The �nal goal of the ML method willbe to provide a numerically stable method for interpolating severalthousand points rapidly.
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1 Introduction1.1 BackgroundInterpolation by translates of a given radial basis function (RBF) has becomea well-recognized means of �tting functions sampled at scattered sites in Rd.The initial theoretical groundwork was done by Duchon [2, 3] and later Mic-chelli [10] and Madych/Nelson [8, 9]. In these papers, the basic interpolationmethod by RBF's was introduced, rates of approximation were given for aclass of smooth functions and the invertibility of the interpolation matriceswas established.Nevertheless, there were primarily two drawbacks to these methods. First,the RBF's used were globally supported, so the interpolation matrices werefull and inversion was slow. For the most part, this problem has been over-come with the advent of a class of \designer" RBF's by Wu and Wendland[19, 20]. This class consists of functions that are positive de�nite on a givenEuclidean space Rd and that are compactly supported, easy to evaluate,and belong to a prescribed smoothness class. Of course, the interpolationmatrices corresponding to this class of functions are sparse.The second drawback was the inability of RBF's to interpolate large datasets (several thousand points) in a numerically stable way while maintaininggood reproduction of the original function. This problem is most easilyunderstood in terms of the \Uncertainty Principle" described in [16], whichestablishes a trade-o� between the smoothness of an RBF, which impliesbetter reproduction of a function and faster rates of approximation, and thenumerical stability of the interpolation matrices. In short, one has to sacri�cegood reproduction quality for good stability or vice versa.In an e�ort to circumvent this problem, a multilevel interpolation methodfor scattered data was presented by Floater and Iske in [5, 6]. A full descrip-tion of this method will be presented in x2, but brie
y this approach involvesm levels of interpolation where at the jth level, the residual of the previ-ous level is interpolated. On each level, the radial basis function is scaled tomatch the data density. Thus, at the lowest level, interpolation of coarse databy a function of relatively large support is done to capture the broad detailsof the given function. At the highest level, one interpolates very dense datawith a narrow peak function to insure numerical stability. Floater and Iske[5] showed numerically that one could interpolate several thousand points inthis fashion. However, no theoretical estimates for rates of approximation3



using this method were given, and an analysis of their method poses severeproblems. This may be due to the fact that they used radial basis functionswith the same smoothness at each level.In this paper, we provide some theoretical underpinnings to the multi-level interpolation method (ML) by establishing rates of approximation fora technique that deviates somewhat from the original Floater-Iske setting inthe sense that it uses smoother functions on coarse data than on �ne data.The �nal goal of the ML method (using compactly supported RBF's) willbe to provide a numerically stable method for interpolating several thousandpoints with rapid approximation.In the next section, the ML method is fully described and a motivatingexample from spline theory is given. Then x3 provides a framework forobtaining recursive Jackson bounds, while in x4 error bounds for multilevelinterpolation are obtained for the case of the torus, the circle, the sphere,and compact sets in Euclidean space.2 Multilevel ApproximationIn this section, we will discuss the notion of multilevel approximation. Themethod may be described as a process where one works on several levels,each time treating the residuals of the previous level. Since the technique isnot con�ned to interpolation by radial basis functions, we describe it herein full generality. At the same time, we present an overview of our prooftechnique.2.1 Formulation of the Multilevel TechniqueFor a normed linear space W with a closed linear subspace W , the determi-nation of a best approximation f � 2 W to a given f 2 W consists of solvingthe minimization probleminfg2W kf � gkW = kf � f �kWfor the norm kf � gkW of the residual function f � g. To assess the possiblequality of the result, one is interested in a-priori bounds for the optimalerror kf � f �kW . Since g = 0 is admissible, there always is the primitiveerror bound kf � f �kW � kfkW :(2.1) 4



Unfortunately, this bound is useless in practice, because it in no way involvesthe space of approximants W . Moreover in most cases, without additionalinformation on f itself, it cannot be improved.To obtain a useful error bound, one must restrict f to a proper subspaceW0 of W, where W0 carries a norm that provides one with information thatcan be used to get improved error bounds. Such bounds have the generalform kf � f �kW � K(W;W0;W )kfkW0(2.2)with a constant K(W;W0;W ) that is signi�cantly smaller than 1 and de-pends in a highly nontrivial way on the subspace W that furnishes the ad-missible approximations to f . For historical reasons we shall call such anerror estimate a Jackson bound.The multilevel approximation method can be motivated as follows. Sup-pose that we want to work in the setting above, but are not satis�ed withthe error predicted by (2.2), and futhermore, suppose that we do not wantto change W;W0; f or W . There are of course many reasons for not wishingto change these things; here we just list a few possibilities:1. The subspace W cannot be enlarged without exceeding computationallimitations or because it would require new and unavailable data.2. W cannot be made larger (or k � kW made less restrictive) due to theinherent assumptions on the application problem (e.g. the requiredsmoothness of approximants or the required type of norm).3. W0 cannot be made smaller (or k � kW0 made more restrictive) becausethere is saturation (no gain by picking smaller spacesW0, as is the case,for example, for univariate splines of �xed degree), or because there isno suitable subspace of W0 that contains f .To escape this dilemma, one can employ multilevel approximation pro-cesses. These use spaces intermediate between W and W0, if all of theconditions mentioned above apply. To describe the technique, let us assumethat there is a sequence of nested spacesW0 � W1 � W2 � � � � Wm =W;(2.3)that connects the W and W0 of (2.2). In each of the spaces Wk we pose anapproximation probleminfg2Wk kfk � gkWk = kfk � f �kkWk5



to approximate an element fk 2 Wk by elements from a closed subspaceWk � Wk. The function fk, however, will always be the residual of theprevious step, i.e.,fk := fk�1 � f �k�1 2 Wk�1; 2 � k � m; f1 := f:The �nal approximation after step m to the �rst input f = f1 will beg�m := mXk=1 f �k ;and it will be from the space Vm := mXk=1Wk;where the sum need not be direct or orthogonal. Note that the spaces Vmare nested as in a multiresolution analysis, but the spaces Wm may not (andprobably won't) be orthogonal.Furthermore, some situations do not require intermediate spaces, butrather an extension of the inclusion W0 � W to the left or right. Extensionto the left, for instance, will always occur if the given function f can beassumed to lie in a much smaller subspace that W0.2.2 Error BoundsThe intermediate spaces of (2.3) should allow a sequence of recursive Jacksonbounds kfk � f �kkWk � KkkfkkWk�1; 1 � k � m(2.4)where we use the abbreviated notationKk := K(Wk;Wk�1;Wk):If the subspaces Wk are su�ciently large, each of these constants will besigni�cantly less than one. The error bounds (2.4) can be applied recursivelywith the �nal result taking the formkf � g�mkW = kf1 � g�mkWm �  mYk=1Kk! kf1kW0(2.5) 6



which replaces (2.2), and where all the single Jackson constants of (2.4) aremultiplied.The multilevel error bound (2.5) usually involves a lot more informationthan any single-level bound (2.4), and the method itself uses more degreesof freedom for approximation. A fair comparison would thus contrast (2.5)with the Jackson boundkf1 � f ��m kWm � K(Wm;W0; Vm)kf1kW0;(2.6)where f ��m is a best single-level approximation to f1 from the space Vm inthe norm of Wm. Note that this problem will have a solution that di�ers ingeneral from the solution of the multilevel method, since the intermediatenorms di�er. Furthermore, the above problem may not be solvable at allbecause of computational limitations. In such cases the multilevel methodwould still be preferable, since it allows one to break an unwieldy large-scaleapproximation problem into manageable chunks. As mentioned earlier, thiswork originated from promising computational results of Floater and Iske[5, 6] concerning reconstruction of multivariate functions from very large setsof scattered data.If we ignore the above motivation based on numerical stability, and con-centrate on theoretical error bounds, the multistep method would only be animprovement over the single step method if the relevant Jackson constantssatisfy K(Wm;W0; Vm) > mYk=1K(Wk;Wk�1; Vk):In section x4.4 we shall discuss the validity of this inequality for the multilevelmethod on the circle. But at least in situations where the single-step bound(2.6) is weak due to saturation, while the bounds (2.4) avoid saturation, theabove inequality will hold and make the multilevel method superior. A simpleexample will be given in the next subsection. On the downside, there will beno improvement except for a possible savings in computational complexity,if all norms stem from a single inner product and if the spaces Wk form anorthogonal decomposition of Vm. But this case, which is typical of standardwavelet or Fourier series expansions, is not covered by this paper, becausethe norms involved in a Jackson bound will usually di�er substantially.7



2.3 ExampleWe end this section with an example showing how the multilevel procedureworks and illustrating its potential advantages over the single-step method.The example will model a case where we assume the �nal level (the levelutilizing all the interpolation points) is forced to use a simple and e�cientmethod due to computational restrictions. However the resulting error esti-mates will then be weak. Thus we take, for illustration purposes, interpola-tion of functions f on [0,1] by splines f �1;h of degree one on a mesh of widthh. The standard Jackson bound then is [1, p. 40]kf � f �1;hk1 � h28 kf 00k1;(2.7)and this is saturated in the sense that even for much smoother functions fthere will be no improvement over the O(h2) accuracy. A very similar situa-tion occurs if one interpolates a very large set of multivariate scattered data.The sheer size of the problem will require either a solution without solvinga system of equations, or at least a massively sparse system of equations. Inboth cases one must be satis�ed with a weak error bound, if sticking to asingle-step method.Suppose, in the above example, we assume that f is much smoother thanC2. The Jackson bound (2.7) then suggests to pre�x a �rst step that has aJackson bound on second derivatives by higher derivatives. If, for instance,the function f is in C4[0; 1] with f 00(0) = f 00(1) = 0, then cubic splineinterpolation will serve the purpose, the required bound beingkf 00 � (f �3;h)00k1 � ch2kf (4)k1:If one interpolates with cubic splines at the coarse level and then interpo-lates the residual by piecewise linear splines at the �ne level, the multistepapproach will now yield an explicit O(h4) boundkf � f �3;Kh � (f � f �3;Kh)�1;hk1 � cK28 h4kf (4)k1;even if the cubic spline is calculated on a very coarse mesh of width Kh.This yields an improvement over (2.7) as soon ascK2h2kf (4)k1 � kf 00k18



holds, e.g.for h su�ciently small.For examples of the good performance of a variation of the multistepmethod using compactly supported radial basis functions applied to largemultivariate problems we refer the reader to the papers by Floater and Iske[5, 6]. This should su�ce as a practical motivation for our work. Since atheoretical basis for multilevel approximation is missing, we thus concentrateon theoretical questions.3 Radial and Related Basis FunctionsWe now discuss the spaces and classes of functions that we will deal with inthis paper. We con�ne ourselves to methods using (not necessarily radial)basis functions, and we develop a notation for transforms that allows us todeal with functions on Euclidean space, torus, and sphere in a uni�ed way.3.1 Transforms and Positive De�nite FunctionsLet M be a metric space. We say that a conjugate symmetric kernel � 2C(M�M) is positive de�nite [18], if theN�N selfadjoint matrix with entries�(pj; pk) is positive semide�nite for any arbitrary �nite subset fp1; : : : ; pNgof M with distinct points.Three important choices for M are n-dimensional Euclidean space, Rn,the n-torus, Tn, and the n-sphere, Sn. On each of these we can de�ne positivede�nite kernels via positive de�nite functions; such functions were introducedlong ago by Bochner and Schoenberg (cf. [18]).The �rst two choices are similar, because both allow a group of transla-tions to act onM, making harmonic analysis by Fourier transforms possible.Suppose that � : Rn ! C is in C(Rn) \ L1(Rn). From Bochner's Theorem,we know that � is positive de�nite if and only if its Fourier transform b�(�)is nonnegative. Similarly, if � : Tn ! C is in C(Tn) \ L1(Tn), and if theFourier coe�cients of �, which we denote by b�(�), with � 2 Zn being amulti-index, are nonnegative, then � will be positive de�nite on Tn. In bothcases, the positive semide�nite kernel associated with � is �(p; q) := �(p�q).The case of Sn is somewhat di�erent, because now the orthogonal groupacts on M, replacing standard harmonic analysis by expansions into spher-ical harmonics. Using ultraspherical polynomials, Schoenberg [17] gave arepresentation for the continuous positive de�nite functions on Sn. Because9



the Legendre polynomials P`(n + 1; x) are somewhat easier to use than theultraspherical polynomials, and are, up to constant multiples, the same set,we will use them to give Schoenberg's representation theorem [17], eq. (1.5):�(cos(�)) = 1X̀=0 b�(`)P`(n + 1; cos(�));(3.1)where the b�(`)'s are nonnegative and decay su�ciently fast for �(cos(�)) tobe continuous. In this case, the positive semide�nite kernel associated with� is �(p; q) = �(p �q), where p �q is the usual Euclidean dot product in Rn+1.Note that points in Sn may be regarded as vectors of unit length in Rn+1,such that the angle � between two points p and q satis�es p � q = cos �. Theresulting functions of the form �(cos(�)) = �(p; q) are called zonal.It is useful to expand �(p � q) in terms of the spherical harmonics Yj̀ onSn (cf. [11, 12]). This we can do by employing the famous Addition Theoremfor spherical harmonics [11]:P`(n+ 1; p � q) = !ndn(`) dn(`)Xj=1 Yj̀ (p) �Yj̀ (q);(3.2)Here, dn(`) is the dimension of the space of n + 1 dimensional harmonicpolynomials homogeneous of degree ` and !n is the volume of Sn. Thisresults in the expansion�(p � q) = 1X̀=0 dn(`)Xj=1 b�(`; j)Yj̀ (p) �Yj̀ (q); where b�(`; j) := b�(`) !ndn(`) :(3.3)3.2 Dual Pairs of Sobolev and Native SpacesPositive de�nite functions may be used to de�ne positive semi-de�nite Her-mitian forms on distributions. We �rst describe this in the case ofM = Rn.Recall that if u is a compactly supported distribution on Rn, then it has awell-de�ned analytic Fourier transform û(�) such that the action of u on asu�ciently smooth and absolutely integrable function f can be written asu(f) = ZRn û(!)f̂(!)d!:The same identity holds for pairs (u; f) of tempered distributions and func-tions in the sense of L. Schwartz. In general, the above identity serves10



to de�ne dual pairs of spaces depending on the behavior of the respectiveFourier transforms of u and f . This is done by introducing a nonnegativeweight function �(!) such that �(!) penalizes û(!) while (�(!))�1 penalizesf̂(!). The most popular case of this technique takes the weight function�(!) = (1 + j!j2)s and leads to Sobolev spaces Hs(Rn), where the innerproduct [[u; v]]s := ZRn(1 + j!j2)sû(!)v̂(!)d!(3.4)is used to de�ne the dual pair of spacesHs(Rn) := f f : [[f ]]s <1gH�s(Rn) := f u : [[u]]�s <1g= Hs(Rn)�:Upon completion, these form a pair of mutually dual Hilbert spaces.We now bring positive de�nite functions � into play and de�ne an associ-ated dual pair of \native" spaces. If � is a continuous, even, and absolutelyintegrable function such that �̂ is nonnegative on Rn, then the function �and the associated kernel �(p; q) := �(p � q) are positive de�nite and onecan use �̂ as a weight function to de�ne a semide�nite inner product of two�nitely supported distributions u and v by[[u; v]]� := upvq�(p� q) = upvq�(p; q) = ZRn û(!)v̂(!)�̂(!)d!;(3.5)where up means the action of u with respect to the variable p. The �nalform of this expression and the correspondence to the Sobolev case lead usto introduce a similar semide�nite inner product of two su�ciently smoothand absolutely integrable functions f and g by[[f; g]]� := ZRn f̂(!)ĝ(!) ��̂(!)��1 d!:(3.6)Since we carefully distinguish between functions f; g; : : : and distributionsu; v; w; : : : (as functionals acting on functions), there will be no confusionbetween these two inner products. Note that the above integral requires theFourier transforms of f and g to vanish wherever the Fourier transform of� vanishes, but a quick look at the classical Whittaker{Shannon samplingtheorem corresponding to the choice �(x� y) = sinc(x� y) shows that this11



requirement is quite natural for recovery questions, restricting the recoverablefunctions to those with the proper bandwidth. If the function �̂ is positivealmost everywhere in Rn, the above inner products are positive de�nite.Upon Hilbert space completion, we then get the dual pair of \native" Hilbertspaces H� := f f : [[f ]]� <1gH�� := f u : [[u]]� <1g :As in the Sobolev case, it does not matter much from which (su�ciently rich)starting point the completion is done; starting from tempered functions anddistributions is su�cient.We now want to relate Sobolev spaces Hs(Rn) to the somewhat unwieldynative spaces H�. To this end, we de�nek�ks;1 := sup!2Rn(1 + j!j2))sjb�(!)j(3.7)and easily calculate the following bound for the bilinear form (3.6)Proposition 3.1 If � is a continuous, positive de�nite function on Rn forwhich k�ks;1 is �nite, then the bilinear form (3.5) is continuous on H�s(Rn)and satis�es the bound j[[u; v]]�j � kuk�skvk�sk�ks;1(3.8)for all u and v in H�s(Rn). The associated spaces have continuous embed-dings H�s(Rn) � H��; H� � Hs(Rn):(3.9)Note that for all of the well{known positive de�nite RBF's there is some ssuch that Proposition 3.1 holds. Gaussians and inverse multiquadrics willallow any nonnegative s.3.3 Generalization to the Torus and the SphereIf u is a distribution on Sn or Tn, then u belongs to the Sobolev space Hs(Sn)if kuk2s := 1X̀=0 dn(`)Xj=1 (1 + `(`+ n� 1))sjû(`; j)j212



and to Hs(Tn) ifkuk2s := X�2Zn(1 + j�j2)sjû(�)j2=(2�)n <1:Here, û(`; j) is the Fourier coe�cient of u relative to the orthonormal basisof spherical harmonics, and û(�) is the corresponding quantity relative tofei���g, the usual orthogonal basis for L2(Tn).The formulas above make use of eigenfunction transforms for the Laplace-Beltrami operator associated with the underlying manifold [12]. Many ofthe results that we state can be conveniently described by using commonnotation for these eigenfunction transforms. To that end, we will denote theappropriate index set by O , the index by !, the measure appropriate to O(discrete or continuous, as needed) by d�(!), and we will let�(!) := 8><>: j�j2 ! = �; (Rn)j�j2 ! = �; (Tn)`(`+ n� 1) ! = (`; j); (Sn) 9>=>; :(3.10)This allows us to write the Sobolev norms askuk2s = ZO(1 + �(!))sjû(!)j2d�(!):(3.11)In addition to the Sobolev Hilbert space norms above, we need the corre-sponding seminorms introduced by positive de�nite functions �. These arede�ned similarly to (3.5) and (3.6) with just a generalized notion of trans-form: [[u; v]]� := ZO û(!)v̂(!)b�(!)d�(!)[[f; g]]� := ZO f̂(!)ĝ(!) �b�(!)��1 d�(!):(3.12)We can then generalize (3.7) tok�ks;1 := sup!2O(1 + �(!))sjb�(!)j(3.13)and get a straightforward generalization of Proposition 3.1 to the torus andthe sphere. We include it into the formulation of Proposition 3.2 below.13



3.4 Strictly Positive De�nite FunctionsThe condition that b� be positive almost everywhere is very important forsolving recovery problems. It not only guarantees that the �rst of the Her-mitian forms in (3.12) is actually an inner product on H�� and its subspacesH�t � H�s � H�� for all t � s provided that (3.13) is �nite, but it also allowsfor the solution of generalized Hermite interpolation problems [4, 12, 13], theinterpolants being of the formK�[v](p) := vq��(p; q);(3.14)with v being a distribution acting on the second argument of �. The followingresult, which is proved for compact manifolds in [4], and which is well knownfor Rn kernels, tells us which spaces are involved.Proposition 3.2 Let � be a positive de�nite function satisfying k�ks;1 <1. Then for all t � s the operator K� maps H�t(M) boundedly intoH2s�t(M), with the norm being k�ks;1. Furthermore, we havej[[u; v]]�j � kuk�tkvk�tk�ks;1(3.15)for all u and v in H�t(M), and the associated spaces have continuous em-beddings H�t(M) � H�s(M) � H��; H� � Hs(M) � Ht(M):(3.16)Let b� be strictly positive and let s � t. For data generated by applying distri-butions from U = Spanfu1 ; : : : ; uNg � H�t(M) to some unknown functionf , we can always �nd v� 2 U for which f � = K�[v�] such that the generalizedinterpolation conditions uj(f) = uj(f �); 1 � j � N(3.17)hold, because the interpolation matrix is the N �N Gramian [[uj uk]], whichis of course positive de�nite and therefore invertible.Positive de�nite functions � for which b� is strictly positive will be termedstrictly positive de�nite. In the case of Rn, if � is strictly positive de�niteand depends only on jxj, � is called a radial basis function (RBF). Strictlypositive de�nite functions for Tn or Sn will be called periodic basis functions(PBFs) or spherical basis functions (SBFs), respectively.14



The kernels induced by the � in Rn and Tn are of convolution type.This is also true for the case of the n-sphere, although there the convolutioninvolved is less familiar and requires group theory to adequately describe.For our purposes, we need only note that if we formally de�nef � g := 1X̀=0 dn(`)Xj=1 f̂(`; j)ĝ(`; j)Yj̀for two arbitrary functions (or distributions) f and g, then �xing p and usingequations (3.2) and (3.3), one getsvq�(p � q) = (� � v)(p):(3.18)For the rest of the paper, we shall use the convolution form of the kernel forall three cases. In addition, we shall assume that b� > 0 and that k�ks;1 is�nite.Remark 3.3 There are two observations that we want to make. First, if�1 and �2 are strictly positive de�nite functions on M, then so is �1 � �2.Second, if b�1 � cb�2, with c some positive constant, then H�1 � H�2 . Notethat the function 	s with 	̂s(!) = (1+�(!))�s is positive de�nite, and thus(3.9) is a special case of the second observation, where �1 = �; �2 = 	s.3.5 Standard Error BoundsLet us return to the discussion of interpolation using functions constructed byapplying functionals from a �nite dimensional subspace U � H�s(M) � H��to �. If the function generating the data via application of the distributionsin U is in the space H�, so that it has the form f = fv = K�[v] = � � vfor some v 2 H��, then we can adopt the terminology of (3.17) to writethe generalized interpolant as f � = K�[v�] = � � v� for some v� 2 H��.Standard arguments then show that v � v� must be orthogonal to U in theinner product [[ � ; � ]]�. Thus v� is the orthogonal projection of v onto U andis automatically a best approximation to v from U . Moreover, if w is in H��and u in U , then this orthogonality implies that [[v�v�; w]] = [[v�v�; w�u]].These observations lead to a simple (and standard) bound for the action of�w on fv � fv� : jw(fv � fv�)j = j[[v � v�; w[]�j= j[[v � v�; w � u[]�j� []w � u[]�[]v � v�[]� :(3.19) 15



Since []v � v�[]� = []fv � fv� []� and v� is the orthogonal projection of v ontoU , we have []v � v�[]� = []fv � fv� []� = dist�(v;U):In addition, observe that the left side of (3.19) is independent of u, so thatwe may choose u to be the orthogonal projection of w onto U . Taking thisinto account, we arrive at the estimatejw(fv � fv�)j � dist�(w;U)dist�(v;U);(3.20)which is in terms of a product of two bounds for optimal approximationproblems, and which can be viewed as a generalization of the hypercircleinequality [7, 4].We remark that there is a useful connection between this bound and morefamiliar bounds involving the notion of \power function". If �q is the Diracfunctional at q 2 M, the power function dist�(�q;U) for q 2 M arises inmany publications and there are various papers proving upper bounds for it;see [15, 16]. If we take s > n=2 in our setting, then �q is in H�s(M) � H��.Consequently, we may set w = �q in (3.20). Using this in connection with(3.20) then gives us the standard pointwise error boundj(fv � fv�)(q)j � dist�(�q;U)kfv � fv�k�(3.21)for all q 2 M.3.6 Jackson BoundsWe know from x2 that we need to construct recursive Jackson bounds oftype (2.4). Their construction is one of the major goals of this paper. Inthe M = Rn case, the usual bounds are pointwise and in the form of (3.21)without using Sobolev spaces. On the other hand, in theM = Sn orM = Tncases the available bounds involve Sobolev spaces and are not in the formof (3.21). In both cases there are general techniques to arrive at recursiveJackson bounds, and we choose the spaces Wk in (2.4) to be H�k normedby [] : []�k . Generalized interpolation at level k involves �k, while the error ismeasured in terms of �k�1. These two functions will be related by convolution�k�1 = �k � �k(3.22)in this paper, but future developments may allow for di�erent choices.16



Let us start with the cases M = Sn or M = Tn. There the literature [4](also see x4.1 and x4.2 below) provides bounds of the formdist�(v;U) = kf � f �k� � cskvk�s(3.23)for f = v � � with v 2 H�s � H��, where cs is a small constant dependingon M; U ; s, and �. To be recursive, such a bound must be extended tothe right by something containing kfk	 for another strictly positive de�nitefunction 	. In particular, we have this result.Proposition 3.4 Let f belong to H	 � H�, and suppose thatC2s := sup!2O 	̂(!)(1 + �(!))s�̂(!)2(3.24)is �nite. If f = � � v, where v 2 H�s(M), thenkvk�s � Cskfk	 :(3.25)Proof: We have that v̂(!) = f̂(!)=�̂(!); and sokvk2�s = ZO jv̂(!)j2(1 + �(!))�sd�(!)= ZO �jf̂(!)j2=�̂(!)2� (1 + �(!))�sd�(!)= ZO �jf̂(!)j2=	̂(!)� 	̂(!)(1 + �(!))s�̂(!)2d�(!)� C2skfk2	 :Taking square roots above yields (3.25).Using the notation of (3.19) and putting both ingredients together impliesthe required Jackson bound (2.4) in the formkf � f �k� � csCskfk	(3.26)for all f 2 H	. Applications can now use any choice of �; s, and 	 thatsatis�es (3.24) and k�ks;1 <1, for instance 	 := � � �. We will deal withspeci�c cases in x4. 17



In case M = Rn we convert the pointwise error estimate (3.21) into anL2 bound by simply summing up over the bounded and measurable domain
 � Rn in which we do the interpolation. This yieldskfv � fv�kL2(
) � k dist�(�:;U)kL2(
)kfv � fv�k�:To get a recursive Jackson bound, we proceed along the lines of [14] andimpose an additional \boundary condition"v 2 L2(
); supp v � 
(3.27)for the function f = fv = � � v that generates the data. But since f̂v = �̂ � v̂,we can conclude that (3.27) implieskvkL2(Rn) = kvkL2(
) = kfvk���:(3.28)Then we apply the standard orthogonality argument to provekfv � fv�k2� = ZRn(cfv �dfv�) 1̂�(cfv �dfv�)= ZRn(cfv �dfv�)cfv̂� d�= ZRn(cfv �dfv�)v̂d�= ZRn(fv � fv�)vd�= Z
(fv � fv�)vd�� kfv � fv�kL2(
)kvkL2(
)= kfv � fv�kL2(
)kfvk���:� k dist�(�:;U)kL2(
)kfv � fv�k�kfvk���:Here, the �nal line used our previous bound, and cancelling a factor yieldsthe required recursive Jackson boundkfv � fv�k� � k dist�(�:;U)kL2(
)kfvk���(3.29)which is adapted to convolution (3.22) between di�erent levels.18



4 Speci�c ExamplesForM = Tn orM = Sn there are bounds of the form (3.23), provided someadditional restrictions on U hold [4]. We now make these restrictions precise,�rst in the case of the circle and second for the 2-sphere.4.1 The CircleWe wish to discuss a multilevel interpolation problem for the case of the circle.To do this, we will �rst need to give speci�c estimates on the constants cs andCs in equation (3.26). In particular, to get cs we need the following resultalluded to in x3.6.Proposition 4.1 Let U be the span of the set f��jgN�1j=0 , where the angles �jare given by �j = 2�N (j + "j);where the �j's are real numbers that satisfysupj j�jj = L; 0 � L < 1=4;and let s > 14 . If v is in H�s(T1) and � is in H2s(T1), and if Pk(1+k2)s b�(k)converges, thendist�(v;U) � kvk�s�(L;N)0@ Xk=2IN(1 + k2)s b�(k)1A1=2 ;where IN := [�[N=2]; [(N � 1)=2] ] \ Z and�(L;N) := 1 + ( 1; if L = 0;qN=2 csc(�4 � �L) if 0 < L < 1=4.Proof: See Theorem 5.3 in [4].This result combined with equation (3.23) provides this bound on cs:cs � �(L;N)0@ Xk=2IN(1 + k2)s b�(k)1A1=219



The choice of 	 in Proposition 3.4 will of course determine Cs. As we men-tioned at the beginning of x3.6, we will choose 	 = � � �. For the case ofthe circle, this gives b	(k) = b�(k)2. Inserting this in equation (3.24) givesCs = 1, since s is greater than 0 and �(k) = k2 can take on the value 0.When this result and the previous estimate on cs are inserted in equation(3.26), we arrive at the Jackson bound that we will require here:kf � f �k� � �(L;N)0@ Xk=2IN(1 + k2)s b�(k)1A1=2 kfk	;(4.1)with 	 = � �� and the other quantities as de�ned above in Proposition 4.1.4.2 The 2-sphereWe now deal with the 2-sphere. The space U will be taken to be the span ofpoint evaluations at points pj;k. To describe these points, we will adopt theconvention for spherical coordinates that is customary in physics and wasemployed in [4]: the angle � 2 [0; �] is measured o� the positive z-axis andthe angle � 2 [0; 2�) is measured o� the x-axis in the x-y plane. In addition,take � to be a �xed positive integer, then let�j = �j2� ; j = 0; : : : ; 2�� 1;�k = �k� ; k = 0; : : : ; 2�� 1;(�j; �k) = coordinates of pj;k:As in the case of the circle, we are faced with the problem of determiningthe constants cs and Cs in equation in (3.26).Proposition 4.2 Take s > 1=2. Let v be in H�s, U be the span of f�pj;kgand � be a spherical basis function in H2s(S2). If � is a power of 2, and ifthe series P1̀=0Pm̀=�`(1 + `(`+ 1))s b�(`;m) is convergent, thendist�(v;U) � �1 + 1p�� 32 log2(16�)��0@ 1X̀=� X̀m=�`(1 + `(`+ 1))s b�(`;m)1A1=2 kvk�s:Proof: See Theorem 6.6 in [4]. 20



By this result it is clear that we havecs =  1 + 1p�� 32 log2(16�)!0@ 1X̀=� X̀m=�`(1 + `(`+ 1))s b�(`;m)1A1=2 :If we again take 	 = � � �, we have Cs = 1 as in the case of the circle.We want to use an SBF of the form (3.1), where from equation (3.3), withd2(`) = 2`+ 1 and !2 = 4�, we see thatb�(`;m) = 4�2`+ 1 b�(`); m = �`; : : : ; ` :Using this equation in the expression for cs and summing over m, we obtaincs = 2 �p� + � 32 log2(16�)� 1X̀=�(1 + `(`+ 1))s b�(`)!1=2 :When this result and Cs = 1 are inserted in equation (3.26), we arrive at theJackson bound that we will require for the spherical case:kf�f �k� � 2 �p� + � 32 log2(16�)� 1X̀=�(1 + `(`+ 1))s b�(`)!1=2 kfk	;(4.2)with 	 = � �� and the other quantities as de�ned above in Proposition 4.2.4.3 Radial Basis Functions in RnThe recursive evaluation of the Jackson bound (3.29) poses no further prob-lems in case of standard Lagrange interpolation data on scattered locations,because there are many sources (e.g. the discussion in [16]) for pointwisebounds on the power function, thus yielding L2 bounds on compact domains
 � Rn. In general, these bounds improve with the smoothness on �k atthe current level k and with decreasing sparsityhk := supp2
minq2Pk jp� qjof the k-th level data set Pk � 
. Re�ned bounds using the boundaryconditions (3.27) are in [14]. 21



However, the boundary conditions (3.27) still pose a serious research prob-lem, since they are (so far) required to hold on each level. Using residualsbetween levels implies the recursionsfk+1 = fk � f �k =vk+1 � �k+1 = (vk � v�k) � �k =vk+1 � �k+1 = (vk � v�k) � �k+1 � �k+1vk+1 = (vk � v�k) � �k+1;(4.3)and if vk and v�k are supported in 
, the support of vk+1 will in general not becon�ned to 
. Before we discuss a special case in which we partially overcomethe problem, it should be pointed out that the boundary conditions maypossibly be unnecessary if other proof techniques for the recursive Jacksonbounds are provided by future work. In fact, using the k:k�k norms is quiterestrictive, and weaker norms may not require boundary conditions. Thisis motivated by looking at the cubic spline case, where boundary conditionsusually are necessary for convergence of second or higher derivatives, but notfor convergence in weaker norms.In case of compactly supported functions �k, the recursive convolutionpreserves compact supports and eliminates problems with L2 integrability, ifwe start with f0 = v0 ��0 satisfying the boundary conditions with respect tosome compact subdomain 
0 of 
. The latter is an awkwark hypothesis, butour current technique cannot get away with a less restrictive assumption. Ifthe distributions vk and v�k are supported in some compact subdomain 
kwhose points have a distance of at least rk from the boundary of 
, and ifthe functions �k have a support radius of �k = �02�k, then (4.3) impliesrk+1 � rk � 2�k. If we start with r0 > 4�0, induction yieldsrk+1 � r0 � 2�0(1 + 2�1 + : : :+ 2�k) � r0 � 4�0 > 0for all k. Thus the boundary conditions are satis�ed at all levels.We now apply the multilevel technique and start at the �nest level mwith the bound (3.21)j(fm � f �m)(q)j � Pm(q)kfm � f �mk�musing the power function Pm(q) := dist�(�q;U)m on points q 2 
m andinvolving �m. We can assume the L1 norm of Pm on 
m to be expressibleas a function of sparsity hm := supp2
m minq2Pm jp� qj22



of the m-th level data set Pm � 
m � 
. Thuskfm � f �mkL1(
m) � kPmkL1(
m)kfm � f �mk�mserves as a starting point for the recursion usingkfj+1k�j � kPjkL2(
j)kfjk�j�1for j = k; k � 1; : : : ; 1. Again, the crucial factor kPjkL2(
j) usually is bound-able by a function of hj de�ned as above. Note that on the levels with coarserdata and smoother RBF's with larger supports, the data ara allowed to stayfurther away from the boundary. Now these bounds multiply neatly and endup with kfm � f �mkL1(
m) � kf0k�0kPmkL1(
m)�mj=1kPjkL2(
j);as required.4.4 ComparisonWe �nally contrast the multilevel method with the standard interpolationerror on a single level. Our general multilevel estimate starts with������0@f � mXj=1 f �j1A (x)������ � dist�m(�x;Um) dist�m(vm;Um)(4.4)where we can evaluate the last factor recursively. Since the use of smootherfunctions than �m at the �nest level m usually is numerically unfeasible,we contrast (4.4) with the estimates obtained for the standard case usingthe function �m at the maximal number of interpolation points (distributionspace Um) directly to the given data. Again appealing to [4] this has thebound j(f � f ��m )(x)j � dist�m(�x;Um) dist�m(~vm;Um);(4.5)where we are using the convolution representation of f as f = �m � ~vm. Notethat vm and ~vm are di�erent, because vm is subject to the recursion (4.3).We wish to contrast the predicted errors in (4.4) and (4.5). A reason-able method is to compare the ratio of the two error bounds, which, aftercancelling the common factor dist�m(�x;Um), leads to the ratiodist�m(vm;Um)dist�m(~vm;Um) :(4.6) 23



We �rst discuss the quantity dist�m(vm;Um). Upon recursion, it can bebounded above by kv1k�0 mYj=1Kj;where the constants Kj are norms of residual operators on nested nativespaces, i.e. Kj := supfj2H�j kfj � f �j k�jkfjk�j�1 ;and where best approximations f �j to fj are taken with respect to datafunctionals in Uj. On the other hand, the denominator has the boundKmk~vmk�m�1 by the same reason. Again, we compare ratios of bounds ratherthan the ratios themselves, and thus we cancel Km. This leaves the otherfactors Kj, which we can make small by using su�ciently many data func-tionals in all of our scenarios. The �nally remaining ratio kv1k�0=k~vmk�m�1can be large, but is independent of the data. This shows that the bounds forthe multilevel method are superior to the bounds for the single-level methodon the last level, provided that there are su�ciently many data.AcknowledgementThe second author thanks Texas A&M University for its hospitality duringtwo visits in January of 1996 and 1997, and gratefully acknowledges partial�nancial support provided through the auspices of Professor Charkes K. Chuiand by the Mathematics Department of Texas A&M UniversityReferences[1] C. de Boor. A Practical Guide to Splines. Springer-Verlag, New York,1978. Applied mathematical Series 27.[2] J. Duchon. Interpolation des fonctions de deux variables suivant leprincipe de la 
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