Multivariate Interpolation and Approximation

by Translates of a Basis Function

Robert Schaback

Abstract. This contribution will touch the following topics:

e Short introduction into the theory of multivariate interpolation
and approximation by finitely many (irregular) translates of a (not
necessarily radial) basis function, motivated by optimal recovery
of functions from discrete samples.

o Native spaces of functions associated to conditionally positive def-
inite functions, and relations between such spaces.

o Frror bounds and condition numbers for interpolation of functions
from native spaces.

o Uncertainly Relation: Why are good error bounds always tied to
bad condition numbers?

o Shift and Scale: How to cope with the Uncertainty Relation?

§1. Introduction and Overview

This contribution contains the author’s view of a certain area of multivari-
ate interpolation and approximation. It is not intended to be a complete
survey of a larger area of research, and it will not account for the history
of the theory it deals with. Related surveys are [15, 21, 22, 27, 30, 47, 48,
58].

Section 2 will motivate why we are mainly interested in multivariate
functions that are linear combinations

N
flo) =) a;®(x —x;), veR’, a; €R (1.1)
j=1
of translates of a fixed basis function ® : RY — R, where X = {z1,..., 2N}

is a set of N scattered points in IR?. The space of functions (1.1) often
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carries a natural topology induced by an inner product, and its Hilbert
space closure (the “native space” for ®) will be studied in Section 3. Error
bounds for interpolation of functions from the native space are intimately
connected to upper bounds on A)_(T‘P for the N by N matrix

Axe = (D(z; — k)1<jk<N- (1.2)

This connection will be dealt with in Sections 4 and 5, where we see that ba-
sis functions ® with good error bounds on their native space will necessarily
have bad upper bounds for ||A%'y||. A consequence of this “uncertainty
relation” is that one has to introduce scaled versions of ® in order to cope
with the bad condition of Ax ¢. Thus the final section contains refined
error bounds for approximation by scales of basis functions.

62. Optimal Recovery via Discrete Sampling

Sampling theory provides a good reason for considering functions of the
form (1.1). The most common example is the reconstruction of a univariate
bandlimited function f by its sinc series

Fl) =Y f(j) sine (x — j)

JEZ

with )
sin T

sine (z) = —
But we do not want to start with (1.1). Instead, we shall pose the recon-
struction problem in a general way and find later that (1.1) is the natural
solution.
Assume we want to recover a multivariate function f : R? — R from
a sample of values y1 = f(x1),...,ynv = f(xn) on a discrete (and “scat-
tered”) set X = {x1,...,an} in R?. Besides these values, we only have
partial information on the spectrum of f, se., on its Fourier transform.
More precisely, if we know that

flz) =(2r)7¢ y fw)e“dw, x € R (2.1)

recovers f from its Fourier transform f, we shall assume that f lies in a
weighted Lo space

Ly(p) = {g e L") [ ol Potelds < oo},
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where p: R? — Ry U {400} with p(—) = p(-) is a Lebesgue-measurable
function that is finite on at least an open subset of R?. These things can be
generalized to a distributional setting, but we want to keep the presentation
simple.

The weight p determines a norm || ||2,, on the space

Fi={f:R? 5 RU{£oo}, f € La(p) and (2.1)} (2.2)

via the bilinear form

(f,9)2,p:= (27T)_d » f(w)f](w)p(w)dw.

By symmetry of p and f(—w) = f(w) this form is real-valued. Then we
can ask for optimal recovery in the sense of the problem

Find f € F with ||f||2,, minimal

such that f(z;)=y;, 1 <j < N.

The solution is given by the following theorem whose proof contains some
standard arguments that we include to make this paper self—contained.

Theorem 2.1. If % € Ll(IRd) and & := % , then a solution of the above

recovery problem exists uniquely and is necessarily of the form (1.1). The

coefficients a = (ay,...,an )T can be found by solving the system
Axoa=1y (2.3)
wherey = (yi,...,yn)?. The matrix Ax ¢ comes from (1.2) and is positive

definite and symmetric.

Proof. Assume first that a solution f € F to the recovery problem
does exist. By the usual perturbation argument for characterization of best
approximations in Euclidean spaces we then have

(f.9)2,,=0 (2.4)

for all ¢ € F with g(z;) =0, 1 <j < N. Then there are a1,...,an € R
with

(f,9)2.0 = Y ajg(x;)

J=1
for all ¢ € F, and we introduce Fourier transforms on both sides to get

N

ent [ Tt =nt [ i)Y a i

]Rd

J=1
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for all ¢ € F. This is satisfied if and only if

3 1 X .
flr =~ DoareT = () - a ()

J=1

1 N
==, 0ux = Zaje_i“"ff
p p
or iff f is of the form (1.1).
Our argument clearly shows how translates of a basis function come up
very naturally, but so far it is no proof of the theorem. To prove existence,
we show that Ax ¢ is positive definite. Indeed, for any a € R™ we have

N
CLTAX’q)CL = Z ajap®(x; — ay)
k=1
= (27r)_d/ L |o X(w)|2dw (2.5)
re P(w) ’

and this nonnegative quantity is zero iff o, x(w) vanishes on the support
of 1/p. But this support contains an open set and o, x is analytic. Thus
04,x(w) vanishes on R? iff (2.5) vanishes. Since the functions e~'“%i are
linearly independent, the positive definiteness of Ax ¢ follows.

But then there is a unique f of the form (1.1) that satisfies (ff) and
thus minimizes || f||2,, under all other interpolants from F.

If f1 and f3 would both satisfy (2.4) and the interpolation conditions,

then || f1 — f2 ||§’p = 0 follows from (2.4) and this proves unicity in general.
|

Theorem 2.1 shows that translates of a single basis function naturally
arise when solving an optimal recovery problem in spaces F of functions
with Fourier transforms in weighted L, spaces. Note that shifts or trans-
lates do not directly occur in the problem setting, except that F is a space
that is invariant under all shifts of translations in IRY. The notion “shift
invariant space”, however, has been extensively used (see e.g., [11, 12, 13])
for spaces invariant under shifts in Z¢ only. We remark in passing that a
function space F necessarily is of the form (2.2), provided that it is

(a) a Hilbert space,

(b) continuously imbedded in LQ(IRd),

(¢) allowing continuous point evaluation functionals ¢, f = f(x) for f € F
and z € R?, and

(d) separating points in R¢, and
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(e) invariant under all shifts in RY.

The weight function p then comes out to be p = 1/® with &(z —y) :=
(6g,0y) 7 for z,y € R?. Details of this will be given in a forthcoming
paper.

To give the reader an idea of the scope of this approach, we first recall
an example with a very small space F of functions, i.e., the bandlimited
functions. Here, the weight function is

(2) 1 ze€eB,

) =

Pr o~ ¢ B,

where B, is the unit ball with respect to the L, norm in R?. Then 1/pp
coincides with the characteristic function yp, of B, and P = x B, holds. If

p = 00, then ® is a d-fold tensor product of sinc functions. For p = 2 we
get the jinc functions

—d
®(z) = |3 * Tapal||z]|2)

up to multiplicative constants. This is the simplest instance of a radial
basis function ®, i.e.,

®(z) = ¢([lxfl2), ¢ :Rxp —R.

Adopting the terminology of signal analysis, we note that this case yields
very good localization in the frequency domain, because Fourier transforms
are compactly supported. In the time domain we have algebraically decay-
ing functions

—d —(d
®(x) = |||y * Tapal||z]|2) = O([l|l5 TV

for ||z]]s — oo.

A more straightforward example with a small space F is given by
the Gaussian ®(z) = e=I1217/2 which is symmetric in time and frequency
domain.

Note that the bandlimited case cannot be turned upside down by
swapping frequency and time domain, because the jinc functions have sign
changes and cannot be used as weight functions. To construct compactly
supported functions with nonnegative Fourier transforms, some additional
techniques are needed. For instance, convolution in the time domain al-
ways produces nonnegative Fourier transforms, but the problem then is to
evaluate the result in the time domain. We cite a successful construction
due to Wu [64] that proceeds as follows:
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Table 1.

Time—Frequency Localization.

Time ([[z]]z — o) Frequency (||w||2 — o)
Bandlimited ||$||2_(d+1)/2 comp. supported
d k—(d+1)/2 _ _
AR Jll 7Ol
Gaussian e—lzllz/2 e—llwll3/2
inverse —-d < 23
Multiquadrics | (4 [[e3)%, 8 <0 | [l THHD2 . elele
Q. (Wu) comp. supported ||w||2_2(£+1+m_k)
in IRZm—l—l7
0<m<Ek</t

pe(r) == (1=}
G0 1= Qi ¥ @y

1

Oer(r) = (— .

It generates radial functions
Ber(@) = der(flzfl2)

that are positive definite on R? for d < 2k 4 1. Details of this construction
can be found in [64], and a toolbox for handling radial functions is in [59].
A rather large space F is generated by the weight

d
— _ 1<EkE<Vl.
e ) Gek—1(1) <k<

pr(w) = L+ [lw])*, w e R
for 2k > d, and we get Sobolew space
F=Wi(R")
and the corresponding optimal basis function
() = ell T Kiapel(lall>).

where K, 1s the Bessel function of third kind. Since the K, functions are
nonnegative, this example can be turned upside down and yields “inverse
multiquadrics”

() = (1+ ||«[3)"/?
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for 0 > # > —d, where now

+d)/2 - —
plw) = SO PE L, 4 1))

acts as a weight function for the Fourier transforms. Note that this exam-
ple and the Gaussian force Fourier transforms of functions in F to decay
exponentially. Thus the space F consists of C'*° functions.

We summarize the known prototypes in Table 1 and remark that some-
thing like the “up”—function still is missing: a case with compact support

and C'*° smoothness in the time domain while having exponential decay
and positivity in the Fourier domain.

Historical Remarks

There is a vast literature on optimal recovery starting from Golomb/Wein-
berger [24] continuing via Sard [52], Micchelli/Rivlin [38], using results on
abstract spline theory as recently summarized by Atteia [3] and ending up in
Information—based Complexity as defined in Traub/Wozniakowski [63] and
Bojanov/Wozniakowski [10]. Sampling theory also is a wide-ranging field
(see e.g., the review by Butzer/Stens [16]). We borrowed the ingredients
of our presentation from the folklore of both subjects, ignoring (so far)
the background of reproducing—kernel Hilbert spaces that will show up
in the next section. Spaces of functions that have Fourier transforms in
weighted L, spaces occur as examples for complex interpolation theory
in the fundamental papers of Calderon [17] and Schechter [60]. See the
review of Pisier [46] in this volume for details of complex interpolation. We
touch upon another connection to interpolation theory of normed vector
spaces at the end of Section 6. Another important link to classical results
arises with the theory of Riesz and Bessel potentials, which correspond
to thin-plate splines and multiquadrics. See, for instance, Aronszajn [1]
and Calderon [18]. Our view on native spaces as “principal translation—
invariant spaces” borrows from ideas of de Boor, de Vore and Ron [11, 12,
13] on shift-invariant spaces.

63. Native Spaces

The preceding section showed that optimal reconstruction of functions in
a quite general translation—invariant space F of functions naturally leads
to the consideration of functions that are linear combinations of translates
of a single basis function ®. Thus the space F determined a function ®.

We now go the opposite direction and start with a function ® to gen-
erate a “native” space F. In contrast to the first approach we do not work
on all of R? but rather on a subdomain ¢ R.
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Definition 3.1 A function ® : Q@ — Q — R with ®&(—-) = ®(-) is positive
definite on €, if for all sets X = {ay,...,2x} of N pairwise distinct points
in © the matrix Ax ¢ in (1.2) is positive definite.

Note that there is a slight difference in terminology with [39, 61, 62]
and others, but it definitely is bad notation to call ® positive definite when
Ax ¢ 1s positive semidefinite or nonnegative definite for all X.

The space D(2) of all finitely supported linear functionals on the space
R of all real-valued functions on € can now be equipped with an inner
product. Indeed, if functionals

M N
A= Nb €D(9), u=Y by, € D) (3.1)
; e
with A;, u; € R, 2;,y; € 0 are given, then
(A, o = Zz/\ ;@ Yj)
=1 j=1

is an inner product on D(2), and we can form the Hilbert space D(§2) by
taking the closure with respect to (-,-)s. Note that our first definition of a
space concerned a space of functionals, but now we can go over to functions

of the form (1.1) by
Falz) = Z Ne®(z — ) = (62, Mo (3.2)

for A from (3.1) and = € Q. Allowing all A € D(Q2) we define the native
space for @ to be

FCI),Q = {f)\(l’) — (6I7A)¢7 VS Q? A € D(Q)} (33)
and this space can easily shown to be isometrically isomorphic to D(£2)

pf) = (A e
for all A, u € D(R), if we define

(frs fu)e = (A, p)e

on Fg o. An equivalent definition, as given by Madych and Nelson [31, 32,
33] in case of Q = R, is the space

because of

Foo={f:Q=>R:[u(f) <C(H)lplle, pe D)} (3.4)
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of all functions on  that allow all elements of D(§2) as bounded linear
functionals with respect to the topology induced by @ on D(1).

If we look at the dependence of Fg o on 2, we should consider a
subdomain € C Q. Since clearly D(£21) C D(2), we find

Foo, CF = {f € Foq restricted to 4}

0|0,

if we use (3.3), but the equivalent definition (3.4) implies F C Fs,0,.

<I>,Q‘Ql
This proves Iske’s extension theorem

F = fcp’gl for Q4 C €,

0|0,

if ® is positive definite on Q (see [26]). In case of @ = R? it implies
that any function in a native space Fg g, corresponding to a domain €
has a (non—unique) extension to all of R? that preserves all the implicit
smoothness assumptions that are hidden in the definition of F¢ o. In
case of the Gaussians or the inverse multiquadrics all functions in Fg o,

are restrictions of functions in Fg o C COO(IRd), i.e., they have canonical

COO(IRd) extensions. The construction of an extension is clear from the
definition of Fs o, , since the function

(@) = (6s,N)a

for A € D(21) C D(2) can not only be evaluated for « € Q4, but also for
x € 2, thus providing an extension. It is an interesting question to ask for
the maximal domain €2 on which a given function ® is positive definite; the
existence of non—extensible positive definite functions on bounded domains
is a hard problem already in the one-dimensional case (see [28, 61]), and
there are results of Rudin [50, 51] and Krein [28] in the multivariate case.
Another challenge is the full characterization of positive definite functions
on IR? under the weakest possible assumptions (see e.g.,[19, 25, 62, 65] for
this problem).

Historical Remarks

Our presentation mainly follows ideas of Madych-Nelson [31] but confines
itself to unconditionally positive definite functions. The work of Madych-
Nelson in turn builds mainly on results of the French school, expecially on
Duchon’s thin—plate splines [20] and earlier work on abstract spline theory
as provided by Atteia [2], Laurent [29], and later also by Meinguet [37].
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84. Error Bounds and Pointwise Optimality

Consider quasi—interpolants of the form

N
fHSf,u,X:Zf(xj)'uj (41)

i=1

where X = {xy,...,any} CQ C R? is a set of scattered points, and where
Uy, ...,uy : @ — IR are arbitrary functions. If = € Q is fixed, the error
functional

5£,u,X(f) = f(l') - Sf,u,X(l')

is in D(?), and thus there is an error bound of the form

e u x (O < N flle - llewuxlle (4.2)

for functions f in the native space Fg o. The norm of the error functional
is explicitly available via

||€x,u,X||?I> =®(0) — QZ ui(z)®(x — ;)
+ Z ur(w)u;(2)®(rr — ;). (4.3)

This allows comparison of various quasi-interpolants, and one can ask
for an optimal choice of uy(x),...,uy(z) that minimizes ||e, 4 x||3 in the
above representation as a nonnegative quadratic form. If u* := (uj(x),...,

u*;(z))T denotes the minimizer, then clearly

Y @(ap —xju(z) =z —ag), 1<ESN. (4.4)

J=1

Thus the functions u}(x) are in the span of the ®(z —z¢), 1 <k < N, and
they necessarily satisfy the Lagrange—type interpolation conditions

since the system (4.4) is uniquely solvable due to the positive definiteness
of the coefficient matrix we already know from Theorem 2.1. This proves
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Theorem 4.1. The interpolant of the form (1.1) to scattered data is the
unique minimizer of the error bound (4.2) under all quasi-interpolants

(4.1),

Note that this result indicates that general error bounds in native
spaces cannot be improved by choosing the shifts occurring in (1.1) different
from the data locations used in (4.1).

It is interesting to plot the pointwise norms ||e; 4, x||e of the error func-
tionals as a function of = for u = u* or for different choices of . This makes
sense even in the classical univariate situation, and it would be worthwhile
for applications to see a series of illustrative examples. Minimization with
respect to u may lead to unexpected results in other than Hilbert space
settings (for instance in W' _[a,b]). Another possibility is the variation of
X while always using the optimal interpolant u* that will depend on X.
Then ||e4 4+, x||5 Will be a smooth function that allows minimization with
respect to X. This may lead to a future theory that generalizes perfect
splines. Numerical results of A. Beyer [8] were encouraging.

At this point it is by no means evident that the interpolant sy, x
minimizes ||s||3 under s € Fg o with s(z;) = f(z;) for 1 <j < N, because
there is no apparent link between || ||¢ of this section and || ||2,, of Section 2.
To bridge this gap in full generality seems to be an open problem which is
related to the full characterization of (strictly) positive definite functions,
as posed in the survey of E.W. Cheney [19] in this volume. If ® can be
recovered from its Fourier transform via

d(z) = (27r)_d/ P(w)e  duw,

]Rd

and if A is a functional of the form (3.1), then

1A = A%

2

= (zﬁ)—d/Rd d(w) ijeiww dw. (4.5)

Furthermore, the function fy of (3.2) will then have a Fourier transform

~

falw) = B(w) D7 Ajemion

J=1

such that we can formally write

TER e A
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to see the similarity between || - || and || - [|2,, with p = l/Ci)
The aforementioned characterization problem for (strictly) positive
definite functions leads to some specific questions in this context:
1) Which conditions guarantee the existence of @ € Li(IR?) needed for
(4.5)7
2) What are the properties of & that ensure (4.5) to be an inner product?
A partial answer to 1) was given by Iske in this dissertation. If @ is
locally absolutely integrable and of at most polynomial growth, then it has a
generalized Fourier transform $. For positive definite, Iske proved under
mild additional assumptions that $ is in Ll(IRd). The second question
is more difficult, because it involves the structure of the possible zeros of
limits of exponential sums as occurring in (4.5). In the univariate case this
requires tools from almost periodic functions (see Fang [23]).
The optimal error bound (4.2) is rather abstract and needs further
elaboration in terms of the density of the data. A bounded domain §2 C R
usually is fixed, and for a positive 7 € IR one considers a local density

hx . (z):= sup min ||y — 2|2, = € Wy
T( ) ||y—x||2§,.1§]§]\7|| ]H ) ( )

where for technical improvement one can replace the ball {y : ||y —z||2 < 7}
by cones or cubes with vertex x. Then there are three somewhat different
techniques for proving error bounds of the form

lezur xlle < Fa(hx -(x)) (4.7)

with F' : R>¢9 — R>¢ monotonic and F(0) = 0. If (4.7) holds, then (4.2)

becomes

F(@) = spex(@)] < [ fllo - Fo*(hxr(2)) (4.8)
for all X = {zq,...,2n} C Q and all z € Q with hx ;(z) < hg, where hyg

is a positive constant depending only on 7, ®, and 2. Table 2 shows the
currently known functions Fg for various choices of ®. Note, however, that
® determines both Fe and |.||s, making error bounds hard to compare.
In general, Fg gets smaller with improving smoothness of ®, but at the
same time [|.||¢ gets more restrictive, since 1/® acts as a penalty weight
for Fourier transforms.

We finally give the reader some pointers to the three proof techniques
of (4.7). The first is confined to radial functions ®(x) = ¢(||z[|2), but
does not involve Fourier transforms. It reduces the problem to quantita-
tive polynomial approximation of ¢ on [0, k] for h — 0, and dates back to
Madych-Nelson [32], being refined somewhat in [34]. The other two use
Fourier transforms of non-radial functions and can be found in Madych-

Nelson [33] and Wu/Schaback [66]. In all three cases it is crucial to have
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good bounds on Lebesgue constants of polynomial interpolation of per-
turbed regular data in R?. By using explicit geometric configurations for
few data points, Powell [49] could get small and explicit bounds for thin—
plate splines via knowledge of good Lebesgue constants. The problem of
optimal bounds for Lebesgue constants of multivariate polynomial inter-
polation is still open in general and its solution would improve the known
error bounds of type (4.8) a lot. To our knowledge, the best general bounds
are in [34], and papers by Bloom [9] and Bos [14] show what is possible for
regular data.

§5. Condition Numbers and Uncertainty Relation

Numerical experiments show that the condition number of Ax ¢ asin (1.2)
is terribly large for smooth @ like Gaussians or Multiquadrics when com-
pared to non-smooth @ like thin-plate splines. The spectral condition
number of Ax ¢, being the quotient of largest and smallest eigenvalue, was
observed to be boosted up mainly because of the smallest eigenvalue being
extraordinarily small. To understand this phenomenon, a series of papers
by Ball, Baxter, Narcowich, Sivakumar, and Ward [4, 5, 6, 7, 40, 41, 42,
43, 44, 45] investigated lower bounds

ATAxe) = o X, ®)|N3

of the quadratic form associated with Ax ¢. This is equivalent to bounding
the smallest eigenvalue of Ax ¢ from below.
The basic trick in most of these papers is to construct a “minorant”

WU such that
AMAxad 2 M Ax ud > o X, 9)|A3,

where A x v is diagonally dominant and ¢(X, ¥) is readily available. A short
and general account of the technique can be found in [56]. The results are
always of the form

o(X,®) > Galgx)

where G : R>¢9 — R>¢ is a monotonic function with G(0) = 0, and

min |jz; — x|z

1
IX= 5 Ghien

is the separation distance of points in X. Note that the bound does not
depend on the number N of data points. Up to multiplicative constants,
Table 2 shows the special cases known so far (see [56] for details).

There is a striking similarity between the functions Fp and Gg, and
it seems to be impossible to find cases where the interpolation error, given

by F}I)/z, is small and the condition, partly given by Gq_)l, is small as well.
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This kind of “Uncertainty Relation” can be put on a solid basis by a
simple argument from [56] that bridges the gap between upper bounds on
errors for interpolants by X—translates of ® and lower bounds on eigenval-
ues of Ax ¢. In fact, if we formally add z¢ := z to the data set X and
define

Ag = AXU{w},‘I’
Ay =1, —ui (@), .. —ui(2)
qr o= min ;g

then, when interpreted as an error bound,
Mo AL = ez x 6 < Follix o(2)),
and when interpreted as a quadratic form,

VAN 2 Galan) - X3
N
— Golg) | 14 Y Jujta)l?
j=1

Thus

Go(gr) < Galgr) [ 1+ Z (@) | < Fa(hx.r(z)) (5.1)

proves that for comparable small arguments with
hx r(x) = h=q (5.2)

one cannot have a small error bound Fg(h) without having a small lower
bound Gg¢(h) on the smallest eigenvalue. And (5.2) clearly is possible for
regular data sets X of spacing h and = placed at distance > h/2 from all
points of X.

There are some further consequences of the Uncertainty Relation in
the form (5.1). First, it suggests that optimal results are obtained in cases
calculated near the limits of machine precision, may these be reached by
huge amounts of densely distributed data points for non—smooth ®, or may
these be reached by moderate numbers of data points for smooth functions
like e.g., the Gaussians. When reconstructing surfaces from scattered data
and varying certain parameters like ¢ for multiquadrics (¢ + 7“2)6/2 such
that the condition of Ax ¢ tends towards the limits of machine precision,
the nicest picture always is the one that immediately preceded the numer-
ical breakdown.
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Table 2

15

All entries are modulo factors that are independent

of r and h, but possibly dependent on parameters
of ®. Unreferenced cases for G are treated in [56].

O(z) = ¢(r), r = [[z]2 Fy(h) Gao(h)
r?, 3 € Rso \ 2IN o o
M]: d=p=1
thin—plate splines [59] [5], pg. 419: 5 € (0,2)
[42],§ VI: B =m —d/2,
d odd
(—=1)'*8/2:81ogr, B € 2IN R h?
thin—plate splines [59] [42],§ VI: B =m —d/2,
d even
(v2 4+ 282, B € R\ 2INxg ek [] pg. 90:
=1=5,d
Multiquadrics 6>0 [ |, pgs. 422 423:
7—1—5
[32] h9 exp(—12.76vd/h)
=8 30 e h—de~ w7 [42], pg. 90: B =1
Gaussians 6>01[32] | ™ Texp(—40.71d%/(3h?))
% f&’k—d/z(r)(T/Q)k_d/z p2k—d p2k—d
2k > d, as in [59],
Sobolev splines

Second, one gets both new lower bounds for Fg, and upper bounds for

G¢ exhibiting the leeway for further optimization of both bounds.

This

improves earlier work by Ball/Sivakumar/Ward [5] and Schaback [53] on
upper bounds for Gg (g, ), and it opens the race for closing the gap as much
as possible by finding optimal constants.

We now want to compare several basis functions. Since we know that

any basis function yields optimal error bounds with respect to its “native”

space, the comparison must take place in “alien”

We fix basis

spaces.

functions ®; and &, with native spaces Fg, and Fg,, and assume

Fao, € Fo,,
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so that now Fg, 1s alien to ®; and vice versa. The data set X will be
dropped in the notation for the rest of this section, and we denote by s ;
the interpolant to f on some X with respect to ®;.

We first consider interpolation of functions f € Fg, by translates
of ®;. These cannot reach the optimal error bounds for interpolation by
®,—translates, but they can be quasi—optimal in the sense

[f(2) = spi(2)] < C-||flla, - Fy (hx(2)) (5.3)

with a constant C' > 1. Numerical results [53] suggest that quasi-optimality
often holds, but so far there is only a proof for slightly perturbed inter-
polants [57] instead of s¢ ;. The proof technique first involves an approx-

imation f. of f up to some e by chopping off the Fourier transform of f.
Then f. € Fg, holds and the bounds

f(x) — fol2)| < e
fol@) = s (@) < [l - Fol*(hx(2))

are used to prove (5.3) by choosing ¢ as a function of || f||s, and F}I)éz(hx(x))
in a proper way, roughly by letting ¢ take the form of the right-hand side
of (5.3). Unfortunately, this part of the proof does not work in general. So
far, each of the traditional examples required a special analysis.

The fact that slightly perturbed interpolants often work better than
exact interpolants is well known from other areas of Approximation The-
ory. It takes here a very specific form, and it was called “appproximate
approximation” in recent papers [35, 36] by Maz’'ya and Schmidt, used
there in the somewhat different context of quasi—interpolation on gridded
data with nonstationary Gaussians. In general, the notion of “approxi-
mate” approximation uses a two—parameter family {s; s} of approximants
(think of a shift parameter h and a scale parameter ¢) such that there is no
Weierstrall—type density result for A — 0 and ¢ fixed, but where for each
¢ > 0 there is some 6 > 0 such that

1f = sns(HIl <&+ K(f,h,0)

with K(f,h,6) — 0 for h — 0.
To give the reader an idea how this applies in our context, let ¢ be
a parameter that controls chopping the Fourier transform of some general

function f € Ll(IRd) N Lo (IRd) at radius 1/6, such that

‘f(w) e[ fers
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< (2r)" /” g, e = B(F,0) <2

for ¢ small enough. The function

flz):= (27r)_d/” s f(w)eiw'xdw

now lies in the native space for any basis function ® with $ e Ll(IRd) and
® >0 on IRd, and has norm

7l =ent [ B

1
SN

= |[£l5 - L*(®, )

dw

where L(®, ) tends to infinity for 6 — 0, depending on the decay properties
of ® at infinity. Now we have

[f(2) = f(x)] < B(f.9)
F(2) = 57 x()] < | fllo - Fy*(hx(2))
< || fllz, - L(®,6) - F*(hx(2))

and by picking a suitably small 6(f,¢) we can get a bound

[F(2) = 57 x(2)] S e+ C(f.e, @) Fy*(hx(2)).

Note that for hx(z) — 0 for sufficiently dense data sets X the second part
of this bound behaves precisely like the bound of optimal interpolation
in the native space, and this means exponential convergence in case of
Gaussians or multiquadrics, for instance.

The above discussion of approximate approximation is related to K—

functionals. Indeed, for any f from the space BC(£2) of all bounded and
continuous functions on the closure of a bounded domain @ C R? we can

[F(a) = sy(2)] < [F(x) = g(2)] + |g(x) — s,()]
< |f(2) = g(@)| + lgllo Fy* (hx(x))

if s, is the interpolant to some intermediate function ¢ € Fs and X =

{z1,...,2n} C Q. Thus

write

i _ < . 1/2 )
,d0E I =slleeg < inf (If = gllocs + Fg”"(hx) - llls)

= K(f, Fy*(hx), BC(Q), Fo)
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with hx = ||hx(2)]|c,0 and Sx ¢ standing for the space of functions of
the form (1.1). It would be very interesting to see the classical machin-
ery of K—functionals set to work towards Jackson-Bernstein theorems for
approximation of functions from intermediate spaces between BC(2) and

Fas.

66. Shift and Scale

We now allow scaled versions

Bs(-) = @ ( - )  bs() = 61B(-5) 6> 0

of a positive definite function ® on IR? and consider a fixed bounded domain
Q) c RY We first check the behavior of ||5x,u*,X||?p6 as a function of 9.
Clearly, from the optimality of (4.4) we get

N
(27T)d||5x,u*’X||?p§ = ml}n/ Ci)é(w) 1 — Zuj(x)eiw.(f_wj) doo

R4

N
= IIllIl/ Zu] ”)'(f—fj)/é d77
u R =

= (2m)ewss,0 x5 |3

as everybody would expect. In view of (4.6) in the bound (4.7) we have

hxsrys(x/0) = sup  minlly —z;/6||
ly—z/6||<7/8 I
= L=t in [ly — 2
_6X’Tx_5 sup  min ||y — x;||.

ly—zll<7

Thus (4.7) in the form

1
Jevo I3, = Falhigseptafo) = Fo  §ho0)) (@)

shows that this part of the error depends on the relative scaling of & and
the data, as expected. To make the first inequality of (6.1) fully valid we
require a lower bound

/6> 19 >0
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for 7/6, or an upper bound
6 <71/

for 6. We introduce

h = hx,r = ||hx,,-(-)||00,9

to keep the notation somewhat simpler. The error bound (4.8) then is

F(2) = sp.a, ()] < || Fllas - Fol*(R/6),

where s¢ ¢, 1s the interpolant to f with respect to ®5. Note that the
Uncertainty Relation does (at least for interpolation) not allow to make
Fg(h/6) arbitrarily small in practical applications. Ignoring the additional
factor ||f]le,, one would always be able to cope with large h by choosing
a large 0 to keep errors small. The stationary case of the literature takes
6 proportional to h. We see that in this case convergence must come from
the factor || f||¢, for 6 — 0, and this is the second reason why we now look
at this quantity.
If we keep f fixed and check the condition ||f||e, < oo, then

DA F2 = 5 |f(w)|2 o
e Ifls, =07 [ g e

The first and simplest case is thin—plate splines with

. 4

O(w) = [lw]| 77
for some 8 > 0 and up to a constant factor. Then clearly f € Fg, whenever
f € Fs, and

1115, = 8711115

Since in this case Fg(h) = ¢*(3,d)-h”, we can write the overall error bound
as

[F(2) = spa ()] < (B, )6 2(R[6)| Fllo

and get invariance with respect to scaling, as expected.
Now let us consider functions ® with monotonic radial decay of @,
i€

P(wé) > B(w) >0 foralld <1, weR™

Then
1 lles <62 flle,

for all f € Fs,, 6 < 1. The error bound now 1s

() = spas ()] < || Flle, - 62 Fy*(n/6)
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and one cannot use strictly stationary interpolation. Instead, one has to
let /6 tend to zero to let F}I)/lz(h/é) outweigh the factor 6~%/2. This is not

very restrictive in case of exponential decay of @, i.e., for Multiquadrics
and Gaussians, because then it suffices to let h/é decrease logarithmically
with h — 0, without spoiling exponential convergence for h — 0.

More problematic are cases with algebraic decay of Fg,, say, of type

Fg,(h) = O(h*). Then the error has the behavior

hk/26(—k—d)/2‘

To achieve an error of O(h?/?) with 0 < 3 < k (look at thin—plate splines
for comparison) one has to take a scaling like

5:0@%).

This allows to trade small errors for good condition by a suitable scaling,
and this was the goal of this section. However, we have so far left out the
most interesting cases, namely the compactly supported positive definite
functions. Their Fourier transforms partially have zeros or are not known
to be monotonic. Another extension concerns approximation instead of
interpolation. In both cases one can use the techniques of the preceding
section to generate intermediate functions fs € Fgp, by chopping off the
Fourier transform of f, and then interpolating fs by ®s. We leave the
details to a later presentation.

Acknowledgments. Help in proofreading was provided by A. Iske, and
typing was done by P. Trapp.

References

1. Aronszajn, N., Potentiels Besseliens, Ann. Inst. Fourier Grenoble 15
(1965), 43-58.

2. Atteia, M., Analyse Numérique — Généralisation de la définition et
des propriétés des spline functions, C.R. Acad. Sc., Paris, 260 (1965),
3550-3553.

3. Atteia, M., Hilbertian Kernels and Spline Functions, in: Studies in
Computational Mathematics (4), North-Holland, Amsterdam, 1992.

4. Ball, K., Eigenvalues of Euclidean Distance Matrices, J. Approx. The-
ory 68 (1992), 74-82.

5. Ball, K., N. Sivakumar, and J.D. Ward, On the Sensitivity of Radial
Basis Interpolation to Minimal Distance Separation, J. Approx. The-

ory 8 (1992), 401-426.



Multivariate Interpolation and Approzimation 21

6. Baxter, B.J.C., Norm Estimates for Inverses of Distance Matrices, in
Mathematical Methods in Computer Aided Geometric Design, T. Lyche
and L.L. Schumaker (eds.), Academic Press, New York, 1989, 13-18.

7. Baxter, B.J.C., N. Sivakumar, J.D. Ward, Regarding the p—Norms of
Radial Basis Interpolation Matrices, Techn. Report 281, Department
of Mathematics, Texas A & M University, 1992.

8. Beyer, A., Optimale Centerverteilung bei Interpolation mit radialen
Basisfunktionen, Diplom Thesis, Universitat Gottingen, 1994.

9. Bloom, T., The Lebesgue Constant for Lagrange Interpolation in the
Simplex, J. Approx. Theory 54 (1988), 338-353.

10. Bojanov, B., and H. Wozniakowski, Optimal Recovery, Nova Science
Publishers, New York, 1992.

11. Boor, C. de, R.A. DeVore, and A. Ron, Approximation from Shift—
invariant Subspaces of LQ(IRd), Trans. Amer. Math. Soc. 341 (1994),
787-806.

12. Boor, C. de, R.A. DeVore, and A. Ron, The Structure of Finitely Gen-
erated Shift-invariant Spaces in LZ(]:R,d) J. Funct. Anal. 119 (1994),
37-T78.

13. Boor, C. de, and A. Ron, Fourier Analysis of Approximation Orders
from Principal Shift—invariant Spaces, Constr. Approx. 8 (1992), 427
462.

14. Bos, L.P., Bounding the Lebesgue Function for Lagrange Interpolation
in a Simplex, J. Approx. Theory 38 (1983), 43-59.

15. Buhmann, M.D., New Developments in the Theory of Radial Basis
Function Interpolation, in Multivariate Approximations: From CAGD
to Wavelets, K. Jetter and F.I. Utreras (eds), World Scientific, London,
1993, 35-75.

16. Butzer, P.L., and R.L. Stens, Sampling Theory for Not Necessarily
Band-limited Functions: A Historical Overview, SIAM Review 34
(1992), 40-53.

17. Calderén, A.P., Lebesgue Spaces of Functions and Distributions, Proc.
Symp. Pure Math. 4, AMS, Providence (1961), 33-49.

18. Calderén, A.P., Intermediate Spaces and Interpolation, the Complex
Method, Studia Math. 24 (1964), 113-190.

19. Cheney, E.-W., Survey Talk (this volume).

20. Duchon, J., Splines Minimizing Rotation—invariate Semi—normsin Sobo-|j
lev Spaces, in Constructive Theory of Functions of Several Variables,
Springer, Berlin—Heidelberg, W. Schempp and K. Zeller (eds.), 1979,
85-100.

21. Dyn, N., Interpolation of Scattered Data by Radial Functions, in Top-

ics in Multivariate Approximation, C.K. Chui and L.L. Schumaker and
Florencio Utreras (eds.), Academic Press, Boston, 1987, 47-61.



22

22

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Robert Schaback

Dyn, N., Interpolation and Approximation by Radial and Related
Functions, in Approximation Theory VI, Vol. 1, C.K. Chui and L.L.
Schumaker and J.D. Ward (eds.) Academic Press, Boston, 1989, 211-
234.

Fang, C. K., Strictly Positive Definite Functions, Preprint 1994.
Golomb, M., and H.F. Weinberger, Optimal Approximation and Error
Bounds, in On Numerical Approzimation, The University of Wisconsin
Press, Madison, R.E. Langer (ed.), 1959.

Iske, A., Charakterisierung bedingt positiv definiter Funktionen fir
multivariate Interpolationsmethoden mit radialen Basisfunktionen, Ph.
D. Dissertation, Gottingen, 1994.

Iske, A., Characterization of Function Spaces associated to Condition-
ally Positive Definite Functions, in Mathematical Methods in Computer
Aided Geometric Design III, T. Lyche and L.L. Schumaker (ed.), Aca-
demic Press, New York, 1995.

Jetter, K., Multivariate Approximation from the Cardinal Interpola-
tion Point of View, in Approximation Theory VII, EXZW. Cheney and
C.K. Chui and L.L. Schumaker (eds.), Academic Press, New York,
1992, 131-161.

Krein, M., Sur le probleme du prolongement des fonctions hermitiennes
positives et continues, Dokl. Akad. Nauk SSSR 26 (1940), 17-22.
Laurent, P.J., Construction of Spline Functions in a Convex Set, in Ap-
prozimation with special emphasis on Spline Functions, I.J. Schoenberg
(ed.), Academic Press, New York, 1969, 415-446.

Light, W., Using Radial Functions on Compact Domains, in Wavelets,
Images, and Surface Fitting, P.—J. Laurent, A. Le Méhauté and L.L.
Schumaker, (eds.), AKPeters, Boston, 1994, 351-370.

Madych, W.R., and S.A. Nelson, Multivariate Interpolation: a Varia-
tional Theory, Manuscript, 1983.

Madych, W.R., and S.A. Nelson, Multivariate Interpolation and Con-
ditionally Positive Definite Functions, Approx. Theory Appl. 4 (1988),
77-89.

Madych, W.R., and S.A. Nelson, Multivariate Interpolation and Con-
ditionally Positive Definite Functions II, Math. Comp. 54 (1990), 211—
230.

Madych, W.R., and S.A. Nelson, Bounds on Multivariate Polynomials
and Exponential Error Estimates for Multiquadric Interpolation, J.
Approx. Theory 70 (1992), 94-114.

Maz’ya, V., and G. Schmidt, On Approximate Approximations, Pre-
print LITH-MAT-R-94-12, Linkoping Univ., Dept. of Math., Linko-
ping 1994.

Maz’ya, V., and G. Schmidt, On Approximate Approximations Us-
ing Gaussian Kernels, WIAS Preprint 111, Weierstra—Institut Berlin,



Multivariate Interpolation and Approzimation 23

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

1994.

Meinguet, J., An Intrinsic Approach to Multivariate Spline Interpo-
lation at Arbitrary Points, in Polynomial and Spline Approzimation,
Badri N. Sohnrey (ed.), D. Reidel Publishing Company, 1979, 163-190.
Micchelli, C.A., and T.J. Rivlin, Lectures on Optimal Recovery, in Nu-
merical Analysis, Lancaster 1984, P.R. Turner (ed.), Springer Verlag,
Lecture Notes in Mathematics 1129, 1984, 12-93.

Micchelli, C.A., Interpolation of Scattered Data: Distance Matrices
and Conditionally Positive Definite Functions, Constr. Approx. 2
(1986), 11-22.

Narcowich, F.J.; N. Sivakumar, and J.D. Ward, On Condition Num-
bers Associated with Radial-Function Interpolation, Techn. Report
No. 287, Department of Mathematics, Texas A & M University, 1993.
Narcowich, F.J., and J.D. Ward, Norm Estimates for Inverses of Scatte-
red—data Interpolation Matrices Associated with Completely Mono-
tonic Radial Functions, Preprint.

Narcowich, F.J., N. Sivakumar, and J.D. Ward, Norm of Inverses and
Condition Numbers for Matrices Associated with Scattered Data, J.
Approx. Theory 64, 1991, 69-94.

Narcowich, F.J., J.D. Ward, Norms of Inverses for Matrices Associated
with Scattered Data, in Curves and Surfaces, P.J. Laurent and A. Le
Méhauté and L.L. Schumaker (eds.) Academic Press, Boston, 1991,
341-348.

Narcowich, F.J., J.D. Ward, Generalized Hermite Interpolation Via
Matrix—valued Conditionally Positive Definite Functions, Math. Comp.
63 (1994), 661-687.

Narcowich, F.J., J.D. Ward, Norm Estimates for the Inverses of a Gen-
eral Class of Scattered—Data Radial-Function Interpolation Matrices,
J. Approx. Theory 69 (1992), 84-1009.

Pisier, G., Survey Talk on Interpolation (this volume)

Powell, M. J. D., Radial Basis Functions for Multivariable Interpo-
lation: a Review, in Numerical Analysis, D. F. Griffiths and G. A.
Watson (eds.), Longman Scientific & Technical (Harlow), 1987, 223-
241.

Powell, M.J.D., The Theory of Radial Basis Function Approximation
in 1990, in Advances in Numerical Analysis II: Wavelets, Subdivision
Algorithms, and Radial Basis Functions, W.A. Light (ed.), Oxford
Univ. Press, Oxford, 1992, 105-210.

Powell, M.J.D., The Uniform Convergence of Thin—plate Spline Inter-
polation in Two Dimensions, DAMTP Report 1993 /NA16, Cambridge,
U.K.

Rudin, W., The Extension Problem for Positive Definite Functions,
Mlinois J. Math. 7(1963), 532-539.



24

o1

52

93.

o4.

95.

56.

o7.

o8.

99.

60.

61.

62.

63.

64.

65.

66.

Robert Schaback

Rudin, W., An Extension Theorem for Positive Definite Functions,
Duke Math. J. 37 (1970), 49-53.

Sard, A., Linear Approximation, Mathematical Surveys 9, AMS, Prov-
idence (1963).

Schaback, R., Comparison of Radial Basis Function Interpolants, in
Multivariate Approximations: From CAGD to Wavelets, K. Jetter and
F. Utreras, (eds), World Scientific, London, 1993, 293-305.

Schaback, R., Lower Bounds for Norms of Inverses of Interpolation
Matrices for Radial Basis Functions, J. Approx. Theory 79 (1994),
287-306.

Schaback, R., Reproduction of Polynomials by Radial Basis Functions,
Wavelets, Images, and Surface Fitting, P.—J. Laurent, A. Le Méhauté
and L.L. Schumaker (eds.) AKPeters, Boston (1994) 459-466.
Schaback, R., Error Estimates and Condition Numbers for Radial Ba-
sis Function Interpolation, Advances in Computational Mathematics
3 (1995), 251-264.

Schaback, R., Approximation by Radial Basis Functions with Finitely
Many Centers, Constructive Approximation, to appear in Constr. Ap-
proz. 1995.

Schaback, R., Creating Surfaces from Scattered Data Using Radial Ba-
sis Functions, in Mathematical Methods in Computer Aided Geometric
Design III, T. Lyche and L.L. Schumaker (ed.), Academic Press, New
York, 1995.

Schaback, R., Z. Wu, Operators on Radial Functions, Preprint Gottingenl}

1994.

Schechter, M., Complex Interpolation, Compositio Math. 18 (1967),
117-147.

Stewart, J., Positive Definite Functions and Generalizations, an His-
torical Survey, Rocky Mountain J. Math. 6 (1976), 409-434.

Sun, X., Conditionally Positive Definite Functions and Their Appli-
cation to Multivariate Interpolations, J. Approx. Theory 74 (1993),
159-180.

Traub, J.F., and H. Wozniakowski, A General Theory of Optimal Al-
gorithms, Academic Press, New York, London, Toronto, Sydney, San
Francisco, Elsevier, New York, 1980.

Wu, Z., Multivariate Compactly Supported Positive Definite Radial
Functions, Preprint, Gottingen, 1994. To appear in AICM.

Wu, Z., Characterization of Positive Definite Radial Functions, Pre-
print, Gottingen, 1994.

Wu, Zong-min, R. Schaback, Local Error Estimates for Radial Basis
Function Interpolation of Scattered Data, IMA J. Numer. Anal. 13
(1993), 13-27.



Multivariate Interpolation and Approzimation 25

Robert Schaback
Universitat Gottingen, Lotzestrafle 16-18, D-37083 Gottingen, Germany
schaback@namu0l.gwdg.de



