
Multivariate Interpolation and Approximationby Translates of a Basis FunctionRobert SchabackAbstract. This contribution will touch the following topics:� Short introduction into the theory of multivariate interpolationand approximation by �nitely many (irregular) translates of a (notnecessarily radial) basis function, motivated by optimal recoveryof functions from discrete samples.� Native spaces of functions associated to conditionally positive def-inite functions, and relations between such spaces.� Error bounds and condition numbers for interpolation of functionsfrom native spaces.� Uncertainty Relation: Why are good error bounds always tied tobad condition numbers?� Shift and Scale: How to cope with the Uncertainty Relation?x1. Introduction and OverviewThis contribution contains the author's view of a certain area of multivari-ate interpolation and approximation. It is not intended to be a completesurvey of a larger area of research, and it will not account for the historyof the theory it deals with. Related surveys are [15, 21, 22, 27, 30, 47, 48,58]. Section 2 will motivate why we are mainly interested in multivariatefunctions that are linear combinationsf(x) = NXj=1 aj�(x � xj); x 2 lRd; aj 2 lR (1:1)of translates of a �xed basis function � : lRd ! lR, where X = fx1; : : : ; xNgis a set of N scattered points in lRd. The space of functions (1.1) oftenApproximation Theory VIII 1Charles K. Chui and Larry L. Schumaker (eds.), pp. 1{8.Copyright oc 1995 by World Scienti�c Publishing Co., Inc.All rights of reproduction in any form reserved.ISBN 0-12-xxxxxx-x



2 Robert Schabackcarries a natural topology induced by an inner product, and its Hilbertspace closure (the \native space" for �) will be studied in Section 3. Errorbounds for interpolation of functions from the native space are intimatelyconnected to upper bounds on A�1X;� for the N by N matrixAX;� := (�(xj � xk))1�j;k�N : (1:2)This connection will be dealt with in Sections 4 and 5, where we see that ba-sis functions � with good error bounds on their native space will necessarilyhave bad upper bounds for kA�1X;�k. A consequence of this \uncertaintyrelation" is that one has to introduce scaled versions of � in order to copewith the bad condition of AX;�. Thus the �nal section contains re�nederror bounds for approximation by scales of basis functions.x2. Optimal Recovery via Discrete SamplingSampling theory provides a good reason for considering functions of theform (1.1). The most common example is the reconstruction of a univariatebandlimited function f by its sinc seriesf(x) =Xj2ZZ f(j) sinc (x � j)with sinc (x) = sin�x�x :But we do not want to start with (1.1). Instead, we shall pose the recon-struction problem in a general way and �nd later that (1.1) is the naturalsolution.Assume we want to recover a multivariate function f : lRd ! lR froma sample of values y1 = f(x1); : : : ; yN = f(xN ) on a discrete (and \scat-tered") set X = fx1; : : : ; xNg in lRd. Besides these values, we only havepartial information on the spectrum of f , i.e., on its Fourier transform.More precisely, if we know thatf(x) = (2�)�d ZlRd f̂ (!)eix�!d!; x 2 lRd (2:1)recovers f from its Fourier transform f̂ , we shall assume that f̂ lies in aweighted L2 spaceL2(�) := �g 2 L1(lRd) : ZlRd jg(!)j2�(!)d! <1� ;



Multivariate Interpolation and Approximation 3where � : lRd ! lR>0 [ f+1g with �(��) = �(�) is a Lebesgue{measurablefunction that is �nite on at least an open subset of lRd. These things can begeneralized to a distributional setting, but we want to keep the presentationsimple.The weight � determines a norm k k2;� on the spaceF := ff : lRd ! lR [ f�1g; f̂ 2 L2(�) and (2.1)g (2:2)via the bilinear form(f; g)2;� := (2�)�d ZlRd f̂ (!)ĝ(!)�(!)d!:By symmetry of � and f̂ (�!) = f̂ (!) this form is real{valued. Then wecan ask for optimal recovery in the sense of the problemFind f 2 F with kfk2;� minimalsuch that f(xj ) = yj ; 1 � j � N:The solution is given by the following theorem whose proof contains somestandard arguments that we include to make this paper self{contained.Theorem 2.1. If 1� 2 L1(lRd) and �̂ := 1� , then a solution of the aboverecovery problem exists uniquely and is necessarily of the form (1.1). Thecoe�cients a = (a1; : : : ; aN )T can be found by solving the systemAX;�a = y (2:3)where y = (y1; : : : ; yN )T . The matrixAX;� comes from (1.2) and is positivede�nite and symmetric.Proof. Assume �rst that a solution f 2 F to the recovery problemdoes exist. By the usual perturbation argument for characterization of bestapproximations in Euclidean spaces we then have(f; g)2;� = 0 (2:4)for all g 2 F with g(xj ) = 0; 1 � j � N . Then there are a1; : : : ; aN 2 lRwith (f; g)2;� = NXj=1 ajg(xj )for all g 2 F , and we introduce Fourier transforms on both sides to get(2�)�d ZlRd f̂ (!)ĝ(!)�(!)d! = (2�)�d ZlRd ĝ(!) NXj=1 aj � ei!�xjd!



4 Robert Schabackfor all g 2 F . This is satis�ed if and only iff̂ (!) = 1�(!) NXj=1 aje�i!�xj =: �̂(!) � �a;X(!)�̂ = 1� ; �a;X := NXj=1 aje�i!�xjor i� f is of the form (1.1).Our argument clearly shows how translates of a basis function come upvery naturally, but so far it is no proof of the theorem. To prove existence,we show that AX;� is positive de�nite. Indeed, for any a 2 lRN we haveaTAX;�a = NXj;k=1 ajak�(xj � xk)= (2�)�d ZlRd 1�(!) j�a;X(!)j2d! (2:5)and this nonnegative quantity is zero i� �a;X(!) vanishes on the supportof 1=�. But this support contains an open set and �a;X is analytic. Thus�a;X(!) vanishes on lRd i� (2.5) vanishes. Since the functions e�i!�xj arelinearly independent, the positive de�niteness of AX;� follows.But then there is a unique f of the form (1.1) that satis�es (�) andthus minimizes kfk2;� under all other interpolants from F .If f1 and f2 would both satisfy (2.4) and the interpolation conditions,then kf1 � f2k22;� = 0 follows from (2.4) and this proves unicity in general.Theorem 2.1 shows that translates of a single basis function naturallyarise when solving an optimal recovery problem in spaces F of functionswith Fourier transforms in weighted L2 spaces. Note that shifts or trans-lates do not directly occur in the problem setting, except that F is a spacethat is invariant under all shifts of translations in lRd. The notion \shiftinvariant space", however, has been extensively used (see e.g., [11, 12, 13])for spaces invariant under shifts in ZZd only. We remark in passing that afunction space F necessarily is of the form (2.2), provided that it is(a) a Hilbert space,(b) continuously imbedded in L2(lRd),(c) allowing continuous point evaluation functionals �xf = f(x) for f 2 Fand x 2 lRd, and(d) separating points in lRd, and



Multivariate Interpolation and Approximation 5(e) invariant under all shifts in lRd.The weight function � then comes out to be � = 1=�̂ with �(x� y) :=(�x; �y)F 0 for x; y 2 lRd. Details of this will be given in a forthcomingpaper.To give the reader an idea of the scope of this approach, we �rst recallan example with a very small space F of functions, i.e., the bandlimitedfunctions. Here, the weight function is�p(x) = ( 1 x 2 Bp1 x =2 Bp)where Bp is the unit ball with respect to the Lp norm in lRd. Then 1=�pcoincides with the characteristic function �Bp of Bp and �̂ = �Bp holds. Ifp = 1, then � is a d{fold tensor product of sinc functions. For p = 2 weget the jinc functions �(x) = kxk�d=22 Jd=2(kxk2)up to multiplicative constants. This is the simplest instance of a radialbasis function �, i.e.,�(x) = �(kxk2); � : lR�0 ! lR:Adopting the terminology of signal analysis, we note that this case yieldsvery good localization in the frequency domain, because Fourier transformsare compactly supported. In the time domain we have algebraically decay-ing functions �(x) = kxk�d=22 Jd=2(kxk2) = O(kxk�(d+1)=22 )for kxk2 !1.A more straightforward example with a small space F is given bythe Gaussian �(x) = e�kxk2=2 which is symmetric in time and frequencydomain.Note that the bandlimited case cannot be turned upside down byswapping frequency and time domain, because the jinc functions have signchanges and cannot be used as weight functions. To construct compactlysupported functions with nonnegative Fourier transforms, some additionaltechniques are needed. For instance, convolution in the time domain al-ways produces nonnegative Fourier transforms, but the problem then is toevaluate the result in the time domain. We cite a successful constructiondue to Wu [64] that proceeds as follows:



6 Robert SchabackTable 1.Time{Frequency Localization.Time (kxk2 ! 1) Frequency (k!k2 !1)Bandlimited kxk�(d+1)=22 comp. supportedW k2(lRd) kxkk�(d+1)=22 e�kxk2 k!k�2k2Gaussian e�kxk22=2 e�k!k22=2inverse �d < 2�Multiquadrics (c2 + kxk22)�, � < 0 k!k�(�+d+1)=22 � e�k!k2�`;k (Wu) comp. supported k!k�2(`+1+m�k)2in lR2m+1,0 �m � k �'̀`(r) := (1� r2)+̀�`;0 := '` � '`�`;k(r) := �� 1r ddr ��`;k�1(r) 1 � k � `:It generates radial functions�`;k(x) := �`;k(kxk2)that are positive de�nite on lRd for d � 2k+1. Details of this constructioncan be found in [64], and a toolbox for handling radial functions is in [59].A rather large space F is generated by the weight�k(!) = (1 + k!k2)k; ! 2 lRdfor 2k > d, and we get Sobolew spaceF =W k2(lRd)and the corresponding optimal basis function�(x) = kxk�(k�d=2)2 Kk�d=2(kxk2);where K� is the Bessel function of third kind. Since the K� functions arenonnegative, this example can be turned upside down and yields \inversemultiquadrics" �(x) = (1 + kxk22)�=2



Multivariate Interpolation and Approximation 7for 0 > � > �d, where now�(!) = k!k(�+d)=22 K�1(�+d)=2(k!k2)acts as a weight function for the Fourier transforms. Note that this exam-ple and the Gaussian force Fourier transforms of functions in F to decayexponentially. Thus the space F consists of C1 functions.We summarize the known prototypes in Table 1 and remark that some-thing like the \up"{function still is missing: a case with compact supportand C1 smoothness in the time domain while having exponential decayand positivity in the Fourier domain.Historical RemarksThere is a vast literature on optimal recovery starting from Golomb/Wein-berger [24] continuing via Sard [52], Micchelli/Rivlin [38], using results onabstract spline theory as recently summarized by Atteia [3] and ending up inInformation{based Complexity as de�ned in Traub/Wo�zniakowski [63] andBojanov/Wo�zniakowski [10]. Sampling theory also is a wide{ranging �eld(see e.g., the review by Butzer/Stens [16]). We borrowed the ingredientsof our presentation from the folklore of both subjects, ignoring (so far)the background of reproducing{kernel Hilbert spaces that will show upin the next section. Spaces of functions that have Fourier transforms inweighted L2 spaces occur as examples for complex interpolation theoryin the fundamental papers of Calderon [17] and Schechter [60]. See thereview of Pisier [46] in this volume for details of complex interpolation. Wetouch upon another connection to interpolation theory of normed vectorspaces at the end of Section 6. Another important link to classical resultsarises with the theory of Riesz and Bessel potentials, which correspondto thin{plate splines and multiquadrics. See, for instance, Aronszajn [1]and Calderon [18]. Our view on native spaces as \principal translation{invariant spaces" borrows from ideas of de Boor, de Vore and Ron [11, 12,13] on shift{invariant spaces.x3. Native SpacesThe preceding section showed that optimal reconstruction of functions ina quite general translation{invariant space F of functions naturally leadsto the consideration of functions that are linear combinations of translatesof a single basis function �. Thus the space F determined a function �.We now go the opposite direction and start with a function � to gen-erate a \native" space F . In contrast to the �rst approach we do not workon all of lRd but rather on a subdomain 
 � lRd.



8 Robert SchabackDe�nition 3.1 A function � : 
 � 
 ! lR with �(��) = �(�) is positivede�nite on 
, if for all sets X = fx1; : : : ; xNg of N pairwise distinct pointsin 
 the matrix AX;� in (1.2) is positive de�nite.Note that there is a slight di�erence in terminology with [39, 61, 62]and others, but it de�nitely is bad notation to call � positive de�nite whenAX;� is positive semide�nite or nonnegative de�nite for all X.The space D(
) of all �nitely supported linear functionals on the spacelR
 of all real{valued functions on 
 can now be equipped with an innerproduct. Indeed, if functionals� = MXi=1 �i�xi 2 D(
); � = NXj=1 �j�yi 2 D(
) (3:1)with �i; �j 2 lR; xi; yj 2 
 are given, then(�; �)� := MXi=1 NXj=1 �i�j�(xi � yj )is an inner product on D(
), and we can form the Hilbert space D(
) bytaking the closure with respect to (�; �)�. Note that our �rst de�nition of aspace concerned a space of functionals, but now we can go over to functionsof the form (1.1) byf�(x) := MXi=1 �i�(x � xi) = (�x; �)� (3:2)for � from (3.1) and x 2 
. Allowing all � 2 D(
) we de�ne the nativespace for � to beF�;
 := ff�(x) = (�x; �)�; x 2 
; � 2 D(
)g (3:3)and this space can easily shown to be isometrically isomorphic to D(
)because of �(f�) = (�; �)�for all �; � 2 D(
), if we de�ne(f�; f�)� := (�; �)�on F�;
. An equivalent de�nition, as given by Madych and Nelson [31, 32,33] in case of 
 = lRd, is the spaceF�;
 = ff : 
! lR : j�(f)j � C(f)k�k�; � 2 D(
)g (3:4)



Multivariate Interpolation and Approximation 9of all functions on 
 that allow all elements of D(
) as bounded linearfunctionals with respect to the topology induced by � on D(
).If we look at the dependence of F�;
 on 
, we should consider asubdomain 
1 � 
. Since clearly D(
1) � D(
), we �ndF�;
1 � F�;
��
1 := ff 2 F�;
 restricted to 
1gif we use (3.3), but the equivalent de�nition (3.4) implies F�;
��
1 � F�;
1 .This proves Iske's extension theoremF�;
��
1 = F�;
1 for 
1 � 
;if � is positive de�nite on 
 (see [26]). In case of 
 = lRd it impliesthat any function in a native space F�;
1 corresponding to a domain 
1has a (non{unique) extension to all of lRd that preserves all the implicitsmoothness assumptions that are hidden in the de�nition of F�;
. Incase of the Gaussians or the inverse multiquadrics all functions in F�;
1are restrictions of functions in F�;
 � C1(lRd), i.e., they have canonicalC1(lRd) extensions. The construction of an extension is clear from thede�nition of F�;
1 , since the functionf�(x) := (�x; �)�for � 2 D(
1) � D(
) can not only be evaluated for x 2 
1, but also forx 2 
, thus providing an extension. It is an interesting question to ask forthe maximal domain 
 on which a given function � is positive de�nite; theexistence of non{extensible positive de�nite functions on bounded domainsis a hard problem already in the one{dimensional case (see [28, 61]), andthere are results of Rudin [50, 51] and Krein [28] in the multivariate case.Another challenge is the full characterization of positive de�nite functionson lRd under the weakest possible assumptions (see e.g., [19, 25, 62, 65] forthis problem).Historical RemarksOur presentation mainly follows ideas of Madych-Nelson [31] but con�nesitself to unconditionally positive de�nite functions. The work of Madych-Nelson in turn builds mainly on results of the French school, expecially onDuchon's thin{plate splines [20] and earlier work on abstract spline theoryas provided by Atteia [2], Laurent [29], and later also by Meinguet [37].



10 Robert Schabackx4. Error Bounds and Pointwise OptimalityConsider quasi{interpolants of the formf 7! sf;u;X = NXj=1 f(xj ) � uj (4:1)where X = fx1; : : : ; xNg � 
 � lRd is a set of scattered points, and whereu1; : : : ; uN : 
 ! lR are arbitrary functions. If x 2 
 is �xed, the errorfunctional "x;u;X(f) := f(x) � sf;u;X(x)is in D(
), and thus there is an error bound of the formj"x;u;X(f)j � kfk� � k"x;u;Xk� (4:2)for functions f in the native space F�;
. The norm of the error functionalis explicitly available viak"x;u;Xk2� = �(0) � 2 NXj=1 uj(x)�(x � xj)+ NXk=1 NXj=1 uk(x)uj (x)�(xk � xj ): (4:3)This allows comparison of various quasi{interpolants, and one can askfor an optimal choice of u1(x); : : : ; uN (x) that minimizes k"x;u;Xk2� in theabove representation as a nonnegative quadratic form. If u� := (u�1(x); : : : ;u�N(x))T denotes the minimizer, then clearlyNXj=1�(xk � xj )u�j (x) = �(x � xk); 1 � k � N: (4:4)Thus the functions u�j (x) are in the span of the �(x�xk); 1 � k � N , andthey necessarily satisfy the Lagrange{type interpolation conditionsu�j (xk) = �jk; 1 � j; k � N;since the system (4.4) is uniquely solvable due to the positive de�nitenessof the coe�cient matrix we already know from Theorem 2.1. This proves



Multivariate Interpolation and Approximation 11Theorem 4.1. The interpolant of the form (1.1) to scattered data is theunique minimizer of the error bound (4.2) under all quasi{interpolants(4.1).Note that this result indicates that general error bounds in nativespaces cannot be improved by choosing the shifts occurring in (1.1) di�erentfrom the data locations used in (4.1).It is interesting to plot the pointwise norms k"x;u;Xk� of the error func-tionals as a function of x for u = u� or for di�erent choices of u. This makessense even in the classical univariate situation, and it would be worthwhilefor applications to see a series of illustrative examples. Minimization withrespect to u may lead to unexpected results in other than Hilbert spacesettings (for instance in W 11[a; b]). Another possibility is the variation ofX while always using the optimal interpolant u� that will depend on X.Then k"x;u�;Xk2� will be a smooth function that allows minimization withrespect to X. This may lead to a future theory that generalizes perfectsplines. Numerical results of A. Beyer [8] were encouraging.At this point it is by no means evident that the interpolant sf;u�;Xminimizes ksk2� under s 2 F�;
 with s(xj ) = f(xj ) for 1 � j � N , becausethere is no apparent link between k k� of this section and k k2;� of Section 2.To bridge this gap in full generality seems to be an open problem which isrelated to the full characterization of (strictly) positive de�nite functions,as posed in the survey of E.W. Cheney [19] in this volume. If � can berecovered from its Fourier transform via�(x) = (2�)�d ZlRd �̂(!)ei!�xd!;and if � is a functional of the form (3.1), thenkf�k2� = k�k2�= (2�)�dZlRd �̂(!) ������ NXj=1 �jei!�xj ������2 d!: (4:5)Furthermore, the function f� of (3.2) will then have a Fourier transformf̂�(!) = �̂(!) NXj=1 �je�i!�xjsuch that we can formally writekf�k2� = (2�)�d ZlRd jf̂�(!)j2 � 1�̂(!) d!



12 Robert Schabackto see the similarity between k � k� and k � k2;� with � = 1=�̂.The aforementioned characterization problem for (strictly) positivede�nite functions leads to some speci�c questions in this context:1) Which conditions guarantee the existence of �̂ 2 L1(lRd) needed for(4.5)?2) What are the properties of �̂ that ensure (4.5) to be an inner product?A partial answer to 1) was given by Iske in this dissertation. If � islocally absolutely integrable and of at most polynomial growth, then it has ageneralized Fourier transform �̂. For � positive de�nite, Iske proved undermild additional assumptions that �̂ is in L1(lRd). The second questionis more di�cult, because it involves the structure of the possible zeros oflimits of exponential sums as occurring in (4.5). In the univariate case thisrequires tools from almost periodic functions (see Fang [23]).The optimal error bound (4.2) is rather abstract and needs furtherelaboration in terms of the density of the data. A bounded domain 
 � lRdusually is �xed, and for a positive � 2 lR one considers a local densityhX;� (x) := supky�xk2�� min1�j�N ky � xjk2; x 2 
 (4:6)where for technical improvement one can replace the ball fy : ky�xk2 � �gby cones or cubes with vertex x. Then there are three somewhat di�erenttechniques for proving error bounds of the formk"x;u�;Xk2� � F�(hX;� (x)) (4:7)with F : lR�0 ! lR�0 monotonic and F (0) = 0. If (4.7) holds, then (4.2)becomes jf(x) � sf;u�;X(x)j � kfk� � F 1=2� (hX;� (x)) (4:8)for all X = fx1; : : : ; xNg � 
 and all x 2 
 with hX;�(x) � h0, where h0is a positive constant depending only on �;�, and 
. Table 2 shows thecurrently known functions F� for various choices of �. Note, however, that� determines both F� and k:k�, making error bounds hard to compare.In general, F� gets smaller with improving smoothness of �, but at thesame time k:k� gets more restrictive, since 1=�̂ acts as a penalty weightfor Fourier transforms.We �nally give the reader some pointers to the three proof techniquesof (4.7). The �rst is con�ned to radial functions �(x) = �(kxk2), butdoes not involve Fourier transforms. It reduces the problem to quantita-tive polynomial approximation of � on [0; h] for h ! 0, and dates back toMadych-Nelson [32], being re�ned somewhat in [34]. The other two useFourier transforms of non{radial functions and can be found in Madych-Nelson [33] and Wu/Schaback [66]. In all three cases it is crucial to have



Multivariate Interpolation and Approximation 13good bounds on Lebesgue constants of polynomial interpolation of per-turbed regular data in lRd. By using explicit geometric con�gurations forfew data points, Powell [49] could get small and explicit bounds for thin{plate splines via knowledge of good Lebesgue constants. The problem ofoptimal bounds for Lebesgue constants of multivariate polynomial inter-polation is still open in general and its solution would improve the knownerror bounds of type (4.8) a lot. To our knowledge, the best general boundsare in [34], and papers by Bloom [9] and Bos [14] show what is possible forregular data.x5. Condition Numbers and Uncertainty RelationNumerical experiments show that the condition number of AX;� as in (1.2)is terribly large for smooth � like Gaussians or Multiquadrics when com-pared to non{smooth � like thin{plate splines. The spectral conditionnumber of AX;�, being the quotient of largest and smallest eigenvalue, wasobserved to be boosted up mainly because of the smallest eigenvalue beingextraordinarily small. To understand this phenomenon, a series of papersby Ball, Baxter, Narcowich, Sivakumar, and Ward [4, 5, 6, 7, 40, 41, 42,43, 44, 45] investigated lower bounds�TAX;�� � c(X;�)k�k22of the quadratic form associated with AX;�. This is equivalent to boundingthe smallest eigenvalue of AX;� from below.The basic trick in most of these papers is to construct a \minorant"	 such that �TAX;�� � �TAX;	� � c(X;	)k�k22;whereAX;	 is diagonally dominant and c(X;	) is readily available. A shortand general account of the technique can be found in [56]. The results arealways of the form c(X;�) � G�(qX )where G� : lR�0 ! lR�0 is a monotonic function with G(0) = 0, andqX := 12 min1�j<k�N kxj � xkk2is the separation distance of points in X. Note that the bound does notdepend on the number N of data points. Up to multiplicative constants,Table 2 shows the special cases known so far (see [56] for details).There is a striking similarity between the functions F� and G�, andit seems to be impossible to �nd cases where the interpolation error, givenby F 1=2� , is small and the condition, partly given by G�1� , is small as well.



14 Robert SchabackThis kind of \Uncertainty Relation" can be put on a solid basis by asimple argument from [56] that bridges the gap between upper bounds onerrors for interpolants by X{translates of � and lower bounds on eigenval-ues of AX;�. In fact, if we formally add x0 := x to the data set X andde�ne Ax := AX[fxg;���x :=(1;�u�1(x); : : : ;�u�N(x))qx := min0�j<k�Nkxj � xkkthen, when interpreted as an error bound,��xAx��x = k"x;u�;Xk2� � F�(hX;� (x));and when interpreted as a quadratic form,��xAx��x � G�(qx) � k��xk22= G�(qx)0@1 + NXj=1ju�j (x)j21A :Thus G�(qx) � G�(qx)0@1 + NXj=1 ju�j (x)j21A � F�(hX;� (x)) (5:1)proves that for comparable small arguments withhX;�(x) � h � qx (5:2)one cannot have a small error bound F�(h) without having a small lowerbound G�(h) on the smallest eigenvalue. And (5.2) clearly is possible forregular data sets X of spacing h and x placed at distance � h=2 from allpoints of X.There are some further consequences of the Uncertainty Relation inthe form (5.1). First, it suggests that optimal results are obtained in casescalculated near the limits of machine precision, may these be reached byhuge amounts of densely distributed data points for non{smooth �, or maythese be reached by moderate numbers of data points for smooth functionslike e.g., the Gaussians. When reconstructing surfaces from scattered dataand varying certain parameters like c for multiquadrics (c2 + r2)�=2 suchthat the condition of AX;� tends towards the limits of machine precision,the nicest picture always is the one that immediately preceded the numer-ical breakdown.



Multivariate Interpolation and Approximation 15Table 2.All entries are modulo factors that are independentof r and h, but possibly dependent on parametersof �. Unreferenced cases for G are treated in [56].�(x) = �(r); r = kxk2 F�(h) G�(h)r� ; � 2 lR>0 n 2lN h� h�[4]: d = � = 1thin{plate splines [59] [5], pg. 419: � 2 (0; 2)[42], x VI: � = m� d=2,d odd(�1)1+�=2r� log r; � 2 2lN h� h�thin{plate splines [59] [42], x VI: � = m� d=2,d even(
2 + r2)�=2; � 2 lR n 2lN�0 e� �h h2e� 6h [5], pg. 90:
 = 1 = �; d = 2,Multiquadrics � > 0 he� 2dh [5], pgs. 422{423:
 = 1 = �[32] h� exp(�12:76
d=h)e��r2 ; � > 0 e� �h2 h�de� 
h2 [42], pg. 90: � = 1Gaussians � > 0 [32] h�d exp(�40:71d2=(�h2))2�d=2�(k) Kk�d=2(r)(r=2)k�d=2 h2k�d h2k�d2k > d, as in [59],Sobolev splinesSecond, one gets both new lower bounds for F�, and upper bounds forG� exhibiting the leeway for further optimization of both bounds. Thisimproves earlier work by Ball/Sivakumar/Ward [5] and Schaback [53] onupper bounds for G�(qx), and it opens the race for closing the gap as muchas possible by �nding optimal constants.We now want to compare several basis functions. Since we know thatany basis function yields optimal error bounds with respect to its \native"space, the comparison must take place in \alien" spaces. We �x basisfunctions �1 and �2 with native spaces F�1 and F�2 , and assumeF�1 � F�2 ;



16 Robert Schabackso that now F�2 is alien to �1 and vice versa. The data set X will bedropped in the notation for the rest of this section, and we denote by sf;jthe interpolant to f on some X with respect to �j .We �rst consider interpolation of functions f 2 F�2 by translatesof �1. These cannot reach the optimal error bounds for interpolation by�2{translates, but they can be quasi{optimal in the sensejf(x) � sf;1(x)j � C � kfk�2 � F 1=2�2 (hX(x)) (5:3)with a constant C � 1. Numerical results [53] suggest that quasi{optimalityoften holds, but so far there is only a proof for slightly perturbed inter-polants [57] instead of sf;1. The proof technique �rst involves an approx-imation f" of f up to some " by chopping o� the Fourier transform of f .Then f" 2 F�1 holds and the boundsjf(x) � f"(x)j � "jf"(x) � sf";1(x)j � kf"k�1 � F 1=2�1 (hX(x))are used to prove (5.3) by choosing " as a function of kfk�2 and F 1=2�2 (hX(x))in a proper way, roughly by letting " take the form of the right{hand sideof (5.3). Unfortunately, this part of the proof does not work in general. Sofar, each of the traditional examples required a special analysis.The fact that slightly perturbed interpolants often work better thanexact interpolants is well known from other areas of Approximation The-ory. It takes here a very speci�c form, and it was called \appproximateapproximation" in recent papers [35, 36] by Maz'ya and Schmidt, usedthere in the somewhat di�erent context of quasi{interpolation on griddeddata with nonstationary Gaussians. In general, the notion of \approxi-mate" approximation uses a two{parameter family fsh;�g of approximants(think of a shift parameter h and a scale parameter �) such that there is noWeierstra�{type density result for h ! 0 and � �xed, but where for each" > 0 there is some � > 0 such thatkf � sh;�(f)k � " +K(f; h; �)with K(f; h; �) ! 0 for h! 0.To give the reader an idea how this applies in our context, let � bea parameter that controls chopping the Fourier transform of some generalfunction f 2 L1(lRd) \ L2(lRd) at radius 1=�, such that�����f(x) � (2�)�d Zk!k���1 f̂ (!)ei!�xd!�����



Multivariate Interpolation and Approximation 17� (2�)�d Zk!k���1 jf̂ (!)jd! =: E(f; �) � "for � small enough. The function~f(x) := (2�)�d Zk!k���1 f̂ (!)ei!�xd!now lies in the native space for any basis function � with �̂ 2 L1(lRd) and�̂ > 0 on lRd, and has normk ~fk2� := (2�)�d Zk!k���1 jf̂(!)j2�̂(!) d!� kfk22 � (2�)�dZk!k���1 1�̂(!) d!=: kfk22 � L2(�; �)where L(�; �) tends to in�nity for � ! 0, depending on the decay propertiesof �̂ at in�nity. Now we havejf(x) � ~f(x)j � E(f; �)j ~f (x) � s ~f ;X(x)j � k ~fk� � F 1=2� (hX(x))� kfkL2 � L(�; �) � F 1=2� (hX(x))and by picking a suitably small �(f; ") we can get a boundjf(x) � s ~f;X(x)j � "+ C(f; ";�) � F 1=2� (hX(x)):Note that for hX(x) ! 0 for su�ciently dense data sets X the second partof this bound behaves precisely like the bound of optimal interpolationin the native space, and this means exponential convergence in case ofGaussians or multiquadrics, for instance.The above discussion of approximate approximation is related to K{functionals. Indeed, for any f from the space BC(
) of all bounded andcontinuous functions on the closure of a bounded domain 
 � lRd we canwrite jf(x) � sg(x)j � jf(x) � g(x)j+ jg(x) � sg(x)j� jf(x) � g(x)j+ kgk�F 1=2� (hX(x))if sg is the interpolant to some intermediate function g 2 F� and X =fx1; : : : ; xNg � 
. Thusinfs2SX;� kf � sk1;
 � infg2F�(kf � gk1;
 + F 1=2� (hX) � kgk�)=: K(f; F 1=2� (hX); BC(
);F�)



18 Robert Schabackwith hX := khX(x)k1;
 and SX;� standing for the space of functions ofthe form (1.1). It would be very interesting to see the classical machin-ery of K{functionals set to work towards Jackson{Bernstein theorems forapproximation of functions from intermediate spaces between BC(
) andF�. x6. Shift and ScaleWe now allow scaled versions��(�) = �� �� � ; �̂�(�) = �d�(��) � > 0of a positive de�nite function � on lRd and consider a �xed bounded domain
 � lRd. We �rst check the behavior of k"x;u�;Xk2�� as a function of �.Clearly, from the optimality of (4.4) we get(2�)dk"x;u�;Xk2�� = minu ZlRd �̂�(!) ������1� NXj=1 uj(x)ei!�(x�xj )������2 d!= �dminu ZlRd �̂(!�) ������1� NXj=1 uj(x)ei!�(x�xj)������2 d!= minu ZlRd �̂(�) ������1� NXj=1 uj(x)ei��(x�xj)=�������2 d�= (2�)dk"x=�;u�;X=�k2�as everybody would expect. In view of (4.6) in the bound (4.7) we havehX=�;�=�(x=�) = supky�x=�k��=� minj ky � xj=�k= 1� hX;�(x) = 1� supky�xk�� minj ky � xjk:Thus (4.7) in the formk"x;u�;Xk2�� = F�(hX=�;�=�(x=�)) = F� � 1� hX;�(x)� (6:1)shows that this part of the error depends on the relative scaling of � andthe data, as expected. To make the �rst inequality of (6.1) fully valid werequire a lower bound �=� � �0 > 0



Multivariate Interpolation and Approximation 19for �=�, or an upper bound � � �=�0for �. We introduce h := hX;� := khX;� (�)k1;
to keep the notation somewhat simpler. The error bound (4.8) then isjf(x) � sf;�� (x)j � kfk�� � F 1=2� (h=�);where sf;�� is the interpolant to f with respect to ��. Note that theUncertainty Relation does (at least for interpolation) not allow to makeF�(h=�) arbitrarily small in practical applications. Ignoring the additionalfactor kfk�� , one would always be able to cope with large h by choosinga large � to keep errors small. The stationary case of the literature takes� proportional to h. We see that in this case convergence must come fromthe factor kfk�� for � ! 0, and this is the second reason why we now lookat this quantity.If we keep f �xed and check the condition kfk�� <1, then(2�)dkfk2�� = ��d ZlRd jf̂(!)j2�̂(!�) d!:The �rst and simplest case is thin{plate splines with�̂(!) = k!k�d��for some � > 0 and up to a constant factor. Then clearly f 2 F�� wheneverf 2 F�, and kfk2�� = ��kfk2�:Since in this case F�(h) = c2(�; d)�h�, we can write the overall error boundas jf(x) � sf;�� (x)j � c(�; d)��=2(h=�)�=2kfk�and get invariance with respect to scaling, as expected.Now let us consider functions � with monotonic radial decay of �̂,i.e., �̂(!�) � �̂(!) > 0 for all � � 1; ! 2 lRd:Then kfk�� � ��d=2kfk�1for all f 2 F�1 ; � � 1. The error bound now isjf(x) � sf;�� (x)j � kfk�1 � ��d=2F 1=2�1 (h=�)



20 Robert Schabackand one cannot use strictly stationary interpolation. Instead, one has tolet h=� tend to zero to let F 1=2�1 (h=�) outweigh the factor ��d=2. This is notvery restrictive in case of exponential decay of �̂, i.e., for Multiquadricsand Gaussians, because then it su�ces to let h=� decrease logarithmicallywith h! 0, without spoiling exponential convergence for h! 0.More problematic are cases with algebraic decay of F�1 , say, of typeF�1(h) = O(hk). Then the error has the behaviorhk=2�(�k�d)=2:To achieve an error of O(h�=2) with 0 < � � k (look at thin{plate splinesfor comparison) one has to take a scaling like� = O �h k��k+d � :This allows to trade small errors for good condition by a suitable scaling,and this was the goal of this section. However, we have so far left out themost interesting cases, namely the compactly supported positive de�nitefunctions. Their Fourier transforms partially have zeros or are not knownto be monotonic. Another extension concerns approximation instead ofinterpolation. In both cases one can use the techniques of the precedingsection to generate intermediate functions f� 2 F�� by chopping o� theFourier transform of f , and then interpolating f� by ��. We leave thedetails to a later presentation.Acknowledgments. Help in proofreading was provided by A. Iske, andtyping was done by P. Trapp. References1. Aronszajn, N., Potentiels Besseliens, Ann. Inst. Fourier Grenoble 15(1965), 43{58.2. Atteia, M., Analyse Num�erique { G�en�eralisation de la d�e�nition etdes propri�et�es des spline functions, C.R. Acad. Sc., Paris, 260 (1965),3550{3553.3. Atteia, M., Hilbertian Kernels and Spline Functions, in: Studies inComputational Mathematics (4), North-Holland, Amsterdam, 1992.4. Ball, K., Eigenvalues of Euclidean Distance Matrices, J. Approx. The-ory 68 (1992), 74-82.5. Ball, K., N. Sivakumar, and J.D. Ward, On the Sensitivity of RadialBasis Interpolation to Minimal Distance Separation, J. Approx. The-ory 8 (1992), 401-426.
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