
1 INTRODUCTION 1Meshless Kernel Tehniques for the HeatEquationY.C. Hon and R. ShabakAbstrat: Using the heat equation as a simple example, we give a rigid the-oretial analysis of the Method of Lines, implemented as a meshless methodbased on spatial trial spaes spanned by translates of positive de�nite ker-nels. In addition, we provide a lass of positive de�nite kernels that allow tosolve the heat equation for sattered initial data by kernel�based interpola-tion or approximation, avoiding time intergation ompletely. Some numerialillustrations are given as well.1 Introdution(SeIntro) There are plenty of appliation papers in whih kernels or radialbasis funtions are suessfully used for solving partial di�erential equationsby meshless methods . The usage of kernels is typially based on spatial inter-polation at sattered loations, writing the trial funtions �entirely in termsof nodes�[2℄. For stationary partial di�erential equations, the disretizationan take pointwise analyti derivatives of the trial funtions to end up witha linear system of equations. This started in [6℄ and was pursued in thefollowing years, inluding a onvergene theory in [9℄. There are also varia-tions that use weak data, like the Meshless Loal Petrov�Galerkin method[1℄ with a onvergene theory in [11℄. For the potential equation, there arespeial kernels that allow the use of trial funtions that satisfy the di�erentialequation exatly [10, 5℄.For time�dependent partial di�erential equations, meshless kernel�based meth-ods were similarly based on a �xed spatial interpolation, but now the oe�-ients are time�dependent, and one obtains a system of ordinary di�erentialequations for these. This is the well�known Method of Lines, and it turnedto be experimentally useful in various ases (see e.g. [14, 7, 4, 13℄). However,a rigid analysis of its behavior seems to be still missing. Furthermore, thereare no known meshless kernel�based methods so far that allow the use oftrial funtions that satisfy the di�erential equation exatly.For the simple ase of the heat equation, this paper provides both an analysisof the Method of Lines and a onstrution of kernels that generate trialfuntions solving the heat equation. To this end, we start with basis onkernels, then desribe the Method of Lines and analyze it. After this, we turn



2 KERNEL-BASED SPACE DISCRETIZATION 2to kernels satisfying the heat equation and provide a simple interpolatorymethod that avoids time integration at all. Some numerial examples areprovided as well.2 Kernel-Based Spae Disretization(SeKBSD) A kernel is a symmetri funtion
K : Ω× Ω → Ron some spatial domain Ω ⊂ R
d. The kernel usually is assumed to be positivede�nite, i.e. for all seletions of �nite point sets X = {x1, . . . , xn} ⊂ Ω, the

n × n kernel matries A = A(X) with entries K(xj , xk), 1 ≤ j, k ≤ n aresymmetri and positive de�nite. Standard examples are radial basis funtionslike the Gaussian
K(x, y) = exp(−‖x− y‖22) for all x, y ∈ R

dor the ompatly supported Wendland funtion
K(x, y) =

{

(1− ‖x− y‖2)4(1 + 4‖x− y‖2) ‖x− y‖1 ≤ 1
0 ‖x− y‖1 ≥ 1for all x, y ∈ R

d with d ≤ 3.The standard way to use kernels for solving time�dependent partial di�er-ential equations is to introdue a �xed spae disretization via �nite spatialpoint sets X = {x1, . . . , xn} ⊂ Ω and to generate spatial trial funtions viatranslates of a kernel K in the form (eqsa)
s(x) :=

n
∑

j=1

αjK(x, xj), x ∈ Ω. (1)Interpolation of a spatial funtion f : Ω → R on the given point set X isdone by solving the system
s(xk) =

n
∑

j=1

αjK(xk, xj) = f(xk), 1 ≤ k ≤ ninvolving the n × n kernel matrix A with entries K(xj , xk), 1 ≤ j, k ≤ nwhih is positive de�nite for all positive de�nite kernels.



2 KERNEL-BASED SPACE DISCRETIZATION 3For further use we note that one an onstrut a Lagrange basis u1(x), . . . , un(x)of the span of the funtions K(·, xj), 1 ≤ j ≤ n via solving the system(equKA)
u(x) = K(x)A−1 (2)where we use the notation

u(x) := (u1(x), . . . , un(x)), K(x) = (K(x, x1), . . . , K(x, xn)).Here and in what follows, indies running over funtions will be olumnindies, while indies running over points will be row indies. In partiular,it is onvenient to introdue the olumn-valued evaluation operator de�nedas
E(f) := (f(x1), . . . , f(xn))

T for all f : Ω → R,and appliation of this operator to a row of m funtions v1, . . . , vm shouldgenerate the n × m matrix with entries vj(xk) with 1 ≤ j ≤ m for theolumns and 1 ≤ k ≤ n for the rows. In partiular, the kernel matrix then is
A = E(K(x)) and the Lagrange property simply follows from

E(u(x)) = E(K(x)A−1) = E(K(x))A−1 = AA−1 = In×n.Using the Lagrange basis, the representation (1, eqsa) of an interpolant toa funtion f turns into
s(x) =

n
∑

j=1

uj(x)f(xj) = u(x)E(f), x ∈ Ω,whih is �entirely in terms of nodes� as required for meshless methods [2℄,belytshko-et-al:1996-1.If L is a linear spatial di�erential operator, and if the kernel K is su�-iently smooth to allow appliation of L, an advantage of kernel�based spatialdisretizations is that
(Ls)(x) =

n
∑

j=1

(Luj)(x)f(xj) = Lu(x)E(f), x ∈ Ω,is expliitly available and again �entirely in terms of nodes�. The requiredderivatives Luj of the Lagrange basis funtions uj ome from (2, equKA) viasolving
(Lu)(x) = (LK)(x)A−1provided that one an expliitly evaluate the ation of L on K.



3 METHOD OF LINES 43 Method of Lines(SeMOLgen) With these notations onerning spatial funtions and theirderivatives, we now turn to modeling time�dependent funtions v(x, t) wherethe spatial argument x varies in Ω. One an always interpolate values v(xk, t)of u(x, t) at all times t to get an interpolant (eqsvE)
s(x, t) =

n
∑

j=1

v(xj, t)uj(x) = u(x)E(u(·, t)) (3)in terms of the Lagrange basis. This an be seen as a superposition of aseparation of variables. The ation of a spatial linear operator L then is
(Ls)(x, t) =

n
∑

j=1

v(xj, t)(Luj)(x) = (Lu)(x)E(v(·, t)),again separating the time variation from the spae variation.A linear evolution equation
ut(x, t) = (Lu)(x, t), x ∈ Ω, t ≥ 0with a starting funtion u0 on Ω with

u(x, 0) = u0(x) for all x ∈ Ωan then be modeled by substituting (3, eqsvE) and disretizing the spatialvariable to the points x1, . . . , xn. This leads to
st(xk, t) = (Ls)(xk, t) 1 ≤ k ≤ n, t ≥ 0
s(xj , 0) = u0(xj), 1 ≤ j ≤ n,i.e. the whole problem is posed disretely in spae, but ontinuously in time.The seond part is just interpolation of the initial funtion, while the �rsttakes the form

∂

∂t
v(xk, t) =

n
∑

j=1

v(xj , t)(Luj)(xk), 1 ≤ k ≤ n, t ≥ 0whih is a linear system of ordinary di�erential equations
y′k(t) =

n
∑

j=1

yj(t)(Luj)(xk), 1 ≤ k ≤ n, t ≥ 0



3 METHOD OF LINES 5for unknowns yk(t) having the meaning yk(t) = v(xk, t) for an approximatesolution v(x, t) of the problem. The initial values are
yj(0) = u0(xj), 1 ≤ j ≤ n.This is the lassial Method of Lines in the simplest linear ase withoutadditional boundary onditions. It is easy to generalize to nonlinear problemsof the form

ut(x, t) = F (t, u(x, t), (Lu)(x, t)),leading to a nonlinear system
y′k(t) = F

(

t,

n
∑

j=1

yj(t)uj(xk),

n
∑

j=1

yj(t)(Luj)(xk)

)of ODEs, and it is also easy to inorporate multiple spatial di�erential oper-ators.Additional time�dependent boundary onditions of the form
u(z, t) = uB(z, t) for all z ∈ Γ := ∂Ω, t ≥ 0an also be handled. One disretizes them to

v(xn+i, t) = uB(xn+i, t), 1 ≤ i ≤ mfor a hoie of boundary points xn+1, . . . , xn+m. These are added to the spa-tial interpolation problem, avoiding oalesene with the points x1, . . . , xn.The trial funtions are again spei�ed in the form (3, eqsvE), but they splitinto
s(x, t) =

n
∑

j=1

v(xj , t)uj(x) +

m
∑

i=1

v(xn+i, t)un+i(x)

=

n
∑

j=1

v(xj , t)uj(x) +

m
∑

i=1

uB(xn+i, t)un+i(x)being still entirely in terms of values at the nodes. Sine we form the La-grange basis with respet to all points x1, . . . , xn+m, the �rst sum vanisheson the boundary points xn+1, . . . , xn+m, while the seond attains the orretboundary values there. The resulting ODE system then is the inhomogeneoussystem
y′k(t) =

n
∑

j=1

yj(t)(Luj)(xk) +

m
∑

i=1

uB(xn+i, t)L(un+i)(x)



4 METHOD OF LINES FOR HEAT EQUATION 6in the linear ase, for 1 ≤ k ≤ n and all t ≥ 0.In numerial experiments, this tehnique was reported to work well (see e.g.[14, 7, 4, 13℄), but a thorough mathematial analysis of its behavior is stillmissing, sine one has to �ght stability properties [8℄. We shall supply athorough analysis for a simple speial ase, the heat equation.4 Method of Lines for Heat Equation(SeMOL) Consider
ut = uxxon (x, t) ∈ [0, 1]× [0,∞) under boundary onditions

u(x, 0) = u0(x), x ∈ [0, 1],
u(0, t) = u0(0) = 0, t ≥ 0,
u(1, t) = u0(1) = 0, t ≥ 0de�ned by a smooth funtion u0 on [0, 1] vanishing at both ends. By standardtransformations, any heat equation problem with onstant boundary valuesan be brought into this form.For simpliity, we disretize [0, 1] by (eqxdist)
0 = x0 < x1 < . . . < xn+1 = 1 (4)using equidistant points xj = jh, 0 ≤ j ≤ n+1 with distane h = 1/(n+1),but any other disretization (4, eqxdist) with �ll distane

h := sup
x∈[0,1]

min
1≤j≤n

|x− xj |will do. Let K be a smooth positive de�nite symmetri kernel on R and let
u0, . . . , un be the Lagrange basis for interpolation using translates of K inthe points x0, . . . , xn+1. Note that u1, . . . , un will automatially satisfy thezero boundary onditions at x0 and xn+1.We use interpolatory trial funtions

s(x, t) =

n
∑

j=1

s(xj , t)uj(x)vanishing at x = 0 nd x = 1 and interpolate the starting funtion u0 byrequiring
s(xk, 0) = u0(xk), 1 ≤ k ≤ n.



5 ERROR ANALYSIS 7The Method of Lines uses funtions
y(x, t) =

n
∑

j=1

yj(t)uj(x)with y(xj, t) = yj(t) and poses the linear ODE system
y′k(t) =

n
∑

j=1

yj(t)u
′′
j (xk), 1 ≤ k ≤ nwith starting values

yk(0) = s(xk, 0) = u0(xk), 1 ≤ k ≤ n.Introduing the matrix-vetor notation for values at the points x1, . . . , xn asin the previous setion, we get the linear �rst�order system (eqyU)
y′(t) = U ′′y(t) (5)with the solution

y(t) = exp (U ′′t) y(0).The solution satis�es
yt(xk, t) = yxx(xk, t), 1 ≤ k ≤ nby onstrution, sine

yt(xk, t) =

n
∑

j=1

y′j(t)uj(xk)

= y′k(t)

=
n
∑

j=1

yj(t)u
′′
j (xk), 1 ≤ k ≤ n

= yxx(xk, t), 1 ≤ k ≤ n.5 Error Analysis(SeEA) We introdue the interpolant v(x, t) to the true solution u(x, t) atthe points x0, . . . , xn+1 for all t. This is
v(x, t) =

n
∑

j=1

u(xj, t)uj(x)



5 ERROR ANALYSIS 8and we use it to insert the true solution into the ODE system for the Methodof Lines. Then
ut(xk, t) = uxx(xk, t)

=
n
∑

j=1

u(xj , t)u
′′
j (xk) + uxx(xk, t)−

n
∑

j=1

u(xj, t)u
′′
j (xk)

=
n
∑

j=1

u(xj , t)u
′′
j (xk) + uxx(xk, t)− vxx(xk, t).Introduing vetors for values at the xk again, we get

u′(t) = U ′′u(t) + (uxx − vxx)(t)and
(u− y)′(t) = U ′′(u− y)(t) + (uxx − vxx)(t).Sine the disrete starting values (u − y)(0) are zero, the standard formulafor inhomogeneous linear �rst�order systems yields (equyt)

(u− y)(t) =

∫ t

0

exp(U ′′(t− s))(uxx − vxx)(s)ds. (6)This is an exat formula for the error at the disrete points.We shall use a smooth positive de�nite translation�invariant kernel K on
R with positive Fourier transform K̂ and some order m > 1/2 in the sense(eqkerord)

∫

R

K̂(ω)(1 + |ω|2)mdω < ∞. (7)It will be reproduing in a �native� Hilbert spae of at least ontinuousfuntions whih is ontained in Sobolev spae Wm
2 (R). Then we an get(equvbound)

‖u(·, t)− v(·, t)‖L2[0,1] ≤ Chm‖u(·, t)‖K (8)sine we an also assume by standard results on the heat equation that thesolution is smooth enough to lie in the spatial native spae of the kernel forall times. Similarly,
‖uxx(·, t)− vxx(·, t)‖L2[0,1] ≤ Chm−2‖u(·, t)‖K.The orresponding result for L∞ errors in 1D is (eqinfdiffbnd)

‖uxx(·, t)− vxx(·, t)‖L∞[0,1] ≤ Chm−2−1/2‖u(·, t)‖K. (9)All of this follows from standard literature on kernel�based methods, see e.g.[15℄.



6 BOUNDING THE EXPONENTIAL 96 Bounding the ExponentialThe remaining problem now is to bound the matrix exponential
exp(U ′′t)c =

∞
∑

n=0

tn

n!
(U ′′)ncsomehow, e.g. via

‖ exp(U ′′t)c‖2 ≤
∞
∑

n=0

tn

n!
ρ(U ′′)n‖c‖2where ρ is the spetral radius.A speial way to deal with the matrix exponential is to use that the matrix

U ′′ will be negative de�nite. In fat, if A is the standard kernel matrix for thegiven points, and A′′ is the same, but with seond derivatives of the kernel,we an use that u 7→ −uxx is ellipti, thus −A′′ will be positive de�nite. But
U ′′ is the major part of A−1A′′ after dropping the outer rows and olumns.This implies that U ′′ is negative de�nite. Thus the matrix exponential deaysfor inreasing time, and an be bounded by a onstant when looking at theintegral (6, equyt). By Cauhy�Shwarz, the �nal error bound on data thenis (eqMOLbound)

|u(xj , t)− y(xj, t)| ≤
√
tChm−2

(
∫ t

0

‖u(·, t)‖2Kdt
)1/2

. (10)Theorem 6.1. If the Method of Lines is arried out using a kernel of order
m in the sense of (7, eqkerord), the error on the disretization points andup to all �xed times will be given by (10, eqMOLbound).Sine the true solution is C∞ and vanishes for inreasing t due to its stan-dard series representation based on separation of variables, we know that theseond fator in (10, eqMOLbound) is uniformly bounded.The error outside the data an be bounded by a�posteriori analysis, usingthe Lagrange basis again. Writing

y(x, t) =
n
∑

j=1

uj(x)y(xj , t)



7 TIME STEPPING TECHNIQUES 10and making use of the fat [3℄ that the Lagrange basis funtions are uniformlybounded if the distribution of spatial data points is not too irregular, we have(eqMOLboundglob)
|v(x, t)− y(x, t)| =

∣

∣

∣

∣

∣

n
∑

j=1

uj(x)(v(xj, t)− y(xj, t))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

j=1

uj(x)(u(xj, t)− y(xj, t))

∣

∣

∣

∣

∣

≤ Cn
√
thm−2

≤ C
√
thm−3

(11)
for the global error between the interpolant v to the true solution and thesolution y via the Method of Lines. The error between the true solution uand its interpolant v has the better bound (8, equvbound). This impliesTheorem 6.2. If the Method of Lines is arried out using a kernel of order
m in the sense of (7, eqkerord), the error on the disretization points andup to all �xed times will be of order O(

√
thm−3).Note that there is no CFL ondition here, sine there is no time step. At thispoint, it is assumed that the ODE system indued by the Method of Lines issolved exatly, and propagation of roundo� is ignored. Any ODE solver hasto ope with the linear system (5, eqyU) somehow, and sine we shall see inthe next setion that U ′′ has negative eigenvalues of absolute value O(h2),the ODE system will be hard to integrate with good quality if h is small. Allinstability issues are shifted bak to the ODE system when using the Methodof Lines, but there is a CFL ondition behind the sene, as we shall see inthe next setion.7 Time Stepping Tehniques(SeTST) Using the above spatial disretization, and using the notation

w(x, t) for our approximate solution, a variation of a forward Euler time�stepping method would then be
w(xk, t+∆t)− w(xk, t)

∆t
= wxx(xk, t) =

n
∑

j=1

w(xj , t)u
′′
j (xk).It still has a time disretization, but the spae disretization is hidden in theexat di�erentiation of the spatial interpolant. In our vetor notation, it is

E(w(·, t+∆t)) = (I + U ′′∆t)E(w(·, t)).



7 TIME STEPPING TECHNIQUES 11Its stability an thus be analyzed via linear algebra, and the algorithm is thesame as a forward Euler step for the linear ODE system
w′(t) = U ′′w(t)we enountered before. We shall have to analyze the spetrum of U ′′ forasserting stability, and this will follow below.By standard approximation results like (9, eqinfdiffbnd) for kernel�basedmethods, we getTheorem 7.1. For kernels with orders m > 5/2, the forward Euler method(and others disretizing the spatial seond derivative in the same way) willbe onsistent of order m− 5/2.Note that for stable methods the onsisteny order will be the onvergeneorder.To hek stability and to get a CFL ondition, we needTheorem 7.2. (TheSpeBound) The spetral radius of U ′′ satis�es
ρ(U ′′) ≤ Ch−2if spatial disretization is done with m > 5/2.Proof: If λ is an eigenvalue of U ′′ with eigenvetor c, then

U ′′c = λc,
n
∑

j=1

u′′
j (xk)cj = λck, 1 ≤ k ≤ n,and the funtion
sλ(x) :=

n
∑

j=1

cjuj(x)satis�es
s′′λ(xk) = λsλ(xk), 1 ≤ k ≤ nand vanishes on both x0 = 0 and xn+1 = 1. We invoke the �sampling�inequality

‖s′′‖∞,[0,1] ≤ C
(

hm−5/2‖s‖m + h−2‖s‖∞,X

) for all s ∈ Wm
2 [0, 1]



7 TIME STEPPING TECHNIQUES 12from [16℄ for m > 5/2 and normalize s to satisfy ‖s‖m = 1. Then
|λ||sλ(xk)| ≤ ‖s′′‖∞,[0,1]

≤ Ch−2‖s‖∞,X.Piking k with |sλ(xk)| = ‖s‖∞,X yields the assertion.Thus, for Euler time�stepping in the ODE system (5, eqyU), a spetral radiusof order h−2 means that there must be a CFL ondition of the form
∆t ≤ C(∆x)2as is to be expeted.

Figure 1: Absolute errorWe lose this setion by an example. Figure 1 shows the absolute error forthe ase with the exat solution
u(x, t) = sin(πx) exp(−π2t)using the Method of Lines for 15 equidistant spatial points, using the C4Wendland kernel. Note that there is a sharp inrease of errors lose to theboundary right after the start of the integration. For illustration, see Figure



8 DIRECT HEAT KERNEL TECHNIQUES 13
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Figure 2: Errors at startup and �rst time step2 giving the initial error of about 0.00004 and the error after the �rst timestep at t = 0.001, whih is roughly 0.01. This unexpeted e�et is observablefor various other ases as well. It turns out that we missed the additionalonditions
ut(0, t) = 0 = uxx(0, t), ut(1, t) = 0 = uxx(1, t)foring the seond spatial derivative of the solution to be zero at the boundaryfor all times. Our interpolants should have inorporated this ondition. Thisteahes us the lesson that the trial spae should always be as lose to thesolution spae as possible. But sine we present an even better trial spae inthe next setion, we refrain from repairing the above ase.8 Diret Heat Kernel TehniquesFor our speial problem, solutions in series form are given by

u(x, t) =
∞
∑

k=1

ck sin(kπx) exp(−k2π2t)when the initial funtion has the series expansion
u0(x) = u(x, 0) =

∞
∑

k=1

ck sin(kπx)with at least
∞
∑

k=1

c2k ≤ ∞.



8 DIRECT HEAT KERNEL TECHNIQUES 14To apply kernel tehniques diretly, we an go over to kernels (ewheatkerser)
K(x, y, t) :=

∞
∑

k=1

λk sin(kπx) sin(kπy) exp(−k2π2t) (12)with positive summable weights λk. By standard arguments onerning ex-pansion kernels, we getTheorem 8.1. (TheKerPosDef) Eah suh kernel satis�es the heat equations
Kt(x, y, t) = Kxx(x, y, t) = Kyy(x, y, t)and the boundary onditions

K(0, y, t) = K(x, 0, t) = K(1, y, t) = K(x, 1, t)for all x, y ∈ [0, 1]. Furthermore, they are positive de�nite on Ω = [0, 1] forall t ∈ R.Now one an take a set X = {x1, . . . , xn} ⊂ (0, 1) of sattered points andinterpolate the starting funtion u0 by solving (eqheatkersys)
u0(xj) =

n
∑

k=1

αkK(xj , xk, 0), 1 ≤ j ≤ n (13)for oe�ients α1, . . . , αn. Then the funtion
s(x, t) :=

n
∑

k=1

αkK(x, xk, t)will satisfy the heat equation and the boundary onditions. This yields amuh better trial spae, and avoids numerial integration ompletely. Dueto the maximum priniple, the error for all positive times is bounded by the
L∞ interpolation error ‖s(·, 0)− u0‖∞ at startup. A theoretial analysis ofthis error requires an appliation of kernel interpolation theory to K(x, y, 0),whih an be done using periodiity and Fourier expansions. We leave detailsof this to another paper.The hoie of the weights in the kernel series (12, ewheatkerser) will dependon the smoothness of the starting funtion u0, sine kernel interpolationtheory [15, 12℄ tells us that the smoothness of the kernel K(x, y, 0) should benot lower than the smoothness of the funtion supplying the data. And sine
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Figure 3: Kernel with weights 1/n!the smoothness of the funtions generated by trigonometri series is relatedto the deay of the oe�ients, the smoothness of K(x, y, 0) is ontrolled bydeay of the λk. We fous on a simple example here.The hoie λk = 1/k! gives a series whih generates an analyti kernel plottedin Figure 3. It has an expliit representation
4K(x, y, 0) = exp(exp(π(x+ y))) + exp(exp(−π(x+ y)))

− exp(exp(π(x− y))) − exp(exp(−π(x− y)))whih unfortunately su�ers from severe anellation. But the rapid onver-gene of the series (12, ewheatkerser) allows to sum the series up until thelimit of double preision is reahed, i.e. at k = 19. This will, however, lead toinevitable rank loss in (13, eqheatkersys) for more than n = 19 data points.Nonetheless, and in partiular if the initial funtion u0 is very smooth, thereusually are good projetions of the right�hand side into the olumn spae ofthe matrix, leading to unexpetedly good results. Figure 4 shows an examplefor the starting funtion u0(x) = 1 − 2|x − 0.5| using only 13 points. Theerror is bounded by the visible di�erene of the starting funtion and its �rstinterpolant.Referenes[1℄ S. N. Atluri and T. L. Zhu, A new meshless loal Petrov-Galerkin(MLPG) approah in omputational mehanis, Computational Mehan-is, 22 (1998), pp. 117�127.
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