
1 INTRODUCTION 1Meshless Kernel Te
hniques for the HeatEquationY.C. Hon and R. S
haba
kAbstra
t: Using the heat equation as a simple example, we give a rigid the-oreti
al analysis of the Method of Lines, implemented as a meshless methodbased on spatial trial spa
es spanned by translates of positive de�nite ker-nels. In addition, we provide a 
lass of positive de�nite kernels that allow tosolve the heat equation for s
attered initial data by kernel�based interpola-tion or approximation, avoiding time intergation 
ompletely. Some numeri
alillustrations are given as well.1 Introdu
tion(Se
Intro) There are plenty of appli
ation papers in whi
h kernels or radialbasis fun
tions are su

essfully used for solving partial di�erential equationsby meshless methods . The usage of kernels is typi
ally based on spatial inter-polation at s
attered lo
ations, writing the trial fun
tions �entirely in termsof nodes�[2℄. For stationary partial di�erential equations, the dis
retization
an take pointwise analyti
 derivatives of the trial fun
tions to end up witha linear system of equations. This started in [6℄ and was pursued in thefollowing years, in
luding a 
onvergen
e theory in [9℄. There are also varia-tions that use weak data, like the Meshless Lo
al Petrov�Galerkin method[1℄ with a 
onvergen
e theory in [11℄. For the potential equation, there arespe
ial kernels that allow the use of trial fun
tions that satisfy the di�erentialequation exa
tly [10, 5℄.For time�dependent partial di�erential equations, meshless kernel�based meth-ods were similarly based on a �xed spatial interpolation, but now the 
oe�-
ients are time�dependent, and one obtains a system of ordinary di�erentialequations for these. This is the well�known Method of Lines, and it turnedto be experimentally useful in various 
ases (see e.g. [14, 7, 4, 13℄). However,a rigid analysis of its behavior seems to be still missing. Furthermore, thereare no known meshless kernel�based methods so far that allow the use oftrial fun
tions that satisfy the di�erential equation exa
tly.For the simple 
ase of the heat equation, this paper provides both an analysisof the Method of Lines and a 
onstru
tion of kernels that generate trialfun
tions solving the heat equation. To this end, we start with basi
s onkernels, then des
ribe the Method of Lines and analyze it. After this, we turn



2 KERNEL-BASED SPACE DISCRETIZATION 2to kernels satisfying the heat equation and provide a simple interpolatorymethod that avoids time integration at all. Some numeri
al examples areprovided as well.2 Kernel-Based Spa
e Dis
retization(Se
KBSD) A kernel is a symmetri
 fun
tion
K : Ω× Ω → Ron some spatial domain Ω ⊂ R
d. The kernel usually is assumed to be positivede�nite, i.e. for all sele
tions of �nite point sets X = {x1, . . . , xn} ⊂ Ω, the

n × n kernel matri
es A = A(X) with entries K(xj , xk), 1 ≤ j, k ≤ n aresymmetri
 and positive de�nite. Standard examples are radial basis fun
tionslike the Gaussian
K(x, y) = exp(−‖x− y‖22) for all x, y ∈ R

dor the 
ompa
tly supported Wendland fun
tion
K(x, y) =

{

(1− ‖x− y‖2)4(1 + 4‖x− y‖2) ‖x− y‖1 ≤ 1
0 ‖x− y‖1 ≥ 1for all x, y ∈ R

d with d ≤ 3.The standard way to use kernels for solving time�dependent partial di�er-ential equations is to introdu
e a �xed spa
e dis
retization via �nite spatialpoint sets X = {x1, . . . , xn} ⊂ Ω and to generate spatial trial fun
tions viatranslates of a kernel K in the form (eqsa)
s(x) :=

n
∑

j=1

αjK(x, xj), x ∈ Ω. (1)Interpolation of a spatial fun
tion f : Ω → R on the given point set X isdone by solving the system
s(xk) =

n
∑

j=1

αjK(xk, xj) = f(xk), 1 ≤ k ≤ ninvolving the n × n kernel matrix A with entries K(xj , xk), 1 ≤ j, k ≤ nwhi
h is positive de�nite for all positive de�nite kernels.



2 KERNEL-BASED SPACE DISCRETIZATION 3For further use we note that one 
an 
onstru
t a Lagrange basis u1(x), . . . , un(x)of the span of the fun
tions K(·, xj), 1 ≤ j ≤ n via solving the system(equKA)
u(x) = K(x)A−1 (2)where we use the notation

u(x) := (u1(x), . . . , un(x)), K(x) = (K(x, x1), . . . , K(x, xn)).Here and in what follows, indi
es running over fun
tions will be 
olumnindi
es, while indi
es running over points will be row indi
es. In parti
ular,it is 
onvenient to introdu
e the 
olumn-valued evaluation operator de�nedas
E(f) := (f(x1), . . . , f(xn))

T for all f : Ω → R,and appli
ation of this operator to a row of m fun
tions v1, . . . , vm shouldgenerate the n × m matrix with entries vj(xk) with 1 ≤ j ≤ m for the
olumns and 1 ≤ k ≤ n for the rows. In parti
ular, the kernel matrix then is
A = E(K(x)) and the Lagrange property simply follows from

E(u(x)) = E(K(x)A−1) = E(K(x))A−1 = AA−1 = In×n.Using the Lagrange basis, the representation (1, eqsa) of an interpolant toa fun
tion f turns into
s(x) =

n
∑

j=1

uj(x)f(xj) = u(x)E(f), x ∈ Ω,whi
h is �entirely in terms of nodes� as required for meshless methods [2℄,belyts
hko-et-al:1996-1.If L is a linear spatial di�erential operator, and if the kernel K is su�-
iently smooth to allow appli
ation of L, an advantage of kernel�based spatialdis
retizations is that
(Ls)(x) =

n
∑

j=1

(Luj)(x)f(xj) = Lu(x)E(f), x ∈ Ω,is expli
itly available and again �entirely in terms of nodes�. The requiredderivatives Luj of the Lagrange basis fun
tions uj 
ome from (2, equKA) viasolving
(Lu)(x) = (LK)(x)A−1provided that one 
an expli
itly evaluate the a
tion of L on K.



3 METHOD OF LINES 43 Method of Lines(Se
MOLgen) With these notations 
on
erning spatial fun
tions and theirderivatives, we now turn to modeling time�dependent fun
tions v(x, t) wherethe spatial argument x varies in Ω. One 
an always interpolate values v(xk, t)of u(x, t) at all times t to get an interpolant (eqsvE)
s(x, t) =

n
∑

j=1

v(xj, t)uj(x) = u(x)E(u(·, t)) (3)in terms of the Lagrange basis. This 
an be seen as a superposition of aseparation of variables. The a
tion of a spatial linear operator L then is
(Ls)(x, t) =

n
∑

j=1

v(xj, t)(Luj)(x) = (Lu)(x)E(v(·, t)),again separating the time variation from the spa
e variation.A linear evolution equation
ut(x, t) = (Lu)(x, t), x ∈ Ω, t ≥ 0with a starting fun
tion u0 on Ω with

u(x, 0) = u0(x) for all x ∈ Ω
an then be modeled by substituting (3, eqsvE) and dis
retizing the spatialvariable to the points x1, . . . , xn. This leads to
st(xk, t) = (Ls)(xk, t) 1 ≤ k ≤ n, t ≥ 0
s(xj , 0) = u0(xj), 1 ≤ j ≤ n,i.e. the whole problem is posed dis
retely in spa
e, but 
ontinuously in time.The seond part is just interpolation of the initial fun
tion, while the �rsttakes the form

∂

∂t
v(xk, t) =

n
∑

j=1

v(xj , t)(Luj)(xk), 1 ≤ k ≤ n, t ≥ 0whi
h is a linear system of ordinary di�erential equations
y′k(t) =

n
∑

j=1

yj(t)(Luj)(xk), 1 ≤ k ≤ n, t ≥ 0



3 METHOD OF LINES 5for unknowns yk(t) having the meaning yk(t) = v(xk, t) for an approximatesolution v(x, t) of the problem. The initial values are
yj(0) = u0(xj), 1 ≤ j ≤ n.This is the 
lassi
al Method of Lines in the simplest linear 
ase withoutadditional boundary 
onditions. It is easy to generalize to nonlinear problemsof the form

ut(x, t) = F (t, u(x, t), (Lu)(x, t)),leading to a nonlinear system
y′k(t) = F

(

t,

n
∑

j=1

yj(t)uj(xk),

n
∑

j=1

yj(t)(Luj)(xk)

)of ODEs, and it is also easy to in
orporate multiple spatial di�erential oper-ators.Additional time�dependent boundary 
onditions of the form
u(z, t) = uB(z, t) for all z ∈ Γ := ∂Ω, t ≥ 0
an also be handled. One dis
retizes them to

v(xn+i, t) = uB(xn+i, t), 1 ≤ i ≤ mfor a 
hoi
e of boundary points xn+1, . . . , xn+m. These are added to the spa-tial interpolation problem, avoiding 
oales
en
e with the points x1, . . . , xn.The trial fun
tions are again spe
i�ed in the form (3, eqsvE), but they splitinto
s(x, t) =

n
∑

j=1

v(xj , t)uj(x) +

m
∑

i=1

v(xn+i, t)un+i(x)

=

n
∑

j=1

v(xj , t)uj(x) +

m
∑

i=1

uB(xn+i, t)un+i(x)being still entirely in terms of values at the nodes. Sin
e we form the La-grange basis with respe
t to all points x1, . . . , xn+m, the �rst sum vanisheson the boundary points xn+1, . . . , xn+m, while the se
ond attains the 
orre
tboundary values there. The resulting ODE system then is the inhomogeneoussystem
y′k(t) =

n
∑

j=1

yj(t)(Luj)(xk) +

m
∑

i=1

uB(xn+i, t)L(un+i)(x)



4 METHOD OF LINES FOR HEAT EQUATION 6in the linear 
ase, for 1 ≤ k ≤ n and all t ≥ 0.In numeri
al experiments, this te
hnique was reported to work well (see e.g.[14, 7, 4, 13℄), but a thorough mathemati
al analysis of its behavior is stillmissing, sin
e one has to �ght stability properties [8℄. We shall supply athorough analysis for a simple spe
ial 
ase, the heat equation.4 Method of Lines for Heat Equation(Se
MOL) Consider
ut = uxxon (x, t) ∈ [0, 1]× [0,∞) under boundary 
onditions

u(x, 0) = u0(x), x ∈ [0, 1],
u(0, t) = u0(0) = 0, t ≥ 0,
u(1, t) = u0(1) = 0, t ≥ 0de�ned by a smooth fun
tion u0 on [0, 1] vanishing at both ends. By standardtransformations, any heat equation problem with 
onstant boundary values
an be brought into this form.For simpli
ity, we dis
retize [0, 1] by (eqxdist)
0 = x0 < x1 < . . . < xn+1 = 1 (4)using equidistant points xj = jh, 0 ≤ j ≤ n+1 with distan
e h = 1/(n+1),but any other dis
retization (4, eqxdist) with �ll distan
e

h := sup
x∈[0,1]

min
1≤j≤n

|x− xj |will do. Let K be a smooth positive de�nite symmetri
 kernel on R and let
u0, . . . , un be the Lagrange basis for interpolation using translates of K inthe points x0, . . . , xn+1. Note that u1, . . . , un will automati
ally satisfy thezero boundary 
onditions at x0 and xn+1.We use interpolatory trial fun
tions

s(x, t) =

n
∑

j=1

s(xj , t)uj(x)vanishing at x = 0 nd x = 1 and interpolate the starting fun
tion u0 byrequiring
s(xk, 0) = u0(xk), 1 ≤ k ≤ n.



5 ERROR ANALYSIS 7The Method of Lines uses fun
tions
y(x, t) =

n
∑

j=1

yj(t)uj(x)with y(xj, t) = yj(t) and poses the linear ODE system
y′k(t) =

n
∑

j=1

yj(t)u
′′
j (xk), 1 ≤ k ≤ nwith starting values

yk(0) = s(xk, 0) = u0(xk), 1 ≤ k ≤ n.Introdu
ing the matrix-ve
tor notation for values at the points x1, . . . , xn asin the previous se
tion, we get the linear �rst�order system (eqyU)
y′(t) = U ′′y(t) (5)with the solution

y(t) = exp (U ′′t) y(0).The solution satis�es
yt(xk, t) = yxx(xk, t), 1 ≤ k ≤ nby 
onstru
tion, sin
e

yt(xk, t) =

n
∑

j=1

y′j(t)uj(xk)

= y′k(t)

=
n
∑

j=1

yj(t)u
′′
j (xk), 1 ≤ k ≤ n

= yxx(xk, t), 1 ≤ k ≤ n.5 Error Analysis(Se
EA) We introdu
e the interpolant v(x, t) to the true solution u(x, t) atthe points x0, . . . , xn+1 for all t. This is
v(x, t) =

n
∑

j=1

u(xj, t)uj(x)



5 ERROR ANALYSIS 8and we use it to insert the true solution into the ODE system for the Methodof Lines. Then
ut(xk, t) = uxx(xk, t)

=
n
∑

j=1

u(xj , t)u
′′
j (xk) + uxx(xk, t)−

n
∑

j=1

u(xj, t)u
′′
j (xk)

=
n
∑

j=1

u(xj , t)u
′′
j (xk) + uxx(xk, t)− vxx(xk, t).Introdu
ing ve
tors for values at the xk again, we get

u′(t) = U ′′u(t) + (uxx − vxx)(t)and
(u− y)′(t) = U ′′(u− y)(t) + (uxx − vxx)(t).Sin
e the dis
rete starting values (u − y)(0) are zero, the standard formulafor inhomogeneous linear �rst�order systems yields (equyt)

(u− y)(t) =

∫ t

0

exp(U ′′(t− s))(uxx − vxx)(s)ds. (6)This is an exa
t formula for the error at the dis
rete points.We shall use a smooth positive de�nite translation�invariant kernel K on
R with positive Fourier transform K̂ and some order m > 1/2 in the sense(eqkerord)

∫

R

K̂(ω)(1 + |ω|2)mdω < ∞. (7)It will be reprodu
ing in a �native� Hilbert spa
e of at least 
ontinuousfun
tions whi
h is 
ontained in Sobolev spa
e Wm
2 (R). Then we 
an get(equvbound)

‖u(·, t)− v(·, t)‖L2[0,1] ≤ Chm‖u(·, t)‖K (8)sin
e we 
an also assume by standard results on the heat equation that thesolution is smooth enough to lie in the spatial native spa
e of the kernel forall times. Similarly,
‖uxx(·, t)− vxx(·, t)‖L2[0,1] ≤ Chm−2‖u(·, t)‖K.The 
orresponding result for L∞ errors in 1D is (eqinfdiffbnd)

‖uxx(·, t)− vxx(·, t)‖L∞[0,1] ≤ Chm−2−1/2‖u(·, t)‖K. (9)All of this follows from standard literature on kernel�based methods, see e.g.[15℄.



6 BOUNDING THE EXPONENTIAL 96 Bounding the ExponentialThe remaining problem now is to bound the matrix exponential
exp(U ′′t)c =

∞
∑

n=0

tn

n!
(U ′′)ncsomehow, e.g. via

‖ exp(U ′′t)c‖2 ≤
∞
∑

n=0

tn

n!
ρ(U ′′)n‖c‖2where ρ is the spe
tral radius.A spe
ial way to deal with the matrix exponential is to use that the matrix

U ′′ will be negative de�nite. In fa
t, if A is the standard kernel matrix for thegiven points, and A′′ is the same, but with se
ond derivatives of the kernel,we 
an use that u 7→ −uxx is ellipti
, thus −A′′ will be positive de�nite. But
U ′′ is the major part of A−1A′′ after dropping the outer rows and 
olumns.This implies that U ′′ is negative de�nite. Thus the matrix exponential de
aysfor in
reasing time, and 
an be bounded by a 
onstant when looking at theintegral (6, equyt). By Cau
hy�S
hwarz, the �nal error bound on data thenis (eqMOLbound)

|u(xj , t)− y(xj, t)| ≤
√
tChm−2

(
∫ t

0

‖u(·, t)‖2Kdt
)1/2

. (10)Theorem 6.1. If the Method of Lines is 
arried out using a kernel of order
m in the sense of (7, eqkerord), the error on the dis
retization points andup to all �xed times will be given by (10, eqMOLbound).Sin
e the true solution is C∞ and vanishes for in
reasing t due to its stan-dard series representation based on separation of variables, we know that these
ond fa
tor in (10, eqMOLbound) is uniformly bounded.The error outside the data 
an be bounded by a�posteriori analysis, usingthe Lagrange basis again. Writing

y(x, t) =
n
∑

j=1

uj(x)y(xj , t)



7 TIME STEPPING TECHNIQUES 10and making use of the fa
t [3℄ that the Lagrange basis fun
tions are uniformlybounded if the distribution of spatial data points is not too irregular, we have(eqMOLboundglob)
|v(x, t)− y(x, t)| =

∣

∣

∣

∣

∣

n
∑

j=1

uj(x)(v(xj, t)− y(xj, t))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

j=1

uj(x)(u(xj, t)− y(xj, t))

∣

∣

∣

∣

∣

≤ Cn
√
thm−2

≤ C
√
thm−3

(11)
for the global error between the interpolant v to the true solution and thesolution y via the Method of Lines. The error between the true solution uand its interpolant v has the better bound (8, equvbound). This impliesTheorem 6.2. If the Method of Lines is 
arried out using a kernel of order
m in the sense of (7, eqkerord), the error on the dis
retization points andup to all �xed times will be of order O(

√
thm−3).Note that there is no CFL 
ondition here, sin
e there is no time step. At thispoint, it is assumed that the ODE system indu
ed by the Method of Lines issolved exa
tly, and propagation of roundo� is ignored. Any ODE solver hasto 
ope with the linear system (5, eqyU) somehow, and sin
e we shall see inthe next se
tion that U ′′ has negative eigenvalues of absolute value O(h2),the ODE system will be hard to integrate with good quality if h is small. Allinstability issues are shifted ba
k to the ODE system when using the Methodof Lines, but there is a CFL 
ondition behind the s
ene, as we shall see inthe next se
tion.7 Time Stepping Te
hniques(Se
TST) Using the above spatial dis
retization, and using the notation

w(x, t) for our approximate solution, a variation of a forward Euler time�stepping method would then be
w(xk, t+∆t)− w(xk, t)

∆t
= wxx(xk, t) =

n
∑

j=1

w(xj , t)u
′′
j (xk).It still has a time dis
retization, but the spa
e dis
retization is hidden in theexa
t di�erentiation of the spatial interpolant. In our ve
tor notation, it is

E(w(·, t+∆t)) = (I + U ′′∆t)E(w(·, t)).



7 TIME STEPPING TECHNIQUES 11Its stability 
an thus be analyzed via linear algebra, and the algorithm is thesame as a forward Euler step for the linear ODE system
w′(t) = U ′′w(t)we en
ountered before. We shall have to analyze the spe
trum of U ′′ forasserting stability, and this will follow below.By standard approximation results like (9, eqinfdiffbnd) for kernel�basedmethods, we getTheorem 7.1. For kernels with orders m > 5/2, the forward Euler method(and others dis
retizing the spatial se
ond derivative in the same way) willbe 
onsistent of order m− 5/2.Note that for stable methods the 
onsisten
y order will be the 
onvergen
eorder.To 
he
k stability and to get a CFL 
ondition, we needTheorem 7.2. (TheSpe
Bound) The spe
tral radius of U ′′ satis�es
ρ(U ′′) ≤ Ch−2if spatial dis
retization is done with m > 5/2.Proof: If λ is an eigenvalue of U ′′ with eigenve
tor c, then

U ′′c = λc,
n
∑

j=1

u′′
j (xk)cj = λck, 1 ≤ k ≤ n,and the fun
tion
sλ(x) :=

n
∑

j=1

cjuj(x)satis�es
s′′λ(xk) = λsλ(xk), 1 ≤ k ≤ nand vanishes on both x0 = 0 and xn+1 = 1. We invoke the �sampling�inequality

‖s′′‖∞,[0,1] ≤ C
(

hm−5/2‖s‖m + h−2‖s‖∞,X

) for all s ∈ Wm
2 [0, 1]



7 TIME STEPPING TECHNIQUES 12from [16℄ for m > 5/2 and normalize s to satisfy ‖s‖m = 1. Then
|λ||sλ(xk)| ≤ ‖s′′‖∞,[0,1]

≤ Ch−2‖s‖∞,X.Pi
king k with |sλ(xk)| = ‖s‖∞,X yields the assertion.Thus, for Euler time�stepping in the ODE system (5, eqyU), a spe
tral radiusof order h−2 means that there must be a CFL 
ondition of the form
∆t ≤ C(∆x)2as is to be expe
ted.

Figure 1: Absolute errorWe 
lose this se
tion by an example. Figure 1 shows the absolute error forthe 
ase with the exa
t solution
u(x, t) = sin(πx) exp(−π2t)using the Method of Lines for 15 equidistant spatial points, using the C4Wendland kernel. Note that there is a sharp in
rease of errors 
lose to theboundary right after the start of the integration. For illustration, see Figure
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Figure 2: Errors at startup and �rst time step2 giving the initial error of about 0.00004 and the error after the �rst timestep at t = 0.001, whi
h is roughly 0.01. This unexpe
ted e�e
t is observablefor various other 
ases as well. It turns out that we missed the additional
onditions
ut(0, t) = 0 = uxx(0, t), ut(1, t) = 0 = uxx(1, t)for
ing the se
ond spatial derivative of the solution to be zero at the boundaryfor all times. Our interpolants should have in
orporated this 
ondition. Thistea
hes us the lesson that the trial spa
e should always be as 
lose to thesolution spa
e as possible. But sin
e we present an even better trial spa
e inthe next se
tion, we refrain from repairing the above 
ase.8 Dire
t Heat Kernel Te
hniquesFor our spe
ial problem, solutions in series form are given by

u(x, t) =
∞
∑

k=1

ck sin(kπx) exp(−k2π2t)when the initial fun
tion has the series expansion
u0(x) = u(x, 0) =

∞
∑

k=1

ck sin(kπx)with at least
∞
∑

k=1

c2k ≤ ∞.



8 DIRECT HEAT KERNEL TECHNIQUES 14To apply kernel te
hniques dire
tly, we 
an go over to kernels (ewheatkerser)
K(x, y, t) :=

∞
∑

k=1

λk sin(kπx) sin(kπy) exp(−k2π2t) (12)with positive summable weights λk. By standard arguments 
on
erning ex-pansion kernels, we getTheorem 8.1. (TheKerPosDef) Ea
h su
h kernel satis�es the heat equations
Kt(x, y, t) = Kxx(x, y, t) = Kyy(x, y, t)and the boundary 
onditions

K(0, y, t) = K(x, 0, t) = K(1, y, t) = K(x, 1, t)for all x, y ∈ [0, 1]. Furthermore, they are positive de�nite on Ω = [0, 1] forall t ∈ R.Now one 
an take a set X = {x1, . . . , xn} ⊂ (0, 1) of s
attered points andinterpolate the starting fun
tion u0 by solving (eqheatkersys)
u0(xj) =

n
∑

k=1

αkK(xj , xk, 0), 1 ≤ j ≤ n (13)for 
oe�
ients α1, . . . , αn. Then the fun
tion
s(x, t) :=

n
∑

k=1

αkK(x, xk, t)will satisfy the heat equation and the boundary 
onditions. This yields amu
h better trial spa
e, and avoids numeri
al integration 
ompletely. Dueto the maximum prin
iple, the error for all positive times is bounded by the
L∞ interpolation error ‖s(·, 0)− u0‖∞ at startup. A theoreti
al analysis ofthis error requires an appli
ation of kernel interpolation theory to K(x, y, 0),whi
h 
an be done using periodi
ity and Fourier expansions. We leave detailsof this to another paper.The 
hoi
e of the weights in the kernel series (12, ewheatkerser) will dependon the smoothness of the starting fun
tion u0, sin
e kernel interpolationtheory [15, 12℄ tells us that the smoothness of the kernel K(x, y, 0) should benot lower than the smoothness of the fun
tion supplying the data. And sin
e
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Figure 3: Kernel with weights 1/n!the smoothness of the fun
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